Obsah přednášky 1. Bayesův teorém 6. Naivní Bayesovský klasifikátor (NBK)
|
|
- Andrea Němečková
- před 6 lety
- Počet zobrazení:
Transkript
1
2 Obsah přednášky 1. Bayesův teorém 2. Brutální Bayesovský klasfkátor (BBK) 3. Mamální aposterorní pravděpodobnost (MA) 4. Optmální Bayesovský klasfkátor (OBK) 5. Gbbsův alortmus (GA) 6. Navní Bayesovský klasfkátor (NBK) 2
3 Thomas Bayes duchovní, 2. polovna 18. století zavrhován statstky (nepodložené emprcké metody) zabýval se otázkou, ak pozděší zkušenost uvést do souladu s původním předpoklady (dynamcké ověřování hypotéz s ech dodatečnou korekcí) (a)prorní pravděpodobnost (dána na počátku) vs. (a)posterorní pravděpodobnost (vyplývaící z následné analýzy, ověřené zkušeností) rncpálně blízké přrozenému ldskému uvažování? uveď rozdíl mez aprorní a aposterorní pravděpodobností 3
4 4 Bayesův vzorec D p H D p H p H p H D p H p H D p D H p k k K k k k 1 H k e hypotéza D e realta, data, konkrétní měření p(h k ) zkušenost; aprorní pravděpodobnost p(d H k ) e věrohodnost p(d) pravděpodobnost nastolení měření (dat, údaů) D, evdence p(h k D) e aposterorní pravděpodobnost platnost konkrétní hypotézy Bayes, BBK, MA,OBK,GAl, NBK? uveď a popš Bayesův vzorec
5 Bayesův vzorec ze sdružené pravděpodobnost? uveď a popš Bayesův vzorec 5
6 Bayesův vzorec rafcky 1/3? uveď a popš Bayesův vzorec 6
7 Bayesův vzorec rafcky 2/3? uveď a popš Bayesův vzorec 7
8 Bayesův vzorec rafcky 3/3? uveď a popš Bayesův vzorec 8
9 Bayesovské učení - poznámky Klademe s dvě základní otázky: Jaká hypotéza (model) o modelovaném systému e s nevětší pravděpodobností platná? Jaká e predkce nové nstance na základě známých hypotéz (modelů)? Výhody lze kombnovat předchozí znalost s pozorovaným měřením (aprorní pravděpodobnost, evdence) ntutvní řešení blízké ldskému uvažování Nevýhody narůstaící složtost hledání řešení s rostoucím počtem hypotéz v obecném případě 9
10 říklad 1 Bayes V pytlíku e 7 hracích kostek. 4 sou normální, na 1 padaí víc šestky, na 2 víc ednčky. Jaká e pravděpodobnost, že vytáhnu normální kostku? (aprorní pravděpodobnost) Jaká e pravděpodobnost, že když po 20 hodech (eperment E) padla šestka 6-krát, mám kostku Normální, Šestkovou, Jednčkovou? (aposterorní pravděpodobnost) (když p(6 N)=1/6, p(6 Š)=1/3, p(6 J)=2/15) p(n E)=0,52; p(š E)=0,36; p(j E)=0,12 10
11 Ale co teď s tím? Víme, že s p=0,52 držíme v ruce kostku normální p=0,36 kostku šestkovou p=0,12 kostku ednčkovou. Jak z toho ale predkovat? Jak odhadnout pravděpodobnost, s akou padne číslo 6 v dalším hodu? 11
12 Brutální Bayesovský klasfkátor rncp Všechny hypotézy konzstentní s daty maí stenou pravděpodobnost (h ), hypotézy nekonzstentní sou vyloučeny okud sou trénovací data zašuměná, budou správné hypotézy zamítnuty, možné zamítnutí všech hypotéz redkce h D h pokud K modelů predkue na trénovacích datech správně, sou s podle BBK tyto hypotézy rovnocené; predkce e průměr nebo nečastěší třída 1; y 0; y 1 hypotez 1 : y : y D h h h 1 H konz konst out ar ma 1... C h H 12 h
13 BBK příklad h 1 h 2 h 3 h 4 h 5 13
14 BBK příklad h 1 h 2 h 3 h 4 h 5 14
15 Mamální aposterorní pravděpodobnost Nepravděpodobně platná hypotéza e ta s nevětší aposterorní pravděpodobností. odoba s mamální věrohodností a MNČ h MA Bayes, BBK, MA,OBK,GAl, NBK ar ma 1... H ar ma 1... H ar ma 1... H h h D h h D D h D out ar ma 1... C h MA 15
16 MA příklad h 1 h 2 h 3 h 4 h 5 16
17 MA příklad h 1 h 2 h 3 h 4 h 5 17
18 Optmální Bayesovský klasfkátor Jaká e nepravděpodobněší klasfkace nové nstance za předpokladu nformací založených na několka hypotézách h? ným slovy, optmální bayesovský klasfkátor vychází z hypotéz a ech věrohodností; výpočty sené ako u MA, ncméně není vybrán 1 nelepší, ale všechny hypotézy se úměrně své kvaltě podíleí na predkc Klasfkume bnárně do tříd +, a měme hypotézy s aposterorní pravděpodobností p(h 1 D)=0,4 p(h 2 D)=0,3 a p(h 3 D)=0,3. okud podle h 1 e výsledek neatvní a podle h 2 a h 3 e výsledek poztvní, MA považue za výsledek predkc dle h 1, OBK však dle h 2 a h 3, protože (0,3+0,3) > 0,4. ma ar ma 1... C h H h h D 18
19 OBK příklad h 1 h 2 h 3 h 4 h 5 19
20 OBK příklad h 1 h 2 h 3 h 4 h 5 20
21 Gbbsův alortmus řeší hlavní problém OBK tím e výpočetní náročnost použtí všech váhovaných modelů rncp př každé predkc vyber náhodně (avšak úměrně posterorní pravděpodobnost modelů) ednu hypotézu a podle té predku Dosažená chyba e mamálně dvonásobná oprot OBK 21
22 říklad 2 BBK, MA, OBK V pytlíku e 7 hracích kostek. 4 sou normální, na 1 padaí víc 6, na 2 víc 1. Jaká e pravděpodobnost, že když po epermetnu E ve 20 hodech padla šestka 6-krát, mám kostku Normální, Šestkovou, Jednčkovou? (aposterorní pravděpodobnost) (když p(6 N)=1/6, p(6 Š)=1/3, p(6 J)=2/15); p(n E)=0,52 p(š E)=0,36 p(j E)=0,12 S akou pravděpodobností padne šestka ve 21. hodu? BBK: MA: OBK: Konzstentní (možné) sou všechny hypotézy, p=(1/6+1/3+2/15)/3=0,21 Nepravděpodobněší byla hypotéza normální, tedy 1/6, p=0,17 Výsledná pravděpodobnost e dána součtem součnů pravděpodobnost hypotézy a nastolení dané událost, tedy p = 0,52 1/6 + 0,36 1/3 + 0,12 2/15 = 0,22
23 říklad 3 V pytlíku mohou být ehlany a kostčky k. Vytáhl sme 1 kostčku eperment E. S akou pravděpodobností p k vytáhneme další kostčku? Víme, že v pytlíku bylo na počátku právě 5 obektů Víme, že na počátku e akákolv kombnace ehlanů a kostček v pytlíku steně pravděpodobná h = hypotéza, že v pytlíku bylo -kostček; urč všechny p(h E) a pro ednotlvé metody p k v dalším tahu BBK: Až na h 0 sou konzstentní; p(k h 1 )=0; p(k h 2 )=0,25 p k = p(k h )/5=(0+0,25+0,5+0,75+1)/5=0,5 MA: Nepravděpodobněší e h 5, tedy p k =1 OBK: p(e h 0 ) =0; p(e h 1 )=0,2; p(e h 5 )=1; protože p(h )=konst, platí p k =[ p(k h ) p(e h ) / p(e h ) ]= 0,67 23
24 Navní Bayesovký klasfkátor - NBK navzdory předpokladu nezávslost velčn (není většnou pravda) velce přesný; kvůl zednodušení slovo navní vychází z Bayesovy podmíněné pravděpodobnost klasfkace na základě nepravděpodobněší klasfkace MA za předpokladu vstupního vektoru ( 1,, n ),... MA Bayes, BBK, MA,OBK,GAl, NBK ar ma C n C e počet tříd n e počet atrbutů roč se NBK menue navní? V čem navta spočívá? 24
25 Navní Bayesovký klasfkátor - NBK což lze na základě bayesovy věty upravt následuícím způsobem: MA Bayes, BBK, MA,OBK,GAl, NBK ar ma 1... C ar ma 1... C ( ) se určí na základě četnost výskytu v trénovacích datech ( 1,, n ) pro větší n (desítky) praktcky nemožné zstt (tolk dat nemáme ). Určí se proto na základě zednodušeného předpokladu, že hodnoty vstupních velčn sou na sobě podmíněně nezávslé (což není většnou pravda),...,,..., 1 n,..., 1 1 n n 25
26 26 Navní Bayesovký klasfkátor - NBK pro výpočet sdružené podmíněné pravděpodobnost platí: to lze za předpokladu nezávslost zednodušt takto: konečný vztah pro výslednou klasfkac e dán vztahem n n ,..., n C MA ar ma? uveď rozdíl mez optmálním a navním Bayesovským klasfkátorem Bayes, BBK, MA,OBK,GAl, NBK...,,,...,,...,,..., n n
27 NBK okraové podmínky roblém: stuace, kdy konkrétní hodnota atrbutu pro danou třídu nkdy nenastala (žádná bruneta se nespálla); celý součn e pak kvůl ednomu členu roven 0, což není vhodné; Bayes, BBK, MA,OBK,GAl, NBK 0,..., n n Řešení: výpočet podmíněné pravděpodobnost dán vztahem: nc mp nc tety : n m n slovník kde n e počet prvků třídy 1 (počet spálených), n c počet prvků v 1 s danou hodnotou atrbutu 1 (spálených brunet), m váha (např. 1) a p=1/k, kde k e výčet hodnot atrbutu 1 (3:bruneta,blond,zrzavá)? uveď rozdíl mez optmálním a navním Bayesovským klasfkátorem 27
28 NBK příklad MA den předpověď teplota vlhkost vítr hrát tens? 1. slunečno teplo vysoká slabý NE 2. slunečno teplo vysoká slný NE 3. zataženo teplo vysoká slabý ANO 4. déšť středně vysoká slabý ANO 5. déšť chladno normální slabý ANO 6. déšť chladno normální slný NE 7. zataženo chladno normální slný ANO 8. slunečno středně vysoká slabý NE 9. slunečno chladno normální slabý ANO 10. déšť středně normální slabý ANO 11. slunečno středně normální slný ANO 12. zataženo středně vysoká slný ANO 13. zataženo teplo normální slabý ANO 14. déšť středně vysoká slný NE ar ma 1... C 1... n Bude se hrát 15. den? <slunečno,chladno,vysoká,slný> 28
29 NBK příklad (ANO)=9/14 (slunečno/ano)=2/9 (chladno/ano)=3/9 (vysoká/ano)=3/9 (slný/ano)=3/9 (NE)=5/14 (slunečno/ne)=3/5 (chladno/ne)=1/5 (vysoká/ne)=4/5 (slný/ne)=3/5 (ANO). (slunečno/ano) (chladno/ano). (vysoká/ano). (slný/ano) = 0,0053 (NE). (slunečno/ne) (chladno/ne). (vysoká/ne). (slný/ne) = 0,0206 (ANO slunčeno,chladno,vysoká,slný) = 0,0053 / (0, ,0206) = 0,20 (NE slunčeno,chladno,vysoká,slný) = 0,0206 / (0, ,0206) = 0,80 29
30 rncp ednoduchého spamového fltru Aprorní : (spam) = 0,9 (ham) = 0,1 z databáze slov spam (1000) ham(300) mamka 1 12 aho oběd 2 3 (spam mamka,aho,oběd bez normalzace) = (spam)*(mamka spam)*(aho spam) (spam bez normalzace) = 0,9*1/1000*60/1000*2/1000= 1,08E-7 (ham bez normalzace) = 0,1*12/300*38/300*3/300= 3,07E-6 (spam mamka,aho,oběd)= (spam mamka,aho,oběd)/[(spam mamka,aho,oběd)+ (ham mamka,aho,oběd)]= 1,08E-7 / (1,08E-7+3,07E-6) = 0,034 (ham mamka,aho,oběd)=0,966 30
31 Shrnutí Bayese MA (mamální aposterorní pravděpodobnost) vybírá nepravděpodobněší hypotézu. odle této edné hypotézy e následně predkováno. Brutální Bayesovské učení konceptů vybírá z množny hypotéz (modelů) hypotézy konzstentní s trénovacím daty, které sou s rovnocenné. ř predkc sou s výstupy hypotéz rovnocenné. Optmální Bayesovský klasfkátor stanoví posterorní pravděpodobnost všech hypotéz. ř predkc sou výstupy hypotéz váhovány posterorním pravděpodobnostm. Navní Bayesovský klasfkátor vytváří klasfkátor, predkue na základě nové nstance a trénovacích dat.? aká e charakterstka : BBK, MA, OBK, NBK 31
Podmíněná pravděpodobnost, spolehlivost soustav
S1 odmíněná pravděpodobnost, spolehlvost soustav odmíněná pravděpodobnost, spolehlvost soustav Lbor Žák odmíněná pravděpodobnost Nechť,, 0, podmíněná pravděpodobnost evu vzhledem k evu : S akou pravděpodobností
VíceVyužití logistické regrese pro hodnocení omaku
Využtí logstcké regrese pro hodnocení omaku Vladmír Bazík Úvod Jedním z prmárních proevů textlí e omak. Jedná se o poct který vyvolá textle př kontaktu s pokožkou. Je to ntegrální psychofyzkální vlastnost
VíceEKONOMICKO-MATEMATICKÉ METODY
. přednáška EKONOMICKO-MATEMATICKÉ METODY Ekonomcko matematcké metody (též se užívá název operační analýza) sou metody s matematckým základem, využívané především v ekonomcké oblast, v oblast řízení a
VíceTeorie her a ekonomické rozhodování. 10. Rozhodování při jistotě, riziku a neurčitosti
Teore her a ekonomcké rozhodování 10. Rozhodování př stotě, rzku a neurčtost 10.1 Jednokrterální dskrétní model Jednokrterální model rozhodování: f a ) max a Aa, a,..., a ( 1 2 f krterální funkce (zsk,
VícePravděpodobnost, náhoda, kostky
Pravděpodobnost, náhoda, kostky Radek Pelánek IV122 Výhled pravděpodobnost náhodná čísla lineární regrese detekce shluků Dnes lehce nesourodá směs úloh souvisejících s pravděpodobností připomenutí, souvislosti
VíceBayesovská klasifikace
Bayesovská klasifikace založeno na Bayesově větě P(H E) = P(E H) P(H) P(E) použití pro klasifikaci: hypotéza s maximální aposteriorní pravděpodobností H MAP = H J právě když P(H J E) = max i P(E H i) P(H
VícePravděpodobnost Podmíněná p. Úplná p. III. Pravděpodobnost. III. Pravděpodobnost Statistika A (ZS 2015)
III Pravděpodobnost Pravděpodobnost Podmíněná p. Úplná p. Odkud se bere pravděpodobnost? 1. Pravděpodobnost, že z balíčku zamíchaných karet vytáhmene dvě esa je přibližně 0:012. Modely a teorie. 2. Pravděpodobnost,
VíceDobývání znalostí. Doc. RNDr. Iveta Mrázová, CSc. Katedra teoretické informatiky Matematicko-fyzikální fakulta Univerzity Karlovy v Praze
Dobývání znalostí Doc. RNDr. Iveta Mrázová, CSc. Katedra teoretické informatiky Matematicko-fyzikální fakulta Univerzity Karlovy v Praze Dobývání znalostí Bayesovské modely Doc. RNDr. Iveta Mrázová, CSc.
VíceÚvod Terminologie Dělení Princip ID3 C4.5 CART Shrnutí. Obsah přednášky
Obsah přednášky. Úvod. Termnologe 3. Základní dělení 4. Prncp tvorby, prořezávání a použtí RS 5. Algortmus ID3 6. C4.5 7. CART 8. Shrnutí A L G O RI T M Y T E O R I E Stromové struktury a RS Obsah knhy
VíceKlasifikace a predikce. Roman LUKÁŠ
1/28 Klasfkace a predkce Roman LUKÁŠ 2/28 Základní pomy Klasfkace = zařazení daného obektu do sté skupny na základě eho vlastností Dvě fáze klasfkace: I. Na základě trénovacích vzorů (u nchž víme, do aké
VíceVytěžování znalostí z dat
Pavel Kordík, Jan Motl (ČVUT FIT) Vytěžování znalostí z dat BI-VZD, 2012, Přednáška 7 1/27 Vytěžování znalostí z dat Pavel Kordík, Jan Motl Department of Computer Systems Faculty of Information Technology
VícePRAVDĚPODOBNOST A STATISTIKA
PRAVDĚPODOBNOS A SAISIKA Regulární systém hustot Vychází se z: -,, P - pravděpodobnostní prostor -, R neprázdná množna parametrů - X X 1,, náhodný vektor s sdruženou hustotou X n nebo s sdruženou pravděpodobnostní
VíceRegresní lineární model symboly
Lneární model, Dskrmnační analýza, Podůrné vektory Regresní lneární model symboly Použté značení b arametry modelu (vektor ) očet atrbutů (skalár) N očet říkladů (skalár) x jeden říklad (vektor ) x -tá
VíceNeparametrické metody
Neparametrcké metody Přestože parametrcké metody zaujímají klíčovou úlohu ve statstcké analýze dat, je možné některé problémy řešt př neparametrckém přístupu. V této přednášce uvedeme neparametrcké odhady
VíceVícekriteriální rozhodování. Typy kritérií
Vícekrterální rozhodování Zabývá se hodnocením varant podle několka krtérí, přčemž varanta hodnocená podle ednoho krtéra zpravdla nebývá nelépe hodnocená podle krtéra ného. Metody vícekrterálního rozhodování
Vícepravděpodobnosti Pravděpodobnost je teorií statistiky a statistika je praxí teorie pravděpodobnosti.
3.1 Základy teorie pravděpodobnosti Pravděpodobnost je teorií statistiky a statistika je praxí teorie pravděpodobnosti. Co se dozvíte Náhodný pokus a náhodný jev. Pravděpodobnost, počítání s pravděpodobnostmi.
VíceDobývání znalostí. Doc. RNDr. Iveta Mrázová, CSc. Katedra teoretické informatiky Matematicko-fyzikální fakulta Univerzity Karlovy v Praze
Dobývání znalostí Doc. RNDr. Iveta Mrázová, CSc. Katedra teoretické informatiky Matematicko-fyzikální fakulta Univerzity Karlovy v Praze Dobývání znalostí Pravděpodobnost a učení Doc. RNDr. Iveta Mrázová,
VíceTeoretické modely diskrétních náhodných veličin
Teoretcké modely dskrétních náhodných velčn Velčny, kterým se zabýváme, bývají nejrůznější povahy. Přesto však estují skupny náhodných velčn, které mají podobně rozloženou pravděpodobnostní funkc a lze
VíceTomáš Karel LS 2012/2013
Tomáš Karel LS 2012/2013 Doplňkový materiál ke cvičení z předmětu 4ST201. Na případné faktické chyby v této presentaci mě prosím upozorněte. Děkuji. Tyto slidy berte pouze jako doplňkový materiál není
VíceSÍŤOVÁ ANALÝZA. Základní pojmy síťové analýzy. u,. Sjednocením množin { u, u,..., 2. nazýváme grafem G.
SÍŤOVÁ ANALÝZA Využívá grafcko-analytcké metody pro plánování, řízení a kontrolu složtých návazných procesů. yto procesy se daí rozložt na dílčí a organzačně spolu souvseící čnnost. yto procesy se nazývaí
Více2. Definice pravděpodobnosti
2. Defnce pravděpodobnost 2.1. Úvod: V přírodě se setkáváme a v přírodních vědách studujeme pomocí matematckých struktur a algortmů procesy dvojího druhu. Jednodušší jsou determnstcké procesy, které se
Více10. cvičení z PST. 5. prosince T = (n 1) S2 X. (n 1) s2 x σ 2 q χ 2 (n 1) (1 α 2 ). q χ 2 (n 1) 2. 2 x. (n 1) s. x = 1 6. x i = 457.
0 cvičení z PST 5 prosince 208 0 (intervalový odhad pro rozptyl) Soubor (70, 84, 89, 70, 74, 70) je náhodným výběrem z normálního rozdělení N(µ, σ 2 ) Určete oboustranný symetrický 95% interval spolehlivosti
VíceInduktivní statistika. z-skóry pravděpodobnost
Induktivní statistika z-skóry pravděpodobnost normální rozdělení Z-skóry umožňují najít a popsat pozici každé hodnoty v rámci rozdělení hodnot a také srovnávání hodnot pocházejících z měření na rozdílných
Více2. Posouzení efektivnosti investice do malé vtrné elektrárny
2. Posouzení efektvnost nvestce do malé vtrné elektrárny Cíle úlohy: Posoudt ekonomckou výhodnost proektu malé vtrné elektrárny pomocí základních metod hodnocení efektvnost nvestních proekt ako sou metoda
VíceANALÝZA ROZPTYLU (Analysis of Variance ANOVA)
NLÝZ OZPYLU (nalyss of Varance NOV) Používá se buď ako samostatná technka, nebo ako postup, umožňuící analýzu zdroů varablty v lneární regres. Př. použtí: k porovnání středních hodnot (průměrů) více než
VíceTEORIE PRAVDĚPODOBNOSTI. 2. cvičení
TEORIE RAVDĚODONOSTI 2. cvičení Základní pojmy Klasická def. Statistická def. Geometrická def. odmíněná prav. ayesův teorém Test Základní pojmy Náhodný pokus - je každý konečný děj, jehož výsledek není
Více2 ÚVOD DO TEORIE PRAVDĚPODOBNOSTI. 2.1 Náhodný jev. π, které je třeba co nejpřesněji a nejúplněji vymezit, a k nimž je třeba výsledky pokusu a
ÚVOD DO TEORIE PRAVDĚPODOBNOSTI.1 Náhodný ev Tato kaptola uvádí souhrn základních pomů a postupů teore pravděpodobnost, které se uplatňuí př rozboru spolehlvost stavebních konstrukcí a systémů. Výklad
Vícepravděpodobnosti a Bayesova věta
NMUMP0 (Pravděpodobnost a matematická statistika I) Nezávislost, podmíněná pravděpodobnost, věta o úplné pravděpodobnosti a Bayesova věta. Házíme dvěma pravidelnými kostkami. (a) Jaká je pravděpodobnost,
VíceRizikového inženýrství stavebních systémů
Rzkového nženýrství stavebních systémů Mlan Holcký, Kloknerův ústav ČVUT Šolínova 7, 166 08 Praha 6 Tel.: 24353842, Fax: 24355232 E-mal: Holcky@vc.cvut.cz Základní pojmy Management rzk Metody analýzy rzk
VíceBAYESOVSKÉ ODHADY. Michal Friesl V NĚKTERÝCH MODELECH. Katedra matematiky Fakulta aplikovaných věd Západočeská univerzita v Plzni
BAYESOVSKÉ ODHADY V NĚKTERÝCH MODELECH Michal Friesl Katedra matematiky Fakulta aplikovaných věd Západočeská univerzita v Plzni Slunce Řidiči IQ Regrese Přežití Obvyklý model Pozorování X = (X 1,..., X
VíceIntuitivní pojem pravděpodobnosti
Pravděpodobnost Intuitivní pojem pravděpodobnosti Intuitivní pojem pravděpodobnosti Pravděpodobnost zkoumaného jevu vyjadřuje míru naděje, že tento jev nastane. Řekneme-li, že má nějaký jev pravděpodobnost
VícePravděpodobnost, náhoda, kostky
Pravděpodobnost, náhoda, kostky Radek Pelánek IV122, jaro 2015 Výhled pravděpodobnost náhodná čísla lineární regrese detekce shluků Dnes lehce nesourodá směs úloh souvisejících s pravděpodobností krátké
VícePRAVDĚPODOBNOST A STATISTIKA. Testování hypotéz o rozdělení
PRAVDĚPODOBNOST A STATISTIKA Testování hypotéz o rozdělení Testování hypotéz o rozdělení Nechť X e náhodná proměnná, která má distribuční funkci F(x, ϑ). Předpokládeme, že neznáme tvar distribuční funkce
VíceŘešené příklady z pravděpodobnosti:
Řešené příklady z pravděpodobnosti: 1. Honza se ze šedesáti maturitních otázek 10 nenaučil. Při zkoušce si losuje dvě otázky. a. Určete pravděpodobnost jevu A, že si vylosuje pouze otázky, které se naučil.
VíceAutomatické vyhledávání informace a znalosti v elektronických textových datech
Automatické vyhledávání informace a znalosti v elektronických textových datech Jan Žižka Ústav informatiky & SoNet RC PEF, Mendelova universita Brno (Text Mining) Data, informace, znalost Elektronická
Více1. Nejkratší cesta v grafu
08. Nekratší cesty. Úloha obchodního cestuícího. Heurstky a aproxmační algortmy. Metoda dynamckého programování. Problém batohu. Pseudopolynomální algortmy 1. Nekratší cesta v grafu - sled e lbovolná posloupnost
VícePravděpodobnost a aplikovaná statistika
Pravděpodobnost a aplikovaná statistika MGR. JANA SEKNIČKOVÁ, PH.D. 2. KAPITOLA PODMÍNĚNÁ PRAVDĚPODOBNOST 3. KAPITOLA NÁHODNÁ VELIČINA 9.11.2017 Opakování Uveďte příklad aplikace geometrické definice pravděpodobnosti
VíceTeoretické modely diskrétních náhodných veličin
Teoretcké modely dskrétních náhodných velčn Velčny, kterým se zabýváme, bývají nejrůznější povahy. Přesto však estují skupny náhodných velčn, které mají podobně rozloženou pravděpodobnostní funkc a lze
VíceDiskrétní matematika. DiM /01, zimní semestr 2016/2017
Diskrétní matematika Petr Kovář petr.kovar@vsb.cz Vysoká škola báňská Technická univerzita Ostrava DiM 470-2301/01, zimní semestr 2016/2017 O tomto souboru Tento soubor je zamýšlen především jako pomůcka
VíceTestování hypotéz. 1 Jednovýběrové testy. 90/2 odhad času
Testování hypotéz 1 Jednovýběrové testy 90/ odhad času V podmínkách naprostého odloučení má voák prokázat schopnost orientace v čase. Úkolem voáka e provést odhad časového intervalu 1 hodiny bez hodinek
Více1. Úvod do základních pojmů teorie pravděpodobnosti
1. Úvod do záladních pojmů teore pravděpodobnost 1.1 Úvodní pojmy Většna exatních věd zobrazuje své výsledy rgorózně tj. výsledy jsou zísávány na záladě přesných formulí a jsou jejch nterpretací. em je
VíceMATEMATICKÁ TEORIE ROZHODOVÁNÍ
MTMTICKÁ TORI ROZODOVÁNÍ odklady k soustředění č. 3 ráce s neurčtostí Většna našch znalostí o reálném světě je zatížena ve větší č menší míře neurčtostí. Na druhou stranu, schopnost rozhodovat se v stuacích,
VíceNáhodným vektorem rozumíme sloupcový vektor složený z náhodných veličin X = (X 1, X 2,
Statstka I cvčení - 54-5 NÁHODNÝ VEKTOR Náhodným vektorem rozumíme sloupcový vektor složený z náhodných velčn = n který je charakterzován sdruženou smultánní dstrbuční unkcí ; F náhodný vektor s dskrétním
VícePravděpodobnost a aplikovaná statistika
Pravděpodobnost a aplikovaná statistika MGR. JANA SEKNIČKOVÁ, PH.D. 1. KAPITOLA - PRAVDĚPODOBNOST 2.10.2017 Kontakt Mgr. Jana Sekničková, Ph.D. jana.seknickova@vse.cz Katedra softwarového inženýrství Fakulta
VícePodmíněná pravděpodobnost
odmíněná pravděpodobnost 5. odmíněná pravděpodobnost 5.. Motivace: Opakovaně nezávisle provádíme týž náhodný pokus a sledujeme nastoupení jevu A v těch pokusech, v nichž nastoupil jev H. odmíněnou relativní
VícePRAVDĚPODOBNOST A STATISTIKA. Bayesovské odhady
PRAVDĚPODOBNOST A STATISTIKA Bayesovské odhady Bayesovské odhady - úvod Klasický bayesovský přístup: Klasický přístup je založen na opakování pokusech sledujeme rekvenci nastoupení zvolených jevů Bayesovský
Víceina ina Diskrétn tní náhodná veličina může nabývat pouze spočetně mnoha hodnot (počet aut v náhodně vybraná domácnost, výsledek hodu kostkou)
Náhodná velčna na Výsledek náhodného pokusu, daný reálným číslem je hodnotou náhodné velčny. Náhodná velčna je lbovolná reálná funkce defnovaná na množně elementárních E pravděpodobnostního prostoru S.
VíceREGRESNÍ ANALÝZA. 13. cvičení
REGRESNÍ ANALÝZA 13. cvčení Závslost náhodných velčn Závslost mez kvanttatvním proměnným X a Y: Funkční závslost hodnotam nezávsle proměnných je jednoznačně dána hodnota závslé proměnné. Y=f(X) Stochastcká
VíceAPLIKACE MATEMATICKÉHO PROGRAMOVÁNÍ PŘI NÁVRHU STRUKTURY DISTRIBUČNÍHO SYSTÉMU
APLIKACE MATEMATICKÉHO PROGRAMOVÁNÍ PŘI NÁVRHU STRUKTURY DISTRIBUČNÍHO SYSTÉMU APPLICATION OF MATHEMATICAL PROGRAMMING IN DESIGNING THE STRUCTURE OF THE DISTRIBUTION SYSTEM Martn Ivan 1 Anotace: Prezentovaný
VíceMetody vícekriteriálního hodnocení variant a jejich využití při výběru produktu finanční instituce
. meznárodní konference Řízení a modelování fnančních rzk Ostrava VŠB-TU Ostrava, Ekonomcká fakulta, katedra Fnancí 8. - 9. září 200 Metody vícekrterálního hodnocení varant a ech využtí př výběru produktu
VíceUmělé neuronové sítě a Support Vector Machines. Petr Schwraz
Umělé neuronové sítě a Support Vector Machnes Petr Schraz scharzp@ft.vutbr.cz Perceptron ( neuron) x x x N f() y y N f ( x + b) x vstupy neuronu váhy jednotlvých vstupů b aktvační práh f() nelneární funkce
VícePRAVDĚPODOBNOST JE. Martina Litschmannová
RAVDĚODOBNOST JE Martina Litschmannová Čím se zabývá teorie pravděpodobnosti? Teorie pravděpodobnosti je matematická disciplína popisující zákonitosti týkající se náhodných jevů, tj. používá se k modelování
VíceTéma 5: Parametrická rozdělení pravděpodobnosti spojité náhodné veličiny
0.05 0.0 0.05 0.0 0.005 Nomnální napětí v pásnc Std Mean 40 60 80 00 0 40 60 Std Téma 5: Parametrcká rozdělení pravděpodobnost spojté náhodné velčn Přednáška z předmětu: Pravděpodobnostní posuzování konstrukcí
VíceInformační systémy pro podporu rozhodování
Informační systémy pro podporu rozhodování 3 Jan Žižka, Naděžda Chalupová Ústav informatiky PEF Mendelova universita v Brně Nejbližší sousedi k NN Algoritmus k-nejbližších sousedů (k-nearest neighbors)
Více9.12.2009. Metody analýzy rizika. Předběžné hodnocení rizika. Kontrolní seznam procesních rizik. Bezpečnostní posudek
9.2.29 Bezpečnost chemckých výrob N Petr Zámostný místnost: A-72a tel.: 4222 e-mal: petr.zamostny@vscht.cz Analýza rzka Vymezení pojmu rzko Metody analýzy rzka Prncp analýzy rzka Struktura rzka spojeného
VíceStatistická energetická analýza (SEA)
Hladna akustckého tlaku buzení harmonckou slou [db] Statstcká energetcká analýza (SA) V současné době exstue řada způsobů, ak řešt vbroakustcké problémy. odobně ako v ných odvětvích nženýrství, také ve
VíceŘEŠENÍ PROBLÉMU LOKALIZACE A ALOKACE LOGISTICKÝCH OBJEKTŮ POMOCÍ PROGRAMOVÉHO SYSTÉMU MATLAB. Vladimír Hanta 1, Ivan Gros 2
ŘEŠENÍ PROBLÉMU LOKALIZACE A ALOKACE LOGISTICKÝCH OBJEKTŮ POMOCÍ PROGRAMOVÉHO SYSTÉMU MATLAB Vladmír Hanta 1 Ivan Gros 2 Vysoká škola chemcko-technologcká Praha 1 Ústav počítačové a řídcí technky 2 Ústav
Více2. přednáška - PRAVDĚPODOBNOST
2. přednáška - PRAVDĚPODOBNOST NÁHODNÝ POKUS A JEV Každá opakovatelná činnost prováděná za stejných nebo přibližně stejných podmínek, jejíž výsledek je nejistý a závisí na náhodě, se nazývá náhodný pokus.
Vícevektor a vrátili jiný vektor. Měli-li jsme jistou pozorovatelnou A, dostali jsme jejím změřením
Operátor hustoty Popsueme-l vývo uzavřeného kvantového systému, vystačíme s většnou s pomem čstého stavu. Jedná se o vektor v Hlbertově prostoru H, který e danému kvantovému systému přdružen. Na daném
VíceTomáš Karel LS 2012/2013
Tomáš Karel LS 2012/2013 Doplňkový materiál ke cvičení z předmětu 4ST201. Na případné faktické chyby v této presentaci mě prosím upozorněte. Děkuji. Tyto slidy berte pouze jako doplňkový materiál není
VíceSegmentace. Ilona Janáková. Rozvrh přednášky:
1 / 31 Segmentace Ilona Janáková Rozvrh přednášky: 1. Úvod do segmentace. 2. Segmentace prahováním. 3. Segmentace z obrazu hran. 4. Segmentace z obrazu hran - Houghova transformace. 2 / 31 Segmentace Ilona
VíceTestování statistických hypotéz
Testování statistických hypotéz Na základě náhodného výběru, který je reprezentativním vzorkem základního souboru (který přesně neznáme, k němuž se ale daná statistická hypotéza váže), potřebujeme ověřit,
VíceMatematika III. 4. října Vysoká škola báňská - Technická univerzita Ostrava. Matematika III
Vysoká škola báňská - Technická univerzita Ostrava 4. října 2018 Podmíněná pravděpodobnost Při počítání pravděpodobnosti můžeme k náhodnému pokusu přidat i nějakou dodatečnou podmínku. Podmíněná pravděpodobnost
VícePOROVNÁNÍ MEZI SKUPINAMI
POROVNÁNÍ MEZI SKUPINAMI Potřeba porovnání počtů mez určtým skupnam jednců např. porovnání počtů onemocnění mez kraj nebo okresy v prax se obvykle pracuje s porovnáním na 100.000 osob. Stuace ale nebývá
VíceANALÝZA VZTAHU DVOU SPOJITÝCH VELIČIN
ANALÝZA VZTAHU DVOU SPOJITÝCH VELIČIN V dokumentu 7a_korelacn_a_regresn_analyza jsme řešl rozdíl mez korelační a regresní analýzou. Budeme se teď věnovat pouze lneárnímu vztahu dvou velčn, protože je nejjednodušší
VícePravděpodobnost a její vlastnosti
Pravděpodobnost a její vlastnosti 1 Pravděpodobnost a její vlastnosti Náhodné jevy Náhodný jev je výsledek pokusu (tj. realizace určitého systému podmínek) a jeho charakteristickým rysem je, že může, ale
VícePRAVDĚPODOBNOST Náhodné pokusy. Náhodný jev
RAVDĚODOBNOST Náhodné pokusy okusy ve fyzice, chemii při splnění stanov. podmínek vždy stejný výsledek ř. Změna skupenství vody při 00 C a tlaku 00 ka okusy v praxi, vědě, výzkumu při dodržení stejných
VícePravděpodobnost a statistika (BI-PST) Cvičení č. 4
Pravděpodobnost a statistika (BI-PST) Cvičení č. 4 J. Hrabáková, I. Petr, F. Štampach, D. Vašata Katedra aplikované matematiky Fakulta informačních technologií České vysoké učení technické v Praze ZS 2014/2015
VíceKomplexní čísla, Kombinatorika, pravděpodobnost a statistika, Posloupnosti a řady
Předmět: Náplň: Třída: Počet hodin: Pomůcky: Matematika Komplexní čísla, Kombinatorika, pravděpodobnost a statistika, Posloupnosti a řady 4. ročník a oktáva 3 hodiny týdně PC a dataprojektor, učebnice
VícePřednášky část 4 Analýza provozních zatížení a hypotézy kumulace poškození, příklady. Milan Růžička
Přednášky část 4 Analýza provozních zatížení a hypotézy kumulace poškození, příklady Mlan Růžčka mechanka.fs.cvut.cz mlan.ruzcka@fs.cvut.cz Analýza dynamckých zatížení Harmoncké zatížení x(t) přes soubor
Vícea) 7! 5! b) 12! b) 6! 2! d) 3! Kombinatorika
Kombinatorika Kombinatorika se zabývá vytvářením navzájem různých skupin z daných prvků a určováním počtu takových skupin. Kombinatorika se zabývá pouze konečnými množinami. Při určování počtu výběrů skupin
VíceDále budeme předpokládat, že daný Markovův řetězec je homogenní. p i1 i 2
4 Markovovy řetězce se nazývá Markovův řetě- Defnce 7 Posloupnost celočíselných náhodných velčn {X n } zec (markovský řetězec), jestlže P(X n+ = j X n = n,, X 0 = 0 ) = P(X n+ = j X n = n ) (7) pro každé
VíceL8 Asimilace dat II. Oddělení numerické předpovědi počasí ČHMÚ 2007
L8 Asmlace dat II Oddělení numercké předpověd počasí ČHMÚ 007 Plán přednášky Úvod do analýzy Optmální odhad v meteorolog D případ: demonstrace metod; mult-dmensonální případ; Zavedení předběžného pole;
VíceInterpretační dokumenty ID1 až ID6
Prof. Ing. Mlan Holcký, DrSc. ČVUT, Šolínova 7, 66 08 Praha 6 Tel.: 224 353 842, Fax: 224 355 232 E-mal: holcky@klok.cvut.cz, k http://web.cvut.cz/k/70/prednaskyfa.html Metody navrhování Základní pojmy
VíceTESTOVÁNÍ STATISTICKÝCH HYPOTÉZ ZÁKLADNÍ POJMY
TESTOVÁNÍ STATISTICKÝCH HYPOTÉZ ZÁKLADNÍ POJMY Statistická hypotéza je určitá domněnka (předpoklad) o vlastnostech ZÁKLADNÍHO SOUBORU. Test statistické hypotézy je pravidlo (kritérium), které na základě
VíceInženýrská statistika pak představuje soubor postupů a aplikací teoretických principů v oblasti inženýrské činnosti.
Přednáška č. 1 Úvod do statistiky a počtu pravděpodobnosti Statistika Statistika je věda a postup jak rozvíjet lidské znalosti použitím empirických dat. Je založena na matematické statistice, která je
VíceStatistika (KMI/PSTAT)
Statistika (KMI/PSTAT) Cvičení šesté aneb Podmíněná pravděpodobnost Statistika (KMI/PSTAT) 1 / 13 Pravděpodobnost náhodných jevů Po dnešní hodině byste měli být schopni: rozumět pojmu podmíněná pravděpodobnost
VíceDopravní plánování a modelování (11 DOPM )
Department of Appled Mathematcs Faculty of ransportaton Scences Czech echncal Unversty n Prague Dopravní plánování a modelování (11 DOPM ) Lekce 5: FSM: rp dstrbuton Prof. Ing. Ondře Přbyl, Ph.D. Ing.
VíceAplikace Li-Ma metody na scintigrafické vyšetření příštítných tělísek. P. Karhan, P. Fiala, J. Ptáček
Aplkace L-Ma metody na scntgrafcké vyšetření příštítných tělísek P. Karhan, P. Fala, J. Ptáček Vyšetření příštítných tělísek dagnostka hyperparatyreózy: lokalzace tkáně příštítných tělísek neexstence radofarmaka
VíceZadání příkladů. Zadání:
Zdání příkldů Zdání: ) Popšte oblst vužtí plánovných expermentů ) Uveďte krtér optmlt plánů ) Co sou Hdmrdov mtce ké mí vlstnost? ) Co sou. fktorové plán k e lze vužít? 5) Blok čtverce - oblst ech vužtí
VíceKGG/STG Statistika pro geografy
KGG/STG Statistika pro geografy 4. Teoretická rozdělení Mgr. David Fiedor 9. března 2015 Osnova Úvod 1 Úvod 2 3 4 5 Vybraná rozdělení náhodných proměnných normální rozdělení normované normální rozdělení
VíceJiří Neubauer. Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel
Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Definice P(A/B) pravděpodobnost nastoupení jevu A za předpokladu, že nastal jev B (P(B) > 0) definujeme vztahem
VícePROBLEMATIKA INTELIGENTNÍHO AUTOMATICKÉHO
PROBLEMATIKA INTELIGENTNÍHO AUTOMATICKÉHO MAPOVÁNÍ WEBOVÝCH STRÁNEK ŘIMNÁČ MARTIN 1, ŠUSTA RICHARD 2, ŽIVNŮSTKA JIŘÍ 3 Katedra řídcí technky, ČVUT-FEL, Techncká 2, Praha 6, tel. +42 224 357 359, fax. +
VíceÚvodem Dříve les než stromy 3 Operace s maticemi
Obsah 1 Úvodem 13 2 Dříve les než stromy 17 2.1 Nejednoznačnost terminologie 17 2.2 Volba metody analýzy dat 23 2.3 Přehled vybraných vícerozměrných metod 25 2.3.1 Metoda hlavních komponent 26 2.3.2 Faktorová
VíceJiří Militky Škály měření Nepřímá měření Teorie měření Kalibrace
Tetlní zkušebnctv ebnctví II Jří Mltky Škály měření epřímá měření Teore měření Kalbrace Základní pojmy I PRAVDĚPODOBOST Jev A, byl sledován v m pokusech. astal celkem m a krát. Relatvní četnost výskytu
VíceMetody zpracování fyzikálních měření
etody zpracování fyzikálních měření Jakub Čížek katedra fyziky nízkých teplot Tel: 9 788 jakub.cizek@mff.cuni.cz http://physics.mff.cuni.cz/kfnt/vyuka/metody/obsah.html Doporučená literatura: D.S. Silva,
VíceLékařská biofyzika, výpočetní technika I. Biostatistika Josef Tvrdík (doc. Ing. CSc.)
Lékařská biofyzika, výpočetní technika I Biostatistika Josef Tvrdík (doc. Ing. CSc.) Přírodovědecká fakulta, katedra informatiky josef.tvrdik@osu.cz konzultace úterý 14.10 až 15.40 hod. http://www1.osu.cz/~tvrdik
VícePRAVDĚPODOBNOST A JEJÍ UŽITÍ
PRAVDĚPODOBNOST A JEJÍ UŽITÍ Základním pojmem teorie pravděpodobnosti je náhodný jev. náhodný jev : výsledek nějaké činnosti nebo pokusu, o němž má smysl prohlásit že nastal nebo ne. Náhodné jevy se označují
VíceOdhady - Sdružené rozdělení pravděpodobnosti
Odhady - Sdružené rozdělení pravděpodobnosti 4. listopadu 203 Kdybych chtěl znát maximum informací o náhodné veličině, musel bych znát všechny hodnoty, které mohou padnout, a jejich pravděpodobnosti. Tedy
VíceCvičení 13 Vícekriteriální hodnocení variant a vícekriteriální programování
Cvčení 3 Vícekrterální hodnocení varant a vícekrterální programování Vícekrterální rozhodování ) vícekrterální hodnocení varant konkrétní výčet, seznam varant ) vícekrterální programování varanty ve formě
Více6. Demonstrační simulační projekt generátory vstupních proudů simulačního modelu
6. Demonstrační smulační projekt generátory vstupních proudů smulačního modelu Studjní cíl Na příkladu smulačního projektu představeného v mnulém bloku je dále lustrována metodka pro stanovování typů a
VíceVzorová písemka č. 1 (rok 2015/2016) - řešení
Vzorová písemka č. rok /6 - řešení Pavla Pecherková. května 6 VARIANTA A. Náhodná veličina X je určena hustotou pravděpodobností: máme hustotu { pravděpodobnosti C x pro x ; na intervalu f x jinde jedná
VíceDiskrétní matematika. DiM /01, zimní semestr 2018/2019
Diskrétní matematika Petr Kovář petr.kovar@vsb.cz Vysoká škola báňská Technická univerzita Ostrava DiM 470-2301/01, zimní semestr 2018/2019 O tomto souboru Tento soubor je zamýšlen především jako pomůcka
VíceRegresní a korelační analýza
Regresní a korelační analýza Závslost příčnná (kauzální). Závslostí pevnou se označuje případ, kdy výskytu jednoho jevu nutně odpovídá výskyt druhé jevu (a často naopak). Z pravděpodobnostního hledska
Více3. Podmíněná pravděpodobnost a Bayesův vzorec
3. Podmíněná pravděpodobnost a Bayesův vzorec Poznámka: V některých úlohách řešíme situaci, kdy zkoumáme pravděpodobnost náhodného jevu za dalších omezujících podmínek. Nejčastěji má omezující podmínka
VíceKde se vzala pravděpodobnost? Jaroslav Horáček
Kde se vzala pravděpodobnost? Jaroslav Horáček Pravděpodobnost Mezi veřejností synonymum pro neurčitost Mihlo se kolem ní spousta význačných matematiků Starověk a středověk málo materiálů Jeden z mála
VícePravděpodobnost a statistika
Pravděpodobnost a statistika Teorie pravděpodobnosti popisuje vznik náhodných dat, zatímco matematická statistika usuzuje z dat na charakter procesů, jimiž data vznikla. NÁHODNOST - forma existence látky,
VíceStavový model a Kalmanův filtr
Stavový model a Kalmanův filtr 2 prosince 23 Stav je veličina, kterou neznáme, ale chtěli bychom znát Dozvídáme se o ní zprostředkovaně prostřednictvím výstupů Příkladem může býapř nějaký zašuměný signál,
VícePravděpodobnost a statistika (BI-PST) Cvičení č. 1
Pravděpodobnost a statistika (BI-PST) Cvičení č. 1 Katedra aplikované matematiky Fakulta informačních technologií České vysoké učení technické v Praze ZS 2014/2015 (FIT ČVUT) BI-PST, Cvičení č. 1 ZS 2014/2015
Více