Paralelní LU rozklad
|
|
- Kamila Procházková
- před 9 lety
- Počet zobrazení:
Transkript
1 Paralelní LU rozklad Lukáš Michalec Katedra fyziky, Přírodovědecká fakulta Univerzity J.E. Purkyně v ročník, specializace Ústí n.l. Abstract Seminární práce se zabývá řešení soustavy lineárních rovnic pomocí LU dekompozice a zrychlení výpočtu pomocí paralelizace této metody. 1 Úvod K jedním z nejstarším matematickým problémům patří řešení soustavy lineárních rovnic. S tímto problémem se můžeme například setkat v lineárním programování, předpovědích či odhadováním. Řešení tohoto problému je několik, například Gaussova eliminace, Cramerov pravidlo, pomocí inverzní matice, metodou nejmenších čterců a LU rozklad. 1
2 2 Teorie Takovou soustavou lineárních rovnic může být například soustava: 3x + 5y z = 2 4x + 1y + 2z = 1 1x 2y + 1z = 5 (1) V této soustavě máme tři promněné (x,y,z). Graficky si tuto soustavu můžeme představi jako soustavu tří ploch a my hledáme bod, ve ktérém se dané plochy protínají. Místo rovnicového zápisu, můžeme použít i maticový zápis: A x = b (2) kde A je matice koeficinetů, x je vektor promněných a b je vektor požadavků. Pokud přepíšeme soustavu 1, dostaneme: x y = 1 (3) z LU rozklad Metoda LU dekompozice je založná takovém rozkladu matice A, aby se zjednodušil výpočet výsledného řešení. LU rozklad jde použít jen na regulární čtvercové řešení, to znamená, že rovnice mají právě jedno řešení a to řešení existuje. Naším úkol je rozložit matici A na matice L a U, tak aby: A = L U (4) kde matice L je dolní trojuhelníková a matice U je horní trojuhelníková. Tímto rozkladem dostaneme rovnici: L U x = b (5) součin matice U a vektoru x si onačíme U x = z, takže dostaneme: L z = b (6) 2
3 Prvním krokem je potom už dopředná substituce v rovnici: L z = b a spočteme z. Dalším krokem potom bude zpětná substituce, dosahíme za z a spočteme x: U x = z 3 Výpočet LU rozkladu Algoritmus rozkladu si ukážeme na konkrétním příkladě. Mějme matici: A = (7) z této matice, potřebujeme získat matice L a U: u 11 u 12 u 13 L = l , U = 0 u 22 u 23 (8) l 31 l u 33 Pokud si rozepíšeme násobení matic L a U, tak aby výsledkem byla matice A, tak dostaneme soustavu jednoduchýh rovnic: což můžeme zapsat algoritmem jako: u 11 1 = 1 u 11 = 1 u 12 1 = 2 u 12 = 2 u 13 1 = 3 u 13 = 3 l 21 u 11 = 2 l 21 = 2 DO k = 1, n -1 DO i = k+1, n a(i,k) = a(i,k) / a(k,k) END DO DO i = k+1, n a(i,j) = a(i,j) - a(i,k) * a(k,j) END DO END DO. Pro ušetření místa, zapíšeme matice L a U do matice A. 3 (9)
4 3.1 Dopředná substituce LU rozkladem jsme dostali matice L a U: L = 4 1 0, U = (10) a dále budeme řešit: Zde opět dostaneme soustavu rovnic: L y = b (11) y 1 = 11 4y 1 + y 2 = 25 2y y 2 + y 3 = 16 (12) opět, řešení této soustavy je triviální a pokud to přepíšeme do fortranovského kódu: DO i = 2, n DO j = 1, i - 1 y(i) = y(i) - a(i,j) * y(j) 3.2 Zpětná substituce Posledním krokem je zpětná substituce, kde řešíme rovnici: U x = y (13) x x2 = 19 (14) x opět, když jsi rozepíšeme násobení matice a vektoru, tak dostaneme triviální soustavu rovnic: x 3 = 1 2x 2 23x 3 = 19 2x 1 x 2 + 7x 3 = 11 4 (15)
5 Fortranovský kód vypadá následovně: DO i = n, 1, -1 DO j = i + 1, n x(i) = y(i) - a(i, j) * x(j) x(i) = x(i) / a(i,i) A tímto jsme získali řešení soustavy lineárních rovnic. 3.3 Paralelizace metody LU Paralelizace této metody spočívá v distribuci cyklů mezi všemy procesory. Takovou ukázkou distribuce je následující příklad: DO i = myrank, n -1, nproc print *," procesor ",myrank," dela ",i,". iteraci " výstupem potom je: procesor 0 dela 0. iteraci procesor 1 dela 1. iteraci procesor 2 dela 2. iteraci procesor 0 dela 3. iteraci procesor 1 dela 4. iteraci... A jelikož všechny tři kroky LU dekompozice jsou iterační, tak lze distribuci cyklů provést u všech kroků. 5
6 3.3.1 Paralelizace rozkladu LU DO k = 1, n IF ( map (k) == myrank ) THEN DO i = k+1, n a(i,k) = a(i,k) / a(k,k) ENDIF CALL MPI_BCAST (a(k,k), n-k+1, MPI_REAL, map (k), MPI_COMM_WORLD, ier DO j = k+1, n IF ( map (j) == myrank ) THEN DO i = k+1, n a(i,j) = a(i,j) - a(i,k) * a(k,j) ENDIF Zde byla distribuce cyklů zajištěna pomocí podmínek v cyklu, kvůli synchronizaci. Každý procesor si nejdříve spočítá vlastní část L matice, pak si ty procesory mezi s sebou ty hodnoty vymění a pak pokračují u části U matice Paralelizace dopředné distribuce DO i = 2, n s = 0.0 DO j = 1 + myrank, i - 1, s = s + a(i,j) * y(j) nprocs CALL MPI_ALLREDUCE (s, ss, 1, MPI_REAL, MPI_SUM, MPI_COMM_WORLD, ier y(i) = y(i) - ss V této části, kdy počítáme vektor y, tak jsou iterace na sobě závislé, protože postupně dosazujeme vypočtené promněné do dalších rovnic. Proto jsme zde 6
7 jen zparalelizovali sumu násobků, která je potřeba k výpočtu. Toto urychlení se projevý hlavně u hodně velkých matic Paralelizace zpětné distribuce DO i = n, 1, -1 s = 0.0 IF ( map (i +1) <= myrank ) THEN ii = i myrank - map ( i +1) ELSE ii = i myrank - map ( i +1) + nprocs ENDIF DO j = ii, n, nprocs s = s + a(i, j) * b(j) CALL MPI_ALLREDUCE (s, ss, 1, MPI_REAL, MPI_SUM, MPI_COMM_WORLD, ier b(i) = (b(i) - ss) / a(i,i) v této části jsme opět rozparalelizovali sumu násobků,která je potřebná k dosazování do rovnic. Jen bylo složitější zpočtení, co který proces má násobit a od jakého indexu začít. 4 Výsledky a diskuze Výsledkem máme program, který je schopný pomocí LU dekompozice spočítat řešení soustavy lineárních rovnic. 7
8 Figure 1: Ukázka výstupu programu Pokud by jsme změřili rychlost výpočtu u velkých matic, zjistili bychom, že jsme ušetřili více času. 5 Závěr Tato úloha nám ukázala, jakým lehkým způsobem se dá urychlit iterační výpočet a jak vůbec funguje metoda LU dekompozice. 8
Součin matice A a čísla α definujeme jako matici αa = (d ij ) typu m n, kde d ij = αa ij pro libovolné indexy i, j.
Kapitola 3 Počítání s maticemi Matice stejného typu můžeme sčítat a násobit reálným číslem podobně jako vektory téže dimenze. Definice 3.1 Jsou-li A (a ij ) a B (b ij ) dvě matice stejného typu m n, pak
VYBRANÉ PARTIE Z NUMERICKÉ MATEMATIKY
VYBRANÉ PARTIE Z NUMERICKÉ MATEMATIKY Jan Krejčí 31. srpna 2006 jkrejci@physics.ujep.cz http://physics.ujep.cz/~jkrejci Obsah 1 Přímé metody řešení soustav lineárních rovnic 3 1.1 Gaussova eliminace...............................
4. Trojúhelníkový rozklad p. 1/20
4. Trojúhelníkový rozklad 4. Trojúhelníkový rozklad p. 1/20 4. Trojúhelníkový rozklad p. 2/20 Trojúhelníkový rozklad 1. Permutační matice 2. Trojúhelníkové matice 3. Trojúhelníkový (LU) rozklad 4. Výpočet
Paralelní a distribuované výpočty (B4B36PDV)
Paralelní a distribuované výpočty (B4B36PDV) Branislav Bošanský, Michal Jakob bosansky@fel.cvut.cz Artificial Intelligence Center Department of Computer Science Faculty of Electrical Engineering Czech
Determinant. Definice determinantu. Permutace. Permutace, vlastnosti. Definice: Necht A = (a i,j ) R n,n je čtvercová matice.
[] Definice determinantu BI-LIN, determinant, 9, P Olšák [2] Determinant je číslo jistým způsobem charakterizující čtvercovou matici det A 0 pro singulární matici, det A 0 pro regulární matici používá
Několik poznámek na téma lineární algebry pro studenty fyzikální chemie
Několik poznámek na téma lineární algebry pro studenty fyzikální chemie Jiří Kolafa Vektory. Vektorový prostor Vektor je často zaveden jako n-tice čísel, (v,..., v n ), v i R (pro reálný vektorový prostor);
Soustavy lineárních rovnic
Přednáška MATEMATIKA č 4 Katedra ekonometrie FEM UO Brno kancelář 69a, tel 973 442029 email:jirineubauer@unobcz 27 10 2010 Soustava lineárních rovnic Definice Soustava rovnic a 11 x 1 + a 12 x 2 + + a
Matematika 2 pro PEF PaE
Determinanty / 8 Matematika 2 pro PEF PaE 3 Determinanty Přemysl Jedlička Katedra matematiky, TF ČZU Permutace Determinanty Výpočet determinantu z definice 2 / 8 Permutací množiny {,, n} rozumíme prosté
Digitální učební materiál
Digitální učební materiál Číslo projektu: CZ.1.07/1.5.00/34.0548 Název školy: Gymnázium, Trutnov, Jiráskovo náměstí 325 Název materiálu: VY_32_INOVACE_156_IVT Autor: Ing. Pavel Bezděk Tematický okruh:
Matice se v některých publikacích uvádějí v hranatých závorkách, v jiných v kulatých závorkách. My se budeme držet zápisu s kulatými závorkami.
Maticové operace Definice Skalár Představme si nějakou množinu, jejíž prvky lze sčítat a násobit. Pěkným vzorem jsou čísla, která už známe od mala. Prvky takové množiny nazýváme skaláry. Matice Matice
Skalár- veličina určená jedním číselným údajem čas, hmotnost (porovnej životní úroveň, hospodaření firmy, naše poloha podle GPS )
LINEÁRNÍ ALGEBRA Úvod vektor Skalár- veličina určená jedním číselným údajem čas, hmotnost (porovnej životní úroveň, hospodaření firmy, naše poloha podle GPS ) Kartézský souřadnicový systém -je taková soustava
Seminář z IVT Algoritmizace. Slovanské gymnázium Olomouc Tomáš Kühr
Seminář z IVT Algoritmizace Slovanské gymnázium Olomouc Tomáš Kühr Algoritmizace - o čem to je? Zatím jsme se zabývali především tím, jak určitý postup zapsat v konkrétním programovacím jazyce (např. C#)
Aplikovaná numerická matematika - ANM
Aplikovaná numerická matematika - ANM 3 Řešení soustav lineárních rovnic iterační metody doc Ing Róbert Lórencz, CSc České vysoké učení technické v Praze Fakulta informačních technologií Katedra počítačových
Paralelní algoritmy v lineární algebře. Násobení matic
Paralelní algoritmy v lineární algebře Násobení matic Násobení matic mějme matice A, B, C R n,n počítáme součin C = AB mějme p procesu a necht p je mocnina dvou matice rozdělíme blokově na p p bloků pak
Gymnázium, Brno. Matice. Závěrečná maturitní práce. Jakub Juránek 4.A Školní rok 2010/11
Gymnázium, Brno Matice Závěrečná maturitní práce Jakub Juránek 4.A Školní rok 2010/11 Konzultant: Mgr. Aleš Kobza Ph.D. Brno, 2011 Prohlášení Prohlašuji, že jsem předloženou práci zpracoval samostatně
Digitální učební materiál
Digitální učební materiál Číslo projektu: CZ.1.07/1.5.00/34.0548 Název školy: Gymnázium, Trutnov, Jiráskovo náměstí 325 Název materiálu: VY_32_INOVACE_154_IVT Autor: Ing. Pavel Bezděk Tematický okruh:
Numerické metody a programování. Lekce 4
Numerické metody a programování Lekce 4 Linarní algebra soustava lineárních algebraických rovnic a 11 a 12 x 2 a 1, N x N = b 1 a 21 a 22 x 2 a 2, N x N = b 2 a M,1 a M,2 x 2 a M,N x N = b M zkráceně A
Matematika 2 (Fakulta ekonomická) Cvičení z lineární algebry. TU v Liberci
Matematika 2 (Fakulta ekonomická) Cvičení z lineární algebry TU v Liberci Jiří Hozman 1. dubna 2010 Cvičení 2 Příklad 1. Rozhodněte, zda lze vektor x vyjádřit jako lineární kombinaci vektorů u, v, w, v
L a b o r a t o r n í c v i č e n í z f y z i k y
ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE KATEDRA FYZI KY L a b o r a t o r n í c v i č e n í z f y z i k y Jméno TUREČEK Daniel Datum měření 1.11.006 Stud. rok 006/007 Ročník. Datum odevzdání 15.11.006 Stud.
1 Rozdělení paralelních úloh z hlediska jejich
Martin Lísal říjen 2003 1 Rozdělení paralelních úloh z hlediska jejich spolupráce během výpočtu Podle spolupráce během výpočtu můžeme rozdělit paralelní úlohy na MPMD (Multiple Program Multiple Data) úlohy
Numerické metody a programování
Projekt: Inovace výuky optiky se zaměřením na získání experimentálních dovedností Registrační číslo: CZ.1.7/2.2./28.157 Numerické metody a programování Lekce 4 Tento projekt je spolufinancován Evropským
KOMPLEXNÍ ČÍSLA INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ. Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky
KOMPLEXNÍ ČÍSLA Gymnázium Jiřího Wolkera v Prostějově Výukové materiály z matematiky pro vyšší gymnázia Autoři projektu Student na prahu 21. století - využití ICT ve vyučování matematiky na gymnáziu INVESTICE
DYNAMICKÉ PROGRAMOVÁNÍ A PROBLÉM BATOHU
ČVUT V PRAZE FAKULTA INFORMAČNÍCH TECHNOLOGIÍ JAN SCHMIDT A PETR FIŠER MI-PAA DYNAMICKÉ PROGRAMOVÁNÍ A PROBLÉM BATOHU EVROPSKÝ SOCIÁLNÍ FOND PRAHA A EU: INVESTUJEME DO VAŠÍ BUDOUCNOSTI Dynamické programování
Řešení "stiff soustav obyčejných diferenciálních rovnic
Řešení "stiff soustav obyčejných diferenciálních rovnic Jiří Škvára Katedra fyziky, Přírodovědecká fakulta Univerzity J.E. Purkyně v Ústí n.l.. ročník, počítačové metody ve vědě a technice Abstrakt Seminární
Skalární součin je nástroj, jak měřit velikost vektorů a úhly mezi vektory v reálných a komplexních vektorových prostorech.
Kapitola 9 Skalární součin Skalární součin je nástroj, jak měřit velikost vektorů a úhly mezi vektory v reálných a komplexních vektorových prostorech. Definice 9.1 Je-li x = (x 1,..., x n ) T R n 1 reálný
Paralelní grafové algoritmy
Paralelní grafové algoritmy Značení Minimální kostra grafu Nejkratší cesta z jednoho uzlu Nejkratší cesta mezi všemi dvojicemi uzlů Použité značení Definition Bud G = (V, E) graf. Pro libovolný uzel u
Anotace. Dynamické programování, diskrétní simulace.
Anotace Dynamické programování, diskrétní simulace. Problémy, které byly Přednášející jde tentokrát do M1, počet platných uzávorkování pomocí n párů závorek, počet rozkladů přirozeného čísla na součet
FP - SEMINÁŘ Z NUMERICKÉ MATEMATIKY. Katedra matematiky a didaktiky matematiky Technická univerzita v Liberci
FP - SEMINÁŘ Z NUMERICKÉ MATEMATIKY Dana Černá http://www.fp.tul.cz/kmd/ Katedra matematiky a didaktiky matematiky Technická univerzita v Liberci OBSAH A CÍLE SEMINÁŘE: Opakování a procvičení vybraných
IB108 Sada 1, Příklad 1 Vypracovali: Tomáš Krajča (255676), Martin Milata (256615)
IB108 Sada 1, Příklad 1 ( ) Složitost třídícího algoritmu 1/-Sort je v O n log O (n.71 ). Necht n = j i (velikost pole, které je vstupním parametrem funkce 1/-Sort). Lehce spočítáme, že velikost pole předávaná
DRN: Soustavy linárních rovnic numericky, norma
DRN: Soustavy linárních rovnic numericky, norma Algoritmus (GEM: Gaussova eliminace s částečným pivotováním pro převod rozšířené regulární matice na horní trojúhelníkový tvar). Zadána matice C = (c i,j
Soustavy linea rnı ch rovnic
[1] Soustavy lineárních rovnic vlastnosti množin řešení metody hledání řešení nejednoznačnost zápisu řešení a) soustavy, 10, b) P. Olšák, FEL ČVUT, c) P. Olšák 2010, d) BI-LIN, e) L, f) 2009/2010, g)l.
2D transformací. červen Odvození transformačního klíče vybraných 2D transformací Metody vyrovnání... 2
Výpočet transformačních koeficinetů vybraných 2D transformací Jan Ježek červen 2008 Obsah Odvození transformačního klíče vybraných 2D transformací 2 Meto vyrovnání 2 2 Obecné vyjádření lineárních 2D transformací
Implementace numerických metod v jazyce C a Python
Fakulta elektrotechnická Katedra matematiky Dokumentace k semestrální práci Implementace numerických metod v jazyce C a Python 2013/14 Michal Horáček a Petr Zemek Vyučující: Mgr. Zbyněk Vastl Předmět:
Regresní a korelační analýza
Přednáška STATISTIKA II - EKONOMETRIE Katedra ekonometrie FEM UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Regresní analýza Cíl regresní analýzy: stanovení formy (trendu, tvaru, průběhu)
MATLAB základy. Roman Stanec 27.9.2007 PEF MZLU
MATLAB základy Roman Stanec 27.9.2007 PEF MZLU Náplň cvičení Matlab představení a motivace Seznámení s prostředím Proměnné a výrazy Řídící struktury Funkce Základní úpravy matic Import dat z tabulkového
VYSOKÁ ŠKOLA EKONOMICKÁ V PRAZE. Optimalizace trasy při revizích elektrospotřebičů
VYSOKÁ ŠKOLA EKONOMICKÁ V PRAZE FAKULTA INFORMATIKY A STATISTIKY Hlavní specializace: Ekonometrie a operační výzkum Název diplomové práce Optimalizace trasy při revizích elektrospotřebičů Diplomant: Vedoucí
předmětu MATEMATIKA B 1
Metodický list pro první soustředění kombinovaného studia předmětu MATEMATIKA B 1 Název tématického celku: Vektorový prostor Cíl: Základním cílem tohoto tematického celku je pochopit, co jsou to vektory
A0M15EZS Elektrické zdroje a soustavy ZS 2011/2012 cvičení 1. Jednotková matice na hlavní diagonále jsou jedničky, všude jinde nuly
Matice Matice typu (m, n) je uspořádaná m-tice prvků z řádky matice.. Jednotlivé složky této m-tice nazýváme Matice se zapisují Speciální typy matic Nulová matice všechny prvky matice jsou nulové Jednotková
1 0 0 u 22 u 23 l 31. l u11
LU dekompozice Jedná se o rozklad matice A na dvě trojúhelníkové matice L a U, A=LU. Matice L je dolní trojúhelníková s jedničkami na diagonále a matice U je horní trojúhelníková. a a2 a3 a 2 a 22 a 23
Registrační číslo Hodnocení - část A Hodnocení - část B Hodnocení - část A+B
PŘIJÍMACÍ TEST Z INFORMATIKY A MATEMATIKY NAVAZUJÍCÍ MAGISTERSKÉ STUDIUM V OBORU APLIKOVANÁ INFORMATIKA FAKULTA INFORMATIKY A MANAGEMENTU UNIVERZITY HRADEC KRÁLOVÉ ČÁST A Registrační číslo Hodnocení -
2. Matice, soustavy lineárních rovnic
Matice, soustavy lineárních rovnic Tento učební text byl podpořen z Operačního programu Praha- Adaptabilita Irena Sýkorová Některé vlastnosti matic Uvažujmečtvercovoumatici A=(a ij ) n n Matice Asenazývásymetrická,jestližeplatí
Katedra aplikované matematiky FEI VŠB Technická univerzita Ostrava
Lineární algebra 9. přednáška: Ortogonalita Dalibor Lukáš Katedra aplikované matematiky FEI VŠB Technická univerzita Ostrava email: dalibor.lukas@vsb.cz http://www.am.vsb.cz/lukas/la Text byl vytvořen
1.1 Příkazy pro kolektivní komunikaci (pokračování)
Martin Lísal listopad 2003 1 Často používané MPI příkazy (pokračování) 1.1 Příkazy pro kolektivní komunikaci (pokračování) 1.1.1 Distribuce informací nestejné velikosti na jednotlivé procesy call MPI_SCATTERV(sendbuf,sendcounts,displs,send_MPI_data_type,
Učební texty k státní bakalářské zkoušce Matematika Matice. študenti MFF 15. augusta 2008
Učební texty k státní bakalářské zkoušce Matematika Matice študenti MFF 15. augusta 2008 1 12 Matice Požadavky Matice a jejich hodnost Operace s maticemi a jejich vlastnosti Inversní matice Regulární matice,
Západočeská univerzita v Plzni. Fakulta aplikovaných věd Katedra matematiky. Geometrie pro FST 1. Pomocný učební text
Západočeská univerzita v Plzni Fakulta aplikovaných věd Katedra matematiky Geometrie pro FST 1 Pomocný učební text František Ježek, Marta Míková, Světlana Tomiczková Plzeň 29. srpna 2005 verze 1.0 Předmluva
12. Soustava lineárních rovnic a determinanty
@7. Soustava lineárních rovnic a determinanty Determinanty x V této lekci si ukážeme řešení soustavy lineárních rovnic (dvou rovnici pro dvě neznámé a tří rovnic pro tři neznámé) pomocí determinantů. Definice:
Numerické řešení soustav lineárních rovnic
Numerické řešení soustav lineárních rovnic Mirko Navara http://cmpfelkcvutcz/~navara/ Centrum strojového vnímání, katedra kybernetiky FEL ČVUT Karlovo náměstí, budova G, místnost 04a http://mathfeldcvutcz/nemecek/nummethtml
Připomenutí co je to soustava lineárních rovnic
Připomenutí co je to soustava lineárních rovnic Příklad 2x 3y + z = 5 3x + 5y + 2z = 4 x + 2y z = 1 Soustava lineárních rovnic obecně Maticový tvar: a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21 x 1 + a
Numerické metódy matematiky I
Prednáška 3 Numerické metódy matematiky I Riešenie sústav lineárnych rovníc prevzaté z Numerické metody Doc RNDr Libor Čermák, CSc RNDr Rudolf Hlavička, CSc Ústav matematiky Fakulta strojního inženýrství
Katedra aplikované matematiky FEI VŠB Technická univerzita Ostrava email: dalibor.lukas@vsb.cz http://www.am.vsb.cz/lukas/la1
Lineární algebra 10. přednáška: Ortogonalita II Dalibor Lukáš Katedra aplikované matematiky FEI VŠB Technická univerzita Ostrava email: dalibor.lukas@vsb.cz http://www.am.vsb.cz/lukas/la1 Text byl vytvořen
Všechno, co jste kdy chtěli vědět o maticích, ale báli jste se zeptat
Všechno, co jste kdy chtěli vědět o maticích, ale báli jste se zeptat Čtvercová matice n n, např. může reprezentovat: A = A A 2 A 3 A 2 A 22 A 23 A 3 A 32 A 33 matici koeficientů soustavy n lineárních
IB112 Základy matematiky
IB112 Základy matematiky Řešení soustavy lineárních rovnic, matice, vektory Jan Strejček IB112 Základy matematiky: Řešení soustavy lineárních rovnic, matice, vektory 2/53 Obsah Soustava lineárních rovnic
Regresní analýza. Statistika II. Jiří Neubauer. Katedra ekonometrie FEM UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.
Statistika II Katedra ekonometrie FEM UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Cíl regresní analýzy: stanovení formy (trendu, tvaru, průběhu) této závislosti pomocí vhodné funkce
Transformujte diferenciální výraz x f x + y f do polárních souřadnic r a ϕ, které jsou definovány vztahy x = r cos ϕ a y = r sin ϕ.
Ukázka 1 Necht má funkce z = f(x, y) spojité parciální derivace. Napište rovnici tečné roviny ke grafu této funkce v bodě A = [ x 0, y 0, z 0 ]. Transformujte diferenciální výraz x f x + y f y do polárních
1 Determinanty a inverzní matice
Determinanty a inverzní matice Definice Necht A = (a ij ) je matice typu (n, n), n 2 Subdeterminantem A ij matice A příslušným pozici (i, j) nazýváme determinant matice, která vznikne z A vypuštěním i-tého
Cvičení z Numerických metod I - 12.týden
Máme systém lineárních rovnic Cvičení z Numerických metod I - týden Přímé metody řešení systému lineárních rovnic Ax = b, A = a a n a n a nn Budeme hledat přesné řešení soustavy x = x x n, b = b b n, x
Programování založené na posílání zpráv
Programování založené na posílání zpráv Standard MPI Standard pro posílání zpráv - MPI = Message Passing Interface Dostupné implementace OpenMPI - http://www.open-mpi.org/ LAM-MPI - http://www.lam-mpi.org/
Analyzátor, minimalizátor kombinačních logických obvodů
Středoškolská technika 2012 Setkání a prezentace prací středoškolských studentů na ČVUT Analyzátor, minimalizátor kombinačních logických obvodů Petr Jašek, Pavel Král, Petr Koukolíček SPŠ a VOŠ Jana Palacha
Numerické řešení soustav lineárních rovnic
Numerické řešení soustav lineárních rovnic irko Navara Centrum strojového vnímání, katedra kybernetiky elektrotechnická fakulta ČVUT, Praha http://cmpfelkcvutcz/~navara 30 11 2016 Úloha: Hledáme řešení
5. Maticová algebra, typy matic, inverzní matice, determinant.
5. Maticová algebra, typy matic, inverzní matice, determinant. Matice Matice typu m,n je matice složená z n*m (m >= 1, n >= 1) reálných (komplexních) čísel uspořádaných do m řádků a n sloupců: R m,n (resp.
POHYBY TĚLESA V ODPORUJÍCÍM PROSTŘEDÍ
POHYBY TĚLESA V ODPORUJÍCÍM PROSTŘEDÍ Studijní text pro řešitele FO, kat. B Ivo Volf, Přemysl Šedivý Úvod Základní zákon klasické mechaniky, zákon síly, který obvykle zapisujeme vetvaru F= m a, (1) umožňuje
0.1 Úvod do lineární algebry
Matematika KMI/PMATE 1 01 Úvod do lineární algebry 011 Vektory Definice 011 Vektorem aritmetického prostorur n budeme rozumět uspořádanou n-tici reálných čísel x 1, x 2,, x n Definice 012 Definice sčítání
Matematika pro studenty ekonomie
w w w g r a d a c z vydání upravené a doplněné vydání Armstrong Grada Publishing as U Průhonu 7 Praha 7 tel: + fax: + e-mail: obchod@gradacz wwwgradacz Matematika pro studenty ekonomie MATEMATIKA PRO STUDENTY
Matematika I Lineární závislost a nezávislost
Matematika I Lineární závislost a nezávislost RNDr. Renata Klufová, Ph. D. Jihoèeská univerzita v Èeských Budìjovicích EF Katedra aplikované matematiky a informatiky Co u¾ známe? vektory - základní operace
e-mail: RadkaZahradnikova@seznam.cz 1. července 2010
Optimální výrobní program Radka Zahradníková e-mail: RadkaZahradnikova@seznam.cz 1. července 2010 Obsah 1 Lineární programování 2 Simplexová metoda 3 Grafická metoda 4 Optimální výrobní program Řešení
[1] LU rozklad A = L U
[1] LU rozklad A = L U někdy je třeba prohodit sloupce/řádky a) lurozklad, 8, b) P. Olšák, FEL ČVUT, c) P. Olšák 2010, d) BI-LIN, e) L, f) 2009/2010, g)l. Viz p. d. 4/2010 Terminologie BI-LIN, lurozklad,
Lenka Zalabová. Ústav matematiky a biomatematiky, Přírodovědecká fakulta, Jihočeská univerzita. zima 2012
Algebra - třetí díl Lenka Zalabová Ústav matematiky a biomatematiky, Přírodovědecká fakulta, Jihočeská univerzita v Českých Budějovicích zima 2012 Obsah 1 Dělitelnost 2 Grupy zbytkových tříd 3 Jedna z
Numerické metody lineární algebry
Numerické metody lineární algebry 1 Úvod 11 Úlohy lineární algebry 1 Řešení soustav lineárních rovnic A x = b Řešení soustavy s regulární čtvercovou maticí A řádu n n pro jednu nebo více pravých stran
Ý š é š ó š ž š žé ó Š é ď Ý é é ž é ž š ž Ť é š é é Ř š é ď é ž é ž é é ž Ť é ď é šš é ž é ž é ž ů ž ž é Ť Ť Ř š é ž ž ď Ú š é ž š š ž š é ž š é é š ž é ž é ž ů é ž é ž é Č é é ž š š é é Ř š ž Ž š é é
ď ď ď š Ý š š É Ý šš š š š šš š š š š Ě š Ó ď šš š šš ď Ě šš š šš Ě š Ě Ě Ú š š š Ě š š ď Ě š š Ž š Ě š Č š Ý ď š š ď š Ý Ť š š š š š Ý š ď ď š š Á Á É š š š Ž šš ď ř ň ř ř š Ý ď š š š š š š Ť Ě š Ť š
š Ý š š Ú ž ž š ž š š ž š Í š š ž š Ú ž ž ž šš ž ž ž šš ž ž š ž ž š š ž ž ž šš ž ň Č ž ž ž ž šš ž ž ž š š š ó š š ž š ž š ž Ú ž š ž š š Ú ň š š ó š ž š ž š Ž ň š š š š š š š ž š š ž š š š š š š š š š š
Predispozice pro výuku IKT (2015/2016)
Konzervatoř P. J. Vejvanovského Kroměříž Predispozice pro výuku IKT (15/16) Základní algoritmy pro počítání s celými a racionálními čísly Adam Šiška 1 Sčítání dvou kladných celých čísel Problém: Jsou dána
Algoritmus pro hledání nejkratší cesty orientovaným grafem
1.1 Úvod Algoritmus pro hledání nejkratší cesty orientovaným grafem Naprogramoval jsem v Matlabu funkci, která dokáže určit nejkratší cestu v orientovaném grafu mezi libovolnými dvěma vrcholy. Nastudoval
FAKULTA ELEKTROTECHNIKY A KOMUNIKAČNÍCH TECHNOLOGIÍ. Matematika 3. RNDr. Břetislav Fajmon, PhD. Autoři textu:
FAKULTA ELEKTROTECHNIKY A KOMUNIKAČNÍCH TECHNOLOGIÍ VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ Matematika 3 Garant předmětu: RNDr. Břetislav Fajmon, PhD Autoři textu: Mgr. Irena Růžičková RNDr. Břetislav Fajmon, PhD
Co je obsahem numerických metod?
Numerické metody Úvod Úvod Co je obsahem numerických metod? Numerické metody slouží k přibližnému výpočtu věcí, které se přesně vypočítat bud nedají vůbec, nebo by byl výpočet neúměrně pracný. Obsahem
y = Spočtěte všechny jejich normy (vektor je také matice, typu n 1). Řádková norma (po řádcích sečteme absolutní hodnoty prvků matice a z nich
Normy matic Příklad 1 Je dána matice A a vektor y: A = 2 0 3 4 3 2 y = Spočtěte všechny jejich normy (vektor je také matice, typu n 1). Ověřte, že platí Ay A y (1) Ay = (4, 14, 2) T 2 2 Frobeniova norma
VÝUKA OBECNÝCH METOD ANALÝZY LINEÁRNÍCH OBVODŮ
VÝKA OBECNÝCH METOD ANALÝZ LNEÁRNÍCH OBVODŮ Dalibor Biolek, Katedra elektrotechniky a elektroniky, VA Brno ÚVOD Obecné metody analýzy elektronických obvodů prodělaly dlouhé období svého vývoje. Katalyzátorem
Numerické metody lineární algebry
Numerické metody lineární algebry 1 Úvod 11 Úlohy lineární algebry 1 Řešení soustav lineárních rovnic A x = b Řešení soustavy s regulární čtvercovou maticí A řádu n n pro 1 nebo více pravých stran Výpočet
0. Lineární rekurence Martin Mareš, 2010-07-04
0 Lineární rekurence Martin Mareš, 2010-07-04 V tomto krátkém textu se budeme zabývat lineárními rekurencemi, tj posloupnostmi definovanými rekurentní rovnicí typu A n+k = c 0 A n + c 1 A n+1 + + c k 1
Faculty of Nuclear Sciences and Physical Engineering Czech Technical University in Prague
/ 94 - a LU LU Faculty of Nuclear Sciences and Physical Engineering Czech Technical University in Prague - a LU LU 2-3 4 a LU 5 LU 6 7 8 9 2 / 94 Gaussova eliminační metoda - a LU LU jde o přímou metodu
SOUSTAVY LINEÁRNÍCH ALGEBRAICKÝCH ROVNIC
SOUSTAVY LINEÁRNÍCH ALGEBRAICKÝCH ROVNIC Pojm: Algebraická rovnice... rovnice obsahující pouze celé nezáporné mocnin neznámé, tj. a n n + a n 1 n 1 +... + a 2 2 + a 1 + a 0 = 0, kde n je přirozené číslo.
Aplikace matematiky. Josef Čermák Algoritmy. 27. PSQRT. Řešení soustavy rovnic se symetrickou pozitivně definitní
Aplikace matematiky Josef Čermák Algoritmy. 27. PSQRT. Řešení soustavy rovnic se symetrickou pozitivně definitní (2m + 1) diagonální maticí Aplikace matematiky, Vol. 17 (1972), No. 4, 321--324 Persistent
2 Spojité modely rozhodování
2 Spojité modely rozhodování Jak již víme z přednášky, diskrétní model rozhodování lze zapsat ve tvaru úlohy hodnocení variant: f(a i ) max, a i A = {a 1, a 2,... a p }, kde f je kriteriální funkce a A
Euklidovský prostor Stručnější verze
[1] Euklidovský prostor Stručnější verze definice Eulidovského prostoru kartézský souřadnicový systém vektorový součin v E 3 vlastnosti přímek a rovin v E 3 a) eprostor-v2, 16, b) P. Olšák, FEL ČVUT, c)
Základy matematiky pro FEK
Základy matematiky pro FEK 3. přednáška Blanka Šedivá KMA zimní semestr 2016/2017 Blanka Šedivá (KMA) Základy matematiky pro FEK zimní semestr 2016/2017 1 / 21 Co nás dneska čeká... Co je to soustava lineárních
Analýza spolehlivosti tlakové nádoby metodou Monte Carlo
Analýza spolehlivosti tlakové nádoby metodou Monte Carlo Jakub Nedbálek Abstrakt: Cílem práce je ukázat možnost využití Monte Carlo simulace pro studium úloh z oblasti spolehlivosti. V našem případě máme
Matematický model kamery v afinním prostoru
CENTER FOR MACHINE PERCEPTION CZECH TECHNICAL UNIVERSITY Matematický model kamery v afinním prostoru (Verze 1.0.1) Jan Šochman, Tomáš Pajdla sochmj1@cmp.felk.cvut.cz, pajdla@cmp.felk.cvut.cz CTU CMP 2002
Vektorové podprostory, lineární nezávislost, báze, dimenze a souřadnice
Vektorové podprostory, lineární nezávislost, báze, dimenze a souřadnice Vektorové podprostory K množina reálných nebo komplexních čísel, U vektorový prostor nad K. Lineární kombinace vektorů u 1, u 2,...,u
SBORNÍK ODBORNÝ PŘÍRODOVĚDNÝ KEMP
Reg. č. SBORNÍK ODBORNÝ PŘÍRODOVĚDNÝ KEMP MATEMATIKA, FYZIKA 2. - 6. ZÁŘÍ 2013 WWW.PODPORATALENTU.CZ MATEMATICKÝ KEMP... 5 Diofantovské rovnice... 5 Diofantovské rovnice I... 7 Diofantovské rovnice II...
Pokročilé haldy. prof. Ing. Pavel Tvrdík CSc. Fakulta informačních technologií České vysoké učení technické v Praze c Pavel Tvrdík, 2010
Pokročilé haldy prof. Ing. Pavel Tvrdík CSc. Katedra počítačových systémů Fakulta informačních technologií České vysoké učení technické v Praze c Pavel Tvrdík, 2010 Efektivní algoritmy (I-EFA) ZS 2010/11,
Dodatek č. 3 ke školnímu vzdělávacímu programu. Strojírenství. (platné znění k 1. 9. 2009)
Střední průmyslová škola Jihlava tř. Legionářů 1572/3, Jihlava Dodatek č. 3 ke školnímu vzdělávacímu programu Strojírenství (platné znění k 1. 9. 09) Tento dodatek nabývá platnosti dne 1. 9. 13 (počínaje
2.6. Vlastní čísla a vlastní vektory matice
26 Cíle V této části se budeme zabývat hledáním čísla λ které je řešením rovnice A x = λ x (1) kde A je matice řádu n Znalost řešení takové rovnice má řadu aplikací nejen v matematice Definice 261 Nechť
Katedra aplikované matematiky FEI VŠB Technická univerzita Ostrava luk76/la1
Lineární algebra 5. přednáška: Báze a řešitelnost soustav Dalibor Lukáš Katedra aplikované matematiky FEI VŠB Technická univerzita Ostrava email: dalibor.lukas@vsb.cz http://homel.vsb.cz/ luk76/la1 Text
Soustavy lineárních rovnic
7 Matice. Determinant Soustavy lineárních rovnic 7.1 Matice Definice 1. Matice typu (m, n) jesoustavam n reálných čísel uspořádaných do m řádků a n sloupců a 11, a 12, a 13,..., a 1n a 21, a 22, a 23,...,
skladbu obou směsí ( v tunách komponenty na 1 tunu směsi):
Klíčová slova: simplexová metoda 1 Simplexová metoda Postup výpočtu: 1. Nalezení výchozího řešení. 2. Test optima: pokud je řešení optimální výpočet končí, jinak krok 3. 3. Iterační krok, poté opět test
Slajdy k přednášce Lineární algebra I
Slajdy k přednášce Lineární algebra I Milan Hladík Katedra Aplikované Matematiky, Matematicko-fyzikální fakulta, Univerzita Karlova v Praze, http://kammffcunicz/~hladik 22 října 203 Intro Nejstarší zaznamenaná
Příčíme. Příčíme Zadání první úlohy Zadání druhé úlohy. Příčíme. Jiří Přibyl UJEP
Příčíme Zadání první úlohy Zadání druhé úlohy Příčíme Jiří Přibyl UJEP Úloha první Příčíme Zadání první úlohy Zadání druhé úlohy Úkol Určete příčku mimoběžek p a q, která je dána vektorem w(1, 1, 2), a
Fakt. Každou soustavu n lineárních ODR řádů n i lze eliminací převést ekvivalentně na jednu lineární ODR
DEN: ODR teoreticky: soustavy rovnic Soustava lineárních ODR 1 řádu s konstantními koeficienty je soustava ve tvaru y 1 = a 11 y 1 + a 12 y 2 + + a 1n y n + b 1 (x) y 2 = a 21 y 1 + a 22 y 2 + + a 2n y