cenný papír, jehož koupí si investor zajistí předem definované peněžní toky, které obdrží v budoucnosti

Rozměr: px
Začít zobrazení ze stránky:

Download "cenný papír, jehož koupí si investor zajistí předem definované peněžní toky, které obdrží v budoucnosti"

Transkript

1 DLUHOPISY ceý papír, jehož koupí si ivestor zajistí předem defiovaé peěží toky, které obdrží v budoucosti podle doby splatosti ~ <1 rok krátkodobé dluhopisy ~ >1 rok dlouhodobé dluhopisy Pokladičí poukázky - splatost 1-52 týdů - Státí pokladičí poukázky - pokladičí poukázky ČNB - bakoví pokladičí poukázky - emitetem je ČR zastoupeá MF - v zakihovaé podobě - omiálí hodota FV = ,-Kč

2 - úrokový výos = omiálí hodota emisí cea - act/360 - jedoduché úročeí FV PV (1 r ) - holadská aukce všichi uspokojeí účastíci platí stejou ceu odpovídající ejižší abízeé ceě u té objedávky, která byla ještě uspokojea. - emitet určuje: objem emise ve jmeovité hodotě, max. výos, de a způsob aukce. Př. 1: Uvažujme 26týdeí SPP. Tato poukázka byla prodáa za emisí ceu ,90Kč. Vypočtěme odpovídající výos y s. y = 2,1%

3 Př. 2: Zadáí příkladu 1 s tím, že ivestor po 82 dech od de ákupu pokladičí poukázku prodá. Vypočteme: a) ceu, za kterou ivestor prodá, jestliže výos y s bude rove původímu výosu ve výši 2,1% b) výos, který ivestor realizuje, bude-li prodejí cea ,-Kč. bezkupóový dluhopis (Zero-Coupo-Bod) diskotovaý dluhopis s dobou splatosti delší ež 1 rok, přičemž k datu splatosti obdrží ivestor omiálí hodotu. Př. 4: Uvažujme bezkupóový dluhopis s omiálí hodotou

4 FV = 1.000,-Kč a dobu do splatosti 1, 2, 3 roky. Vypočteme cey dluhopisu pro odpovídající doby do splatosti, chceme-li dosáhout výosu y = 8% Čím delší je doba do splatosti, tím větší je diskot. Obligace - splatost > 1 rok obchodovatelý doklad o uzavřeé dohodě obsahující závazek emiteta splatit majiteli k daému datu zapůjčeou částku a případě platit v daých termíech sjedaý úrok v ČR je emitetem státích dluhopisů Česká republika zastoupeá miisterstvem fiací ČR... omiálí hodota

5 Primárí prodej ČNB americká aukce každý z uspokojeých zájemců platí tu ceu, kterou abídl. Ozačeí: ČR, x,xx%, rr x,xx kupóová sazba rr posledí dvojčíslí roku splatosti. složeé úročeí (1 ) FV PV r, stadard 30E 360 kupóová platba : - sjedaý úrok vypláceý majiteli v daých termíech - kupóová sazba úrok vyjádřeý v % z omiálí hodoty kupóy - fixí C C... C 1 2

6 - růzé C C... C plovoucí kupóová platba se řídí vývojem úrokových měr Cea a výosost do splatosti obligace C... kupó c... kupóová sazba v % C c FV P C C C... C+FV P C C C FV 1 y C C y FV y 1 y 1 y y 1 y pro 0 FV se dá psát P FV 1 y c c y FV c c y y 1 y y y 1 y

7 Speciálí typy obligací 1) Bezkupóová obligace 0 FV C P 1 y 2) Auita FV 0 budoucí hodota je postupě rozpouštěa v platbách C, patří sem leasigy, hypotéky, spotřebitelské úvěry P C 1 y 1 C 1 1 y 1 y y 1 y 3) Perpetuita (ekoečá auita) C P y

8 Př. 4: Začátkem 90. let bylo možé uzavřít ovomaželskou půjčku ve výši až ,-Kč a 20 let s výosem 2,7% ročě. Vypočteme výši a) ročí b) měsíčí splátky Pravidla pro dluhopisy: 1. Je-li výos y rove kupóové sazbě c, potom je cea dluhopisu P rova jeho omiálí hodotě FV. Je-li výos y y větší ež kupóová sazba c, potom cea dluhopisu P je meší ež omiálí hodota FV.

9 Je-li výos y y meší ež kupóová sazba c, potom cea dluhopisu P je větší ež omiálí hodota FV. y = c... P = FV za pari y > c... P < FV pod pari (s diskotem ebo disážiem) y < c... P > FV ad pari (s prémií ebo ážiem) 2. Jestliže cea dluhopisu vzroste, má to za ásledek sížeí úrokových sazeb (výosů). Jestliže klese zvýšeí. Obráceě: pokles úrokových sazeb má za ásledek vzestup ce dluhopisů. Vzestup pokles.

10 3. Prodává-li se dluhopis s diskotem (resp. s prémií), potom, v případě, že se výos dluhopisu ezměí, sižuje se výše diskotu (resp. prémie) se zkracováím doby do splatosti dluhopisu. (ejedá se o lieárí závislost) 4. Prodává-li se dluhopis s diskotem (resp. s prémií), potom v případě, že se výos dluhopisu ezměí, diskot (resp. prémie) se sižuje se zvyšující se rychlostí s tím, jak se doba do splatosti dluhopisu zkracuje.

11 5. Pokles ve výosu dluhopisu vede ke zvýšeí cey dluhopisu o částku vyšší ež je částka (v absolutí hodotě) odpovídající sížeí cey dluhopisu při stejě velkém vzestupu ve výosu dluhopisu.

12 Závislost cey dluhopisu a zbytkové době do splatosti Př. 8: Uvažujme 5-ti letý dluhopis s omiálí hodotou FV = 1.000,-Kč, kupóovou sazbou c = 10% a výosem y = 14%. Ověříme pravidlo 1. Vypočteme ceu P = 862,68Kč Dále pravidlo 3. = 5, 4, 3, 2, 1, 0 P 5 = P = 862,68Kč P 4 = 883,45Kč P 3 = 907,13Kč jsou zbytkové doby platosti

13 P 2 = 934,13Kč P 1 = 964,91Kč P 0 = 1.000,-Kč Pravidlo 4. P 4 P 5 = 20,77Kč P 3 P 4 = 23,68Kč P 2 P 3 = 27,00Kč P 2 P 1 = 30,78Kč P 0 P 1 = 35,09Kč Pravidlo 2 změíme postupě výos ±1%, ±2%, ±3%, ±4%. výos 10% 11% 12% 13% 14% 15% 16% 17% 18% cea 1000,00 963,04 927,90 894,48 862,68 832,39 803,54 776,05 749,83 přírůstek 137,32 100,36 65,22 31,80 0,00-30,29-59,14-86,63-112,85

14 Rozdíl cey a původí cey P = 862,68Kč Pravidlo 5 ±1% 31,80 > 30,29 Posu o ěkolik dí v čase od emise (výplaty kupóu)

15 P 5 P 4 P 3 P 2 P 1 P 0 A B CL P P AUV P CL... čistá cea dluhopisu (clea price) AÚV... alikvotí úrokový výos z abíhajícího kupóu

16 P... celková cea AU V C A 360 A... počet dí od emise (posledího kupóu) B... počet dí do ásledujícího kupóu A + B = 360 P C C C C FV... B B B B y 1 y 1 y 1 y vyjádřeo v procetech s Pravidlo ex-kupó:

17 de, který o 30 dí předchází du výplaty kupóu, je posledím dem ároku a teto kupó. záporý alikvotí úrokový výos Př. 9: Uvažujme dluhopis s omiálí hodotou FV = 3.000,-Kč, kupóovou sazbou c = 8% a výosem 6%. Kupóy jsou splaté vždy 8.3., přičemž koečá splatost dluhopisu je Vypočteme čistou ceu dluhopisu PCL (%) k a) b) c) =76 6+9*30+8=284

18 ,22+216, ,04=3199,50 50, ,5 6,65%

FINANČNÍ MATEMATIKA. Jarmila Radová KBP VŠE Praha

FINANČNÍ MATEMATIKA. Jarmila Radová KBP VŠE Praha FINANČNÍ MATEMATIA Jarmila Radová BP VŠE Praha Osova Jedoduché úročeí Diskotováí krátkodobé ceé papíry Metody vedeí a výpočtu úroku z běžého účtu Skoto Složeé úrokováí Budoucí hodota auity spořeí Současá

Více

FINANČNÍ MATEMATIKA SBÍRKA ÚLOH

FINANČNÍ MATEMATIKA SBÍRKA ÚLOH FINANČNÍ MATEMATIKA SBÍRKA ÚLOH Zpracováo v rámci projektu " Vzděláváí pro kokureceschopost - kokureceschopost pro Třeboňsko", registračí číslo CZ.1.07/1.1.10/02.0063 Gymázium, Třeboň, Na Sadech 308 Autor:

Více

FINANČNÍ A INVESTIČNÍ MATEMATIKA RNDr. Petr Budinský, CSc. FINANČNÍ MATEMATIKA Budoucí hodnota při různých typech úročení FINANČNÍ A INVESTIČNÍ MATEMATIKA 2 Příklad: Uvažujme FV = 100.000 Kč a úrokovou

Více

ÚROKOVÁ SAZBA A VÝPOČET BUDOUCÍ HODNOTY

ÚROKOVÁ SAZBA A VÝPOČET BUDOUCÍ HODNOTY ÚROKOVÁ SAZBA A VÝPOČET BUDOUÍ HODNOTY 1. Typy a druhy úročeí, budoucí hodota ivestice Úrok - odměa za získáí úvěru (cea za službu peěz) Ročí úroková sazba (míra)(r) úrok v % z hodoty kapitálu za časové

Více

Pojem času ve finančním rozhodování podniku

Pojem času ve finančním rozhodování podniku Pojem času ve fiačím rozhodováí podiku 1.1. Výzam faktoru času a základí metody jeho vyjádřeí Fiačí rozhodováí podiku je ovlivěo časem. Peěží prostředky získaé des mají větší hodotu ež tytéž peíze získaé

Více

ÚROKVÁ SAZBA A VÝPOČET BUDOUCÍ HODNOTY. Závislost úroku na době splatnosti kapitálu

ÚROKVÁ SAZBA A VÝPOČET BUDOUCÍ HODNOTY. Závislost úroku na době splatnosti kapitálu ÚROKVÁ SAZBA A VÝPOČET BUDOUÍ HODNOTY. Typy a druhy úročeí, budoucí hodota ivestice Úrok - odměa za získáí úvěru (cea za službu peěz) Ročí úroková sazba (míra)(i) úrok v % z hodoty kapitálu za časové období

Více

Cvičení z termomechaniky Cvičení 5.

Cvičení z termomechaniky Cvičení 5. Příklad V kompresoru je kotiuálě stlačová objemový tok vzduchu [m 3.s- ] o teplotě 20 [ C] a tlaku 0, [MPa] a tlak 0,7 [MPa]. Vypočtěte objemový tok vzduchu vystupujícího z kompresoru, jeho teplotu a příko

Více

ě Á Á é é ě ě ě ú é é é ě é é ď ď ď š š Č Á ě ú Á ď š ě Č ě š ěž ě é ě ě ě ě ě ě Č Á ě Á é ú Ž é š ě š š é Ž ě é š é Š ť Ž ě Č Á ú Á Ť é ě é š ě ě š š ď ď Č é š š Č ě ě ú ě ú Ť é ě š ě ě š ě š ě ě ú ě

Více

ÚROKVÁ SAZBA A VÝPOČET BUDOUCÍ HODNOTY

ÚROKVÁ SAZBA A VÝPOČET BUDOUCÍ HODNOTY ÚROKVÁ SAZBA A VÝOČET BUDOUÍ HODNOTY. Tp a duh úočeí, budoucí hodota ivestice Úo - odměa za zísáí úvěu (cea za službu peěz) Ročí úoová sazba (mía)() úo v % z hodot apitálu za časové období řipisováí úoů:

Více

HYPOTEČNÍ ÚVĚR. , kde v = je diskontní faktor, Dl počáteční výše úvěru, a anuita, i roční úroková sazba v procentech vyjádřená desetinným číslem.

HYPOTEČNÍ ÚVĚR. , kde v = je diskontní faktor, Dl počáteční výše úvěru, a anuita, i roční úroková sazba v procentech vyjádřená desetinným číslem. HYPTEČNÍ ÚVĚR Spláceí úvěru stejým splátkam - kostatí auta ÚLHA 1: Mladý maželský pár s dostačujícím příjmy (tz. a získáí hypotéčího úvěru) se rozhodl postavt s meší rodý domek. Podle předběžé kalkulace

Více

Ě Á ČÁ Úř ě é úř š é š ě Ž ř ř Í ř ě é Ž Ž é ě ř é ř é ě é éř ě š š ě ě ř ř é ň ě š ň ž ř ě é é ž é é ř é ě é ě ř é ř ž ť ě é ř ě é ř š úř ú ř é ě š ě ě š ř ř é ě ě é ďě é úř ě ě ě ěř ž š Č úř é ž Ž š

Více

DURACE A INVESTIČNÍ HORIZONT PŘI INVESTOVÁNÍ DO DLUHOPISŮ

DURACE A INVESTIČNÍ HORIZONT PŘI INVESTOVÁNÍ DO DLUHOPISŮ DURACE A INVESTIČNÍ HORIZONT PŘI INVESTOVÁNÍ DO DLUHOPISŮ Ivestičí horizot IH: doba, po kterou má ivestor v daé ivestici vázáy své peíze. Při ivestici do dluhopisu jsme vystavei riziku změy výosů Uvažujme

Více

ě ú ě ú ů ě ů ě é ú ž ú ě Ú ů ů ě é š ů ě ě Ú ě ě ě ň é ň é Ú é é ěž é é ž Ú ž ž ž ů ě ě ž ě é ě ě ů é ň Č ž é Č ě Č ň ů ú ěž ú ú Č Ú ě ú ů Ú ě ú ě ů Ú é é ě é ú ě ú Ú ě é ú ú ů ú ď Č Ř é ě ú ů ů ě ě š

Více

17. Statistické hypotézy parametrické testy

17. Statistické hypotézy parametrické testy 7. Statistické hypotézy parametrické testy V této části se budeme zabývat statistickými hypotézami, pomocí vyšetřujeme jedotlivé parametry populace. K takovýmto šetřeím většiou využíváme ám již dobře zámé

Více

10.2.3 VÁŽENÝ ARITMETICKÝ PRŮMĚR S REÁLNÝMI VAHAMI

10.2.3 VÁŽENÝ ARITMETICKÝ PRŮMĚR S REÁLNÝMI VAHAMI Středí hodoty Artmetcý průměr vážeý Aleš Drobí straa 0 VÁŽENÝ ARITMETICKÝ PRŮMĚR S REÁLNÝMI VAHAMI Zatím jsme počítal s tím, že četost ve vztahu pro vážeý artmetcý průměr byla přrozeá čísla Četost mohou

Více

1. Nakreslete všechny kostry následujících grafů: nemá žádnou kostru, roven. roven n,

1. Nakreslete všechny kostry následujících grafů: nemá žádnou kostru, roven. roven n, DSM2 Cv 7 Kostry grafů Defiice kostry grafu: Nechť G = V, E je souvislý graf. Kostrou grafu G azýváme každý jeho podgraf, který má stejou možiu vrcholů a je zároveň stromem. 1. Nakreslete všechy kostry

Více

I. Výpočet čisté současné hodnoty upravené

I. Výpočet čisté současné hodnoty upravené I. Výpočet čisté současé hodoty upraveé Příklad 1 Projekt a výrobu laserových lamp pro dermatologii vyžaduje ivestici 4,2 mil. Kč. Předpokládají se rovoměré peěží příjmy po zdaěí ve výši 1,2 mil. Kč ročě

Více

Finanční řízení podniku. Téma: Časová hodnota peněz

Finanční řízení podniku. Téma: Časová hodnota peněz Fiačí řízeí podiku Téma: Časová hodota peěz Faktor času se ve fiačím řízeí uplatňuje a) při rozhodováí o ivesticích b) při staoveí trží cey majetku podiku c) při ukládáí volých peěžích prostředků d) při

Více

Í Í š ú ú Í Á É ř ú ř ř é é ú é ř ř š ř é ž é ž š é š é Ť é ř ů ž ž ž ď ý ř é ř ů é é ž é ž ř é é ř ž é Ť ú ý ý é é ž Ť ž ž ů ť ň é Ž Á Š é š ď é ž é é é ž ř é Š é řř ď Ž é ř é ž ř Í é ó Š ř Í ž ž ř ř

Více

Odhad parametru p binomického rozdělení a test hypotézy o tomto parametru. Test hypotézy o parametru p binomického rozdělení

Odhad parametru p binomického rozdělení a test hypotézy o tomto parametru. Test hypotézy o parametru p binomického rozdělení Odhad parametru p biomického rozděleí a test hypotézy o tomto parametru Test hypotézy o parametru p biomického rozděleí Motivačí úloha Předpokládejme, že v důsledku realizace jistého áhodého pokusu P dochází

Více

ČÉ Á ŠŤ šť š Č ř ž š ý Š Č Ú š ú š Ž š š š ř ž ž š š š š ý ř š š ů ř š š š š š ú Í ú ř š š ů š š Ž ř ž ů ý Ě É Ú Í Í Š Ě ÍÚ Í š š Ý ý š Ó Č ř ř ř š ř ý ř ž ř š Č Š ÉŽ š Ě Í š Ř Ě Š Ě Á Á ČÁ š ý ž ž š ý

Více

Á ÁŽ É Á ž Č ěž ě Č Č Í ě š ú ž ě ě ň ň ť Č ě Ý ě ž ďě Ú Č ě Č ť ě Í ě ď ž ž ž ě ě Í ě ž ň Č Ž š Í ě ě Č ž ě ě Č ě ě ě ž ě š ň ě ě ě Í š ž ž ě ž ž ě Í ě ž ě š š š ž š Ž š ó Í Ž Í Í Ó ž ě Č ž ě ě ě ž Č

Více

10.3 GEOMERTICKÝ PRŮMĚR

10.3 GEOMERTICKÝ PRŮMĚR Středí hodoty, geometrický průměr Aleš Drobík straa 1 10.3 GEOMERTICKÝ PRŮMĚR V matematice se geometrický průměr prostý staoví obdobě jako aritmetický průměr prostý, pouze operace jsou o řád vyšší: místo

Více

PODNIKOVÁ EKONOMIKA 3. Cena cenných papírů

PODNIKOVÁ EKONOMIKA 3. Cena cenných papírů Semárky, předášky, bakalářky, testy - ekoome, ace, účetctví, ačí trhy, maagemet, právo, hstore... PODNIKOVÁ EKONOMIKA 3. Cea ceých papírů Ceé papíry jsou jedím ze způsobů, jak podk může získat potřebý

Více

4 DOPADY ZPŮSOBŮ FINANCOVÁNÍ NA INVESTIČNÍ ROZHODOVÁNÍ

4 DOPADY ZPŮSOBŮ FINANCOVÁNÍ NA INVESTIČNÍ ROZHODOVÁNÍ 4 DOPADY ZPŮSOBŮ FACOVÁÍ A VESTČÍ ROZHODOVÁÍ 77 4. ČSTÁ SOUČASÁ HODOTA VČETĚ VLVU FLACE, CEOVÝCH ÁRŮSTŮ, DAÍ OPTMALZACE KAPTÁLOVÉ STRUKTURY Čistá současá hodota (et preset value) Jedá se o dyamickou metodu

Více

I. Výpočet čisté současné hodnoty upravené

I. Výpočet čisté současné hodnoty upravené I. Výpočet čisté současé hodoty upraveé Příklad 1 Projekt a výrobu laserových lamp pro dermatologii vyžaduje ivestici 4,2 mil. Kč. Předpokládají se rovoměré peěží příjmy po zdaěí ve výši 1,2 mil. Kč ročě

Více

A U. kde A je zesílení zesilovače, U 2 je výstupní napětí zesilovače a U 1 je vstupní napětí na zesilovači. Zisk po té můžeme vypočítat podle vztahu:

A U. kde A je zesílení zesilovače, U 2 je výstupní napětí zesilovače a U 1 je vstupní napětí na zesilovači. Zisk po té můžeme vypočítat podle vztahu: RIEDL 4.EB 6 /8.ZDÁNÍ a) Na předložeém ízkofrekvečím zesilovači změřte vstupí impedaci b) Změřte zesíleí a zisk pro výko 50% c) Změřte útlumovou charakteristiku Měřeí proveďte při cc =0V a maximálě 50%

Více

ď š Ú Ž é š š ě ě ě ě ě Ž š Ž ě ě š ť Ú ěš ě ě é š ě Ž ěš ě š é ě š š š ě ěš š Ž Ž é ě ě ě ě é é ě ě é ě Ú ě é ě é ě ť é É Š ě é š ě Ž é é é é ě ě Č é š Ž š š é é Ž š é ě Č š ě ě š ě ěž é é š é ěž é Ž

Více

IV-1 Energie soustavy bodových nábojů... 2 IV-2 Energie elektrického pole pro náboj rozmístěný obecně na povrchu a uvnitř objemu tělesa...

IV-1 Energie soustavy bodových nábojů... 2 IV-2 Energie elektrického pole pro náboj rozmístěný obecně na povrchu a uvnitř objemu tělesa... IV- Eergie soustavy bodových ábojů... IV- Eergie elektrického pole pro áboj rozmístěý obecě a povrchu a uvitř objemu tělesa... 3 IV-3 Eergie elektrického pole v abitém kodezátoru... 3 IV-4 Eergie elektrostatického

Více

ě ě ú ě ě ě ě ě ň ě ň ů ě ů Ý ě ě ů ň ě Í ě ň ě ě Ž ě ň ě ě ú ů ú ě ě ě ú ě ě ě ě ě ě ů ě ů ě ě ú ů ě ě ě Ž ů ě ě ú Ž Ž Ú ě ě ě ě Ž Ž ě ť Ž Í ě Ž ě Ž Ž ů ěž ů ěž ě Í Ú ů ě ů ě Ž Ž Ž ě ě ě ů ě ě ě ě ě ů

Více

ř ú ú Š Í Á É ř ř ř é é ř ř š é ř ř š ř é ž é ž š é š é é ř ů ž ž ř é ř ů é é ž é ř é é ř é ú é é ž é é š ň é ř š é š é Ť é ř ů ž ž ď ř é é é ž ř é Š ů é ř é ř é Š ú ř Í ž ž ř ř Í é š ž é ř Ť š ř ř ř š

Více

ň ý ě ý ý ý ě ň ý ě ý Ú ú ň ň ý ě ý ó ž ý ň ě ě ě ú ú Ř ň ň ý ě ý ě ě ž ý ž ě ý ě ý ě ě ů ě Ů Č Í Ě Á Á Í ě ě ě ě Ž Ů ú ě ě ě Ú ě ů ě ý ě ě ú ň ý ě Ů ž ů ž ě ý ý ý ý ě Č Č ě Č ě ů ý ě ý ý ž ě ě ž ů ž ě

Více

ň Š ý ě ý Ě Á ý ý ě ň Š ý ě ý ú ň ň ý ě ý ó ě ž ý ň ě ě Š ú Š ú Š ň Á ň Š ň ý ě ý Š ž ý ě ý ů ě ě ž ý ě Š ě ě ě Ů Č Í Ě Á Á Í ě ě ě ě Ž Ů ú ě ě ě Ú ó ě ů ě ý Š ě ě ú ň ý ě Ů ž ů ž ě ý ý ý ě Č Č ě Š Č ě

Více

HODNOCENÍ PŘÍSTROJŮ PRO MĚŘENÍ JAKOSTI ZIMNÍCH KAPALIN DO OSTŘIKOVAČŮ V PROVOZU

HODNOCENÍ PŘÍSTROJŮ PRO MĚŘENÍ JAKOSTI ZIMNÍCH KAPALIN DO OSTŘIKOVAČŮ V PROVOZU HODNOCENÍ PŘÍSTROJŮ PRO MĚŘENÍ JAKOSTI ZIMNÍCH KAPALIN DO OSTŘIKOVAČŮ V PROVOZU Ja SKOLIL 1*, Štefa ČORŇÁK 2*, Ja ULMAN 3 1* Velvaa, a.s., 273 24 Velvary, Česká republika 2,3 Uiverzita obray v Brě, Kouicova

Více

Vážeí zákazíci dovolujeme si Vás upozorit že a tuto ukázku kihy se vztahují autorská práva tzv. copyright. To zameá že ukázka má sloužit výhradì pro osobí potøebu poteciálího kupujícího (aby èteáø vidìl

Více

Ů á č č Ů č Ů č č á č Ě č ň Ď č č č ď ň ř č Ž č Ů Ů č č Ů Ž č č Ý Ú Ž Ú Ú Ů Ď Ů ť Č Ů č Ý Ů Ž Ů Ď Ě č Ě Ů Ů Ě Ě Ě č Ž Ě č č č á ť Ů č Ě Ž č č ňř č č č ť č č Ď Ů č Ě č Ž č ĚĎ Ž č č Úč Ů ť ť ť č Ě Ž Ě č

Více

Základní princip regulace U v ES si ukážeme na definici statických charakteristik zátěže

Základní princip regulace U v ES si ukážeme na definici statických charakteristik zátěže Regulace apětí v ES Základí pricip regulace v ES si ukážeme a defiici statických charakteristik zátěže Je zřejmé, že výko odebíraý spotřebitelem je závislý a frekveci a apětí a přípojicích spotřebitelů.

Více

ě ě Č ě ř ý ě Č ý ě ů ř ý ý Č Č Ú Ř É ř ů ů ř ú ě ě Č Č Č ř ž ř ř ú Ř Ý ř ž ř ř ř ú Ě Á Ú Č Á Ř Ý Í ř ř ů ě ž ř ž Á ý Á Á ř ř ř ú ě ů ů ě ě Č ř ů ř ů ř ž ó ř ů ř ů ů ě ě Č ě ó ř ř ý ě ř ů ř ř ě ó ř ř ý

Více

Č Á ě Ě Á é é ě ďě ě ů ú é é é ě é é ď ď š ě Č Á ě ú é ů š š Ť ď é Ž ě é š ů Č ů ů é ů ů ě é ě é é é ě Č Á ě Ě Á é Ř ě é ú ó é š é Ž Ž é ě é ě ě é š éž é ě ě š ě ě ě š ě š ě ú é š ě ů Ěú Á ě Ž š é š ě

Více

Úvod do zpracování měření

Úvod do zpracování měření Laboratorí cvičeí ze Základů fyziky Fakulta techologická, UTB ve Zlíě Cvičeí č. Úvod do zpracováí měřeí Teorie chyb Opakujeme-li měřeí téže fyzikálí veličiy za stejých podmíek ěkolikrát za sebou, dostáváme

Více

Opakování. Metody hodnocení efektivnosti investic. Finanční model. Pravidla pro sestavení CF. Investiční fáze FINANČNÍ MODEL INVESTIČNÍHO ZÁMĚRU

Opakování. Metody hodnocení efektivnosti investic. Finanční model. Pravidla pro sestavení CF. Investiční fáze FINANČNÍ MODEL INVESTIČNÍHO ZÁMĚRU Metody hodoceí efektvost vestc Opakováí Typy vazeb v uzlové síťové grafu K čeu slouží stude využtelost Fačí odel vestčího záěru Časová hodota peěz Metody vyhodoceí Napšte strukturu propočtu Fačí odel FINANČNÍ

Více

Návod pro výpočet základních induktorů s jádrem na síťové frekvenci pro obvody výkonové elektroniky.

Návod pro výpočet základních induktorů s jádrem na síťové frekvenci pro obvody výkonové elektroniky. Návod pro cvičeí předmětu Výkoová elektroika Návod pro výpočet základích iduktorů s jádrem a síťové frekveci pro obvody výkoové elektroiky. Úvod V obvodech výkoové elektroiky je možé většiu prvků vyrobit

Více

FINANČNÍ MATEMATIKA- INFLACE

FINANČNÍ MATEMATIKA- INFLACE ojekt ŠABLONY NA GVM Gymázum Velké Mezříčí egstačí číslo pojektu: CZ..7/.5./34.948 V- ovace a zkvaltěí výuky směřující k ozvoj matematcké gamotost žáků středích škol FNANČNÍ MATEMATA- NFLACE Auto Jazyk

Více

ú é ě ě ú ě š ě š š Š Í Č ě ú é ě ď ú Í ě é é ě ě ě ť ě ú ď ď ě ě Ý ě Ú š ě Ú š ď ď ěž é ú é ě ěž é ú é Č é é ě ě Ť ó š ď é é ěň ě é ě ú ě Č ě ě ě ě ě Ž ď ě š ď ž é ž ě Ž Ú é ě ď ě ě ž ě é ď š ú ě é ú

Více

Č é ě é ě ě š ř ů ó ú ů ě ě š ř ů ř š ř ě š é ě ř ě ř é š ě š ú Ř Ť Č é ě Č ř é š ě š ú š ř é š ě é š ě ž š Č ú ř ě ě é é ů ž é ž ť ě š š š é é é ě é š ďě ň é ě éž ů ě ř ř ě ř é š ě ž ě š ž š é ř ž ě é

Více

ů ů ž ž ě ě Č ů ů ž ě ě ě ž é ě ě ě ž ž é ť ě ůž é ě é ě ě ž ž ě ě ť Ť ě ž ě ě é ě ů ž ě é é é ě ě ě ž ě é é ť ě é ě ž ě é é ě é ž ě ě Ž ž é ě ž ď Í ě ž ě ž ě ť ď ň ě é é žň ť ť ž é ů ě ň ť Ú ě ě ň ž ť

Více

D = H = 1. člen posloupnosti... a 1 2. člen posloupnosti... a 2 3. člen posloupnosti... a 3... n. člen posloupnosti... a n

D = H = 1. člen posloupnosti... a 1 2. člen posloupnosti... a 2 3. člen posloupnosti... a 3... n. člen posloupnosti... a n /9 POSLOUPNOSTI Zákldí pojmy: Defiice poslouposti Vlstosti poslouposti Určeí poslouposti Aritmetická posloupost Geometrická posloupost Užití poslouposti. Defiice poslouposti Př. Sestrojte grf fukce y =.x

Více

Seznámíte se s pojmem Riemannova integrálu funkce jedné proměnné a geometrickým významem tohoto integrálu.

Seznámíte se s pojmem Riemannova integrálu funkce jedné proměnné a geometrickým významem tohoto integrálu. 2. URČITÝ INTEGRÁL 2. Určitý itegrál Průvodce studiem V předcházející kapitole jsme se sezámili s pojmem eurčitý itegrál, který daé fukci přiřazoval opět fukci (přesěji možiu fukcí). V této kapitole se

Více

ln ln (c Na + c OH ) L = (c Na + c OH ) P (c H + c Cl ) L = (c H + c Cl ) P

ln ln (c Na + c OH ) L = (c Na + c OH ) P (c H + c Cl ) L = (c H + c Cl ) P 1. MEMRÁNOÉ RONOÁY Ilustračí příklad 1 Doaova rovováha, Doaův poteciál...1 01 Doaova rovováha...3 0 Doaova rovováha...3 0 Doaova rovováha, Doaův poteciál...3 05 Doaova rovováha, Doaův poteciál...3 06 Doaova

Více

Š É Á á á é č ě ž é ž á č ž é ě á ž ě č é č č ž č á Ž ě Í ě ž áž ě ž ň á ě ž á ž č á é é ě é á ě č ž á é é ě é é ě é č ě é é é á á ž á ž é á Š é Ž ž é č é á á á á ď č á Š é á ěž á č č ě ě é č ě ě é á Ž

Více

Testy statistických hypotéz

Testy statistických hypotéz Úvod Testy statstckých hypotéz Václav Adamec vadamec@medelu.cz Testováí: kvalfkovaá procedura vedoucí v zamítutí ebo ezamítutí ulové hypotézy v podmíkách ejstoty Testy jsou vázáy a rozděleí áhodých velč

Více

Á ž Ů Ž É Č Í ř č ě š á ž š ž ř Č ě ě ů ý žá ý ů á š ř č ě čů á ž ř š é ý š é ř é ě ý ř š ř š á ř ě ř š á ě ž žá é ř á ř á ě ž ř ě ř ě ě é ř á ř é š ý á ě Ě Í á ž š é ě ý ě á é á é á ě á ě ž ř ř á á á

Více

Ě ť ž Š ú ť Š ť ú ž ž ú ž Ý ž ž ž ú ť Č ň Ú ň ť ť ť ú ť ž ž ť ú ú ť ú ž ž ť ť ť ú ž ž ť ť ž ž ť ž ž ž ú ž Ý ú ú ť ú ú ž ť ž ž ž ž ž ž ú Č ž ú ň ú ú ť ú ú Ý ú ť ú ž Ř ť ú ú ť Š Č Č ň Ú Č Š ú ť Č ť ď ž ň

Více

1. Základy měření neelektrických veličin

1. Základy měření neelektrických veličin . Základ měřeí eelektrckých velč.. Měřcí řetězec Měřcí řetězec (měřcí soustava) je soubor měřcích čleů (jedotek) účelě uspořádaých tak, ab blo ožě splt požadovaý úkol měřeí, tj. získat formac o velkost

Více

Č ý š č ř ý ý ř ů Č č ž ý ď ř š Ž š é ř ů é ý ď Á ď ě ř ý ř ě ř é ý č ř é ž č ž é ř ě ě ř ě ť ú ý ý ě ď ú é ý ě ř ě ď ř ú é ď ěž Ť ě ů č ý ů ž ý ř é č ě ř š č ý ř ů ý ř é é ěř é ě é ů Ř Á Á ř ě ř é ž ě

Více

á č é á é é ě č ě á á á á á ý š ů č č ů ť á á á á ů á á úč á ě Š Š č á úč á ě á á ě č é úč č č é č ú ň č ú č č ú č á č ě á á ě ú á ú ě á ů ě ú á Š á á ě č ě ě é Č ť ú ň á á ě ú á á ýš é čá č č á ě é á

Více

Test dobré shody se používá nejčastěji pro ověřování těchto hypotéz:

Test dobré shody se používá nejčastěji pro ověřování těchto hypotéz: Ig. Marta Ltschmaová Statstka I., cvčeí 1 TESTOVÁNÍ NEPARAMETRICKÝCH HYPOTÉZ Dosud jsme se zabýval testováím parametrcký hypotéz, což jsou hypotézy o parametrech rozděleí (populace). Statstckým hypotézám

Více

Katedra obecné elektrotechniky Fakulta elektrotechniky a informatiky, VŠB - TU Ostrava ENERGETIKA U ŘÍZENÝCH ELEKTRICKÝCH POHONŮ. 1.

Katedra obecné elektrotechniky Fakulta elektrotechniky a informatiky, VŠB - TU Ostrava ENERGETIKA U ŘÍZENÝCH ELEKTRICKÝCH POHONŮ. 1. Katedra obecé eletrotechiy Faulta eletrotechiy a iformatiy, VŠB - TU Ostrava EERGETIKA U ŘÍZEÝCH EEKTRICKÝCH POHOŮ Předmět : Rozvody eletricé eergie v dolech a lomech. Úvod: Světový tred z hledisa eletricé

Více

Č á Š á á ý ý á ýá ú č á á ř ú ů á á š Í č Í á á ř á á č á Í á ý ý ů á ž ý ý ů á á ý ý š ý ů Éč á ú Ú ů á č á ř ú á á á ť ďá á č Í č á á š ř ů ů á ý á á ý ů á ř ý á Ú á á á ů á Ť ř á ÍÍ ů ý á ř ý č ů š

Více

PŘÍKLAD NA PRŮMĚRNÝ INDEX ŘETĚZOVÝ NEBOLI GEOMETRICKÝ PRŮMĚR

PŘÍKLAD NA PRŮMĚRNÝ INDEX ŘETĚZOVÝ NEBOLI GEOMETRICKÝ PRŮMĚR PŘÍKLAD NA PRŮMĚRNÝ INDEX ŘETĚZOVÝ NEBOLI GEOMETRICKÝ PRŮMĚR Ze serveru www.czso.cz jsme sledovali sklizeň obilovi v ČR. Sklizeň z ěkolika posledích let jsme vložili do tabulky 10.10. V kapitole 7. Idexy

Více

u, v, w nazýváme číslo u.( v w). Chyba! Chybné propojení.,

u, v, w nazýváme číslo u.( v w). Chyba! Chybné propojení., Def: Vetorovým součiem vetorů u =(u, u, u 3 ) v = (v, v, v 3 ) zýváme vetor u v = (u v 3 u 3 v, u 3 v u v 3, u v u v ) Vět: Pro vetory i, j, ortoormálí báze pltí i i = j = i, i = j Vět: Nechť u v, w, jsou

Více

Obchodní akademie a Jazyková škola s právem státní jazykové zkoušky Jihlava. Šablona 32 VY_32_INOVACE_396.UCE.34

Obchodní akademie a Jazyková škola s právem státní jazykové zkoušky Jihlava. Šablona 32 VY_32_INOVACE_396.UCE.34 Obchodní akademie a Jazyková škola s právem státní jazykové zkoušky Jihlava Šablona 32 VY_32_INOVACE_396.UCE.34 Test k tématu Finanční trh a bankovnictví Číslo projektu: Šablona: Číslo DUMU: Předmět: Název

Více

1. K o m b i n a t o r i k a

1. K o m b i n a t o r i k a . K o m b i a t o r i k a V teorii pravděpodobosti a statistice budeme studovat míru výskytu -pravděpodobostvýsledků procesů, které mají áhodý charakter, t.j. při opakováí za stejých podmíek se objevují

Více

ť é Ř é č Ž Ř č Š č Ě Š č Ť é Ó Ů é é Ě č ň Ě Ž č Ž é Ť é č š Ž é é é Ě č Ž ť č Ž Ž č š š Ř Ě š Ě č ú č ť Ě é č Ď č Ž ť Ž Ž Ú č Ž Ú č š ž š ť Ž č Ě Ž č é š é č Ž č Ě Ž é ň č é é š Ů š Ě é š éž é ť ť é

Více

Regulace frekvence a velikosti napětí Řízení je spojeno s dodávkou a přenosem činného a jalového výkonu v soustavě.

Regulace frekvence a velikosti napětí Řízení je spojeno s dodávkou a přenosem činného a jalového výkonu v soustavě. 18. Řízeí elektrizačí soustavy ES je spojeí paralelě pracujících elektráre, přeosových a rozvodých sítí se spotřebiči. Provoz je optimálě spolehlivá hospodárá dodávka kvalití elektrické eergie. Stěžejími

Více

Á Á Á č é é é ů Č é Ů Ž ě é ť ý ě ě ě ě ý ý č Č Č č š Ť Ť ě é žš Í ě é ě č é é ů ý ý ě é ů ě č š ě ě č č ů ě ů š Í é ň š č ý ý é é ů č ž ž é é Í č ě Í é ůž ž é č ů úč ě ůž úč é ž ě č ů ž ě č ů é ž ž ě

Více

ÁŠ Í č ť é ž é č Ó Ž í Ť Ž č íč š é Č í Í ČÁ É É Ě É í Á š í ď í Ž í é Ž é č í ť í í ž í Ž Ťí ě í ěť í ě š ě č í Ž Ť í š ě í Ž Ž í ť é í Ží í Ží í é ě é í í í é í í ž ě é šíť Ťí é Ž í ě í Ó ť í ť č í ž

Více

TESTOVÁNÍ STATISTICKÝCH HYPOTÉZ

TESTOVÁNÍ STATISTICKÝCH HYPOTÉZ TESTOVÁNÍ STATISTICKÝCH HYPOTÉZ je postup, pomocí ěhož a základě áhodého výběru ověřujeme určté předpoklady (hypotézy) o základím souboru STATISTICKÁ HYPOTÉZA předpoklad (tvrzeí) o parametru G základího

Více

Trh. Tržní mechanismus. Úroková arbitráž. Úroková míra. Úroková sazba. Úrokový diferenciál. Úspory. Vnitřní směnitelnost.

Trh. Tržní mechanismus. Úroková arbitráž. Úroková míra. Úroková sazba. Úrokový diferenciál. Úspory. Vnitřní směnitelnost. Slovník pojmů Agregátní poptávka Apreciace Bazický index Běžný účet platební bilance Cena Cenný papír Cenová hladina Centrální banka Centrální košová parita Ceteris paribus Černý trh Čistá inflace Daň

Více

Oznámení o přidělení ISIN

Oznámení o přidělení ISIN Společnost Centrální depozitář cenných papírů, a.s., se sídlem Rybná 14/682, 110 05, Praha 1, oznamuje přidělení u pro níže CZ0003512402 Název emise DLUHOPIS REAL. FOND PRAHA 5,00/20 Nominální hodnota

Více

Posloupnosti. a a. 5) V aritmetické posloupnosti je dáno: a

Posloupnosti. a a. 5) V aritmetické posloupnosti je dáno: a Poslouposti ) Prví čle ritmetické poslouposti je diferece Určete prvích pět čleů této poslouposti ) Prví čle ritmetické poslouposti je 8 diferece Určete prvích pět čleů této poslouposti ) V ritmetické

Více

Č ý é ě Č ě é ě ř ě ě ř é ř é ě Ú č č ř ě ě ř Ž é ě ř ě ř é ř Ú ě č ě ů ů č é é ů ř č éž ř é č ě ř čů ů č ůž é ě č ě ř ě úř é ě ý č ř é ř é ř č ý č Í é č ě ý ř č ý ů ý ě é ě č Í č ř č ý é ý Í ě č ě ý ě

Více

Investiční nástroje a rizika s nimi související

Investiční nástroje a rizika s nimi související Investiční nástroje a rizika s nimi související CENNÉ PAPÍRY Dokumentace: Banka uzavírá s klientem standardní smlouvy dle typu kontraktu (Komisionářská smlouva, repo smlouva, mandátní smlouva). AKCIE je

Více

-1- Finanční matematika. Složené úrokování

-1- Finanční matematika. Složené úrokování -- Fiačí ateatika Složeé úrokováí Při složeé úročeí se úroky přičítají k počátečíu kapitálu ( k poskytutí úvěru, k uložeéu vkladu ) a společě s í se úročí. Vzorec pro kapitál K po letech při složeé úročeí

Více

UNIVERZITA PALACKÉHO V OLOMOUCI PŘÍRODOVĚDECKÁ FAKULTA

UNIVERZITA PALACKÉHO V OLOMOUCI PŘÍRODOVĚDECKÁ FAKULTA UNIVERZIT PLCKÉHO V OLOMOUCI PŘÍROOVĚECKÁ FKULT KTER LGEBRY GEOMETRIE OSVĚTLENÍ VE STŘEOVÉM PROMÍTÁNÍ LINEÁRNÍ PERSPEKTIVĚ Bakalářká práce Vedoucí práce: RNr. Leka Juklová, Ph.. Rok odevdáí 202 Vypracovala:

Více

Č Č ž é ň ě ť ě ě š é ň ě éš ň ě Í ž é š ř ď ě š ě ě š é é ě ň é ě š ť ě é ě ě š ť ě ť ě ěž Ž ěž ť é ěž é Ž ť ě ě ě ť š ě Á Í Ů ť ť ť š Ž Í ď Ě š ě ě Í ě é ě ě ě ť ě ě ť é ř é ť ě ž é Í ě é Ž é ě Ů Í š

Více

předmětu MAKROEKONOMIE

předmětu MAKROEKONOMIE Metodický list pro první soustředění kombinovaného studia předmětu Přednášející: doc. Ing. Božena Kadeřábková, CSc. Úvod do makroekonomie a hrubý domácí produkt, model 45 1. Úvod do makroekonomie, pojem

Více

Finanční matematika pro každého

Finanční matematika pro každého Novinky nakladatelství GRADA Publishing Investice do akcií běh na dlouhou trat JEME AVU PŘIPR Jeremy Siegel výnosy finančních aktiv za posledních 2 let úspěšnost finančních strategií faktory ovlivňující

Více

ář ď ú áž ý ř ě ž é é á ý ů žš ě ý č ž ě á ě žá ě á á ů ě ě ž ěď ž š á š áš é čá é ě é š ý ů ě š ý ý á ý á ě ž ů á ů ě š ě ň ž ý ž ž ď á ě š ď ý ž á á á Ž é ě ž ý ě š š ř ž á ž ý é á é ě š ě ž č á ž ě

Více

ú ů ů á á č ž éš ú ů á ř á ů é á š á ú ž á á č ú ů á á č ž é š ú ů á ř ý á á ú ů á á č ú ý ů č ú ř ůž á ř ý ů č ú ř ů á ř ů č č ú č č ú Č á ý ú áš é Í

ú ů ů á á č ž éš ú ů á ř á ů é á š á ú ž á á č ú ů á á č ž é š ú ů á ř ý á á ú ů á á č ú ý ů č ú ř ůž á ř ý ů č ú ř ů á ř ů č č ú č č ú Č á ý ú áš é Í á á é ř ý Čá ý Č é ř ů á ř á á á ř Ú Č ú ů ď é á ž Ť Š é á ů é áš á á ř č č ý č á ý á é áď á ý ý Ú á š é š é š á á Ť ž ů ř č á á é á á ř ý ď ý ř ý č č á ú ů ů á á č ž éš ú ů á ř á ů é á š á ú ž á á č ú

Více

Inovace profesního vzdělávání ve vazbě na potřeby Jihočeského regionu CZ.1.07/3.2.08/03.0035. Finanční management II

Inovace profesního vzdělávání ve vazbě na potřeby Jihočeského regionu CZ.1.07/3.2.08/03.0035. Finanční management II Inovace profesního vzdělávání ve vazbě na potřeby Jihočeského regionu CZ.1.07/3.2.08/03.0035 Finanční management II Externí vlastní zdroje financování Externí zdroje: vlastní emise akcií, venture capital

Více

ž é ž ž é Ú é ž é é ť é Č é ť ž ó Ýé ó ú é š š éé é é ž Ěť é ú ú ž ú š Ú é ň ú ž é ó é Č Č ž éú ň é ČŮ é é ň ž ž é ú ú ž Č š ů é é ů ň š é é Č ž é š š ů é ž ž é Ž éž š š Ů ž ž ů é Š é ž é ň ž é ž š éž

Více

Ekonomika krátkého období a hledání rovnováhy. Teoretická východiska

Ekonomika krátkého období a hledání rovnováhy. Teoretická východiska Ekonomika krátkého období a hledání rovnováhy Teoretická východiska Makroekonomická teorie často zkoumá ekonomické ukazatele ve dvou rozdílných obdobích dlouhém a krátkém. Za dlouhé období považuje zpravidla

Více

Aktualizovaná strategie řešení kurzových dopadů devizových příjmů státu

Aktualizovaná strategie řešení kurzových dopadů devizových příjmů státu Aktualizovaná strategie řešení kurzových dopadů devizových příjmů státu 1. Úvod do problému Strategie řešení kursových dopadů přílivu kapitálu z privatizace státního majetku a z dalších devizových příjmů

Více

Kontrolní závěr z kontrolní akce 15/13. Státní dluh a výdaje na jeho financování

Kontrolní závěr z kontrolní akce 15/13. Státní dluh a výdaje na jeho financování Kontrolní závěr z kontrolní akce 15/13 Státní dluh a výdaje na jeho financování Kontrolní akce byla zařazena do plánu kontrolní činnosti Nejvyššího kontrolního úřadu (dále jen NKÚ ) na rok 2015 pod číslem

Více

z možností, jak tuto veličinu charakterizovat, je určit součet

z možností, jak tuto veličinu charakterizovat, je určit součet 6 Charakteristiky áhodé veličiy. Nejdůležitější diskrétí a spojitá rozděleí. 6.1. Číselé charakteristiky áhodé veličiy 6.1.1. Středí hodota Uvažujme ejprve diskrétí áhodou veličiu X s rozděleím {x }, {p

Více

Sbírka příkladů z finanční matematiky Michal Veselý 1

Sbírka příkladů z finanční matematiky Michal Veselý 1 Sbírka příkladů z finanční matematiky Michal Veselý 1 Jednoduché úročení Příklad 1.1. Do banky jste na běžný účet uložil(a) vklad ve výši 95 000 Kč dne 15. 8. 2013 a i s úroky jej vybral(a) dne 31. 12.

Více

2,3 ČTYŘI STANDARDNÍ METODY I, ČTYŘI STANDARDNÍ METODY II

2,3 ČTYŘI STANDARDNÍ METODY I, ČTYŘI STANDARDNÍ METODY II 2,3 ČTYŘI STADARDÍ METODY I, ČTYŘI STADARDÍ METODY II 1.1.1 Statické metody a) ARR - Average Rate of Retur průměrý ročí čistý zisk (po zdaěí) ARR *100 % ( 20 ) ivestic do projektu V čitateli výrazu ( 20

Více

á í ř í č é á é Č é ó š ř č Ť ř ů ž í čů Č á č á á č á ů Č žá í žá í ú Š í é ř Č ř č á í žá ě é ří ř Ř á žá á í ě žá é á ě ů š ěží žá í ří á á áž ě žá í žá í á ě á í ř ť Č ř č ří ří č í žá í á ďě ř ž á

Více

2. Finanční rozhodování firmy (řízení investic a inovací)

2. Finanční rozhodování firmy (řízení investic a inovací) 2. Fiačí rozhodováí firmy (řízeí ivestic a iovací) - fiačí rozhodováí je podmožiou fiačího řízeí (domiatí) - kompoety = složky: výběr optimálí variaty zdrojů fiacováí užití získaých prostředků uvážeí vlivu

Více

Úvod do lineárního programování

Úvod do lineárního programování Úvod do lieárího programováí ) Defiice úlohy Jedá se o optimalizaí problémy které jsou popsáy soustavou lieárích rovic a erovic. Kritéria optimalizace jsou rovž lieárí. Promé v této úloze abývají reálých

Více

EMISNÍ PODMÍNKY PROGRAMU

EMISNÍ PODMÍNKY PROGRAMU EMISNÍ PODMÍNKY PROGRAMU Hypoteční zástavní listy vydávané v rámci tohoto Dluhopisového programu (dále také jen "Dluhopisy") jsou vydávány podle Zákona o dluhopisech společností Wüstenrot hypoteční banka

Více

Ř Í Ř Ý Ú Á Ř Í Í Í Ř Ř Á É Í Ě Ě Š Ř Ů Ř Ý Á Ř Á É Á Á Á Á Ý č ú é Í š č ž Š Á ý ý ý ý č é é é Ř Ř Í é Š é é Í ó č é ů ý é Í č Í Š é é é š ý ů é ý Ó Í Í ý ý č é ú Í ý ý Úč Í Ř Ř ů ý ý ší čů Í ů Í é čá

Více

í ž ý š í ď ý í ě í í ť Ž ě š ěž ě í í ě í ě í ů Ž ěž ý ů ě í ě í í í ě Ž Ú í í í Ť í í í í ť í í í í š í íť ó í ý í ý í ó í í ů ů ě í ů ů ě í ů ě ěž ů ě ěž ě ě í í í ó í í í ó í í í í í í í í ů í í š

Více

VYHLÁŠKA ze dne 24. listopadu 2009, kterou se provádějí některá ustanovení zákona o pojišťovnictví ČÁST PRVNÍ PŘEDMĚT ÚPRAVY

VYHLÁŠKA ze dne 24. listopadu 2009, kterou se provádějí některá ustanovení zákona o pojišťovnictví ČÁST PRVNÍ PŘEDMĚT ÚPRAVY 434 VYHLÁŠKA ze dne 24. listopadu 2009, kterou se provádějí některá ustanovení zákona o pojišťovnictví Česká národní banka stanoví podle 136 odst. 1 písm. a) až c), f) až h), j) až m), o), p), t), u),

Více

f B 6. Funkce a posloupnosti 3 patří funkci dané předpisem y = 2 x + 3. [všechny] 1) Rozhodněte, která z dvojic [ ;9][, 0;3 ][, 2;7]

f B 6. Funkce a posloupnosti 3 patří funkci dané předpisem y = 2 x + 3. [všechny] 1) Rozhodněte, která z dvojic [ ;9][, 0;3 ][, 2;7] 6. Fukce a poslouposti ) Rozoděte, která z dvojic [ ;9[, 0; [, ; patří fukci daé předpisem y +. [všecy ) Auto má spotřebu 6 l beziu a 00 km. Na začátku jízdy mělo v plé ádrži 6 l beziu. a) Vyjádřete závislost

Více

í í ú ř Í ř í á í é é é Í á ý ň ř í š í č í í á í í é í í í á á ó ě Í í ě í í í í í řá ů čč ř č á í í í ě á ě ě í á í š ť Í ě Í ř ě í ě č Í ř é č š ě

í í ú ř Í ř í á í é é é Í á ý ň ř í š í č í í á í í é í í í á á ó ě Í í ě í í í í í řá ů čč ř č á í í í ě á ě ě í á í š ť Í ě Í ř ě í ě č Í ř é č š ě ú ř Í ř á é é é Í á ý ň ř š č á é á á ó Í řá ů čč ř č á á á š ť Í Í ř č Í ř é č š á č ý č é ó á č ř ů á č č š á ů á Í á á é č ú ó ť ý Í ř č é Í č š á ř á é á ř á ř ů ř ř á áž á Í ý é é č ý čů á é é é č

Více

ZÁKLADNÍ POJMY OPTIKY

ZÁKLADNÍ POJMY OPTIKY Záš pojmy A. Popiš aspoň jede fyzikálí experimet měřeí rychlosti světla. - viz apříklad Michelsoův, Fizeaův, Roemerův pokus. Defiuj a popiš fyzikálí veličiu idex lomu. - je to bezrozměrá fyzikálí veličia

Více