Teorie elektrických ochran
|
|
- Vladimír Novák
- před 9 lety
- Počet zobrazení:
Transkript
1 Teore elektrckých ochran Elektrcká ochrana zařízení kontrolující chod část energetckého systému (G, T, V) = chráněného objektu, zajstt normální provoz Chráněný objekt fyzkální zařízení pro přenos el. energe, funkce charakterzovaná okamžtým hodnotam měřtelných fyzkálních velčn = stavových velčn (U, I, P, Q, f, T, F, ) Čnnost ochrany - získává nformace o velčnách (PTP, PTN, čdla), zpracovává je a hodnotí meze normálního provozu a nepřípustných hodnot. Př poruchovém stavu chr. objektu dojde k odpojení chr. zařízení od zdrojů zabránění havár nebo omezení následků poruchy. Také vysílání sgnálu o působení pro obsluhu.
2 Vztah mez chr. objektem, ochranou a okolím x(t) stav objektu p(t) velčny působení okolí na chr. objekt v(t) ovládání objektu ochranou (vstup do ovládacího zařízení, působí na tok energe) u(t) bez vlvu ochrany pˆ t t vˆ û t z(t) výstup chr. objektu y(t) sledování ochranou = její vstup r(t) nesledováno ochranou ẑ t t ŷ rˆ t
3 Porucha fyzkální změna objektu (velčn), stav objektu mmo normální stav, nebezpěčný Poruchová velčna způsobuje poruchu, u 2 (t) Výstupní velčny y(t) velké hodnoty U, I ochrany přpojeny do sekundárních obvodů PTP, PTN se zpracovatelnou úrovní sgnálů Elektrcké ochrany - pojmy Čnnost ochrany vyhodnocování nformací o stavu objektu x(t) a př poruše působení na objekt výstupem v(t), tj. omezení následků poruchy nebo předcházení jm Vstup ochrany y(t) měřené výstupy chr. objektu Výstup ochrany v(t) působení ochrany na objekt Sgnál velčna hlásící čnnost ochrany Algortmus ochrany F pops funkce ochrany, vztah mez vstupy a výstupy Charakterstka ochrany grafcké znázornění algortmu Rovnce ochrany matematcký záps algortmu v t F[y(t),n ]
4 Parametry ochrany konstanty pro nastavení F Ctlvost ochrany nejmenší velkost měřené velčny (prvku y(t)), př které ochrana působí Nařdtelnost ochrany rozsah všech možných ctlvostí ochrany Rozlšovací schopnost ochrany schopnost rozeznat dva blízké stavy objektu (poruchový a bezporuchový), jejch mnmální odchylka Přídržný poměr ochrany poměr vstupních stavových velčn př návratu do blokovací polohy a př náběhu ochrany do působící polohy x t návrat 1 x t náběá Doba působení ochrany t p čas od vznku poruchy do vyslání sgnálu na výstup ochrany Přetížtelnost ochrany max. hodnota vstupu ochrany neohrožující ochranu Spotřeba ochrany příkon potřebný pro provoz ochrany Prmární ochrana pracuje bez přístrojových transformátorů
5 Sekundární ochrana přpojena do sekundárních obvodů PTP, PTN Prvek ochrany stavební díl (relé, TRF, elektromagnet, chp, procesor, konektor, ) Člen ochrany soubor prvků tvořící určtý funkční celek Základní ochrana základní vybavení objektu Záložní ochrana zpožděné působení oprot základní, příp. jný algortmus, pro vyšší bezpečnost Chráněný objekt Chování objektu popsáno relací vstupních p(t) a výstupních z(t) velčn pro správnou funkc ochran. p t R z(t) Matematcké modely: Náhradní schéma přehledný grafcký model, základní vazby
6 Vektorová dferencální rovnce přesný pops dynamckého chování objektu (soustava rovnc) stavová rovnce objektu d x t Av x t Bv u t dt A(v), B(v) matce závslé na ovládání objektu výstupní rovnce objektu y t C v x t D v u t Vektorová dferenční rovnce dskretzace dferencálních rovnc, náhrada dervací dferencem, vzorkování v dgtálních ochranách d x t t x t dt x k A v t x k B v y C v x D v u k t u k k k
7 Impedanční rovnce vztahy pro ustálený stav př 50 Hz, komplexní rovnce Î Z Û Fázorový dagram grafcký model stavových velčn, z komplexních rovnc Impedanční charakterstka grafcké znázornění mpedance objektu jako funkce nějaké proměnné Souměrné složky sousledná, zpětná, netočvá Složky d,q,0 podélná a příčná osa točvých elektrckých strojů 0 q d C B A D C B A 1 0 q d D
8 D D 1
9 Poruchy objektu Stavový prostor P (n-rozměrný vektorový) x t P P P d P z h 0 Hrance h 0 - n-1 rozměrný prostor
10 Poruchové stavy Zkrat - spojení fází, fáze a země - možné poškození elektrcké, tepelné, mechancké, ztráta synchronsmu Přetížení - přílš vysoký proud (výkon) zařízením - poškození tepelné, mechancké Přepětí - zvýšení napětí nad dovolenou mez - poškození a stárnutí zolací, přídavné ztráty, nebezpečí zkratu - vlvy atmosfércké, spínací, regulace napětí, kapactní zátěž, vedení naprázdno Podpětí - pokles napětí pod dovolenou mez - proudové přetížení, regulace napětí Snížení frekvence - přebytek spotřeby nad výrobou v ES - nesprávná funkce, vyšší magnetzační proudy a ztráty
11 Zvýšení frekvence - přebytek výroby nad spotřebou v ES - nesprávná funkce, mech. namáhání Nesymetrcké zatížení - jednofázové zatížení, trakce - zpětná složka proudu přídavné ztráty v rotoru, ohřátí Zemní spojení - 1 fáze se zemí u sítí s zolovaným uzlem - pravděpodobnost následného zkratu Zpětný tok výkonu - porucha turbíny uzavření přívodu páry motorcký chod Ztráta buzení - pokles budcího proudu pod mez statcké stablty asynchronní chod - přídavné vířvé ztráty
12 Funkce ochran Funkční prncp = algortmus ochrany určuje její chování vzhledem k chráněnému objektu. k a trajektore do nejmenovtého, ale bezpečného stavu k trajektore př vznku poruchy t p = t 3 t 1 : doba do vypnutí poruchy x n jmenovtý stav x p poruchový stav (bez působení ochrany) x v stav po vypnutí
13 Charakterstky a rovnce ochran Char-ka ochrany popsuje hranc h 0. Podle funkčního prncpu jsou sledovány jen některé stavové velčny x(t). Proudová ochrana F, t 0
14 Napěťová ochrana F u, t 0 Dstanční ochrana měří mpedanc zkratové smyčky ( û k ẑ îk ) F z 0 analogová ochrana
15 dgtální ochrana prncp zapojení Rozdílová ochrana měří rozdíl vstupního a výstupního proud chráněného objektu F 0 a b
16 Srovnávací ochrana měří fázový úhel φ mez vstupním a výstupním proudem arg arg bez poruchy arg( a, b ) 0 př zkratu arg( a, b ) α úhlová ctlvost a b
17 Wattová ochrana p p 0
18 Jalová ochrana q q 0 Kmtočtová ochrana reaguje na napětí nebo proudy určtých frekvencí u g(f ) Ochrana prot nesymetr měří zpětnou složku proudu nebo napětí 2 20 ( u 2 u 20 )
19 Základní členy ochran Ochrana může obsahovat jen některé členy. Algortmus ochrany F(y,n) složen z dílčích funkcí, které zajšťují jednotlvé členy. Vstupní člen - převádí vstupní sgnály y(t) na zpracovatelný tvar a úroveň (bočníky, dělče, trafa, usměrňovače, A/D převodníky) - ze vstupů zjšťuje stav objektu x(t) xt V[yt,n v ] - chrání vntřní obvody prot rušení a chybám
20 - pozn.: jmenovté vstupní hodnoty ochran 100 V, 5 A (1 A), měřcí členy x V, x ma Popudový člen - na základě stavu objektu podává nformac členu logky a měřcímu o vznklé poruše v dosahu ochrany - mívá podobnou konstrukc jako měřcí, ale je ctlvější b t P[x t,n p ] b t 0 pro xt P b t 1 pro x t Pzp Měřcí člen - rozhoduje o výskytu poruchy v objektu - zajstí správné působení ochrany m t M[xt,n m ] m t 0 pro xt Pd m t 1 pro x t Pz - stupně ochrany proměnlvá ctlvost podle času (druhu poruchy) Člen logky - pracuje s booleovským funkcem dp
21 - zpracovává logcký sgnál b(t) z popudového členu - určuje funkc měřcího členu n m - podle m(t) určuje funkc koncového členu v(t) - zpracovává sgnál časového členu vt L[b t,m t, t,n L ] n m Časový člen - prodlužuje dobu působení ochrany t p - vstup výstup do členu logky - důvody: selektvta (výběrová schopnost) pozděj působí ochrana dále od poruchy nebo záložní akumulace energe v chr. objektu zpoždění pro stupňovtou char-ku vyloučení chybného působení ochrany přechodná porucha Koncový člen - relé s výkonovým kontakty
22 - upravuje sgnál v(t) ze členu logky pro předání ovládacím zařízením objektu (vysoká úroveň, odolný prot rušení) Napájecí člen způsoby: - ochrany bez napájení - přímo z akumulátorové batere (nejčastější x údržba) - ze střídavé sítě (málo) - přes stablzátor - akumulátor v ochraně (prot rušení) - galvancké oddělení přes soustavu střídačusměrňovač (nejlepší prot rušení) - z přístrojových transformátorů (bez batere, na ústupu)
23 Rozdělení elektrckých ochran a) podle typu chráněného objektu generátoru, motoru, transformátoru, přípojnc, vedení, kabelu, vypínače, b) podle druhu poruchy zkratová, př přetížení, podpěťová, nadpěťová, pod-, nadkmtočtová, př
24 zemním spojení, př zpětném toku výkonu, př ztrátě buzení, př nesouměrnost c) podle funkčního prncpu vz výše d) podle doby působení mžková doba působení omezena jen zpracováním nformací a reakcí ochrany, tj. působí okamžtě závslá doba působení funkcí měřené velčny časově nezávslá konstantní doba působení (nastavtelná) e) podle konstrukce elektromechancká relé elmag., ndukční, tepelné, eldynamcké, tranzstorová PV součást (dody, tranzstory, ntegr. obvody) dgtální dskrétní zpracování Požadavky na ochrany a) Rychlost Dána dobou působení = doba ochrany + působení vypínače. Volba rychlost závsí na typu poruchy (zkrat x přetížení).
25 b) Selektvta Vypnutí co nejmenší část soustavy. Časovým, proudovým nebo místním odstupňováním. c) Ctlvost a přesnost Mnmální velkost měřené velčny, na kterou ochrana reaguje, a její relatvní chyba. d) Spolehlvost Schopnost působt př poruše a nepůsobt, není-l porucha. Vlv vnějších podmínek, mechansmu ochrany, údržba. Zálohování. e) Snadnost údržby a kontroly
2. ELEKTRICKÉ OBVODY STEJNOSMĚRNÉHO PROUDU
VŠB T Ostrava Faklta elektrotechnky a nformatky Katedra obecné elektrotechnky. ELEKTCKÉ OBVODY STEJNOSMĚNÉHO POD.. Topologe elektrckých obvodů.. Aktvní prvky elektrckého obvod.3. Pasvní prvky elektrckého
popsat činnost základních zapojení převodníků U-f a f-u samostatně změřit zadanou úlohu
7. Převodníky - f, f - Čas ke studu: 5 mnut Cíl Po prostudování tohoto odstavce budete umět popsat čnnost základních zapojení převodníků -f a f- samostatně změřt zadanou úlohu Výklad 7.. Převodníky - f
MĚŘENÍ INDUKČNOSTI A KAPACITY
Úloha č. MĚŘENÍ NDKČNOST A KAPATY ÚKO MĚŘENÍ:. Změřte ndkčnost cívky bez jádra z její mpedance a stanovte nejstot měření.. Změřte na Maxwellově můstk ndkčnost cívky a rčete nejstot měření. Porovnejte výsledky
Elektronický obvod. skládá se z obvodových součástek navzájem pospojovaných vodiči působí v něm obvodové veličiny Příklad:
Elektroncký obvod skládá se obvodových součástek navájem pospojovaných vodč působí v něm obvodové velčny Příklad: část reálného obvodu schéma část obvodu Obvodové velčny elektrcké napětí [V] elektrcký
Posuzování dynamiky pohybu drážních vozidel ze záznamu jejich jízdy
Posuzování dynamky pohybu drážních vozdel ze záznamu jejch jízdy Ing. Jaromír Šroký, Ph.D. ŠB-Techncká unverzta Ostrava, Fakulta strojní, Insttut dopravy, tel: +40 597 34 375, jaromr.sroky@vsb.cz Úvod
MĚRENÍ V ELEKTROTECHNICE
EAICKÉ OKHY ĚENÍ V ELEKOECHNICE. řesnost měření. Chyby analogových a číslcových měřcích přístrojů. Chyby nepřímých a opakovaných měření. rmární etalon napětí. Zdroje referenčních napětí. rmární etalon
POTENCIÁL ELEKTRICKÉHO POLE ELEKTRICKÉ NAPĚTÍ
POTENCIÁL ELEKTRICKÉHO POLE ELEKTRICKÉ NAPĚTÍ ELEKTRICKÝ POTENCIÁL Elektrcká potencální energe Newtonův zákon pro gravtační sílu mm F = G r 1 2 2 Coulombův zákon pro elektrostatckou sílu QQ F = k r 1 2
Dimenzování vodičů v rozvodech NN
Dimenzování vodičů v rozvodech NN Kritéria pro dimenzování vodičů: přípustné oteplení hospodárnost mechanické namáhání dovolený úbytek napětí účinky zkratových proudů správná funkce ochrany před úrazem
Mechatronické systémy s elektronicky komutovanými motory
Mechatroncké systémy s elektroncky komutovaným motory 1. EC motor Uvedený motor je zvláštním typem synchronního motoru nazývaný též bezkartáčovým stejnosměrným motorem (anglcky Brushless Drect Current
Univerzita Tomáše Bati ve Zlíně
nverzta Tomáše Bat ve líně LABOATOÍ CČEÍ ELETOTECHY A PŮMYSLOÉ ELETOY ázev úlohy: ávrh dělče napětí pracoval: Petr Luzar, Josef Moravčík Skupna: T / Datum měření:.února 8 Obor: nformační technologe Hodnocení:
NUMERICAL INTEGRATION AND DIFFERENTIATION OF SAMPLED TIME SIGNALS BY USING FFT
NUMERICAL INTEGRATION AND DIFFERENTIATION OF SAMPLED TIME SIGNALS BY USING FFT J. Tuma Summary: The paper deals wth dfferentaton and ntegraton of sampled tme sgnals n the frequency doman usng the FFT and
MODELOVÁNÍ A SIMULACE
MODELOVÁNÍ A SIMULACE základní pojmy a postupy vytváření matematckých modelů na základě blancí prncp numerckého řešení dferencálních rovnc základy práce se smulačním jazykem PSI Základní pojmy matematcký
SIMULACE. Numerické řešení obyčejných diferenciálních rovnic. Měřicí a řídicí technika magisterské studium FTOP - přednášky ZS 2009/10
SIMULACE numercké řešení dferencálních rovnc smulační program dentfkace modelu Numercké řešení obyčejných dferencálních rovnc krokové metody pro řešení lneárních dferencálních rovnc 1.řádu s počátečním
1 Elektrotechnika 1. 9:00 hod. G 0, 25
A 9: hod. Elektrotechnka a) Napětí stejnosměrného zdroje naprázdno je = 5 V. Př proudu A je svorkové napětí V. Vytvořte napěťový a proudový model tohoto reálného zdroje. b) Pomocí přepočtu napěťových zdrojů
ú ď ů ů ď ů ů ů ů ó ň ň ó ů ů ó ť ú ů ů ů ů ů ň ů ů ů ů ť ů ú É ť ů ů ů ů ů Ú ň ů Ý Ť ů ó ů ó ů ů ť ť ů ů ů Ě Ť Ě ů ů Ú ů ť ň ť ů ů ň ú ů ů ď ť ů ť ů Ě ň ť Ť ť Ť Ť ň ň ů Ý Ý Ý Ť ó ú ů ť ť ť ů ť ď ů Ý ů
Numerická matematika 1. t = D u. x 2 (1) tato rovnice určuje chování funkce u(t, x), která závisí na dvou proměnných. První
Numercká matematka 1 Parabolcké rovnce Budeme se zabývat rovncí t = D u x (1) tato rovnce určuje chování funkce u(t, x), která závsí na dvou proměnných. První proměnná t mívá význam času, druhá x bývá
13. Budící systémy alternátorů
13. Budící systémy alternátorů Budící systémy alternátorů zahrnují tyto komponenty: Systém zdrojů budícího proudu (budič) Systém regulace budícího proudu (regulátor) Systém odbuzování (odbuzovač) Na budící
Normalizace fyzikálních veličin pro číslicové zpracování
Noralzace fyzkálních velčn pro číslcové zpracování Vypracoval: Petr Kaaník Aktualzace: 15. října 2003 Kažý realzovaný říící systé usel projít vě hlavní stá. Nejprve je to vlastní návrh. Na záklaě ostupných
Elektrikář TECHNOLOGIE 3. ROČNÍK
Elektrikář TECHNOLOGIE 3. ROČNÍK 3 hod. týdně, celkem 99 hod. Všeobecné předpisy pro montáž, údržbu, opravy a zapojení elektrických zařízení Dotace učebního bloku: 2 zná ustanovení týkající se bezpečnosti
Poruchové stavy Zkrat - spojení fází, fáze a země možné poškození elektrické, tepelné, mechanické, ztráta synchronismu Přetížení - příliš vysoký proud
Elektrické ochrany Elektrická ochrana zařízení kontrolující chod části energetického systému (G, T, V) = chráněného objektu, zajistit normální provoz Chráněný objekt fyzikální zařízení pro přenos el. energie,
Návod k obsluze. Rádiový snímač prostorové teploty s hodinami 1186..
Návod k obsluze Rádový snímač prostorové teploty s hodnam 1186.. Obsah K tomuto návodu... 2 Jak pracuje rádový snímač prostorové teploty... 2 Normální zobrazení na dsplej... 3 Základní ovládání rádového
1. Úvod, odhad nejistot měření, chyba metody. 2. Přístroje pro měření proudu, napětí a výkonu - přehled; měřicí zesilovače;
. Úvod, odhad nejistot měření, chyba metody řesnost měření Základní kvantitativní charakteristika nejistoty měření Výpočet nejistoty údaje číslicových přístrojů Výpočet nejistoty nepřímých měření ozšířená
Matematické modelování ve stavební fyzice
P6 - Numercké řešení vedení tepla ve stěně Obsa: Stěna z omogennío materálu Stěna z různýc materálů Okraové podmínky Dvorozměrné vedení tepla Rovnce vedení tepla Rovnce kontnuty (v 1D) dq qcd, x qcd, x
( x ) 2 ( ) 10.2.15 Úlohy na hledání extrémů. Předpoklady: 10211
10..15 Úlohy na hledání etrémů Předpoklady: 1011 Pedagogcká poznámka: Kromě příkladů a není pro studenty problém vypočítat dervace funkcí. Problémem je hlavně nalezení těchto funkčních závslostí, tam postupujeme
Plynový závěsný kotel CERASTAR s automatickým přizpůsobením k délce odtahu spalin
Návod na nstalac, montáž a obsluhu Plynový závěsný kotel CERASTAR s automatckým přzpůsobením k délce odtahu spaln 6 720 611 412-00.1R ZSN 24-6 AE... ZWN 24-6 AE... Obsah Obsah Bezpečnostní pokyny 3 Použté
Ohmův zákon pro uzavřený obvod. Tematický celek: Elektrický proud. Úkol:
Název: Ohmův zákon pro uzavřený obvod. Tematcký celek: Elektrcký proud. Úkol: Zopakujte s Ohmův zákon pro celý obvod. Sestrojte elektrcký obvod dle schématu. Do obvodu zařaďte robota, který bude hlídat
Komutátorové motory. riovém zapojení kotvy a buzení
Komutátorové motory Komutátorové stroje v sobě sdružují výhodné regulační vlastnosti ss motorů s výhodou přímého připojení ke střídavé síti. V současnosti používáme 1.f sériové motory 1.f. repulsní motory
Regulace frekvence a napětí
Regulace frekvence a napětí Ivan Petružela 2006 LS X15PES - 5. Regulace frekvence a napětí 1 Osnova Opakování Blokové schéma otáčkové regulace turbíny Statická charakteristika (otáčky, výkon) turbíny Zajištění
Kinetika spalovacích reakcí
Knetka spalovacích reakcí Základy knetky spalování - nauka o průběhu spalovacích reakcí a závslost rychlost reakcí na různých faktorech Hlavní faktory: - koncentrace reagujících látek - teplota - tlak
9.12.2009. Metody analýzy rizika. Předběžné hodnocení rizika. Kontrolní seznam procesních rizik. Bezpečnostní posudek
9.2.29 Bezpečnost chemckých výrob N Petr Zámostný místnost: A-72a tel.: 4222 e-mal: petr.zamostny@vscht.cz Analýza rzka Vymezení pojmu rzko Metody analýzy rzka Prncp analýzy rzka Struktura rzka spojeného
Návod k obsluze. Hoval CZ s.r.o. Republikánská 45 31204 Plzeň tel/fax: (+420) 377 261 002, (+420) 377 266 023 info@hoval.cz www.hoval.
CZ Návod k obsluze Kotel pro spalování oleje Uno-3 / Mega-3 / Max-3 / Cosmo / ST-plus Kotel pro spalování plynu CompactGas (1000-2800) / Cosmo alufer / ST-plus alufer Hoval CZ s.r.o. Republkánská 45 31204
Výpočet tepelné ztráty budov
Doc Ing Vladmír Jelínek CSc Výpočet tepelné ztráty budov Výpočty tepelných ztrát budov slouží nejčastěj pro stanovení výkonu vytápěcího zařízení, tj výkonu otopné plochy místnost, topného zdroje atd Výpočet
PROSTOROVÝ TERMOSTAT
PROSTOROVÝ TERMOSTAT - PRO VŠECHNY TYPY VYTÁPĚNÍ - 4 TEPLOTNÍ ZMĚNY NA DEN - NEZÁMRZOVÁ TELOTA 5 C PT10 Dgtální regulací teploty k vysokým úsporám energe Pb LEAD FREE v souladu s RoHS progr dny Po Út St
STŘEDNÍ ŠKOLA, HAVÍŘOV-ŠUMBARK, SÝKOROVA 1/613 PROUDOVÝ CHRÁNIČ ZÁKLADNÍ INFORMACE
STŘEDNÍ ŠKOLA, HAVÍŘOV-ŠUMBARK, SÝKOROVA 1/613 PROUDOVÝ CHRÁNIČ ZÁKLADNÍ INFORMACE Ing. Tomáš Kostka, verze 2/2006 tento text je k dispozici na www.volny.cz/kostka2000 Proudový chránič Definice, značka
Regulace frekvence a velikosti napětí Řízení je spojeno s dodávkou a přenosem činného a jalového výkonu v soustavě.
18. Řízeí elektrizačí soustavy ES je spojeí paralelě pracujících elektráre, přeosových a rozvodých sítí se spotřebiči. Provoz je optimálě spolehlivá hospodárá dodávka kvalití elektrické eergie. Stěžejími
Konstrukce točivých strojů a) střídavý generátor se sběracími kroužky b) dynamo s komutátorem
M-3 Stejnosměrné stroje 1/1 Stejnosměrné stroje - každý stejnosměrný stroj může pracovat jako motor nebo jako generátor (dynamo), - přes svoj vyšší cenu a složtější konstrukc mají nezastuptelné místo v
Oscilace tlaku v zařízeních dálkového vytápění
MAKING MODERN LIVING POSSIBLE Technická dokumentace Oscilace tlaku v zařízeních dálkového vytápění Bjarne Stræde, Ing., Danfoss A/S districtenergy.danfoss.com TECHNICKÁ DOKUMENTACE Oscilace tlaku v zařízeních
Zaměření Pohony a výkonová elektronika. verze 9. 10. 2014
Otázky a okruhy problematiky pro přípravu na státní závěrečnou zkoušku z oboru PE v navazujícím magisterském programu strukturovaného studia na FEL ZČU v ak. r. 2015/16 Soubor obsahuje tematické okruhy
MĚŘENÍ HYSTEREZNÍ SMYČKY TRANSFORMÁTORU
niverzita Pardubice Fakulta elektrotechniky a informatiky Materiály pro elektrotechniku Laboratorní cvičení č. 4 MĚŘEÍ HYSTEREZÍ SMYČKY TRASFORMÁTOR Jméno(a): Jiří Paar, Zdeněk epraš (Dušan Pavlovič, Ondřej
SYNCHRONNÍ GENERÁTORY ŘADY GSV
SYNCHRONNÍ GENERÁTORY ŘADY GSV TES VSETÍN s.r.o. Tel.: 571 812 111 info@tes.cz Jiráskova 691 Fax: 571 812 842 www.tes.cz 755 01 VSETÍN OBSAH 1. Základní parametry a aplikace... 3 1.1. Typové označení...
Statické zdroje pro zkušebnictví cesta k úsporám elektřiny
Statické zdroje pro zkušebnictví cesta k úsporám elektřiny Dr. Ing. Tomáš Bůbela ELCOM, a.s. Zdroje ve zkušebnictví Rotační zdroje, soustrojí, rotační měniče: stále ještě nejčastěji používané napájecí
Ochrany bloku. Funkce integrovaného systému ochran
39 Ochrany bloku Ochrany bloku Integrovaný systém chránění synchronního alternátoru pracujícího v bloku s transformátorem. Alternátor je uzemněný přes vysokou impedanci. 40 Ochrany bloku Funkce integrovaného
4.4 Exploratorní analýza struktury objektů (EDA)
4.4 Exploratorní analýza struktury objektů (EDA) Průzkumová analýza vícerozměrných dat je stejně jako u jednorozměrných dat založena na vyšetření grafckých dagnostk. K tomuto účelu se využívá různých technk
POLYMERNÍ BETONY Jiří Minster Ústav teoretické a aplikované mechaniky AV ČR, v. v. i.
Odborná skupna Mechanka kompoztních materálů a konstrukcí České společnost pro mechanku s podporou frmy Letov letecká výroba, s. r. o. a Ústavu teoretcké a aplkované mechanky AV ČR v. v.. Semnář KOMPOZITY
KAPACITNÍ SNÍMAČ CLS 53 NÁVOD K OBSLUZE
NÁVOD K OBSLUZE KAPACITNÍ SNÍMAČ CLS 53 Před prvním použitím jednotky si důkladně přečtěte pokyny uvedené v tomto návodu a pečlivě si jej uschovejte. Výrobce si vyhrazuje právo provádět změny bez předchozího
4 Parametry jízdy kolejových vozidel
4 Parametry jízdy kolejových vozdel Př zkoumání jízdy železnčních vozdel zjšťujeme většnou tř základní charakterstcké parametry jejch pohybu. Těmto charakterstkam jsou: a) průběh rychlost vozdel - tachogram,
Akustika. Rychlost zvukové vlny v v prostředí s hustotou ρ a modulem objemové pružnosti K
zvuk každé mechanické vlnění v látkovém prostředí, které je schopno vyvolat v lidském uchu sluchový vjem akustika zabývá se fyzikálními ději spojenými se vznikem zvukového vlnění, jeho šířením a vnímáním
Katedra obecné elektrotechniky Fakulta elektrotechniky a informatiky, VŠB - TU Ostrava
Katedra obecné elektrotechniky Fakulta elektrotechniky a informatiky, VŠB - TU Ostrava 15. DIMENZOVÁNÍ A JIŠTĚNÍ ELEKTRICKÝCH VEDENÍ Obsah: 1. Úvod 2. podle přípustného oteplení 3. s ohledem na hospodárnost
nastavitelná ±10 % vstupního rozsahu termočlánek: max. 100 Ω napětí: max.1 kω Pt100: odpor vedení max. 10 Ω
Regulátory řady PXG jsou vhodné pro složitější regulační procesy. Jsou vybavené univerzálním vstupem pro termočlánky, Pt100, napěťové a proudové lineární signály. Kromě standardních funkcí jako je dvoupolohová
Západočeská univerzita. Lineární systémy 2
Západočeská univerzita FAKULTA APLIKOVANÝCH VĚD Lineární systémy Semestrální práce vypracoval: Jan Popelka, Jiří Pročka 1. květen 008 skupina: pondělí 7-8 hodina 1) a) Jelikož byly měřící přípravky nefunkční,
Obecné informace. charakteristika B 5 až 10 In (2) kabely všeobecné použití. charakteristika C 10 až 14 In (3) obvody a zátěže s velkým motory
Obecné informace normy Vzhledem k typu instalace (bytová, terciární nebo průmyslová) existují dvě normy, se kterými musí být jistič v souladu: pro bytové a podobné aplikace se používá norma ČSN EN 60 898,
radiační ochrana Státní úřad pro jadernou bezpečnost
Státní úřad pro jadernou bezpečnost radační ochrana DOPORUČENÍ Měření a hodnocení obsahu přírodních radonukldů ve vodě dodávané k veřejnému zásobování ptnou vodou Rev. 1 SÚJB únor 2012 Předmluva Zákon
SIMULACE A ŘÍZENÍ PNEUMATICKÉHO SERVOPOHONU POMOCÍ PROGRAMU MATLAB SIMULINK. Petr NOSKIEVIČ Petr JÁNIŠ
bstrakt SIMULCE ŘÍZENÍ PNEUMTICKÉHO SERVOPOHONU POMOCÍ PROGRMU MTL SIMULINK Petr NOSKIEVIČ Petr JÁNIŠ Katedra automatzační technky a řízení Fakulta stroní VŠ-TU Ostrava Příspěvek popsue sestavení matematckého
MĚŘENÍ HYSTEREZNÍ SMYČKY TRANSFORMÁTORU
niverzita Pardubice Ústav elektrotechniky a informatiky Materiály pro elektrotechniku Laboratorní cvičení č. 4 MĚŘEÍ HYSTEREZÍ SMYČKY TRASFORMÁTOR Jméno(a): Ondřej Karas, Miroslav Šedivý, Ondřej Welsch
ESR, spinový hamiltonián a spektra
ER, spnový hamltonán a spektra NMR k k získávání důležtých nformací o struktuře látky využívá gyromagnetckých vlastností atomových jader. Podobně ER (EPR) využívá k obdobným účelům gyromagnetckých vlastností
Rizikového inženýrství stavebních systémů
Rzkového nženýrství stavebních systémů Mlan Holcký, Kloknerův ústav ČVUT Šolínova 7, 166 08 Praha 6 Tel.: 24353842, Fax: 24355232 E-mal: Holcky@vc.cvut.cz Základní pojmy Management rzk Metody analýzy rzk
Á Á ň ň ť Í Ť ň Í ř ň ř ř ň Í Ť Ě ň Č Ť Á Í Á Ť Í Á Ď ř ř ň Í ť ť ň ň Ě Í ů Í Í ř Ě ř Ě Ť ň Ť Ý ň ň Ť ň ň ň ň Ě ť Í Á Ť Ť ň Ť ř ú ň Í Ť Í Ť ň Á ň Ž ď Ě ň Ě Í Ů ň Ť ň ň Í Ě Ť ň ř Í Ť Í ň ň Č Ť ť ň ň ř ň
Konvencní ústredna EPS
Konvencní ústredna EPS FPC-500-2 FPC-500-4 FPC-500-8 cs Provozní příručka FPC-500-2 FPC-500-4 FPC-500-8 Obsah cs 3 Obsah Bezpečnostní pokyny 4 2 Stručný přehled 5 3 Přehled systému 6 3. Funkce 6 3.2 Sgnalzace
Plynový kondenzační kotel CERASMART
Návod k nstalac, obsluze a údržbě Plynový kondenzační kotel CERASMART 6 720 610 907-00.2O ZB 7-22 A 23 ZWB 7-26 A 23 OSW Obsah Obsah Bezpečnostní pokyny 3 Použté symboly 4 1 Údaje o kotl 5 1.1 Prohlášení
Tab.1 Základní znaky zařízení jednotlivých tříd a opatření pro zajištění bezpečnosti
Všeobecně V České republice byly v platnosti téměř 30 let normy týkající se bezpečnosti při práci na elektrických zařízeních. Od té doby došlo k závažným změnám v oblasti ochrany před úrazem elektrickým
S12000 400 V 50 Hz #AVR #CONN #DPP
KOMPAKTNÍ, PLNĚ VYBAVENÁ ZÁŽEHOVÁ ELEKTROCENTRÁLA Tato elektrocentrála vyniká kvalitou i odolností, splňuje požadavky pro prodej na všech trzích EHS. Prostě je to výjimečný produkt, ať výkonem nebo splněním
AKUMULAČNÍ DOPRAVA. Rollex Drive System Základní konstrukční informace 10. Rollex Drive System Řídící karta 11
IV. AKUMULAČNÍ DOPRAVA Typová řada Stránka 530 Prokluzná spojka, akumulační doprava 1 2 531 Prokluzná spojka, akumulační doprava 3 530/531 Konstrukční doporučení 4 535 Jednoduché řetězové kolo z umělé
Úvod 13 1. NEJPOUŽÍVANĚJŠÍ JISTICÍ PRVKY 15. 1.1 Pojistka 15 1.1.1 Výhody a nevýhody pojistek 17
ČÁST I: JIŠTĚNÍ ELEKTRICKÝCH ZAŘÍZENÍ 13 Úvod 13 1. NEJPOUŽÍVANĚJŠÍ JISTICÍ PRVKY 15 1.1 Pojistka 15 1.1.1 Výhody a nevýhody pojistek 17 1.2 Jistič 17 1.2.1 Výhody jističů 18 1.2.2 Nevýhoda jističů 19
Téma 17 Ochrana samočinným odpojením od zdroje Ochrana neživých částí. Ochrana samočinným odpojením od zdroje
Téma 17 Ochrana samočinným odpojením od zdroje Ochrana neživých částí Ochrana samočinným odpojením od zdroje Charakteristika ochrany je ochranou před úrazem el. proudem v sítích TN. Má velkou tradici (dříve
4. Zpracování signálu ze snímačů
4. Zpracování signálu ze snímačů Snímače technologických veličin, pasivní i aktivní, zpravidla potřebují převodník, který transformuje jejich výstupní signál na vhodnější formu pro další zpracování. Tak
Univerzální regulator dobíjení pro alternátory
1 Univerzální regulator dobíjení pro alternátory 2 3 Obsah: 1. Úvod 2. Popis regulátoru 3. Technická data 4. Blokové zapojení a montáž 5. Obchodní podmínky 6. Kontakt 1. Úvod Regulátor dobíjení sdružuje
S12000 230 V 50 Hz #AVR #CONN #DPP
KOMPAKTNÍ, PLNĚ VYBAVENÁ ZÁŽEHOVÁ ELEKTROCENTRÁLA Tato elektrocentrála vyniká kvalitou i odolností, splňuje požadavky pro prodej na všech trzích EHS. Prostě je to výjimečný produkt, ať výkonem nebo splněním
1. Úvod, odhad nejistot měření, chyba metody. 2. Přístroje pro měření proudu, napětí a výkonu - přehled; měřicí zesilovače;
. Úvod, odhad nejistot měření, chyba metody Přesnost měření Základní kvantitativní charakteristika nejistoty měření Výpočet nejistoty údaje číslicových přístrojů Výpočet nejistoty nepřímých měření Rozšířená
dtron 16.1 Kompaktní mikroprocesorový regulátor
MĚŘENÍ A REGULACE dtron 16.1 Kompaktní mikroprocesorový regulátor Vestavná skříňka podle DIN 43 700 Krátký popis Kompaktní mikroprocesorový regulátor dtron 16.1 s čelním rámečkem o rozměru 48 mm x 48 mm
DYNAMICKÉ MODULY PRUŽNOSTI NÁVOD DO CVIČENÍ
DYNAMICKÉ MODUY PRUŽNOSTI NÁVOD DO CVIČNÍ D BI0 Zkušebnctví a technologe Ústav stavebního zkušebnctví, FAST, VUT v Brně 1. STANOVNÍ DYNAMICKÉHO MODUU PRUŽNOSTI UTRAZVUKOVOU IMPUZOVOU MTODOU [ČSN 73 1371]
Dodatek k návodu k obsluze a instalaci kotlů BENEKOV. Regulátor RKU 3
Dodatek k návodu k obsluze a instalaci kotlů BENEKOV Regulátor RKU 3 Obsah: str. 1. Popis regulátoru RKU3...... 3 2. Popis programu regulátoru RKU3........ 4 3. Obsluha kotle uživatelem... 5 4. Gravitační
MĚŘENÍ ELEKTRICKÝCH PARAMETRŮ V OBVODECH S PWM ŘÍZENÝMI ZDROJI NAPĚTÍ Electric Parameter Measurement in PWM Powered Circuits
Techncká 4, 66 07 Praha 6 MĚŘENÍ ELEKTRICKÝCH PARAMETRŮ V OBVODECH S PWM ŘÍZENÝMI ZDROJI NAPĚTÍ Electrc Parameter Measurement n PWM Powered Crcuts Martn Novák, Marek Čambál, Jaroslav Novák Abstrakt: V
Model helikoptéry H1
Model helikoptéry H Jan Nedvěd nedvej@fel.cvut.cz Hodnoty a rovnice, které jsou zde uvedeny, byly naměřeny a odvozeny pro model vrtulníku H umístěného v laboratoři č. 26 v budově Elektrotechnické fakulty
Numerické metody optimalizace
Numercké metody optmalzace Numercal optmzaton methods Bc. Mloš Jurek Dplomová práce 2007 Abstrakt Abstrakt česky Optmalzační metody představují vyhledávání etrémů reálných funkcí jedné nebo více reálných
Ochrana před úrazem elektrickým proudem
Střední škola, Havířov-Šumbark, Sýkorova 1/613, příspěvková organizace Ochrana před úrazem elektrickým proudem Ing. Pavel Chmiel, Ph.D. OBSAH VÝUKOVÉHO MODULU 1. Základní pojmy. 2. Prostředky ochrany při
FYZIKA 3. ROČNÍK. Obvod střídavého proudu s odporem. ϕ = 0. i, u. U m I m T 2
FYZIKA 3. OČNÍK Ncené elg. ktání střídavý prod Zdroje stříd. prod generátory střídavého prod Zapojení různých prvků v obvod střídavého prod zkoáe, jaký způsobe paraetr prvk v obvod ovlvňje velkost napětí
ELEKTRICKÝ POHON S ASYNCHRONNÍM MOTOREM
4 EEKTCKÝ POHON AYNCHONNÍ OTOE Asynchronní otory (A), zvláště pa s otvou naráto, jsou jž řadu let nejrozšířenější eletrootory na naší planetě. talo se ta díy jejch onstruční jednoduchost, nízé ceně, vysoé
R w I ź G w ==> E. Přij.
1. Na baterii se napojily 2 stejné ohřívače s odporem =10 Ω každý. Jaký je vnitřní odpor w baterie, jestliže výkon vznikající na obou ohřívačích nezávisí na způsobu jejich napojení (sériově nebo paralelně)?
Spojité regulátory - 1 -
Spojté regulátory - 1 - SPOJIÉ EGULÁOY Nespojté regulátory mají většnou jednoduchou konstrukc a jsou levné, ale jsou nevhodné tím, že neudržují regulovanou velčnu přesně na žádané hodnotě, neboť regulovaná
1. Obecná struktura pohonu s napěťovým střídačem
1. Obecná struktura pohonu s napěťovým střídačem Topologicky můžeme pohonný systém s asynchronním motorem, který je napájen z napěťového střídače, rozdělit podle funkce a účelu do následujících částí:
3. Komutátorové motory na střídavý proud... 29 3.1. Rozdělení střídavých komutátorových motorů... 29 3.2. Konstrukce jednofázových komutátorových
ELEKTRICKÁ ZAŘÍZENÍ 5 KOMUTÁTOROVÉ STROJE MĚNIČE JIŘÍ LIBRA UČEBNÍ TEXTY PRO VÝUKU ELEKTROTECHNICKÝCH OBORŮ 1 Obsah 1. Úvod k elektrickým strojům... 4 2. Stejnosměrné stroje... 5 2.1. Úvod ke stejnosměrným
Technická data STEAMTHERM ST 3000. Měření tepla v páře přímou metodou. 12.07.2004 1 Es 90 178 K
STEAMTHERM ST 3000 Měření tepla v páře přímou metodou 12.07.2004 1 Es 90 178 K Obsah: 1. Použití 2. Technický popis 2.1. Metoda měření tepla 2.1.1. Přímá metoda 2.2. Připojení systému na topnou soustavu
VLASTNOSTI KOMPONENTŮ MĚŘICÍHO ŘETĚZCE - ANALOGOVÁČÁST
VLASTNOSTI KOMPONENTŮ MĚŘICÍHO ŘETĚZCE - ANALOGOVÁČÁST 5.1. Snímač 5.2. Obvody úpravy signálu 5.1. SNÍMAČ Napájecí zdroj snímač převod na el. napětí - úprava velikosti - filtr analogově číslicový převodník
Cvičení 11. B1B14ZEL1 / Základy elektrotechnického inženýrství
Cvičení 11 B1B14ZEL1 / Základy elektrotechnického inženýrství Obsah cvičení 1) Výpočet proudů v obvodu Metodou postupného zjednodušování Pomocí Kirchhoffových zákonů Metodou smyčkových proudů 2) Nezatížený
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA STROJNÍHO INŽENÝRSTVÍ ENERGETICKÝ ÚSTAV FACULTY OF MECHANICAL ENGINEERING ENERGY INSTITUTE TEPLÁRNA NA BIOMASU BIOMASS HEATING POWER
OBSAH strana. 1. Úvod 1
OBSAH strana 1. Úvod 1 2. Popis 2.1. Přepínač NAPÁJENÍ 1 2.2. Přepínač FUNKCE 1 2.3. Přepínač PROUDmA a knoflík plynulého nastavení proudu 1 2.4. Přepínač DISPLEJ 2 2.5. Displej 2 2.6. Přední panel 2 3.
11 Tachogram jízdy kolejových vozidel
Tachogram jízdy kolejových vozdel Tachogram představuje znázornění závslost rychlost vozdel na nezávslém parametru. Tímto nezávslým parametrem může být ujetá dráha, pak V = f() dráhový tachogram, nebo
OCHRANA CHRÁNĚNÝ OBJEKT
ELEKTRICKÁ OCHRANA Základní požadavky pro provoz celé elektrizační soustavy jsou spolehlivý a bezporuchový chod. Tyto požadavky zajišťují elektrické ochrany. OCHRANA kontroluje určité části elektroenergetického
INTERAKCE KŘEMÍKU A NIKLU ZA VYSOKÝCH TEPLOT
METAL 4. 6. 5., Hradec nad Moravcí INTERAKCE KŘEMÍKU A NIKLU ZA VYSOKÝCH TEPLOT Jaromír Drápala a, Monka Losertová a, Jtka Malcharczková a, Karla Barabaszová a, Petr Kubíček b a VŠB - TU Ostrava,7.lstopadu,
Jednosložkové soustavy
Jednosložkové soustavy Fázové rovnováhy Prezentace je určena pro výuku. roč. studjního oboru Nanotechnologí a není dovoleno její šíření bez vědomí garanta předmětu. K jejímu vytvoření bylo použto materálů
Elektrické distribuční systémy pro napájení elektrických drah.
Elektrické distribuční systémy pro napájení elektrických drah. a.) podle druhu el. vozby - hlavní dálkové dráhy - městské dráhy - podzemní dráhy (metro) - důlní dráhy - průmyslové dráhy - silniční trolejové
MEgA Měřicí Energetické Aparáty, s.r.o. 1. Charakteristika
MEgA Měřicí Energetické Aparáty, s.r.o. 1. Charakteristika PQ monitor v provedení MEg30.4 je multifunkční měřicí přístroj pro měření a dlouhodobý záznam třinácti proudů a až třinácti napětí, činných i
Directional Vehicle Stability Prototyping Using HIL Simulation Ověření systému řízením jízdy automobilu metodou HIL simulací
XXXII. Semnar AS '2007 Instruments and ontrol, arana, Smutný, Kočí & Babuch (eds) 2007, VŠB-TUO, Ostrava, ISBN 978-80-248-1272-4 Drectonal Vehcle Stablty rototypng Usng HIL Smulaton Ověření systému řízením
Hlavní kontakty Pomocný kontakt Počet vstupních kanálů Jmenovité napětí Model Kategorie 24 VAC/VDC 3PST-NO SPST-NC Možnost použití 1 nebo 2 kanálů
Modul bezpečnostního relé K dispozici jsou čtyři různé moduly s montážní šířkou mm: Modely s bezpečnostními kontakty bezpečnostními kontakty a modely s bezpečnostními kontakty a bezpečnostními kontakty
BEZPEČNOST V ELEKTROTECHNICE 3. http://bezpecnost.feld.cvut.cz
BEZPEČNOST V ELEKTROTECHNICE 3 http://bezpecnost.feld.cvut.cz ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE Fakulta elektrotechnická Elektrotechnická kvalifikace Doc. Ing. Mirko Cipra, CSc., Ing. Michal Kříž, Ing.
Regulační funkce. v aplikaci pro řízení vzduchotechniky. WILKOP, spol. s r.o., 756 54 Zubří, Hlavní 823, tel. / fax : 571 627 324 www.wilkop.
Regulační funkce v aplikaci pro řízení vzduchotechniky WILKOP, spol. s r.o., 756 54 Zubří, Hlavní 823, tel. / fax : 571 627 324 OBSAH 1. ÚVOD 2 2. HARDWAROVÁ KONCEPCE REGULÁTORU 2 2.1 ZÁKLADNÍ TECHNICKÉ
Elfa Plus Unibis TM. 27 Index. Rychlý přehled
2 Výhody 6 Technická data 10 Modulové jističe Řada EPC 31N 11 Modulové jističe Řada EPC 451N 12 Modulové jističe Řada EPC 61N 13 Modulové jističe Řada EPC 101N 14 Modulové jističe Řada EPC 611 16 Modulové
Opravné prostředky na výstupu měniče kmitočtu (LU) - Vyšetřování vlivu filtru na výstupu z měniče kmitočtu
Opravné prostředky na výstupu měniče kmitočtu (LU) - Vyšetřování vlivu filtru na výstupu z měniče kmitočtu 1. Rozbor možných opravných prostředků na výstupu z napěťového střídače vč. příkladů zapojení
PRM4-04. Popis konstrukce a funkce HC 5112 1/2002. Proporcionální rozváděče se snímačem polohy. Nahrazuje HC 5112 6/2001
Proporcionální rozváděče se snímačem polohy D n 0 p max 3 MPa Q max 0 dm 3 min -1 PRM-0 HC 511 1/00 Nahrazuje HC 511 6/001 Kompaktní konstrukce Ovládání proporcionálními magnety Vysoká citlivost a nepatrná
ZÁKLADY TRASOVÁNÍ INŽENÝRSKÝCH SÍTÍ
ZÁKLADY TRASOVÁNÍ INŽENÝRSKÝCH SÍTÍ 11. vydání 10/11 Radeton s.r.o. tel: +420 5432 5 7777 Radeton SK s.r.o. tel: +421 (0)46 542 4580 Mathonova 23 fax: +420 5432 5 7575 J. Kollára 17 fax: +421 (0)46 542