Klasifikace a predikce. Roman LUKÁŠ
|
|
- Vlasta Němcová
- před 9 lety
- Počet zobrazení:
Transkript
1 1/28 Klasfkace a predkce Roman LUKÁŠ
2 2/28 Základní pomy Klasfkace = zařazení daného obektu do sté skupny na základě eho vlastností Dvě fáze klasfkace: I. Na základě trénovacích vzorů (u nchž víme, do aké skupny patří) určení pravdel, podle nchž bude klasfkace prováděna II. Pravdla z kroku I. sou testována na ných vzorech, následně použta pro zařazování nových dat Predkce = předpověď sté hodnoty (ze spoté funkce) pro daný obekt
3 3/28 I. Fáze: Klasfkace: Ilustrace Trénovací data Klasfkační algortmus Jméno Jan Novák Ota Tesař Vít Tomšů Leoš Nový Věk <= > Příem malý velký střední velký Úvěryschopnost špatná dobrá špatná dobrá Klasfkační pravdla: If Věk = and Příem = velký then Úvěryschopnost = dobrá II. Fáze: Trénovací data Klasfkační pravdla Nová data Jméno Věk Příem Úvěryschopnost (Jan Ryba, , velký,?) Petr Malý velký dobrá Jakub Král <= 30 malý špatná? = dobrá
4 4/28 Příprava dat pro klasfkac Čštění dat = Redukce šumu v datech, upravení dat z chyběící hodnotou Významnostní analýza = odstranění nepotřebných atrbutů v datech pro danou klasfkac Transformace dat = zobecnění dat, například číselných na dskrétní hodnoty Příklad: Konkrétní zsk malý/velký Specální případ transformace: Normalzace dat Příklad: obecný nterval nterval <0, 1>
5 5/28 Porovnávání klasfkačních metod Přesnost předpovědí = schopnost dobře třídt neznámá data Rychlost = výpočetní složtost pro vygenerování a používání klasfkačních pravdel Robustnost = schopnost vytvořt správný model, pokud daná data obsahuí šum a chyběící hodnoty Stablta = schopnost vytvořt správný model pro velké množství dat Interpretovatelnost = ak e model složtý pro pochopení
6 6/28 Příklad: Rozhodovací strom Zařazení osoby do tříd: (Koupí počítač/nekoupí počítač) Věk <= > 40 Student ANO Příem ne ano malý velký NE ANO NE ANO
7 7/28 Vytvoření rozhodovacího stromu functon nduce_tree(example_set, Propertes) : TTree; begn f all entres n Example_set are n the same class then return leaf node labeled wth ths class else f Propertes s empty then return leaf node labeled wth most common class else begn select a property P, delete t from Propertes and make t the root of the current tree; for each value V of P do begn create a branch of the tree labeled wth V; Ex_V = elements of Example_set wth V for property P call nduce_tree(ex_v, Propertes) and attach result to branch V; end; end;
8 8/28 Výběr vhodné vlastnost P Nechť S e množna vzorků rozdělovaných do tříd C 1,, C m Nechť s e počet vzorků z množny S ve třídě C Defnume očekávanou nformac I(s 1,, s m ) ako: m = 1,..., sn) p log2( p ) = 1 I( s p = s / S Nechť stá vlastnost P má může nabývat hodnot a 1,, a v. Proveďme rozklad S na vzáemně dsunktní podmnožny S 1,, S v S S, S ={x: vlastnost P prvku x má hodnotu a } pro = 1..v Nechť s e počet vzorků ze třídy C ve množně S Defnume entrop E(P) ako: v s m ( ) sm E P = ( p log2 p ) p = s / S S = 1 = 1 Vybereme vlastnost P s nevětší hodnotou I(s 1,, s m ) E(P)!
9 9/28 Ořezání stromu 2 metody pro ořezání stromu: Preprunng = ž v průběhu vytváření stromu nesou generovány větve, které maí malý význam pro rozhodování Postprunng = nedříve vytvořen strom ako celek, teprve pak sou větve s malým významem odstraněny
10 10/28 Rozhodovací strom klasf. pravdla Příklad: Věk <= > 40 Student ANO Příem ne ano malý Zařazení osoby do tříd: (Koupí počítač/nekoupí počítač) velký NE ANO NE ANO f Věk = <= 30 and Student = ne f Věk = <= 30 and Student = ano f Věk = f Věk = > 40 and Příem = malý f Věk = > 40 and Příem = velký then result = NE then result = ANO then result = NE then result = NE then result = ANO
11 11/28 Bayesova klasfkace 1/3 Označení pravděpodobností P(X) = pravděpodobnost evu X P(H X) = pravděpodobnost evu H, pokud víme, že nastal ev X Bayessův teorém: P ( H X ) = P( X H ) P( H P( X ) )
12 12/28 Bayesova klasfkace 2/3 Nechť e dán stý vzorek dat X = (x 1,, x n ), který má být zařazen do edné z tříd C 1,, C m. Zařadíme e do třídy C, pro kterou platí: P(C X ) e maxmální. Protože P( X C ) P( C ) P( C X ) =, kde P(X) e konst. P( X ) hledáme maxmální P(C X) P(C )
13 13/28 Bayesova klasfkace 3/3 P( C ) = s s s = počet trénovacích vzorů ve třídě C s = počet všech trénovacích vzorů P( X C P(x k C ) ) = n k = 1 P( x k C ) x k e dskrétní atrbut: P ( x C ) = kde s k e počet trénovacích vzorů ze třídy C splňuící podmínku, že eho k-tý atrbut = x k x k e spotý atrbut: k s s P(x k C ) = g(x k, µ C, σ C ) kde g(x k, µ C, σ C ) e Gaussova normální funkce k
14 14/28 Klasfkace: NS Backpropagaton Čnnost ednoho neuronu: x 1 x 2 w 2 x n w n w 1 θ Schéma neuronové sítě: x 1 n = 1 x w + θ f x 2 O O k x w w k
15 15/28 NS Backpropagaton: Algortmus 1/2 Incalzační část: Incalzu všechny váhy w a basy θ lbovolným malým hodnotam Šíření vstupu k výstupu: Postupně pro každý trénovací vzor děle: Pro každý neuron ve skryté vrstvě spočíte: I = w Pro každý neuron ve výstupní vrstvě spočíte: O = O 1 I + θ
16 16/28 NS Backpropagaton: Algortmus 2/2 Zpětné šíření chyby: Pro každý neuron výstupní vrstvy spočíte: Err = O ( 1 O )( T O Poznámka: T e výstup, který měl vyít Pro každý neuron skryté vrstvy spočíte: Err = O (1 O ) Errk Každou váhu w modfku následovně: w = ( l) Err θ = (l) Err O w Každý bas θ modfku následovně: θ = w = θ k + w + θ Poznámka: (l) <0, 1> e tzv. koefcent učení ) w k
17 17/28 Další metody klasfkace k-shlukování Založeno na vytvoření k-tříd. Každá třída má svého reprezentanta. Neznámý prvek e zařazen do té třídy ehož reprezentant e nepodobněší neznámému prvku. Genercké algortmy využtí myšlenek přírodního vývoe. Fuzzy logka pravdla pro rozdělování do tříd nemaí dskrétní charakter ale spotý.
18 18/28 Predkce: Lneární regrese 1/2 Metoda nemenších čtverců: Y = ax + b = skutečné hodnoty x 1 x 2 x 3 x 4 Snaha naít koefcenty a, b tak, aby součet znázorněných čtverců dosáhl co nemenší hodnoty:
19 Predkce: Lneární regrese 2/2 19/28 = = = s s x x y y x x a ) ( ) )( ( Soubor hodnot: (x 1, y 1 ), (x 2, y 2 ),, (x s, y s ) Výpočet koefcentů a, b pro regresní přímku Y = ax + b: x a y b = Poznámka: = = s x s x 1 1 = = s y s y 1 1
20 20/28 Y = ax 1 + bx 2 + cx 3 + d Kde: X 1 = X 3, X 2 = X 2, X 1 = X Vícenásobná a nelneární regrese Vícenásobná regrese výsledná hodnota y e závslá na více parametrech x 1, x 2,, x n Regresní funkce e potom ve tvaru: Y = a 1 X 1 + a 2 X a n X n + b Nelneární regrese většnou transformueme na lneární regres Příklad: Y = ax 3 + bx 2 + cx + d
21 21/28 Testování vytvořených modelů Bloková metoda Data sou náhodně rozdělena do dvou množn: Data z 1. množny sou použta k trénovaní Data z 2. množny sou použta k testování Křížová metoda Data sou náhodně rozdělena do k množn S 1, S 2,, S k. Data z S 2,, S k sou použta k trénovaní a testování e prováděno na datech z množny S 1 Data z S 1, S 3,, S k sou použta k trénovaní a testování e prováděno na datech z množny S 2 Data z S 1,, S k-1 sou použta k trénovaní a testování e prováděno na datech z množny S k
22 22/28 Ukázka SAS-EM: Defnce problému Defnce problému: Předmět IFJ měl v letošním roce celkem 383 studentů. Bodové rozdělení tohoto předmětu e následuící: 1) Půlsemestrální zkouška 20b. 2) Proekt 25b. 3) Závěrečná zkouška 55b. Úkoly: 1) Pokusíme se předpovědět zda student udělal kvaltně proekt (dostal za ně mnmálně 20 bodů) pouze za předpokladu znalostí eho výsledků z 1) & 3) 2) Pokusíme se předpovědět zda student dostane z IFJ ednčku (celkový počet bodů 90) pouze za předpokladu znalostí eho výsledků z 1) & 2)
23 23/28 Celkový náhled na mplementac Úkol 2 Úkol 1
24 24/28 Data a transformace dat Dopočítané proměnné Proměnné získané z DB
25 25/28 Nastavení atrbutů Nastavení atrbutů pro úkol 1. Nastavení atrbutů pro úkol 2.
26 26/28 Úkol 1: Výsledky
27 27/28 Úkol 2: Výsledky
28 28/28 Zhodnocení výsledků Pro řešení obou úloh e nehorší alternatva použít rozhodovací strom (dskrétní charakter!) Použtí neuronové sítě regresní funkce e srovnatelné Příčny nepřesnost predkce: 1) Student má dostatečný počet bodů během semestru a nenaučí se na závěrečnou zkoušku 2) Student má naopak málo bodů během semestru a o to více se na závěrečnou zkoušku přpraví 3) Student zvládá učvo en teoretcky (hodně bodů ze zkoušek), ale neovládá prax (málo bodů z proektu)
Využití logistické regrese pro hodnocení omaku
Využtí logstcké regrese pro hodnocení omaku Vladmír Bazík Úvod Jedním z prmárních proevů textlí e omak. Jedná se o poct který vyvolá textle př kontaktu s pokožkou. Je to ntegrální psychofyzkální vlastnost
VíceVYSOKÁ ŠKOLA EKONOMICKÁ V PRAZE FAKULTA INFORMATIKY A STATISTIKY BAKALÁŘSKÁ PRÁCE. 2013 Radka Luštincová
VYSOKÁ ŠKOLA EKONOMICKÁ V PRAZE FAKULTA INFORMATIKY A STATISTIKY BAKALÁŘSKÁ PRÁCE 2013 Radka Luštncová VYSOKÁ ŠKOLA EKONOMICKÁ V PRAZE FAKULTA INFORMATIKY A STATISTIKY Název bakalářské práce: Aplkace řezných
VíceBAYESŮV PRINCIP ZDENĚK PŮLPÁN
ROBUST 000, 7 4 c JČMF 00 BAYESŮV PRINCIP ZDENĚK PŮLPÁN Abstrakt. Poukážeme na možnost rozhodování pomocí Bayesova prncpu. Ten vychází z odhadu podmíněné pravděpodobnosta z předpokladu dsjunktního rozkladu
Více4.4 Exploratorní analýza struktury objektů (EDA)
4.4 Exploratorní analýza struktury objektů (EDA) Průzkumová analýza vícerozměrných dat je stejně jako u jednorozměrných dat založena na vyšetření grafckých dagnostk. K tomuto účelu se využívá různých technk
VíceAlgoritmus Minimax. Tomáš Kühr. Projektový seminář 1
Projektový seminář 1 Základní pojmy Tah = přemístění figury hráče na tahu odpovídající pravidlům dané hry. Při tahu může být manipulováno i s figurami soupeře, pokud to odpovídá pravidlům hry (např. odstranění
VíceStromy. Karel Richta a kol. Katedra počítačů Fakulta elektrotechnická České vysoké učení technické v Praze Karel Richta a kol.
Stromy Karel Richta a kol. Katedra počítačů Fakulta elektrotechnická České vysoké učení technické v Praze Karel Richta a kol., 2018, B6B36DSA 01/2018, Lekce 9 https://cw.fel.cvut.cz/wiki/courses/b6b36dsa/start
VíceIB108 Sada 1, Příklad 1 Vypracovali: Tomáš Krajča (255676), Martin Milata (256615)
IB108 Sada 1, Příklad 1 ( ) Složitost třídícího algoritmu 1/-Sort je v O n log O (n.71 ). Necht n = j i (velikost pole, které je vstupním parametrem funkce 1/-Sort). Lehce spočítáme, že velikost pole předávaná
VíceMetody vícekriteriálního hodnocení variant a jejich využití při výběru produktu finanční instituce
. meznárodní konference Řízení a modelování fnančních rzk Ostrava VŠB-TU Ostrava, Ekonomcká fakulta, katedra Fnancí 8. - 9. září 200 Metody vícekrterálního hodnocení varant a ech využtí př výběru produktu
VíceRegresní a korelační analýza
Přednáška STATISTIKA II - EKONOMETRIE Katedra ekonometrie FEM UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Regresní analýza Cíl regresní analýzy: stanovení formy (trendu, tvaru, průběhu)
VíceRegresní a korelační analýza
Regresní a korelační analýza Závslost příčnná (kauzální). Závslostí pevnou se označuje případ, kdy výskytu jednoho jevu nutně odpovídá výskyt druhé jevu (a často naopak). Z pravděpodobnostního hledska
VíceSTP022 PRAVDĚPODOBNOST A MATEMATICKÁ STATISTIKA
Poslední aktualizace: 29. května 200 STP022 PRAVDĚPODOBNOST A MATEMATICKÁ STATISTIKA PŘÍKLADY Pro zdárné absolvování předmětu doporučuji věnovat pozornost zejména příkladům označenými hvězdičkou. Příklady
VíceTématické celky { kontrolní otázky.
Tématické celky kontrolní otázky. Základy teorie pravdìpodobnosti..pravdìpodobnostní míra základní pojmy... Vysvìtlete pojem náhody, náhodného pokusu, náhodného jevu a jeho mno- ¾inovou interpretaci. Popi¹te
VíceObsah přednášky 1. Bayesův teorém 6. Naivní Bayesovský klasifikátor (NBK)
Obsah přednášky 1. Bayesův teorém 2. Brutální Bayesovský klasfkátor (BBK) 3. Mamální aposterorní pravděpodobnost (MA) 4. Optmální Bayesovský klasfkátor (OBK) 5. Gbbsův alortmus (GA) 6. Navní Bayesovský
VíceSeminář z IVT Algoritmizace. Slovanské gymnázium Olomouc Tomáš Kühr
Seminář z IVT Algoritmizace Slovanské gymnázium Olomouc Tomáš Kühr Algoritmizace - o čem to je? Zatím jsme se zabývali především tím, jak určitý postup zapsat v konkrétním programovacím jazyce (např. C#)
VíceA NUMERICKÉ METODY. Matice derivací: ( ) ( ) Volím x 0 = 0, y 0 = -2.
A NUMERICKÉ METODY Fourierova podmínka: f (x) > 0 => rostoucí, f (x) < 0 => klesající, f (x) > 0 => konvexní ᴗ, f (x) < 0 => konkávní ᴖ, f (x) = 0 ᴧ f (x)!= 0 => inflexní bod 1. Řešení nelineárních rovnic:
VíceÚvod Terminologie Dělení Princip ID3 C4.5 CART Shrnutí. Obsah přednášky
Obsah přednášky. Úvod. Termnologe 3. Základní dělení 4. Prncp tvorby, prořezávání a použtí RS 5. Algortmus ID3 6. C4.5 7. CART 8. Shrnutí A L G O RI T M Y T E O R I E Stromové struktury a RS Obsah knhy
Více1. Pravděpodobnost a statistika (MP leden 2010)
1. Pravděpodobnost a statistika (MP leden 2010) Pravděpodobnost pojmy 1. Diskrétní pravděpodobnostní prostor(definice, vlastnosti, příklad). Diskrétní pravděpodobnostní prostor je trojice(ω, A, P), kde
VíceALGORITMIZACE 2010/03 STROMY, BINÁRNÍ STROMY VZTAH STROMŮ A REKURZE ZÁSOBNÍK IMPLEMENTUJE REKURZI PROHLEDÁVÁNÍ S NÁVRATEM (BACKTRACK)
ALGORITMIZACE 2010/03 STROMY, BINÁRNÍ STROMY VZTAH STROMŮ A REKURZE ZÁSOBNÍK IMPLEMENTUJE REKURZI PROHLEDÁVÁNÍ S NÁVRATEM (BACKTRACK) Strom / tree uzel, vrchol / node, vertex hrana / edge vnitřní uzel
VíceOSTRAVSKÁ UNIVERZITA V OSTRAVĚ NEURONOVÉ SÍTĚ 1 EVA VOLNÁ
OSTRAVSKÁ UNIVERZITA V OSTRAVĚ NEURONOVÉ SÍTĚ EVA VOLNÁ OSTRAVA 008 Recenzent: Název: Neuronové sítě Autoř: RNDr PaedDr Eva Volná, PhD Vydání: druhé, 008 Počet stran: 86 Náklad: Tsk: Studní materály pro
VíceCvičení 3. Přednášející: Mgr. Rudolf B. Blažek, Ph.D. prof. RNDr. Roman Kotecký, DrSc.
Cvičení 3 Přednášející: Mgr. Rudolf B. Blažek, Ph.D. prof. RNDr. Roman Kotecký, DrSc. Katedra počítačových systémů Katedra teoretické informatiky Fakulta informačních technologií České vysoké učení technické
VíceVícekriteriální rozhodování. Typy kritérií
Vícekrterální rozhodování Zabývá se hodnocením varant podle několka krtérí, přčemž varanta hodnocená podle ednoho krtéra zpravdla nebývá nelépe hodnocená podle krtéra ného. Metody vícekrterálního rozhodování
Více1. Úvod do genetických algoritmů (GA)
Obsah 1. Úvod do genetických algoritmů (GA)... 2 1.1 Základní informace... 2 1.2 Výstupy z učení... 2 1.3 Základní pomy genetických algoritmů... 2 1.3.1 Úvod... 2 1.3.2 Základní pomy... 2 1.3.3 Operátor
VíceHeuristické řešení problémů. Seminář APS Tomáš Müller 6. 7. 2002
Heuristické řešení problémů Seminář APS Tomáš Müller 6. 7. 00 Heuristické řešení problémů Popis několika základních metod lokální prohledávání branch and bound simulated annealing, TABU evoluční algoritmy
VíceDatabázové systémy II. KIV/DB2 LS 2007/2008. Zadání semestrální práce
Databázové systémy 2 Jméno a příjmení: Jan Tichava Osobní číslo: Studijní skupina: čtvrtek, 4 5 Obor: ININ SWIN E-mail: jtichava@students.zcu.cz Databázové systémy II. KIV/DB2 LS 2007/2008 Zadání semestrální
VícePodmíněná pravděpodobnost, spolehlivost soustav
S1 odmíněná pravděpodobnost, spolehlvost soustav odmíněná pravděpodobnost, spolehlvost soustav Lbor Žák odmíněná pravděpodobnost Nechť,, 0, podmíněná pravděpodobnost evu vzhledem k evu : S akou pravděpodobností
VíceŤ Í ň š Ť ň Ú Ú Ť č č č č ň ů š Ť ňš č š ť Ť š š č š ň č š č ť č š č Ť Ž Ť Ť š č Í š š ť š Ť ň č š Í ňč ň č š ň Ž č č ú č ť ď č Ť Ť ň ň š Ť č š ů ň ň Ů Í š š ň š ť Ů ň č Ž Ž ť č č Í Ď ť Ťč š ť š Ž Ď Ž
VíceTeorie elektrických ochran
Teore elektrckých ochran Elektrcká ochrana zařízení kontrolující chod část energetckého systému (G, T, V) = chráněného objektu, zajstt normální provoz Chráněný objekt fyzkální zařízení pro přenos el. energe,
VícePL/SQL. Jazyk SQL je jazykem deklarativním, který neobsahuje procedurální příkazy jako jsou cykly, podmínky, procedury, funkce, atd.
PL/SQL Jazyk SQL je jazykem deklarativním, který neobsahuje procedurální příkazy jako jsou cykly, podmínky, procedury, funkce, atd. Rozšířením jazyka SQL o proceduralitu od společnosti ORACLE je jazyk
VíceNumerické metody optimalizace
Numercké metody optmalzace Numercal optmzaton methods Bc. Mloš Jurek Dplomová práce 2007 Abstrakt Abstrakt česky Optmalzační metody představují vyhledávání etrémů reálných funkcí jedné nebo více reálných
VíceLINEÁRNÍ PROGRAMOVÁNÍ
LINEÁRNÍ PROGRAMOVÁNÍ Lneární programování e druh matematckého programování. Matematcký model se skládá z:. účelové funkce. omezuících podmínek (vlastní omezení a podmínk nezápornost) Účelová funkce omezuící
VíceALGORITMIZACE 2010/03 STROMY, BINÁRNÍ STROMY VZTAH STROMŮ A REKURZE ZÁSOBNÍK IMPLEMENTUJE REKURZI PROHLEDÁVÁNÍ S NÁVRATEM (BACKTRACK)
ALGORITMIZACE 2010/03 STROMY, BINÁRNÍ STROMY VZTAH STROMŮ A REKURZE ZÁSOBNÍK IMPLEMENTUJE REKURZI PROHLEDÁVÁNÍ S NÁVRATEM (BACKTRACK) Strom / tree uzel, vrchol / node, vertex hrana / edge vnitřní uzel
VíceŘEŠENÍ PROBLÉMU LOKALIZACE A ALOKACE LOGISTICKÝCH OBJEKTŮ POMOCÍ PROGRAMOVÉHO SYSTÉMU MATLAB. Vladimír Hanta 1, Ivan Gros 2
ŘEŠENÍ PROBLÉMU LOKALIZACE A ALOKACE LOGISTICKÝCH OBJEKTŮ POMOCÍ PROGRAMOVÉHO SYSTÉMU MATLAB Vladmír Hanta 1 Ivan Gros 2 Vysoká škola chemcko-technologcká Praha 1 Ústav počítačové a řídcí technky 2 Ústav
Více2) Napište algoritmus pro vložení položky na konec dvousměrného seznamu. 3) Napište algoritmus pro vyhledání položky v binárním stromu.
Informatika 10. 9. 2013 Jméno a příjmení Rodné číslo 1) Napište algoritmus pro rychlé třídění (quicksort). 2) Napište algoritmus pro vložení položky na konec dvousměrného seznamu. 3) Napište algoritmus
VíceInterpret jazyka IFJ2011
Dokumentace projektu Interpret jazyka IFJ2011 Tým číslo 093, varianta b/3/i: 20 % bodů: Cupák Michal (xcupak04) vedoucí týmu 20 % bodů: Číž Miloslav (xcizmi00) 20 % bodů: Černá Tereza (xcerna01) 20 % bodů:
VíceZáklady matematiky kombinované studium 714 0365/06
Základy matematiky kombinované studium 714 0365/06 1. Některé základní pojmy: číselné množiny, intervaly, operace s intervaly (sjednocení, průnik), kvantifikátory, absolutní hodnota čísla, vzorce: 2. Algebraické
Více6. T e s t o v á n í h y p o t é z
6. T e s t o v á n í h y p o t é z Na základě hodnot z realizace náhodného výběru činíme rozhodnutí o platnosti hypotézy o hodnotách parametrů rozdělení nebo o jeho vlastnostech. Používáme k tomu vhodně
VíceFAKULTA ELEKTROTECHNIKY A KOMUNIKAČNÍCH TECHNOLOGIÍ. Matematika 3. RNDr. Břetislav Fajmon, PhD. Autoři textu:
FAKULTA ELEKTROTECHNIKY A KOMUNIKAČNÍCH TECHNOLOGIÍ VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ Matematika 3 Garant předmětu: RNDr. Břetislav Fajmon, PhD Autoři textu: Mgr. Irena Růžičková RNDr. Břetislav Fajmon, PhD
Více3. Polynomy Verze 338.
3. Polynomy Verze 338. V této kapitole se věnujeme vlastnostem polynomů. Definujeme základní pojmy, které se k nim váží, definujeme algebraické operace s polynomy. Diskutujeme dělitelnost polynomů, existenci
VíceEvoluční algoritmy. Podmínka zastavení počet iterací kvalita nejlepšího jedince v populaci změna kvality nejlepšího jedince mezi iteracemi
Evoluční algoritmy Použítí evoluční principů, založených na metodách optimalizace funkcí a umělé inteligenci, pro hledání řešení nějaké úlohy. Populace množina jedinců, potenciálních řešení Fitness function
VíceKatedra textilních materiálů ENÍ TEXTILIÍ PŘEDNÁŠKA 6
PŘEDNÁŠKA 6 P l () l f ( l) dl = 1 f ( l) dl = 1 F( l) = l max 0 l Definice: Délka vlákna e definována ako vzdálenost konců napřímeného vlákna bez obloučků a bez napětí. Délka vlákna e zatížena vysokou
VíceSemestrální práce z předmětu. Jan Bařtipán / A03043 bartipan@studentes.zcu.cz
Semestrální práce z předmětu KIV/UPA Jan Bařtipán / A03043 bartipan@studentes.zcu.cz Zadání Program přečte ze vstupu dvě čísla v hexadecimálním tvaru a vypíše jejich součet (opět v hexadecimální tvaru).
Více1. Úvod. Cílem teorie her je popsat situaci, která nás zajímá, jako hru. Klasickým případem
Kvaternon 2/204, 79 98 79 MATICOVÉ HRY V INŽENÝRSTVÍ JAROSLAV HRDINA a PETR VAŠÍK Abstrakt. Následuící text pokrývá eden z cyklů přednášek předmětu Aplkovaná algebra pro nženýry (0AA) na FSI VUT. Text
VíceEKONOMICKO-MATEMATICKÉ METODY
. přednáška EKONOMICKO-MATEMATICKÉ METODY Ekonomcko matematcké metody (též se užívá název operační analýza) sou metody s matematckým základem, využívané především v ekonomcké oblast, v oblast řízení a
Vícepřetrénování = ztráta schopnosti generalizovat vlivem přílišného zaměření klasifikátorů na rozeznávání pouze konkrétních trénovacích dat
Zkouška ISR 2013 přetrénování = ztráta schopnosti generalizovat vlivem přílišného zaměření klasifikátorů na rozeznávání pouze konkrétních trénovacích dat 1. Rozdílné principy u induktivního a deduktivního
VíceIterační výpočty. Dokumentace k projektu pro předměty IZP a IUS. 22. listopadu projekt č. 2
Dokumentace k projektu pro předměty IZP a IUS Iterační výpočty projekt č.. lstopadu 1 Autor: Mlan Setler, setl1@stud.ft.vutbr.cz Fakulta Informačních Technologí Vysoké Učení Techncké v Brně Obsah 1 Úvod...
VíceDynamic programming. Optimal binary search tree
The complexity of different algorithms varies: O(n), Ω(n ), Θ(n log (n)), Dynamic programming Optimal binary search tree Různé algoritmy mají různou složitost: O(n), Ω(n ), Θ(n log (n)), The complexity
VíceMatematika I A ukázkový test 1 pro 2018/2019
Matematka I A ukázkový test 1 pro 2018/2019 1. Je dána soustava rovnc s parametrem a R x y + z = 1 x + y + 3z = 1 (2a 1)x + (a + 1)y + z = 1 a a) Napšte Frobenovu větu (předpoklady + tvrzení). b) Vyšetřete
VíceZápadočeská univerzita v Plzni Katedra informatiky a výpočetní techniky. 9. června 2007. krovacek@students.zcu.cz
Databáze čajových sáčků Martina Málková Západočeská univerzita v Plzni Katedra informatiky a výpočetní techniky Databázové systémy 2 9. června 2007 krovacek@students.zcu.cz 1 1 Datová analýza V původním
VíceDYNAMICKÉ PROGRAMOVÁNÍ A PROBLÉM BATOHU
ČVUT V PRAZE FAKULTA INFORMAČNÍCH TECHNOLOGIÍ JAN SCHMIDT A PETR FIŠER MI-PAA DYNAMICKÉ PROGRAMOVÁNÍ A PROBLÉM BATOHU EVROPSKÝ SOCIÁLNÍ FOND PRAHA A EU: INVESTUJEME DO VAŠÍ BUDOUCNOSTI Dynamické programování
VíceObsah. Část I Začínáme s jazykem AppleScript
Obsah Úvod... 13 Je tato kniha pro vás?...13 Jaká témata kniha pokrývá?...13 Proč je text vytištěný tolika různými druhy písma a k čemu jsou všechny ty podivné značky?...15 Zpětná vazba od čtenářů...16
VíceMANAŽERSKÉ ROZHODOVÁNÍ
MANAŽERSKÉ ROZHODOVÁNÍ Téma 14 POSUZOVÁNÍ A HODNOCENÍ VARIANT doc. Ing. Monka MOTYČKOVÁ (Grasseová), Ph.D. Unverzta obrany Fakulta ekonomka a managementu Katedra voenského managementu a taktky Kouncova
VíceAPLIKACE MATEMATICKÉHO PROGRAMOVÁNÍ PŘI NÁVRHU STRUKTURY DISTRIBUČNÍHO SYSTÉMU
APLIKACE MATEMATICKÉHO PROGRAMOVÁNÍ PŘI NÁVRHU STRUKTURY DISTRIBUČNÍHO SYSTÉMU APPLICATION OF MATHEMATICAL PROGRAMMING IN DESIGNING THE STRUCTURE OF THE DISTRIBUTION SYSTEM Martn Ivan 1 Anotace: Prezentovaný
VíceDistribuovaná synchronizace. Paralelní a distribuované systémy. 11. Přednáška Vzájemné vyloučení. Centralizovaný algoritmus - fronta procesů
Distribuovaná synchronizace Využití kritické sekce při vzájemném vyloučení v distribuovaném systému Paralelní a distribuované systémy 11. Přednáška Vzájemné vyloučení Logicky distribuovaný systém s vlákny
Vícea) Θ(1) b) závislou na hloubce uzlu u c) mezi O(1) a Ω (log n) Jméno:... St. Sk.:. Cvičící:.. Bodů ze cv.: a) Ο(n) b) Θ(n) d) Ο(n 2 )
Jméno:... St. Sk.:. Cvičící:.. Bodů ze cv.: A 1. ( úspěšnost: 39 z 49 = 80%) Insert sort řadí do neklesajícího pořadí pole o n prvcích, v němž jsou stejné všechny hodnoty kromě první a poslední, které
VícePostřehová hra. Zadání projektu. 1 Moje cíle
Gymnázium, Praha 6, Arabská 16 předmět Programování, vyučující Tomáš Obdržálek Postřehová hra ročníkový projekt Matouš Jokl, 1E květen 2014 Obsah 1 Moje cíle...1 2 Kód...2 1.Objekty a ArrayList...2 2.Jpanel
VíceREGRESNÍ ANALÝZA. 13. cvičení
REGRESNÍ ANALÝZA 13. cvčení Závslost náhodných velčn Závslost mez kvanttatvním proměnným X a Y: Funkční závslost hodnotam nezávsle proměnných je jednoznačně dána hodnota závslé proměnné. Y=f(X) Stochastcká
VícePoznámky k předmětu Aplikovaná statistika, 9.téma
Poznámky k předmětu Aplikovaná statistika, 9téma Princip testování hypotéz, jednovýběrové testy V minulé hodině jsme si ukázali, jak sestavit intervalové odhady pro některé číselné charakteristiky normálního
VíceKapitola 7: Neurčitý integrál. 1/14
Kapitola 7: Neurčitý integrál. 1/14 Neurčitý integrál 2/14 Definice: Necht f je funkce definovaná na intervalu I. Funkci F definovanou na intervalu I, pro kterou platí F (x) = f (x) x I nazýváme primitivní
VíceTéma je podrobně zpracováno ve skriptech [1], kapitola
Břetislav Fajmon, UMAT FEKT, VUT Brno Téma je podrobně zpracováno ve skriptech [1], kapitola 6. Základní aproximační úlohu lze popsat následovně: Jsou dány body [x 0, y 0 ], [x 1, y 1 ],..., [x n, y n
VíceDC circuits with a single source
Název projektu: utomatizace výrobních procesů ve strojírenství a řemeslech egistrační číslo: Z..07/..0/0.008 Příjemce: SPŠ strojnická a SOŠ profesora Švejcara Plzeň, Klatovská 09 Tento projekt je spolufinancován
VíceKapitola 1. Naivní Bayesův klasifikátor
Kapitola 1 Naivní Bayesův klasifikátor Současná umělá inteligence používá velice často teorii pravděpodobnosti k odhadu nejistoty rozhodnutí, které stroje provádí. Z teorie pravděpodobnosti vychází v minulém
VíceLogika XI. RNDr. Kateřina Trlifajová PhD. Katedra teoretické informatiky Fakulta informačních technologíı BI-MLO, ZS 2011/12
Logika XI. RNDr. Kateřina Trlifajová PhD. Katedra teoretické informatiky Fakulta informačních technologíı České vysoké učení technické v Praze c Kateřina Trlifajová, 2010 BI-MLO, ZS 2011/12 Evropský sociální
VíceKatedra kybernetiky skupina Inteligentní Datové Analýzy (IDA) 9. dubna 2009. Filip Železný (ČVUT) Vytěžování dat 9.
Vytěžování dat Filip Železný Katedra kybernetiky skupina Inteligentní Datové Analýzy (IDA) 9. dubna 2009 Filip Železný (ČVUT) Vytěžování dat 9. dubna 2009 1 / 22 Rozhodovací pravidla Strom lze převést
VíceY36BEZ Bezpečnost přenosu a zpracování dat. Úvod. Róbert Lórencz. http://service.felk.cvut.cz/courses/y36bez lorencz@fel.cvut.cz
Y36BEZ Bezpečnost přenosu a zpracování dat Róbert Lórencz 1. přednáška Úvod http://service.felk.cvut.cz/courses/y36bez lorencz@fel.cvut.cz Róbert Lórencz (ČVUT FEL, 2007) Y36BEZ Bezpečnost přenosu a zpracování
VíceDolování znalostí z rozsáhlých statistických souborů lékařských dat
Mendelova univerzita v Brně Provozně ekonomická fakulta Dolování znalostí z rozsáhlých statistických souborů lékařských dat Diplomová práce Vedoucí práce: doc. Ing. Jan Žižka, CSc. Brno 2015 Vypracoval:
VíceDopravní plánování a modelování (11 DOPM )
Department of Appled Mathematcs Faculty of ransportaton Scences Czech echncal Unversty n Prague Dopravní plánování a modelování (11 DOPM ) Lekce 5: FSM: rp dstrbuton Prof. Ing. Ondře Přbyl, Ph.D. Ing.
Více. Určete hodnotu neznámé x tak, aby
Fakulta informačních technologií ČVUT v Praze Přijímací zkouška z matematiky 015 Kód uchazeče ID:.................. Varianta: 1 1. Původní cena knihy byla 50 Kč. Pak byla zdražena o 15 %. Jelikož nešla
VíceDobývání znalostí. Doc. RNDr. Iveta Mrázová, CSc. Katedra teoretické informatiky Matematicko-fyzikální fakulta Univerzity Karlovy v Praze
Dobývání znalostí Doc. RNDr. Iveta Mrázová, CSc. Katedra teoretické informatiky Matematicko-fyzikální fakulta Univerzity Karlovy v Praze Dobývání znalostí Rozhodovací stromy Doc. RNDr. Iveta Mrázová, CSc.
Více5 Rekurze a zásobník. Rekurzivní volání metody
5 Rekurze a zásobník Při volání metody z metody main() se do zásobníku uloží aktivační záznam obsahující - parametry - návratovou adresu, tedy adresu, kde bude program pokračovat v metodě main () po skončení
VíceIB109 Návrh a implementace paralelních systémů. Kolektivní komunikační primitava. RNDr. Jiří Barnat, Ph.D.
IB109 Návrh a implementace paralelních systémů Kolektivní komunikační primitava RNDr. Jiří Barnat, Ph.D. Kvantitativní parametry komunikace B109 Návrh a implementace paralelních systémů: Kolektivní komunikační
VícePOLYMERNÍ BETONY Jiří Minster Ústav teoretické a aplikované mechaniky AV ČR, v. v. i.
Odborná skupna Mechanka kompoztních materálů a konstrukcí České společnost pro mechanku s podporou frmy Letov letecká výroba, s. r. o. a Ústavu teoretcké a aplkované mechanky AV ČR v. v.. Semnář KOMPOZITY
VíceRozhodovací stromy a jejich konstrukce z dat
Příklad počítačová hra. Můžeme počítač naučit rozlišovat přátelské a přátelské roboty? Rozhodovací stromy a jejich konstruk z dat Učení s učitelem: u některých už víme, jakou mají povahu (klasifika) Neparametrická
Víceů š š ů Ú ů š É š š ů ť É Ž ů Í ó ň š š É Ú š Ů Ž Í š ů ňš Í ů ů š Š Š ó ů Í Ž Č š š š Č Č š Ů Í Í Í Í š š š Ž Ů š Š ů Ů Í Š Š š Č Ž ů Ž š Ú ó É Ž É Ú Ž Í š Í Ú ů Ú š Ú š Ú ů Ž Ú ů Ž š š š ů Í Ů š Ů Ú
VíceProgramování. s omezujícími podmínkami. Roman Barták. roman.bartak@mff.cuni.cz http://ktiml.mff.cuni.cz/~bartak
Programování s omezujícími podmínkami Roman Barták Katedra teoretické informatiky a matematické logiky roman.bartak@mff.cuni.cz http://ktiml.mff.cuni.cz/~bartak Konzistenční techniky Dosud jsme podmínky
VíceBřetislav Fajmon, UMAT FEKT, VUT Brno. Poznámka 1.1. A) první část hodiny (cca 50 minut): představení všech tří metod při řešení jednoho příkladu.
Břetislav Fajmon, UMAT FEKT, VUT Brno Poznámka 1.1. A) první část hodiny (cca 50 minut): představení všech tří metod při řešení jednoho příkladu. Na jiných příkladech je téma podrobně zpracováno ve skriptech
VíceKMA/PDB. Karel Janečka. Tvorba materiálů byla podpořena z prostředků projektu FRVŠ č. F0584/2011/F1d
KMA/PDB Prostorové spojení Karel Janečka Tvorba materiálů byla podpořena z prostředků projektu FRVŠ č. F0584/2011/F1d Obsah Prostorové spojení pomocí hnízděných cyklů. Prostorové spojení pomocí R-stromů.
VíceParalelní LU rozklad
Paralelní LU rozklad Lukáš Michalec Katedra fyziky, Přírodovědecká fakulta Univerzity J.E. Purkyně v ročník, specializace Ústí n.l. Abstract Seminární práce se zabývá řešení soustavy lineárních rovnic
VíceStrukturální regresní modely. určitý nadhled nad rozličnými typy modelů
Strukturální regresní modely určitý nadhled nad rozličnými typy modelů Jde zlepšit odhad k-nn? Odhad k-nn konverguje pro slušné k očekávané hodnotě. ALE POMALU! Jiné přístupy přidají předpoklad o funkci
VíceDnešní program odvozování v Bayesovských sítích exaktní metody (enumerace, eliminace proměnných) aproximační metody y( (vzorkovací techniky)
Umělá inteligence II Roman Barták, KTIML roman.bartak@mff.cuni.cz http://ktiml.mff.cuni.cz/~bartak Bayesovská síť zachycuje závislosti mezi náhodnými proměnnými Pro zopakování orientovaný acyklický graf
VíceMonte Carlo metody Josef Pelikán CGG MFF UK Praha.
Monte Carlo metody 996-7 Josef Pelkán CGG MFF UK Praha pepca@cgg.mff.cun.cz http://cgg.mff.cun.cz/~pepca/ Monte Carlo 7 Josef Pelkán, http://cgg.ms.mff.cun.cz/~pepca / 44 Monte Carlo ntegrace Odhadovaný
Více3. Derivace funkce Definice 3.1. Nechť f : R R je definována na nějakém okolí U(a) bodu a R. Pokud existuje limita f(a + h) f(a) lim
3 a b s = (a + b) 2 f(s) 3,46 4,680 3,93-2,9422 3,93 4,680 4,2962-2,034 4,2962 4,680 4,4886-0,0954 4,4886 4,680 4,5848 3,2095 4,4886 4,5848 4,5367,0963 4,4886 4,5367 4,526 0,427 4,4886 4,526 4,5006 0,508
VíceMária Sadloňová. Fajn MATIKA. 150 řešených příkladů (vzorek)
Mária adloňová Fajn MATIKA (nejen) na přijímačky 50 řešených příkladů (vorek) 0 Mgr. Mária adloňová FajnMATIKA (nejen) na přijímačky 50 řešených příkladů (reklamní vorek) Mgr. Mária adloňová, 0 Vydavatel
VíceOCHRANA VOJENSKÝCH OBJEKTŮ PROTI ÚČINKŮM VÝKONOVÝCH ELEKTROMAGNETICKÝCH POLÍ, SIMULACE EMC FILTRŮ
OCHRANA VOJENSKÝCH OBJEKTŮ PROTI ÚČINKŮM VÝKONOVÝCH ELEKTROMAGNETICKÝCH POLÍ, SIMULACE EMC FILTRŮ Anotace: Ing. Zbyněk Plch VOP-026 Šternberk s.p., divize VTÚPV Vyškov Zkušebna elektrické bezpečnosti a
VíceEvaluation of the Inner Detector with Muon Tracks
Evaluation of the Inner Detector with Muon Tracks Tomáš Jakoubek FZÚ AV ČR, FJFI ČVUT ATLAS seminář na FZÚ, Praha 16. 10. 2009 ATLAS seminář na FZÚ, Praha T. Jakoubek: Evaluation of the Inner Detector
Vícealternativní rozdělení Statistika binomické rozdělení bi(n, π)(2)
Statistika (MD360P03Z, MD360P03U) ak. rok 2007/2008 Karel Zvára karel.zvara@mff.cuni.cz http://www.karlin.mff.cuni.cz/ zvara 5. listopadu 2007 1(178) binomické rozdělení Poissonovo rozdělení normální rozdělení
VíceRozptyl. Pozn.: rozptyl je nezávislý na posunu hustoty pravděpodobnosti na ose x, protože Var(X) mi určuje jen šířku rozdělení.
Rozptyl Základní vlastnosti disperze Var(konst) = 0 Var(X+Y) = Var(X) + Var(Y) (nezávislé proměnné) Lineární změna jednotek Y = rx + s, například z C na F. Jak vypočítám střední hodnotu a rozptyl? Pozn.:
VíceCvičení ze statistiky - 4. Filip Děchtěrenko
Cvičení ze statistiky - 4 Filip Děchtěrenko Minule bylo.. Dokončili jsme deskriptivní statistiku Tyhle termíny by měly být známé: Korelace Regrese Garbage in, Garbage out Vícenásobná regrese Pravděpodobnost
VíceMatematický ústav v Opavě. Studijní text k předmětu. Softwarová podpora matematických metod v ekonomice
Matematický ústav v Opavě Studijní text k předmětu Softwarová podpora matematických metod v ekonomice Zpracoval: Ing. Josef Vícha Opava 2008 Úvod: V rámci realizace projektu FRVŠ 2008 byl zaveden do výuky
VíceDeterminant. Definice determinantu. Permutace. Permutace, vlastnosti. Definice: Necht A = (a i,j ) R n,n je čtvercová matice.
[] Definice determinantu BI-LIN, determinant, 9, P Olšák [2] Determinant je číslo jistým způsobem charakterizující čtvercovou matici det A 0 pro singulární matici, det A 0 pro regulární matici používá
VíceDefinice uživatelského typu. Uživatelem definované typy. Součinové datové typy. Součtové datové typy. FLP - Uživatelem definované typy
Uživatelem definované typy Ing. Lumír Návrat katedra informatiky, A 1018 59 732 3252 Definice uživatelského typu data Color = Red Green Blue Color typový konstruktor Red / Green / Blue datové konstruktory
VíceÍ š Ť š ň ň Í Ř Ť Ť ň Ť Ť š Ť š Ď š š š ň š š š š š Í Ť Ť š ň š Ť š š É š ť Í Ť š Ž Š Ť Ť Ť Ť š š š š š Ť š Ť Í š Ť š Ť š Í š Ě Í š ň Ť š Ť Ť Ó š š š š š Ť Ž Ť Í Ř Ř Ť š š ť Ť š Ť š Ó š Ť Ť ň Ť š š š Ť
Více2. Řešení úloh hraní her Hraní her (Teorie a algoritmy hraní her)
Hraní her (Teorie a algoritmy hraní her) 4. 3. 2015 2-1 Hraní her pro dva a více hráčů Počítač je při hraní jakékoli hry: silný v komplikovaných situacích s množstvím kombinací, má obrovskou znalost zahájení
Vícez možností, jak tuto veličinu charakterizovat, je určit součet
6 Charakteristiky áhodé veličiy. Nejdůležitější diskrétí a spojitá rozděleí. 6.1. Číselé charakteristiky áhodé veličiy 6.1.1. Středí hodota Uvažujme ejprve diskrétí áhodou veličiu X s rozděleím {x }, {p
VíceHraní her. (Teorie a algoritmy hraní her) Řešení úloh hraní her. Václav Matoušek /
Hraní her (Teorie a algoritmy hraní her) 8. 3. 2019 2-1 Hraní her pro dva a více hráčů Počítač je při hraní jakékoli hry: silný v komplikovaných situacích s množstvím kombinací, má obrovskou znalost zahájení
VíceRegresní lineární model symboly
Lneární model, Dskrmnační analýza, Podůrné vektory Regresní lneární model symboly Použté značení b arametry modelu (vektor ) očet atrbutů (skalár) N očet říkladů (skalár) x jeden říklad (vektor ) x -tá
VíceProgramování v C++ 1, 16. cvičení
Programování v C++ 1, 16. cvičení binární vyhledávací strom 1 1 Fakulta jaderná a fyzikálně inženýrská České vysoké učení technické v Praze Zimní semestr 2018/2019 Přehled 1 2 Shrnutí minule procvičené
VíceNáhodný pokus každá opakovatelná činnost, prováděná za stejných nebo přibližně stejných podmínek, jejíž výsledek je nejistý a závisí na náhodě.
Základy teorie pravděpodobnosti Náhodný pokus každá opakovatelná činnost, prováděná za stejných nebo přibližně stejných podmínek, jejíž výsledek je nejistý a závisí na náhodě. Náhodný jev jakékoli tvrzení
Více1. Alternativní rozdělení A(p) (Bernoulli) je diskrétní rozdělení, kdy. p(0) = P (X = 0) = 1 p, p(1) = P (X = 1) = p, 0 < p < 1.
2. Některá důležitá rozdělení Diskrétní rozdělení. Alternativní rozdělení Ap) Bernoulli) je diskrétní rozdělení, kdy náhodná veličina X nabývá pouze dvou hodnot a a pro její pravděpodobnostní funkci platí:
Více