Kapitola 7: Neurčitý integrál. 1/14
|
|
- Antonie Doležalová
- před 6 lety
- Počet zobrazení:
Transkript
1 Kapitola 7: Neurčitý integrál. 1/14
2 Neurčitý integrál 2/14 Definice: Necht f je funkce definovaná na intervalu I. Funkci F definovanou na intervalu I, pro kterou platí F (x) = f (x) x I nazýváme primitivní funkcí k funkci f na intervalu I, nebo také neurčitým integrálem funkce f a označujeme ji F(x) = f (x) dx.. Poznámka: Je-li F primitivní funkce k funkci f na intervalu I a G(x) = F(x) + c pro x I, kde c je konstanta, je G také primitivní funkce k funkci f na intervalu I.
3 Existence primitivní funkce. 3/14 Věta: O existenci primitivní funkce Necht funkce f je spojitá na intervalu I, potom f má na intervalu I primitivní funkci. Poznámka: Existují funkce, které podle předchozí věty mají primitivní funkci, my ji ale neumíme nalézt pomoci známých funkcí. Můžeme ji tedy definovat pomoci integrálu. Např.: e x 2 sin x dx, dx,... x Umíme již počítat některé primitivní funkce? ANO! Stačí otočit vzorce pro derivování!
4 Tabulka primitivních funkcích. x n dx = x n+1 n+1 n R, n 1 1 x dx = ln x sin x dx = cos x cos x dx = sin x a x dx = ax ln a a > 0, a 1 dx = arctg x 1+x 2 = arcsin x dx 1 x 2 dx cos 2 x = tg x dx sin 2 x = cotg x dx x 2 +a = ln x + x 2 + a a 0 f (x) f (x) = ln f (x) 4/14
5 Vlastnosti integrálů 5/14 Věta: Platí (i) f (x) dx = f (x). ( (ii) f (x) dx) = f (x). (iii) k f (x) dx = k f (x) dx, kde k je konstanta. (iv) (f (x) ± g(x)) dx = f (x) dx ± g(x) dx. Dk: Z definice prim. fce a vlastností derivací. Pozor, pro (f (x) g(x)) dx není žádný univerzální vzorec!!!
6 Metody výpočtů neurčitých integrálů. 6/14 Metoda per partes. Věta: Necht funkce u a v mají v intervalu I spojité derivace. Potom v intervalu I platí u(x) v (x) dx = u(x) v(x) u (x) v(x) dx. Zkráceně: u v = u v u v Dk: Plyne z derivace součinu.
7 Kdy se hodí per partes? 7/14 1 součin polynomu a goniometrické nebo exponenciální fce např. x sin x dx, x 3 e 2x dx, (x + 3) 2 x dx (pozn. polynom derivujeme) 2 součin polynomu a cyklometrické nebo logaritmické fce např. arcsin x dx, x 2 ln x dx, x log x dx (pozn. polynom integrujeme) 3 součin goinometrické a exponenciální fce nebo dvou goniometrických fcí např. e 2x sin x dx, 2 x cos x dx, sin 2 x dx (vede na rovnici)
8 8/14 Metoda substituční Věta: Necht funkce f (t) je spojitá na intervalu (a, b) a necht funkce t = ϕ(x) má spojitou první derivaci v intervalu (α, β) a zobrazuje interval (α, β) na interval (a, b). Pak f (ϕ(x))ϕ (x) dx = f (t) dt = F(t) = F(ϕ(x)), kde F je primitivní funkce k f na (a, b). Pozn. t = ϕ(x) je použitá substituce. Dk: Plyne z derivace složené funkce. Příklady: sin x cos 2 x dx, e 3x 5 dx, x x dx
9 Racionálně lomené funkce. 9/14 Definice: Funkce tvaru P(x), kde P(x), Q(x) jsou polynomy, nazýváme racionální lomenou funkcí. Q(x) Je-li stupeň P(x) < stupeň Q(x) nazýváme funkci ryze lomenou racionální funkcí. Je-li stupeň P(x) stupeň Q(x) nazýváme funkci neryze lomenou racionální funkcí. Věta: Každá racionální lomená funkce je součtem polynomu a ryze lomené racionální funkce. (stačí vydělit polynomy) Poznámka: Polynom umíme integrovat. Musíme se naučit integrovat ryze lomenou racionální funkci. Ryze lomenou racionální funkci musíme rozložit na parciální zlomky.
10 Integrace racionálních lomených funkcí - postup 10/14 1 převod rac. lomené funkce na součet polynomu a ryze lomené funkce (dělením polynomů) 2 rozklad jmenovatele na součin kořenových činitelů 3 rozklad ryze lomené racionální funkce na součet tzv. parciálních zlomků 4 integrace parciálních zlomků
11 Rozklad polynomu na kořenové činitele Definice - připomenutí: Polynom n-tého stupně... P n (x) = a n x n + a n 1 x n a 1 x + a 0 a 0, a 1,..., a n R jsou koeficienty a a n 0 Kořen polynomu P n (x) je číslo α C t.ž. P n (α) = 0. Náš cíl = rozklad na tzv. kořenové činitele, tj. P(x) = a n x n + a n 1 x n a 1 x + a 0 = =a n (x α 1 )(x α 2 ) (x α k ) (x 2 +p 1 x +q 1 ) (x 2 +p l x +q l ) α i jsou právě všechny reálné kořeny P(x) (x 2 + p j x + q j ) nemají reálné kořeny, tj. D j < 0. (x 2 + p j x + q j ) = (x α 1 )(x α 2 ), kde α 1,2 jsou komplexní kořeny x 2 + p j x + q j. Známe ze SŠ: ax 2 + bx + c = a (x α 1 ) (x α 2 ), kde α 1,2 jsou kořeny ax 2 + bx + c. 11/14
12 12/14 Rozklad ryze lomené fce na parciální zlomky. 1 Jmenovatel rozložíme na kořenové činitele. 2 Je-li v rozkladu jmenovatele výraz (a x + b), odpovídá v rozkladu racionální lomené funkce tomuto činiteli zlomek + A (a x + b) + kde A je nějaká vhodná reálná konstanta. 3 Je-li v rozkladu jmenovatele výraz (a x + b) k, k = 2, 3,..., odpovídají v rozkladu racionální lomené funkce tomuto činiteli zlomky + A 1 (a x + b) + A 2 (a x + b) A k (a x + b) k + kde A 1, A 2,..., A k jsou nějaké vhodné reálné konstanty.
13 Rozklad ryze lomené fce na parciální zlomky. 13/14 4 Je-li v rozkladu jmenovatele výraz (a x 2 + b x + c), odpovídá v rozkladu racionální lomené funkce tomuto činiteli zlomek + A x + B (a x 2 + b x + c) + kde A, B jsou nějaké vhodné reálné konstanty.
14 Integrace parciálních zlomků 14/ A a x+b dx = A a ln a x + b (substitucí t = a x + b ) A (a x+b) k dx = A a(k 1) 1 (a x+b) k 1 (substitucí t = a x + b ) A x+b (a x 2 +b x+c) dx = A 1 (2a x+b) (a x 2 +b x+c) dx + B 1 (a x 2 +b x+c) dx ad (3) A 1, B 1 jsou nové konstanty. První integrál spočteme substitucí t = a x 2 + b x + c, všimněte si, že dt = (2a x + b)dx. Druhý integrál vede na arctg.
Kapitola 7: Integrál. 1/17
Kapitola 7: Integrál. 1/17 Neurčitý integrál - Motivační příklad 2/17 Příklad: Necht se bod pohybuje po přímce rychlostí a) v(t) = 3 [m/s] (rovnoměrný přímočarý pohyb), b) v(t) = 2t [m/s] (rovnoměrně zrychlený
Kapitola 7: Integrál.
Kapitola 7: Integrál. Neurčitý integrál. Definice: Necht f je funkce definovaná na intervalu I. Funkci F definovanou na intervalu I, pro kterou platí F (x) = f(x) x I nazýváme primitivní funkcí k funkci
Úvod. Integrování je inverzní proces k derivování Máme zderivovanou funkci a integrací získáme původní funkci kterou jsme derivovali
NEURČITÝ INTEGRÁL Úvod Integrování je inverzní proces k derivování Máme zderivovanou funkci a integrací získáme původní funkci kterou jsme derivovali Umět pracovat s integrálním počtem Je důležité pro
Kapitola 7: Integrál. 1/14
Kapitola 7: Integrál. 1/14 Neurčitý integrál. Definice: Necht f je funkce definovaná na intervalu I. Funkci F definovanou na intervalu I, pro kterou platí F (x) = f (x) x I nazýváme primitivní funkcí k
Obsah. Aplikovaná matematika I. Gottfried Wilhelm Leibniz. Základní vlastnosti a vzorce
Neurčitý integrál Aplikovaná matematika I Dana Říhová Mendelu Brno Obsah Primitivní funkce, neurčitý integrál Základní vlastnosti a vzorce Základní integrační metody Úpravy integrandu Integrace racionálních
Integrální počet - II. část (další integrační postupy pro některé typy funkcí)
Integrální počet - II. část (další integrační postupy pro některé typy funkcí) Michal Fusek Ústav matematiky FEKT VUT, fusekmi@feec.vutbr.cz 7. přednáška z AMA1 Michal Fusek (fusekmi@feec.vutbr.cz) 1 /
Matematická analýza ve Vesmíru. Jiří Bouchala
Matematická analýza ve Vesmíru Jiří Bouchala Katedra aplikované matematiky jiri.bouchala@vsb.cz www.am.vsb.cz/bouchala - p. 1/19 typu: m x (sin x, cos x) R(x, ax +...)dx. Matematická analýza ve Vesmíru.
Matematická analýza 1b. 9. Primitivní funkce
Matematická analýza 1b 9. Primitivní funkce 9.1 Základní vlastnosti Definice Necht funkce f je definována na neprázdném otevřeném intervalu I. Řekneme, že funkce F je primitivní funkce k f na I, jestliže
c ÚM FSI VUT v Brně 20. srpna 2007
20. srpna 2007 1. 3 arctg x 1+x 2 dx 2. (x 2 + 2x + 17)e x dx 3. 1 x 3 x dx Vypočtěte integrál: 3 arctg x 1 + x 2 dx Příklad 1. Řešení: Použijeme substituci: arctg x = t 3 arctg x dx = 1 dx = dt 1+x 2
Petr Hasil. Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF)
Neurčitý integrál Petr Hasil Přednáška z matematiky Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem na discipĺıny společného základu
II. 3. Speciální integrační metody
48 II. Integrální počet funkcí jedné proměnné II.. Speciální integrační metody Integrály typu f ( x, r x, r x,..., r k x ), tj. integrály obsahující proměnnou x pod odmocninou, kde k N a r,..., r k jsou
MENDELOVA UNIVERZITA V BRNĚ LDF MT MATEMATIKA NEURČITÝ INTEGRÁL
MENDELOVA UNIVERZITA V BRNĚ LDF MT MATEMATIKA NEURČITÝ INTEGRÁL Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem na discipliny společného
arcsin x 2 dx. x dx 4 x 2 ln 2 x + 24 x ln 2 x + 9x dx.
Neurčitý integrál arcsin. Integrál najdeme integrací per partes. Pomocí této metody dostaneme arcsin = arcsin 4 = arcsin + 4 + C, (,. ln + 4 ln + 9. Tento integrál lze převést substitucí ln = y na integrál
Teorie. Hinty. kunck6am
kytaristka@gmail.com www.natur.cuni.cz/ kunck6am 5. cvičení Teorie Definice. Necht funkce f je definována na neprázdném otevřeném intervalu I. Řekneme, že funkce F je primitivní funkce k f na I, jestliže
Vzdělávací materiál. vytvořený v projektu OP VK CZ.1.07/1.5.00/34.0211. Anotace. Integrální počet VY_32_INOVACE_M0308. Matematika
Vzdělávací materiál vytvořený v projektu OP VK Název školy: Gymnázium, Zábřeh, náměstí Osvobození 0 Číslo projektu: Název projektu: Číslo a název klíčové aktivity: CZ..07/.5.00/3.0 Zlepšení podmínek pro
1 Neurčitý integrál 1.1 NEURČITÝ INTEGRÁL
1 Neurčitý integrál 1.1 NEURČITÝ INTEGRÁL V předchozím semestru jsme se seznámili s derivováním funkcí. Nyní se přesuneme k integrování funkce, což je vlastně zpětný proces k derivaci. Ukážeme si, jakým
Teorie. Hinty. kunck6am
kytaristka@gmail.com www.natur.cuni.cz/ kunck6am 5. cvičení Teorie Definice. Necht funkce f je definována na neprázdném otevřeném intervalu I. Řekneme, že funkce F je primitivní funkce k f na I, jestliže
Vzdělávací materiál. vytvořený v projektu OP VK CZ.1.07/1.5.00/ Anotace. Integrální počet VY_32_INOVACE_M0307. Matematika
Vzdělávací materiál vytvořený v projektu OP VK Název školy: Gymnázium, Zábřeh, náměstí Osvobození 0 Číslo projektu: Název projektu: Číslo a název klíčové aktivity: CZ..07/.5.00/34.0 Zlepšení podmínek pro
Integrální počet - I. část (neurčitý integrál a základní integrační metody)
Integrální počet - I. část (neurčitý integrál a základní integrační metody) Michal Fusek Ústav matematiky FEKT VUT, fusekmi@feec.vutbr.cz 6. přednáška z AMA Michal Fusek (fusekmi@feec.vutbr.cz) / 23 Obsah
SPECIÁLNÍCH PRIMITIVNÍCH FUNKCÍ INTEGRACE RACIONÁLNÍCH FUNKCÍ
VÝPOČET PEIÁLNÍH PRIMITIVNÍH FUNKÍ Obecně nelze zadat algoritmus, který by vždy vedl k výpočtu primitivní funkce. Nicméně eistují jisté třídy funkcí, pro které eistuje algoritmus, který vždy vede k výpočtu
(5) Primitivní funkce
(5) Primitivní funkce Kristýna Kuncová Matematika B2 18/19 Kristýna Kuncová (5) Primitivní funkce 1 / 20 Def: Primitivní funkce Definice Necht funkce f je definována na neprázdném otevřeném intervalu (a,
Neurčitý integrál. Robert Mařík. 4. března 2012
Neurčitý integrál Robert Mařík 4. března 0 V tomto souboru jsou vysvětleny a na příkladech s postupným řešením demonstrovány základní integrační metody. Ikonka za integrálem načte integrál do online aplikace
Derivace funkce. Přednáška MATEMATIKA č Jiří Neubauer
Přednáška MATEMATIKA č. 9-11 Katedra ekonometrie FEM UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Šotová, J., Doudová, L. Diferenciální počet funkcí jedné proměnné Motivační příklady
Primitivní funkce a Riemann uv integrál Lineární algebra Taylor uv polynom Extrémy funkcí více prom ˇenných Matematika III Matematika III Program
Program Primitivní funkce a Riemannův integrál Program Primitivní funkce a Riemannův integrál Lineární algebra Program Primitivní funkce a Riemannův integrál Lineární algebra Taylorův polynom Program Primitivní
Matematika vzorce. Ing. Petr Šídlo. verze
Matematika vzorce Ing. Petr Šídlo verze 0050409 Obsah Jazyk matematiky 3. Výrokový počet.......................... 3.. Logické spojky...................... 3.. Tautologie výrokového počtu...............
26. listopadu a 10.prosince 2016
Integrální počet Přednášk 4 5 26. listopdu 10.prosince 2016 Obsh 1 Neurčitý integrál Tbulkové integrály Substituční metod Metod per-prtes 2 Určitý integrál Geometrické plikce Fyzikální plikce K čemu integrální
SPECIÁLNÍCH PRIMITIVNÍCH FUNKCÍ
VÝPOČET PECIÁLNÍCH PRIMITIVNÍCH FUNKCÍ Obecně nelze zadat algoritmus, který by vždy vedl k výpočtu primitivní funkce. Pro různé situace se hodí různé metody (výpočtu!). Jak již bylo několikrát zdůrazněno,
PRIMITIVNÍ FUNKCE. Primitivní funkce primitivní funkce. geometrický popis integrály 1 integrály 2 spojité funkce konstrukce prim.
PRIMITIVNÍ FUNKCE V předchozích částech byly zkoumány derivace funkcí a hlavním tématem byly funkce, které derivace mají. V této kapitole se budou zkoumat funkce, které naopak jsou derivacemi jiných funkcí
PRIMITIVNÍ FUNKCE DEFINICE A MOTIVACE
PIMITIVNÍ FUNKCE V předchozích částech byly zkoumány derivace funkcí a hlavním tématem byly funkce, které derivace mají. V této kapitole se budou zkoumat funkce, které naopak jsou derivacemi jiných funkcí
Kapitola 11: Lineární diferenciální rovnice 1/15
Kapitola 11: Lineární diferenciální rovnice 1/15 Lineární diferenciální rovnice 2. řádu Definice: Lineární diferenciální rovnice 2-tého řádu je rovnice tvaru kde: y C 2 (I) je hledaná funkce a 0 (x)y +
(FAPPZ) Petr Gurka aktualizováno 12. října Přehled některých elementárních funkcí
1. Reálná funkce reálné proměnné, derivování (FAPPZ) Petr Gurka aktualizováno 12. října 2011 Obsah 1 Přehled některých elementárních funkcí 1 1.1 Polynomické funkce.......................... 1 1.2 Racionální
1 Polynomiální interpolace
Polynomiální interpolace. Metoda neurčitých koeficientů Příklad.. Nalezněte polynom p co nejmenšího stupně, pro který platí p() = 0, p(2) =, p( ) = 6. Řešení. Polynom hledáme metodou neurčitých koeficientů,
Matematika 1 pro PEF PaE
Derivace funkcí jedné proměnné / 9 Matematika pro PEF PaE 4. Derivace funkcí jedné proměnné Přemysl Jedlička Katedra matematiky, TF ČZU Derivace funkcí jedné proměnné Nejjednodušší derivace 2 / 9 Derivace
Integrální počet funkcí jedné proměnné
Integrální počet funkcí jedné proměnné V diferenciálním počtu jsme určovali derivaci funkce jedné proměnné a pomocí ní vyšetřovali řadu vlastností této funkce. Pro připomenutí: derivace má uplatnění tam,
1 Mnohočleny a algebraické rovnice
1 Mnohočleny a algebraické rovnice 1.1 Pojem mnohočlenu (polynomu) Připomeňme, že výrazům typu a 2 x 2 + a 1 x + a 0 říkáme kvadratický trojčlen, když a 2 0. Číslům a 0, a 1, a 2 říkáme koeficienty a písmenem
Jan Kotůlek. verze 3 ze dne 25. února 2011
Integrace racionálních lomených funkcí Jan Kotůlek (kombinované studium, první soustředění) verze 3 ze dne 5. února 0 Abstrakt Tento článek je koncipován jako rozšířený zápis průběhu prvního soustředění
Seznámíte se s principem integrace metodou per partes a se základními typy integrálů, které lze touto metodou vypočítat.
.. Integrace metodou per partes.. Integrace metodou per partes Průvodce studiem V předcházející kapitole jsme poznali, že integrování součtu funkcí lze provést jednoduše, známe-li integrály jednotlivých
7. Integrální počet Primitivní funkce, Neurčitý integrál
7. Integrální počet 7.. Primitivní funkce, Neurčitý integrál Definice 7. Říkáme, že F (x) je v intervlu (, b) (přitom může být tké =, b = + ) primitivní funkcí k finkci f(x), jestliže pro všechn x (, b)
Matematika 1A. PetrSalačaJiříHozman Fakulta přírodovědně-humanitní a pedagogická Technická univerzita v Liberci
Matematika 1A. PetrSalačaJiříHozman Fakulta přírodovědně-humanitní a pedagogická Technická univerzita v Liberci petr.salac@tul.cz jiri.hozman@tul.cz 5.12.2016 Fakulta přírodovědně-humanitní a pedagogická
Úvod, základní pojmy, funkce
Úvod, základní pojmy, funkce Michal Fusek Ústav matematiky FEKT VUT, fusekmi@feec.vutbr.cz 1. přednáška z ESMAT Michal Fusek (fusekmi@feec.vutbr.cz) 1 / 69 Obsah 1 Matematická logika 2 Množiny 3 Funkce,
NEURČITÝ INTEGRÁL - CVIČENÍ
MENDELOVA UNIVERZITA V BRNĚ LDF MT MATEMATIKA NEURČITÝ INTEGRÁL - CVIČENÍ Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem na discipliny
Wolfram Alpha. v podobě html stránky, samotný výsledek je často doplněn o další informace (např. graf, jiné možné zobrazení výsledku a
Wolfram Alpha jde o výpočetní prostředí z nejrůznějších oborů (matematika, fyzika, chemie, inženýrství... ) přístupné online: http://www.wolframalpha.com/ Jaké matematické výpočty Wolfram Alpha zvládá?
F (x) = f(x). Je-li funkce f spojitá na intervalu I, pak existuje k funkci f primitivní funkce na intervalu I.
KAPITOLA 7: 7. Úvod Primitivní funkce [MA-6:P7.] Definice: Funkce F je primitivní funkcí k funkci f na intervalu I, jestliže pro každé I eistuje F a platí F f. Poznámky: Obsahuje-li I některý z krajních
4. OBYČEJNÉ DIFERENCIÁLNÍ ROVNICE
FBI VŠB-TUO 28. března 2014 4.1. Základní pojmy Definice 4.1. Rovnice tvaru F (x, y, y, y,..., y (n) ) = 0 se nazývá obyčejná diferenciální rovnice n-tého řádu a vyjadřuje vztah mezi neznámou funkcí y
Pavel Kreml Jaroslav Vlček Petr Volný Jiří Krček Jiří Poláček
VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA MATEMATIKA II Pavel Kreml Jaroslav Vlček Petr Volný Jiří Krček Jiří Poláček Vytvořeno v rámci projektu Operačního programu Rozvoje lidských zdrojů CZ.04..0/..5./006
Funkce. Limita a spojitost
Funkce. Limita a spojitost skriptum J. Neustupa text Funkce (úvod) na této web stránce III.2 Fce - základní pojmy 1. Definice, def. obor D(f), obor hodnot H(f), graf 2. Fce složená, omezená, 3. Fce sudá,
Matematika IV 9. týden Vytvořující funkce
Matematika IV 9. týden Vytvořující funkce Jan Slovák Masarykova univerzita Fakulta informatiky jaro 2015 Obsah přednášky 1 Vytvořující funkce a Fibonacciho čísla 2 Vytvořující funkce - připomenutí 3 Řešení
Matematika II: Pracovní listy do cvičení
Matematika II: Pracovní listy do cvičení Radomír Paláček, Petra Schreiberová, Petr Volný Katedra matematiky a deskriptivní geometrie VŠB - Technická univerzita Ostrava Příklady Integrální počet funkcí
pouze u některých typů rovnic a v tomto textu se jím nebudeme až na
Matematika II 7.1. Zavedení diferenciálních rovnic Definice 7.1.1. Rovnice tvaru F(y (n), y (n 1),, y, y, x) = 0 se nazývá diferenciální rovnice n-tého řádu pro funkci y = y(x). Speciálně je F(y, y, x)
Blok 1. KMA/MA2M Matematická. Primitivní funkce. Modernizace studijního programu Matematika na PřF Univerzity Palackého v Olomouci
Modernizace studijního programu Matematika na PřF Univerzity Palackého v Olomouci CZ.1.07/..00/8.0141 KMA/MAM Matematická analýza Primitivní funkce Blok 1 1 Definice a základní vlastnosti Definice 1.1
VII. Limita a spojitost funkce
VII. Limita a spojitost funkce VII.1. Limita funkce Úvodní poznámky: Limita funkce f v bodě c R hodnota a R, k níž se přibližují hodnoty f(x), jestliže x se blíží k hodnotě c; funkce f nemusí být definovaná
Diferenciální počet 1 1. f(x) = ln arcsin 1 + x 1 x. 1 x 1 a x 1 0. f(x) = (cos x) cosh x + 3x. x 0 je derivace funkce f(x) v bodě x0.
Nalezněte definiční obor funkce Diferenciální počet f = ln arcsin + Definiční obor funkce f je určen vztahy Z těchto nerovností plyne < + ln arcsin + je tedy D f =, Určete definiční obor funkce arcsin
INTEGRÁLY S PARAMETREM
INTEGRÁLY S PARAMETREM b a V kapitole o integraci funkcí více proměnných byla potřeba funkce g(x) = f(x, y) dy proměnné x. Spojitost funkce g(x) = b a f(x, y) dy proměnné x znamená vlastně prohození limity
)(x 2 + 3x + 4),
3 IREDUCIBILNÍ ROZKLADY POLYNOMŮ V T [X] 3 Ireducibilní rozklady polynomů v T [x] - rozklady polynomů na ireducibilní (dále nerozložitelné) prvky v oboru integrity polynomů jedné neurčité x nad tělesem
Základy matematiky pro FEK
Základy matematiky pro FEK 12. přednáška Blanka Šedivá KMA zimní semestr 216/21 Blanka Šedivá (KMA) Základy matematiky pro FEK zimní semestr 216/21 1 / 15 Integrování jako inverzní operace příklady inverzních
Začneme obráceným postupem k počítání derivací, tj. hledáním funkcí, jejichž derivaci známe.
Kapitola Neurčitý integrál Začneme obráceným postupem k počítání derivací, tj. hledáním funkcí, jejichž derivaci známe.. Primitivní funkce... Primitivní funkce Funkce F se nazývá primitivní k funkci f
7.1 Úvod. Definice: [MA1-18:P7.1a]
KAPITOLA 7: 7. Úvod Primitivní funkce [MA-8:P7.a] Definice: Funkce F je primitivní funkcí k funkci f na intervalu I, jestliže pro každé I eistuje F a platí F f. Poznámky: Obsahuje-li I některý z krajních
Kapitola 1: Reálné funkce 1/13
Kapitola 1: Reálné funkce 1/13 Číselné množiny 2/13 N = {1, 2, 3, 4,... }... přirozená čísla N 0 = N {0} = {0, 1, 2, 3, 4,... } Z = {..., 2, 1, 0, 1, 2, 3, 4,... }... celá čísla Q = { p q p, q Z}... racionální
Elementární funkce. Polynomy
Elementární funkce 1 Elementární funkce Elementární funkce jsou níže uvedené funkce a jejich složenin : 1. Polnom.. Racionální funkce. 3. Mocninné funkce. 4. Eponenciální funkce. 5. Logaritmické funkce.
Matematika II: Pracovní listy
Matematika II: Pracovní listy Zuzana Morávková, Radomír Paláček, Petra Schreiberová, Petr Volný Katedra matematiky a deskriptivní geometrie VŠB - Technická univerzita Ostrava K M D G Předmluva Studijní
Funkce jedn e re aln e promˇ enn e Derivace Pˇredn aˇska ˇr ıjna 2015
Funkce jedné reálné proměnné Derivace Přednáška 2 15. října 2015 Obsah 1 Funkce 2 Limita a spojitost funkce 3 Derivace 4 Průběh funkce Informace Literatura v elektronické verzi (odkazy ze STAGu): 1 Lineární
VIII. Primitivní funkce a Riemannův integrál
VIII. Primitivní funkce Riemnnův integrál VIII.2. Riemnnův integrál opkování Vět. Nechť f je spojitá funkce n intervlu, b nechť c, b. Oznčíme-li F (x) = x (, b), pk F (x) = f(x) pro kždé x (, b). VIII.3.
Matematika II: Pracovní listy
Matematika II: Pracovní listy Zuzana Morávková, Radomír Paláček, Petra Schreiberová, Petr Volný Katedra matematiky a deskriptivní geometrie VŠB - Technická univerzita Ostrava K M D G ISBN 978-80-48-334-8
VI. Derivace složené funkce.
VI. Derivace složené funkce. 17. Parciální derivace složené funkce Budeme uvažovat složenou funkci F = f(g, kde některá z jejich součástí může být funkcí více proměnných. Předpokládáme, že uvažujeme funkce,
FUNKCE A JEJICH VLASTNOSTI
PŘEDNÁŠKA 3 FUNKCE A JEJICH VLASTNOSTI Pojem zobrazení a funkce Uvažujme libovolné neprázdné množiny A, B. Přiřadíme-li každému prvku x A právě jeden prvek y B, dostáváme množinu F uspořádaných dvojic
Kapitola 8: Dvojný integrál 1/26
Kapitola 8: vojný integrál 1/26 vojný integrál - osnova kapitoly 2/26 dvojný integrál přes obdélník definice výpočet (Fubiniova věta pro obdélník) dvojný integrál přes standardní množinu definice výpočet
Funkce a limita. Petr Hasil. Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF)
Funkce a limita Petr Hasil Přednáška z matematiky Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem na discipĺıny společného základu
MATEMATICKÁ ANALÝZA STUDIJNÍ OPORA PRO KOMBINOVANÉ
MATEMATICKÁ ANALÝZA STUDIJNÍ OPORA PRO KOMBINOVANÉ STUDIUM MATEMATICKÁ ANALÝZA RNDr. Vladimíra MÁDROVÁ, CSc., RNDr. Vratislava MOŠOVÁ, CSc., Moravská vysoká škola Olomouc, o.p.s., 8 Moravská vysoká škola
Zimní semestr akademického roku 2015/ ledna 2016
Cvičení k předmětu BI-ZMA Tomáš Kalvoda Katedra aplikované matematiky FIT ČVUT Matěj Tušek Katedra matematiky FJFI ČVUT Zimní semestr akademického roku 015/016 5. ledna 016 Obsah Cvičení Předmluva iii
2 Fyzikální aplikace. Předpokládejme, že f (x 0 ) existuje. Je-li f (x 0 ) vlastní, pak rovnice tečny ke grafu funkce f v bodě [x 0, f(x 0 )] je
Derivace funkce a jej geometrický význam Je dána funkce f) 3 6 + 9 + a naším úkolem je určit směrnici tečny v bodě [; f)] Pro libovolné lze směrnici sečny danou body [; f)] a [; f)] spočítat jako f) f)
f (k) (x 0 ) (x x 0 ) k, x (x 0 r, x 0 + r). k! f(x) = k=1 Řada se nazývá Taylorovou řadou funkce f v bodě x 0. Přehled některých Taylorových řad.
8. Taylorova řada. V urzu matematiy jsme uázali, že je možné funci f, terá má v oolí bodu x derivace aproximovat polynomem, jehož derivace se shodují s derivacemi aproximované funce v bodě x. Poud má funce
7. Derivace složené funkce. Budeme uvažovat složenou funkci F = f(g), kde některá z jejich součástí
202-m3b2/cvic/7slf.tex 7. Derivace složené funkce. Budeme uvažovat složenou funkci F = fg, kde některá z jejich součástí může být funkcí více proměnných. Předpokládáme, že uvažujeme funkce, které mají
Text může být postupně upravován a doplňován. Datum poslední úpravy najdete u odkazu na stažení souboru. Veronika Sobotíková
Tento text není samostatným studijním materiálem. Jde jen o prezentaci promítanou na přednáškách, kde k ní přidávám slovní komentář. Některé důležité části látky píšu pouze na tabuli a nejsou zde obsaženy.
Zimní semestr akademického roku 2014/ prosince 2014
Cvičení k předmětu BI-ZMA Tomáš Kalvoda Katedra aplikované matematiky FIT ČVUT Matěj Tušek Katedra matematiky FJFI ČVUT Obsah Cvičení Zimní semestr akademického roku 2014/2015 7. prosince 2014 Předmluva
3. Derivace funkce Definice 3.1. Nechť f : R R je definována na nějakém okolí U(a) bodu a R. Pokud existuje limita f(a + h) f(a) lim
3 a b s = (a + b) 2 f(s) 3,46 4,680 3,93-2,9422 3,93 4,680 4,2962-2,034 4,2962 4,680 4,4886-0,0954 4,4886 4,680 4,5848 3,2095 4,4886 4,5848 4,5367,0963 4,4886 4,5367 4,526 0,427 4,4886 4,526 4,5006 0,508
Úvod, základní pojmy, funkce
Úvod, základní pojmy, funkce Michal Fusek Ústav matematiky FEKT VUT, fusekmi@feec.vutbr.cz 1. přednáška z AMA1 Michal Fusek (fusekmi@feec.vutbr.cz) 1 / 80 Obsah 1 Matematická logika 2 Množiny 3 Funkce,
FAKULTA STAVEBNÍ MATEMATIKA I MODUL 7 STUDIJNÍ OPORY PRO STUDIJNÍ PROGRAMY S KOMBINOVANOU FORMOU STUDIA
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA STAVEBNÍ MATEMATIKA I MODUL 7 NEURČITÝ INTEGRÁL STUDIJNÍ OPORY PRO STUDIJNÍ PROGRAMY S KOMBINOVANOU FORMOU STUDIA Typeset by L A TEX ε c Josef Daněček, Oldřich Dlouhý,
Test M1-ZS12-2 M1-ZS12-2/1. Příklad 1 Najděte tečnu grafu funkce f x 2 x 6 3 x 2, která je kolmá na přímku p :2x y 3 0.
Test M-ZS- M-ZS-/ Příklad Najděte tečnu grafu funkce f x x 6 3 x, která je kolmá na přímku p :x y 3 0. Zřejmě D f R. Přímka p má směrnici, tečna na ní kolmá má proto směrnici. Protože směrnice tečny ke
Matematika. Obálka ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE MASARYKŮV ÚSTAV VYŠŠÍCH STUDIÍ. Bakalářský program: Ekonomika a management
Matematika Obálka ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE MASARYKŮV ÚSTAV VYŠŠÍCH STUDIÍ Bakalářský program: Ekonomika a management Matematika doc. RNDr. Stanislav Kračmar, CSc. www.muvs.cvut.cz Evropský
Nejdřív spočítáme jeden příklad na variaci konstant pro lineární diferenciální rovnici 2. řádu s kostantními koeficienty. y + y = 4 sin t.
1 Variace konstanty Nejdřív spočítáme jeden příklad na variaci konstant pro lineární diferenciální rovnici 2. řádu s kostantními koeficienty. Příklad 1 Najděte obecné řešení rovnice: y + y = 4 sin t. Co
Teorie měření a regulace
Ústav technologie, mechanizace a řízení staveb Teorie měření a regulace 22.z-3.tr ZS 2015/2016 2015 - Ing. Václav Rada, CSc. TEORIE ŘÍZENÍ druhá část tématu předmětu pokračuje. oblastí matematických pomůcek
Posloupnosti a řady. 28. listopadu 2015
Posloupnosti a řady Přednáška 5 28. listopadu 205 Obsah Posloupnosti 2 Věty o limitách 3 Řady 4 Kritéria konvergence 5 Absolutní a relativní konvergence 6 Operace s řadami 7 Mocninné a Taylorovy řady Zdroj
Derivace funkce. Obsah. Aplikovaná matematika I. Isaac Newton. Mendelu Brno. 2 Derivace a její geometrický význam. 3 Definice derivace
Derivace funkce Aplikovaná matematika I Dana Říhová Mendelu Brno Obsah Směrnice přímk Derivace a její geometrický význam 3 Definice derivace 4 Pravidla a vzorce pro derivování 5 Tečna a normála 6 Derivace
Cyklometrické funkce
Cyklometrické funkce Definice. Cyklometrické funkce jsou funkce arcsin(x) (čteme arkussinus x), arccos(x) (čteme arkuskosinus x), arctg(x) (čteme arkustangens x) a arccotg(x) (čteme arkuskotangens x),
x 2 +1 x 3 3x 2 4x = x 2 +3
I. Určitý integrál I.. Eistence určitých integrálů Zjistěte, zda eistují určité integrály : Příklad. + + d Řešení : Ano eistuje, protože funkce f() + + je spojitá na intervalu,. Příklad. + 4 d Řešení :
Seznámíte se s pojmem primitivní funkce a neurčitý integrál funkce jedné proměnné.
INTEGRÁLNÍ POČET FUNKCÍ JEDNÉ PROMĚNNÉ NEURČITÝ INTEGRÁL NEURČITÝ INTEGRÁL Průvodce studiem V kapitole Diferenciální počet funkcí jedné proměnné jste se seznámili s derivováním funkcí Jestliže znáte derivace
MATEMATIKA 1B ÚSTAV MATEMATIKY
MATEMATIKA B Sbírka úloh Edita Kolářová ÚSTAV MATEMATIKY MATEMATIKA B Sbírka úloh Úvod Dostali jste do rukou sbírku příkladů k přednášce Matematika B - Sbírka úloh. Tato sbírka je doplněním tetu Fuchs,
Bakalářská matematika I
1. Funkce Diferenciální počet Mgr. Jaroslav Drobek, Ph. D. Katedra matematiky a deskriptivní geometrie Bakalářská matematika I Některé užitečné pojmy Kartézský součin podrobnosti Definice 1.1 Nechť A,
rovnic), Definice y + p(x)y = q(x), Je-li q(x) = 0 na M, nazývá se y + p(x)y =
Cíle Přehled základních typů diferenciálních rovnic prvního řádu zakončíme pojednáním o lineárních rovnicích, které patří v praktických úlohách k nejfrekventovanějším. Ukážeme například, že jejich řešení
Příklad 1 ŘEŠENÉ PŘÍKLADY Z M1A ČÁST 12. a) 3 +1)d. Vypočítejte určité integrály: b) 5sin 4 ) d. c) d. g) 3 d. h) tg d. k) 4 arctg 2 ) d.
ŘEŠENÉ PŘÍKLADY Z MA ČÁST Příklad Vypočítejte určité integrály: a) +)d b) 5sin) d c) d d) d e) d f) g) d d h) tgd i) d j) d k) arctg) d l) d m) sin d n) ) d o) p) q) r) s) d d ) d d d t) +d u) d v) d ŘEŠENÉ
Inverzní Laplaceova transformace
Inverzní Laplaceova transformace Modelování systémů a procesů (MSP) Bohumil Kovář, Jan Přikryl, Miroslav Vlček Ústav aplikované matematiky ČVUT v Praze, Fakulta dopravní 6. přednáška MSP čtvrtek 30. března
Derivace a monotónnost funkce
Derivace a monotónnost funkce Věta : Uvažujme funkci f (x), která má na intervalu I derivaci f (x). Pak platí: je-li f (x) > 0 x I, funkce f je na intervalu I rostoucí. je-li f (x) < 0 x I, funkce f je
2. FUNKCE JEDNÉ PROMĚNNÉ
2. FUNKCE JEDNÉ PROMĚNNÉ Funkce 2.. Definice Říkáme, že na množině D reálných čísel je definována funkce f jedné reálné proměnné, je-li dán předpis, podle kterého je ke každému číslu x D přiřazeno právě
1 Integrální počet. 1.1 Neurčitý integrál. 1.2 Metody výpočtů neurčitých integrálů
Integrální počet. Neurčitý integrál Neurčitým integrálem k dané funkci f() nazýváme takovou funkci F (), pro kterou platí, že f() = F (). Neboli integrálem funkce f() je taková funkce F (), ze které bychom
30. listopadu Derivace. VŠB-TU Ostrava. Dostupné: s1a64/cd/index.htm.
KMA/MAT1 Přednáška a cvičení č. 11 30. listopadu 2017 [KS] Jaromír Kuben Petra Šarmanová: Diferenciální počet funkcí jedné proměnné. VŠB-TU Ostrava. Dostupné: http://homel.vsb.cz/ s1a64/cd/inde.htm. 1
4C. Polynomy a racionální lomené funkce. Patří mezi tzv. algebraické funkce, ke kterým patří také funkce s odmocninami. Polynomy
4C. Polynomy a racionální lomené funkce Polynomy a racionální funkce mají zvláštní význam zejména v numerické a aplikované matematice. Patří mezi tzv. algebraické funkce, ke kterým patří také funkce s
+ n( 1)n+1 (x 7) n, poloměr konvergence 6. 3.Poloměr konvergence je vždy +. a) f(x) = x n. (x 7) n, h(x) = 7 + 7(n+1)( 1) n. ( 1)n
VÝSLEDKY I. TAYLORŮV POLYNOM. a + b + 4 4 c + 0 d e + + 4 f + + 4 g + 70 4 h 4 4. a b c d - e log a f 0 g h i j k - 4. a 7 b 4. a AK absolutně konverguje b D diverguje c D d AK e D f AK g AK II. MOCNINNÉ
MATEMATIKA K ZÁKLADŮM FYZIKY 2 (kombinované studium) RNDr. Jiří Lipovský, Ph.D.
MATEMATIKA K ZÁKLADŮM FYZIKY (kombinované studium) RNDr. Jiří Lipovský, Ph.D. Hradec Králové 8 Obsah Komplexní čísla 5. Algebraický, goniometrický a exponenciální tvar komplexního čísla 5. Moivreova věta,
Petr Hasil. c Petr Hasil (MUNI) Množiny, číselné obory, funkce MA I (M1101) 1 / 125
Množiny, číselné obory, funkce Petr Hasil Přednáška z Matematické analýzy I c Petr Hasil (MUNI) Množiny, číselné obory, funkce MA I (M1101) 1 / 125 Obsah 1 Množiny a číselné obory Množinové operace Reálná
Kapitola 1: Reálné funkce 1/20
Kapitola 1: Reálné funkce 1/20 Funkce jedné proměnné 2/20 Definice: Necht M R. Jestliže každému x M je přiřazeno jistým předpisem f právě jedno y R, říkáme, že y je funkcí x. x... nezávisle proměnná (neboli