HYPOTEČNÍ ÚVĚR. , kde v = je diskontní faktor, Dl počáteční výše úvěru, a anuita, i roční úroková sazba v procentech vyjádřená desetinným číslem.
|
|
- Bedřich Moravec
- před 8 lety
- Počet zobrazení:
Transkript
1 HYPTEČNÍ ÚVĚR Spláceí úvěru stejým splátkam - kostatí auta ÚLHA 1: Mladý maželský pár s dostačujícím příjmy (tz. a získáí hypotéčího úvěru) se rozhodl postavt s meší rodý domek. Podle předběžé kalkulace k realzac svých pláů potřebuje ,- Kč. Posléze zjstí, že rodče jsou jm ochot věovat částku ,- Kč. Baka jm abíde úrokovou sazbu ve výš 4,9% ročě a dobu splatost 20 let. Určete a) výš ročí polhůtí autí splátky a sestavte umořovací plá, b) výš měsíčí polhůtí autí splátky (uvažujme měsíčí přpsováí úroků), c) ročí míru zsku baky, jestlže víte, že za schváleí úvěru s baka účtuje 0,90% ze zapůjčeé částky (mmálě 9 000,-Kč, maxmálě ,-Kč) a za vedeí účtu 150,-Kč měsíčě. Pozámka: V případě hypotéčích úvěrů baky edávají kletům RPSN ( ročí procetí sazba ákladů), udávají pouze a přáí kleta celkové áklady a úvěr. Řešeí ad a): Platí rovce Dl = a$v C a$v 2 C a$v 3 C...C a$v 1, kde v = je dskotí faktor, Dl počátečí 1 C výše úvěru, a auta, ročí úroková sazba v procetech vyjádřeá desetým číslem. Na pravé straě rovce je koečá geometrcká řada s kvocetem v a s prvím čleem av. Po a$ 1 Kv 1 Kv uplatěí vzorce pro její součet dostaeme rovc ve tvaru Dl =, kde tzv. zásobtel polhůtí. Potom pro autu a platí vztah a = 1 Kv. je Úprava rovce v Maple rest art; Dl := a*v*(sum(v^, = ) ); K1 Dl := a v > =0 v (1.1) a*v*(sum(v^, = ) ) = a*v*(sum(v^, = ) ); K1 a v > =0 v = a v v v K1 K 1 v K1 Dl := fact or(a*v*(sum(v^, = ) )); (1.2) (1.3)
2 Dl := a v v K1 v K1 (1.3) Řešeí krok zrokem: 1. Defujeme fukce, které odpovídají parametrům rovce restart; Dskotí faktor: v d / 1 1 C : Zásobtel polhútí: a d, / 1 Kv : Auta: a d Dl,, / 1 Kv : 2. Zadáme kokrétí hodoty vstupích proměých úlohy počátečí výše úvěru: doba splatost (počet splátek): ročí úroková sazba: Dl d : d20 : d0.049 : 3. Vypočítáme autu Auta d a Dl,, = ,04 Kč 4. Vytvoříme umořovací plá Tabulku umořovacího pláu zobrazíme jako matc Pro zjedodušeí uložíme hodotu auty do proměé a: a d a Dl,, ; ,04 (1) matrx 'období', 'auta','úrok','úmor', 'zůstatek', 0, ``, ``, ``, Dl, seq j, a, a * 1Kv ^Kj C1, a * v^kj C1, a * a Kj,, j = 1..K1,, a, a * 1Kv,a*v,``, ``, ``, ``, ``, ``, ``, * a, * a KDl, Dl, `` ;
3 období auta úrok úmor zůstatek, ,00 1, , , , ,96 2, , , , ,87 3, , , , ,28 4, , , , ,74 5, , , , ,38 6, , , , ,42 7, , , , ,72 8, , , , ,24 9, , , , ,54 10, , , , ,20 11, , , , ,20 12, , , , ,39 13, , , , ,76 14, , , , ,81 15, , , , ,82 16, , , , ,11 17, , , , ,26 18, , , , ,28 19, , , , ,77 20, , , ,77 (2) , , ,00 Závěr: Výše úroku čí , 88 Kč. To zameá, že za vypůjčeí Kč zaplatíme více ež polovu vypůjčeé částky. Pozámky 1. V posledím řádku tabulky umořovacího pláu vdíme, kolk jsme za daý úvěr zaplatl a úrocích. Je zajímavé sledovat, jak výše této částky závsí a době spláceí úvěru. 2. Doba splatost hypotéčích úvěrů je 5 až 30 let. Přčemž tyto úvěry můžeme splácet pouze v pětletých cyklech.
4 Příklad: Závslost výše zaplaceých úroků a době spláceí úvěru Tabulka: matrx 'doba spláceí', seq j, j=5..30, 5, 'úrok', seq j * a Dl,, j KDl, j =5..30, 5 ; doba spláceí 5,00 10,00 15,00 20,00 25,00 30,00 úrok , , , , , ,20 (3) Grafcké zázorěí: plot Dl, j$a Dl,, j KDl, j =5..35, color = red, blue, leged = "Úvěr", "Úrok" ; 2,5 # # ,5 # # # j Úvěr Úrok Řešeí ad b): Pro výpočet výše měsíčí polhůtí splátky použjeme vzorec z řešeí úkolu a): a = 1 Kv, kde je měsíčí úroková sazba, je doba splatost v měsících a výzam ostatích symbolů je stejý jako v řešeí úkolu a). Po dosazeí ásledujících parametrů: d 12$20 = 240 d = Dl d = v d 1 1 C = do vzorce a = 1 Kv obdržíme výš měsíčí splátky: a = 1 Kv = = Kč
5 Pozámka Z řešeí b) můžeme sado ahlédout, že pokud se ám shoduje počet splátek v roce s frekvecí přpsováí úroků, vzorec pro výpočet splátky zůstává stejý. Pouze se přepočítá úroková sazba vzhledem k použté frekvec přpsováí úroků a doba splatost. ÚKLY: 1) Sestavte umořovací plá pro měsíčí splátky. 2) Porovejte výš zaplaceých úroků s úroky zaplaceým v případě a) Řešeí ad c): restart; Pro výpočet ročí míry zsku použjeme tzv. ročí procetí sazbu ákladů (ve fačctví vedeá pod zkratkou RPSN). RPSN zohledňuje vedle úrokové sazby poplatky spojeé s poskytutím úvěru (apř. poplatky za schváleí a poskytutí úvěru, poplatky za správu a vedeí úvěru). Jedá se tedy o procetí sazbu, která vyjadřuje celkové ročí průměré áklady a daý úvěr. Vzorec pro výpočet RPSN je Dl = >k=0 1C t k ; Dl = >k=0 (4) t 1C k kde Dl je výše půjčky, k je číslo splátky, popřípadě poplatku, je počet splátek, je výše k-té splátky (do splátek zahrujeme veškeré poplatky spojeé s půjčkou), t k je terval, vyjádřeý v počtu roků a ve zlomcích roků ode de poskytutí půjčky do dů splátek ebo úhrad poplatků, je hledaá RPSN. V ašem případě budeme dosazovat do daého vzorce tyto parametry: - poplatek za schváleí úvěru a 0 d 0.009$ = Kč (vdíme, že poplatek se pohybuje v rozmezí přípustých hodot: Kč až Kč) - výše k-té splátky včetě poplatku za vedeí účtu d C150 = Kč, kde k = (výš měsíčí splátky jsme vypočítal v řešeí úkolu b)) - počet splátek d 12$20 = 240 splátek - výše úvěru Dl d : - terval ode de poskytutí úvěru do dů splátek ebo úhrad poplatků t k d k : kde k = Poté obdržíme řešeím rovce (4) hodotu ročí míry zsku : Dl = a 0 C> k=1 1C t k solve Po započítáí poplatků spojeých s pořízeím úvěru úroková sazba vzroste ze 4.9 % p.a. a 5.24 % p. a., tj. skoro o 0.35 %. Baky edávají kletům tuto míru zsku, pouze a jejch žádost uvedou částku, kterou bude stát úvěr. V ašem případě úvěr bude stát 240$16511 C22500 K = Kč.
Tabulka poplatků za zprostředkování půjčky a kalkulace RPSN
Tabulka poplatků za zprostředkování půjčky a kalkulace RPSN Půjčka ve výši 1 000 Kč 7 dnů 100,00 Kč 1 100,00 Kč 14299,02% 514,29% 8 dnů 110,00 Kč 1 110,00 Kč 11591,25% 495% 9 dnů 120,00 Kč 1 120,00 Kč
Vícecenný papír, jehož koupí si investor zajistí předem definované peněžní toky, které obdrží v budoucnosti
DLUHOPISY ceý papír, jehož koupí si ivestor zajistí předem defiovaé peěží toky, které obdrží v budoucosti podle doby splatosti ~ 1 rok dlouhodobé dluhopisy Pokladičí poukázky
VíceTest dobré shody se používá nejčastěji pro ověřování těchto hypotéz:
Ig. Marta Ltschmaová Statstka I., cvčeí 1 TESTOVÁNÍ NEPARAMETRICKÝCH HYPOTÉZ Dosud jsme se zabýval testováím parametrcký hypotéz, což jsou hypotézy o parametrech rozděleí (populace). Statstckým hypotézám
Více10.2.3 VÁŽENÝ ARITMETICKÝ PRŮMĚR S REÁLNÝMI VAHAMI
Středí hodoty Artmetcý průměr vážeý Aleš Drobí straa 0 VÁŽENÝ ARITMETICKÝ PRŮMĚR S REÁLNÝMI VAHAMI Zatím jsme počítal s tím, že četost ve vztahu pro vážeý artmetcý průměr byla přrozeá čísla Četost mohou
VíceFINANČNÍ MATEMATIKA SBÍRKA ÚLOH
FINANČNÍ MATEMATIKA SBÍRKA ÚLOH Zpracováo v rámci projektu " Vzděláváí pro kokureceschopost - kokureceschopost pro Třeboňsko", registračí číslo CZ.1.07/1.1.10/02.0063 Gymázium, Třeboň, Na Sadech 308 Autor:
VíceZákladní princip regulace U v ES si ukážeme na definici statických charakteristik zátěže
Regulace apětí v ES Základí pricip regulace v ES si ukážeme a defiici statických charakteristik zátěže Je zřejmé, že výko odebíraý spotřebitelem je závislý a frekveci a apětí a přípojicích spotřebitelů.
Více- metody, kterými lze z napozorovaných hodnot NV získat co nejlepší odhady neznámých parametrů jejího rozdělení.
MATEMATICKÁ STATISTIKA - a základě výběrových dat uuzujeme a obecější kutečot, týkající e základího ouboru; provádíme zevšeobecňující (duktví) úudek - duktví uuzováí pomocí matematcko-tattckých metod je
Víceů é Č ů Ú Řď ů ů ý ý ý ů ů ý ň ď Ť Ť Ť é é ý ů ý É ň é ů ý é ý ů ů ý ý ů ů é ů ý ý ý é é Ť ý é ý ď ý é ý Ó Ů ý Ů Ů Ů ú ů ďů é ý ý é ď ý ý ý ů ů é ů ů é ů é ý é Ů é é é ý Ť ů Ť é é é é ů é ý ý é Ť é é Ú
Víceě Á Á é é ě ě ě ú é é é ě é é ď ď ď š š Č Á ě ú Á ď š ě Č ě š ěž ě é ě ě ě ě ě ě Č Á ě Á é ú Ž é š ě š š é Ž ě é š é Š ť Ž ě Č Á ú Á Ť é ě é š ě ě š š ď ď Č é š š Č ě ě ú ě ú Ť é ě š ě ě š ě š ě ě ú ě
VíceFINANČNÍ MATEMATIKA- INFLACE
ojekt ŠABLONY NA GVM Gymázum Velké Mezříčí egstačí číslo pojektu: CZ..7/.5./34.948 V- ovace a zkvaltěí výuky směřující k ozvoj matematcké gamotost žáků středích škol FNANČNÍ MATEMATA- NFLACE Auto Jazyk
Více1. Základy měření neelektrických veličin
. Základ měřeí eelektrckých velč.. Měřcí řetězec Měřcí řetězec (měřcí soustava) je soubor měřcích čleů (jedotek) účelě uspořádaých tak, ab blo ožě splt požadovaý úkol měřeí, tj. získat formac o velkost
VíceCvičení z termomechaniky Cvičení 5.
Příklad V kompresoru je kotiuálě stlačová objemový tok vzduchu [m 3.s- ] o teplotě 20 [ C] a tlaku 0, [MPa] a tlak 0,7 [MPa]. Vypočtěte objemový tok vzduchu vystupujícího z kompresoru, jeho teplotu a příko
VíceFinanční řízení podniku. Téma: Časová hodnota peněz
Fiačí řízeí podiku Téma: Časová hodota peěz Faktor času se ve fiačím řízeí uplatňuje a) při rozhodováí o ivesticích b) při staoveí trží cey majetku podiku c) při ukládáí volých peěžích prostředků d) při
VíceOpakování. Metody hodnocení efektivnosti investic. Finanční model. Pravidla pro sestavení CF. Investiční fáze FINANČNÍ MODEL INVESTIČNÍHO ZÁMĚRU
Metody hodoceí efektvost vestc Opakováí Typy vazeb v uzlové síťové grafu K čeu slouží stude využtelost Fačí odel vestčího záěru Časová hodota peěz Metody vyhodoceí Napšte strukturu propočtu Fačí odel FINANČNÍ
VíceTesty statistických hypotéz
Úvod Testy statstckých hypotéz Václav Adamec vadamec@medelu.cz Testováí: kvalfkovaá procedura vedoucí v zamítutí ebo ezamítutí ulové hypotézy v podmíkách ejstoty Testy jsou vázáy a rozděleí áhodých velč
VíceAritmetická posloupnost, posloupnost rostoucí a klesající Posloupnosti
8 Aritmetická posloupost, posloupost rostoucí a klesající Poslouposti Posloupost je fukci s defiičím oborem celých kladých čísel - apř.,,,,,... 3 4 5 Jako fukci můžeme také posloupost zobrazit do grafu:
Více4.2 Elementární statistické zpracování. 4.2.1 Rozdělení četností
4.2 Elemetárí statstcké zpracováí Výsledkem statstckého zjšťováí (. etapa statstcké čost) jsou euspořádaá, epřehledá data. Proto 2. etapa statstcké čost zpracováí, začíá většou jejch utříděím, zpřehleděím.
VícePoplatky za zprostředkování půjčky a kalkulace RPSN
Poplatky za zprostředkování půjčky a kalkulace RPSN Půjčka ve výši 2 000 Kč 7 dnů 200,00 Kč 2 200,00 Kč 14299,02% 514,29% 8 dnů 220,00 Kč 2 220,00 Kč 11591,25% 495% 9 dnů 240,00 Kč 2 240,00 Kč 9809,79%
VíceInterakce světla s prostředím
Iterakce světla s prostředím světlo dopadající rozptyl absorpce světlo odražeé světlo prošlé prostředím ODRAZ A LOM The Light Fatastic, kap. 2 Light rays ad Huyges pricip, str. 31 Roviá vla E = E 0 cos
VíceOdhad parametru p binomického rozdělení a test hypotézy o tomto parametru. Test hypotézy o parametru p binomického rozdělení
Odhad parametru p biomického rozděleí a test hypotézy o tomto parametru Test hypotézy o parametru p biomického rozděleí Motivačí úloha Předpokládejme, že v důsledku realizace jistého áhodého pokusu P dochází
VíceÁ ÁŽ É Á ž Č ěž ě Č Č Í ě š ú ž ě ě ň ň ť Č ě Ý ě ž ďě Ú Č ě Č ť ě Í ě ď ž ž ž ě ě Í ě ž ň Č Ž š Í ě ě Č ž ě ě Č ě ě ě ž ě š ň ě ě ě Í š ž ž ě ž ž ě Í ě ž ě š š š ž š Ž š ó Í Ž Í Í Ó ž ě Č ž ě ě ě ž Č
VíceÚvod do lineárního programování
Úvod do lieárího programováí ) Defiice úlohy Jedá se o optimalizaí problémy které jsou popsáy soustavou lieárích rovic a erovic. Kritéria optimalizace jsou rovž lieárí. Promé v této úloze abývají reálých
VíceČasová hodnota peněz. Metody vyhodnocení efektivnosti investic. Příklad
Metody vyhodoceí efektvost vestc Časová hodota peěz Metody vyhodoceí Časová hodota peěz Prostředky, které máme k dspozc v současost mají vyšší hodotu ež prostředky, které budeme mít k dspozc v budoucost.
VíceLineární regrese ( ) 2
Leárí regrese Častým úolem je staoveí vzájemé závslost dvou (č více) fzálích velč a její matematcé vjádřeí. K tomuto účelu se používají růzé regresí metod, pomocí chž hledáme vhodou fuc f (), apromující
VíceFakulta elektrotechniky a informatiky Statistika STATISTIKA
Fakulta elektrotechky a formatky TATITIKA. ZÁKLADNÍ OJMY. Náhodý pokus a áhodý jev NÁHODNÝ OKU proces realzace souboru podmíek kde výsledek emůžeme předem ovlvt. - výsledek áhodého pokusu. - jev, který
VíceVýukový modul III.2 Inovace a zkvalitnění výuky prostřednictvím ICT
Základy práce s tabulkou Výukový modul III. Iovace a zkvaltěí výuky prostředctvím IC éma III..3 echcká měřeí v MS Excel Pracoví lst 5 Měřeí teploty. Ig. Jří Chobot VY_3_INOVACE_33_5 Aotace Iovace a zkvaltěí
Více2. Definice plazmatu, základní charakteristiky plazmatu
2. efiice plazmatu, základí charakteristiky plazmatu efiice plazmatu Plazma bývá obyčejě ozačováo za čtvrté skupeství hmoty. Pokud zahříváme pevou látku, dojde k jejímu roztaveí, při dalším zahříváí se
VíceVyužití účetních dat pro finanční řízení
Využtí účetích dat pro fačí řízeí KAPITOLA 4 V rác této kaptoly se zaěříe a časovou hodotu peěz (a to včetě oceňováí ceých papírů), která se prolíá celý vestčí rozhodováí, dále a fačí aalýzu (vycházející
VíceSeznámíte se s pojmem Riemannova integrálu funkce jedné proměnné a geometrickým významem tohoto integrálu.
2. URČITÝ INTEGRÁL 2. Určitý itegrál Průvodce studiem V předcházející kapitole jsme se sezámili s pojmem eurčitý itegrál, který daé fukci přiřazoval opět fukci (přesěji možiu fukcí). V této kapitole se
Více2 EXPLORATORNÍ ANALÝZA
Počet automobilů Ig. Martia Litschmaová EXPLORATORNÍ ANALÝZA.1. Níže uvedeá data představují částečý výsledek zazameaý při průzkumu zatížeí jedé z ostravských křižovatek, a to barvu projíždějících automobilů.
VíceIV-1 Energie soustavy bodových nábojů... 2 IV-2 Energie elektrického pole pro náboj rozmístěný obecně na povrchu a uvnitř objemu tělesa...
IV- Eergie soustavy bodových ábojů... IV- Eergie elektrického pole pro áboj rozmístěý obecě a povrchu a uvitř objemu tělesa... 3 IV-3 Eergie elektrického pole v abitém kodezátoru... 3 IV-4 Eergie elektrostatického
Více5.5. KOMPLEXNÍ ODMOCNINA A ŘEŠENÍ KVADRATICKÝCH A BINOMICKÝCH ROVNIC
5.5. KOMPLEXNÍ ODMOCNINA A ŘEŠENÍ KVADRATICKÝCH A BINOMICKÝCH ROVNIC V této kaptole se dozvíte: jak je defováa fukce přrozeá odmoca v kompleím oboru a jaké má vlastost včetě odlšostí od odmocy v reálém
VíceZÁKLADNÍ POJMY OPTIKY
Záš pojmy A. Popiš aspoň jede fyzikálí experimet měřeí rychlosti světla. - viz apříklad Michelsoův, Fizeaův, Roemerův pokus. Defiuj a popiš fyzikálí veličiu idex lomu. - je to bezrozměrá fyzikálí veličia
VíceSPOTŘEBITELSKÝ ÚVĚR. Na začátku provedeme inicializaci proměnných jejich vynulováním příkazem "restart". To oceníme při opakovaném použití dokumentu.
SPOTŘEBITELSKÝ ÚVĚR Úloha 3 - Fiacováí stavebích úprav Rozhodli jsme se pro stavebí úpravy v bytě. Po zhotoveí rozpočt a tyto úpravy jsme zjistili, že ám chybí ještě 30 000,-Kč. Máme možost si tto část
VíceČistý přínos pro průmysl
CZ Svět filtrace Čistý příos pro průmysl Elektráry Techické vybaveí budov Ocelářský průmysl Papíreský průmysl Průmyslové filtry od společosti Dago & Dieethal Společost Dago & Dieethal Filtertechik GmbH
VíceÚLOHA ČÍNSKÉHO LISTONOŠE, MATEMATICKÉ MODELY PRO ORIENTOVANÝ A NEORIENTOVANÝ GRAF
Úloha číského listooše ÚLOHA ČÍNSKÉHO LISTONOŠE, MATEMATICKÉ MODELY PRO ORIENTOVANÝ A NEORIENTOVANÝ GRAF Uvažujme situaci, kdy exstuje ějaký výchozí uzel a další uzly spojeé hraami (může jít o cesty, ulice
VícePRAVDĚPODOBNOST A STATISTIKA
Matematka IV PRAVDĚPODOBNOT A TATITIKA Lbor Žák Matematka IV Lbor Žák Regresí aalýza Regresí aalýza zkoumá závslost mez ezávslým proměým X ( X,, X k a závsle proměou Y. Tato závslost se vjadřuje ve tvaru
VíceĚ ť ž Š ú ť Š ť ú ž ž ú ž Ý ž ž ž ú ť Č ň Ú ň ť ť ť ú ť ž ž ť ú ú ť ú ž ž ť ť ť ú ž ž ť ť ž ž ť ž ž ž ú ž Ý ú ú ť ú ú ž ť ž ž ž ž ž ž ú Č ž ú ň ú ú ť ú ú Ý ú ť ú ž Ř ť ú ú ť Š Č Č ň Ú Č Š ú ť Č ť ď ž ň
VíceČ Á ě Ě Á é é ě ďě ě ů ú é é é ě é é ď ď š ě Č Á ě ú é ů š š Ť ď é Ž ě é š ů Č ů ů é ů ů ě é ě é é é ě Č Á ě Ě Á é Ř ě é ú ó é š é Ž Ž é ě é ě ě é š éž é ě ě š ě ě ě š ě š ě ú é š ě ů Ěú Á ě Ž š é š ě
VíceVýsledky této ásti regresní analýzy jsou asto na výstupu z poítae prezentovány ve form tabulky analýzy rozptylu.
Ig. Marta Ltschmaová Statstka I., cveí 4 JEDNODUCHÁ LINEÁRNÍ REGRESE asto chceme prozkoumat vztah mez dvma velam, kde jeda z ch, tzv. ezávsle promá x, má ovlvovat druhou, tzv. závsle promou Y. edpokládá
Více1. K o m b i n a t o r i k a
. K o m b i a t o r i k a V teorii pravděpodobosti a statistice budeme studovat míru výskytu -pravděpodobostvýsledků procesů, které mají áhodý charakter, t.j. při opakováí za stejých podmíek se objevují
Víceď Ú Ř Á Á ň ď ú ť É ó ú Ůú ý ř Á Ř ď Ž Á šó Š ý ď Á ú ť ď Ú ž Ť ú ř Ř Ý ó ď ú Ě ĚŘ Ř ř Ě ěř ň Ú ÁŘ Žó ě ř Š ď ě ř ž ě ě ř š ě ř ú ř ý ž ý ď ě Ú ů ě ú Ú ž óř žó ř š ě Ú Á Ú ě Ř ř ě ž ž ž ě ř ý ž ě ý ř ě
Víceř ú ú Š Í Á É ř ř ř é é ř ř š é ř ř š ř é ž é ž š é š é é ř ů ž ž ř é ř ů é é ž é ř é é ř é ú é é ž é é š ň é ř š é š é Ť é ř ů ž ž ď ř é é é ž ř é Š ů é ř é ř é Š ú ř Í ž ž ř ř Í é š ž é ř Ť š ř ř ř š
Víceň ý ě ý ý ý ě ň ý ě ý Ú ú ň ň ý ě ý ó ž ý ň ě ě ě ú ú Ř ň ň ý ě ý ě ě ž ý ž ě ý ě ý ě ě ů ě Ů Č Í Ě Á Á Í ě ě ě ě Ž Ů ú ě ě ě Ú ě ů ě ý ě ě ú ň ý ě Ů ž ů ž ě ý ý ý ý ě Č Č ě Č ě ů ý ě ý ý ž ě ě ž ů ž ě
Víceě ě ú ě ě ě ě ě ň ě ň ů ě ů Ý ě ě ů ň ě Í ě ň ě ě Ž ě ň ě ě ú ů ú ě ě ě ú ě ě ě ě ě ě ů ě ů ě ě ú ů ě ě ě Ž ů ě ě ú Ž Ž Ú ě ě ě ě Ž Ž ě ť Ž Í ě Ž ě Ž Ž ů ěž ů ěž ě Í Ú ů ě ů ě Ž Ž Ž ě ě ě ů ě ě ě ě ě ů
Víceň Š ý ě ý Ě Á ý ý ě ň Š ý ě ý ú ň ň ý ě ý ó ě ž ý ň ě ě Š ú Š ú Š ň Á ň Š ň ý ě ý Š ž ý ě ý ů ě ě ž ý ě Š ě ě ě Ů Č Í Ě Á Á Í ě ě ě ě Ž Ů ú ě ě ě Ú ó ě ů ě ý Š ě ě ú ň ý ě Ů ž ů ž ě ý ý ý ě Č Č ě Š Č ě
VícePŘÍKLAD NA VÁŽENÝ ARITMETICKÝ PRŮMĚR Z INTERVALOVÉHO ROZDĚLENÍ ČETNOSTI
PŘÍKLAD NA VÁŽENÝ ARITMETICKÝ PRŮMĚR Z INTERVALOVÉHO ROZDĚLENÍ ČETNOSTI Přílad 0.6 Pracoví, terý spravuje podovou databáz, eportoval do tabulového procesoru všechy pracovíy podu Alfa Blatá s ěterým sledovaým
VíceFINANČNÍ MATEMATIKA. Jarmila Radová KBP VŠE Praha
FINANČNÍ MATEMATIA Jarmila Radová BP VŠE Praha Osova Jedoduché úročeí Diskotováí krátkodobé ceé papíry Metody vedeí a výpočtu úroku z běžého účtu Skoto Složeé úrokováí Budoucí hodota auity spořeí Současá
VícePočet dnů prodloužení
Částka Poplatek Celkem k úhradě RPSN 7 dnů 14 dnů 30 dnů 15000 2850 30 17850 730.15% 231.17% 7 1470 14 1890 30 2850 14900 2831 30 17731 730.15% 231.17% 7 1460 14 1877 30 2831 14800 2812 30 17612 730.15%
VíceNávod pro výpočet základních induktorů s jádrem na síťové frekvenci pro obvody výkonové elektroniky.
Návod pro cvičeí předmětu Výkoová elektroika Návod pro výpočet základích iduktorů s jádrem a síťové frekveci pro obvody výkoové elektroiky. Úvod V obvodech výkoové elektroiky je možé většiu prvků vyrobit
VíceMATEMATIKA PŘÍKLADY K PŘÍJÍMACÍM ZKOUŠKÁM BAKALÁŘSKÉ STUDIUM MGR. RADMILA STOKLASOVÁ, PH.D.
MATEMATIKA PŘÍKLADY K PŘÍJÍMACÍM ZKOUŠKÁM BAKALÁŘSKÉ STUDIUM MGR. RADMILA STOKLASOVÁ PH.D. Obsah MNOŽINY.... ČÍSELNÉ MNOŽINY.... OPERACE S MNOŽINAMI... ALGEBRAICKÉ VÝRAZY... 6. OPERACE S JEDNOČLENY A MNOHOČLENY...
VíceSPOTŘEBITELSKÝ ÚVĚR. Na začátku provedeme inicializaci proměnných jejich vynulováním příkazem "restart". To oceníme při opakovaném použití dokumentu.
Úloha 1 - Koupě nového televizoru SPOTŘEBITELSKÝ ÚVĚR Chceme si oupit nový televizor v hodnotě 000,-Kč. Bana nám půjčí, přičemž její úroová sazba činí 11%. Předpoládejme, že si půjčujeme na jeden ro a
VíceAPLIKACE REGRESNÍ ANALÝZY NA VÝPOČET BODU ZVRATU
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA PODNIKATELSKÁ ÚSTAV FINANCÍ FACULTY OF BUSINESS AND MANAGEMENT INSTITUTE OF FINANCES APLIKACE REGRESNÍ ANALÝZY NA VÝPOČET BODU ZVRATU
Více4. Model M1 syntetická geometrie
4. Model M1 sytetiká geometrie V této kapitole se udeme zaývat vektory, jejih vlastostmi a využitím v geometrii. Neudeme přitom rozlišovat, jestli se jedá je o roviu (dvě dimeze) eo prostor (tři dimeze).
VíceUniverzita Karlova v Praze Pedagogická fakulta
Uverzt Krlov v Prze Pegogcká kult SEMINÁRNÍ PRÁCE Z POLYNOMICKÉ ALGEBRY POLYNOM 00/00 CIFRIK Záí: Vyšetřete všem probrým prostřeky polyom 0 0 Vyprcováí: Pole věty: Rcoálí kořey. Nechť p Q je koře polyomu
VíceFinanční matematika. Téma: Důchody. Současná hodnota anuity
Fnanční matematka Téma: Důchody Současná hodnota anuty Důchody Defnce: Důchodem se rozumí pravdelné platby ve stejné výš, tzv. anuty Pozor na nejednotnost termnologe Různé možnost rozdělení důchodů Členění
VíceMatice. nazýváme m.n reálných čísel a. , sestavených do m řádků a n sloupců ve tvaru... a1
Matice Matice Maticí typu m/ kde m N azýváme m reálých čísel a sestaveých do m řádků a sloupců ve tvaru a a a a a a M M am am am Prví idex i začí řádek a druhý idex j sloupec ve kterém prvek a leží Prvky
VícePRAVDĚPODOBNOST A STATISTIKA
SP Záko velkých čísel, cetrálí lmtí věta PRAVDĚPODOBNOST A STATISTIKA Lbor Žák SP Záko velkých čísel, cetrálí lmtí věta Lbor Žák Kovergece podle pravděpodobost Posloupost áhodých proměých,,,, koverguje
VíceMetody zkoumání závislosti numerických proměnných
Metody zkoumáí závslost umerckých proměých závslost pevá (fukčí) změě jedoho zaku jedozačě odpovídá změa druhého zaku (podle ějakého fukčího vztahu) (matematka, fyzka... statstcká (volá) změám jedé velčy
VíceVážeí zákazíci dovolujeme si Vás upozorit že a tuto ukázku kihy se vztahují autorská práva tzv. copyright. To zameá že ukázka má sloužit výhradì pro osobí potøebu poteciálího kupujícího (aby èteáø vidìl
VíceČíslicové filtry. Použití : Analogové x číslicové filtry : Analogové. Číslicové: Separace signálů Restaurace signálů
Číslicová filtrace Použití : Separace sigálů Restaurace sigálů Číslicové filtry Aalogové x číslicové filtry : Aalogové Číslicové: + levé + rychlé + velký dyamický rozsah (v amplitudě i frekveci) - evhodé
VíceFINANČNÍ A INVESTIČNÍ MATEMATIKA RNDr. Petr Budinský, CSc. FINANČNÍ MATEMATIKA Budoucí hodnota při různých typech úročení FINANČNÍ A INVESTIČNÍ MATEMATIKA 2 Příklad: Uvažujme FV = 100.000 Kč a úrokovou
VíceAktivita 1 Seminář základů statistiky a workshop (Prof. Ing. Milan Palát, CSc., Ing. Kristina Somerlíková, Ph.D.)
Aktvta Semář základů tattky a workhop (Prof. Ig. Mla Palát, CSc., Ig. Krta Somerlíková, Ph.D.) Stattcké tříděí Základí metoda tattckého zpracováí. Sekupováí hodot proměé, které jou z hledka klafkačího
VíceD = H = 1. člen posloupnosti... a 1 2. člen posloupnosti... a 2 3. člen posloupnosti... a 3... n. člen posloupnosti... a n
/9 POSLOUPNOSTI Zákldí pojmy: Defiice poslouposti Vlstosti poslouposti Určeí poslouposti Aritmetická posloupost Geometrická posloupost Užití poslouposti. Defiice poslouposti Př. Sestrojte grf fukce y =.x
Víceú é ě ě ú ě š ě š š Š Í Č ě ú é ě ď ú Í ě é é ě ě ě ť ě ú ď ď ě ě Ý ě Ú š ě Ú š ď ď ěž é ú é ě ěž é ú é Č é é ě ě Ť ó š ď é é ěň ě é ě ú ě Č ě ě ě ě ě Ž ď ě š ď ž é ž ě Ž Ú é ě ď ě ě ž ě é ď š ú ě é ú
VíceÚkol měření. Použité přístroje a pomůcky. Tabulky a výpočty
Úkol měřeí ) Na základě vějšího fotoelektrického pole staovte velikost Plackovy kostaty h. ) Určete mezí kmitočet a výstupí práci materiálu fotokatody použité fotoky. Porovejte tuto hodotu s výstupími
VíceČ é ě é ě ě š ř ů ó ú ů ě ě š ř ů ř š ř ě š é ě ř ě ř é š ě š ú Ř Ť Č é ě Č ř é š ě š ú š ř é š ě é š ě ž š Č ú ř ě ě é é ů ž é ž ť ě š š š é é é ě é š ďě ň é ě éž ů ě ř ř ě ř é š ě ž ě š ž š é ř ž ě é
VíceSTATISTIKA. Statistika se těší pochybnému vyznamenání tím, že je nejvíce nepochopeným vědním oborem. H. Levinson
STATISTIKA Statistika se těší pochybému vyzameáí tím, že je ejvíce epochopeým vědím oborem. H. Leviso Charakterizace statistického souboru Statistický soubor Prvek souboru Zak prvku kvatitativí teplota,
Více8.2.1 Aritmetická posloupnost
8.. Aritmetická posloupost Předpoklady: 80, 80, 803, 807 Pedagogická pozámka: V hodiě rozdělím třídu a dvě skupiy a každá z ich dělá jede z prvích dvou příkladů. Př. : V továrě dokočí každou hodiu motáž
Víceů ů ž ž ě ě Č ů ů ž ě ě ě ž é ě ě ě ž ž é ť ě ůž é ě é ě ě ž ž ě ě ť Ť ě ž ě ě é ě ů ž ě é é é ě ě ě ž ě é é ť ě é ě ž ě é é ě é ž ě ě Ž ž é ě ž ď Í ě ž ě ž ě ť ď ň ě é é žň ť ť ž é ů ě ň ť Ú ě ě ň ž ť
VíceSloupec1 Sloupec2 Sloupec3 Sloupec4 Sloupec5 banka Česká spořitelna ČSOB Poštovní spořitelna GE Money bank 1% z požadované
Sloupec1 Sloupec2 Sloupec3 Sloupec4 Sloupec5 banka Česká spořitelna ČSOB Poštovní spořitelna GE Money bank 1% z požadované 1% z požadované podání žádosti o hodnoty úvěru, min. zdarma zdarma hodnoty úvěru,
Víceň ě ň Ú ě Ť Ť ě ě ě Ť ě ě Ť ž ž ě ě ť Ť ž Ť ě ž Í ě Ť č ž ě Ť ž ě ě ě ě Á ž Ť ě ě ě ě Ó ě ě ě ě ě ž ě ě ž ě ž Ó ž Ó ě Ť č č ť ě ě ě Ť ě Ř ě č ě č ě ě ě Ť ž č Ť ě Ť Ť ě Š ě Í ě ě ě Ť Ě Ť ě ž ž č ěž Ť ž
Více1.1 Rozdělení pravděpodobnosti dvousložkového náhodného vektoru
Lekce Normálí rozděleí v rově V této lekc se udeme věovat měřeí korelačí závslost dvojce áhodých velč (dvousložkového áhodého vektoru) Vcházet udeme z ormálího rozděleí pravděpodoost áhodého vektoru v
VíceDISKRÉTNÍ MATEMATIKA PRO INFORMATIKY
DISKRÉTNÍ MATEMATIKA PRO INFORMATIKY URČENO PRO VZDĚLÁVÁNÍ V AKREDITOVANÝCH STUDIJNÍCH PROGRAMECH IVAN KŘIVÝ ČÍSLO OPERAČNÍHO PROGRAMU: CZ..07 NÁZEV OPERAČNÍHO PROGRAMU: VZDĚLÁVÁNÍ PRO KONKURENCESCHOPNOST
VíceSoustava kapalina + tuhá látka Izobarický fázový diagram pro soustavu obsahující vodu a chlorid sodný
Soustv kpl + tuhá látk Izobrcký fázový dgrm pro soustvu obshující vodu chlord sodý t / o C H 2 O (s) + esyceý roztok 30 20 10 0-10 -20 t I t II esyceý roztok 2 1 p o NCl (s) + syceý roztok eutektcký bod
Více8.1.2 Vzorec pro n-tý člen
8.. Vzorec pro -tý čle Předpolady: 80 Pedagogicá pozáma: Myslím, že jde o jedu z velmi pěých hodi. Přílady a hledáí dalších čleů posloupostí a a objevováí vzorců pro -tý čle do začé míry odpovídají typicým
VícePODNIKOVÁ EKONOMIKA 3. Cena cenných papírů
Semárky, předášky, bakalářky, testy - ekoome, ace, účetctví, ačí trhy, maagemet, právo, hstore... PODNIKOVÁ EKONOMIKA 3. Cea ceých papírů Ceé papíry jsou jedím ze způsobů, jak podk může získat potřebý
Vícez možností, jak tuto veličinu charakterizovat, je určit součet
6 Charakteristiky áhodé veličiy. Nejdůležitější diskrétí a spojitá rozděleí. 6.1. Číselé charakteristiky áhodé veličiy 6.1.1. Středí hodota Uvažujme ejprve diskrétí áhodou veličiu X s rozděleím {x }, {p
VícePRAVDĚPODOBNOST A STATISTIKA
SP esty dobré shody PRAVDĚPODOBNOS A SAISIKA Lbor Žá SP esty dobré shody Lbor Žá Přpomeutí - estováí hypotéz o rozděleí Ch-vadrát test Chí-vadrát testem terý e založe a tříděém statstcém souboru. SP esty
Více4.5.9 Vznik střídavého proudu
4.5.9 Vzik střídavého proudu Předpoklady: 4508 Miulá hodia: Pokud se v uzavřeém závitu měí magetický idukčí tok, idukuje se v ěm elektrické apětí =. Př. 1: Vodorově orietovaá smyčka se pohybuje rovoměrě
VíceM - Posloupnosti VARIACE
M - Poslouposti Autor: Mgr Jromír Juřek - http://wwwjrjurekcz Kopírováí jkékoliv dlší využití výukového mteriálu je povoleo pouze s uvedeím odkzu wwwjrjurekcz VARIACE Teto dokumet byl kompletě vytvoře,
Více:6pt;font-style:normal;color:grey;font-family:Verdana,Geneva,Kalimati,sans-serif;text-decoration:none;text-align:center;font-variant:no = = < p s t y l e = " p a d d i n g : 0 ; b o r d e r : 0 ; t e
Více8.1.2 Vzorec pro n-tý člen
8 Vzorec pro -tý čle Předpolady: 80 Pedagogicá pozáma: Přílady a hledáí dalších čleů posloupostí a a objevováí vzorců pro -tý čle do začé míry odpovídají typicým příladům z IQ testů, teré studeti zají
Víceř ě ě š ř ů ř ěž ú ěž ú ú Č ě Ú š ž ú ž ě ě ř ž ě ú ů ě ř š ž ú ě š ž ě ů š ě ř ě Ú ř ě ř ě ř ě ě ř š ž ž ř ě ť ř ě ů š ř š ě ě ř š ď ů ř ř ž Ž ř ě ž ř ě ř š ř ě ř ř ů ř ž ř ř ř ě ě š ž ř ě ě ž ž ř ž š
Více8.1.3 Rekurentní zadání posloupnosti I
8.. Rekuretí zadáí poslouposti I Předpoklady: 80, 80 Pedagogická pozámka: Podle mých zkušeostí je pro studety pochopitelější zavádět rekuretí posloupost takto (sado kotrolovatelou ukázkou), ež dosazováím
Více8.2.1 Aritmetická posloupnost I
8.2. Aritmetická posloupost I Předpoklady: 80, 802, 803, 807 Pedagogická pozámka: V hodiě rozdělím třídu a dvě skupiy a každá z ich dělá jede z prvích dvou příkladů. Čley posloupostí pak při kotrole vypíšu
VíceVÝMĚNA VZDUCHU A INTERIÉROVÁ POHODA PROSTŘEDÍ
ÝMĚNA ZDUCHU A INTERIÉROÁ POHODA PROSTŘEDÍ AERKA J. Fakulta architektury UT v Brě, Poříčí 5, 639 00 Bro Úvod Jedím ze základích požadavků k zabezpečeí hygieicky vyhovujícího stavu vitřího prostředí je
VíceObyčejné diferenciální rovnice. Cauchyova úloha Dirichletova úloha
Občejé erecálí rovce Caucova úloa Drcletova úloa Občejé erecálí rovce - Caucova úloa Úlo: I. = s omíou = jea rovce. řáu II. soustava rovc. řáu III. = - jea rovce -téo řáu = = = - = - Hleáme uc res. uce
Více( + ) ( ) ( ) ( ) ( ) Derivace elementárních funkcí II. Předpoklady: Př. 1: Urči derivaci funkce y = x ; n N.
.. Derivace elemetárích fukcí II Předpoklady: Př. : Urči derivaci fukce y ; N. Budeme postupovat stejě jako předtím dosazeím do vzorce: f ( + ) f ( ) f f ( + ) + + + +... + (biomická věta) + + +... + f
Více-1- Finanční matematika. Složené úrokování
-- Fiačí ateatika Složeé úrokováí Při složeé úročeí se úroky přičítají k počátečíu kapitálu ( k poskytutí úvěru, k uložeéu vkladu ) a společě s í se úročí. Vzorec pro kapitál K po letech při složeé úročeí
VíceZÁKLADY STAVEBNÍ MECHANIKY
VYSOKÉ UČENÍ TECHNICKÉ V BNĚ AKULTA STAVEBNÍ ING. JIŘÍ KYTÝ, CSc. ING. ZBYNĚK KEŠNE, CSc. ING. OSTISLAV ZÍDEK ING. ZBYNĚK VLK ZÁKLADY STAVEBNÍ ECHANIKY ODUL BD0-O SILOVÉ SOUSTAVY STUDIJNÍ OPOY PO STUDIJNÍ
VíceP1: Úvod do experimentálních metod
P1: Úvod do epermetálích metod Chyby a ejstoty měřeí - Každé měřeí je zatížeo určtou epřesostí, která je způsobea ejrůzějším egatvím vlvy, vyskytujícím se v procesu měřeí. - Výsledek měřeí se díky tomu
Více20. Eukleidovský prostor
20 Eukleidovský prostor V této kapitole budeme pokračovat ve studiu dalších vlastostí afiích prostorů avšak s tím rozdílem že místo obecého vektorového prostoru budeme uvažovat prostor uitárí Proto bude
VíceHODNOCENÍ PŘÍSTROJŮ PRO MĚŘENÍ JAKOSTI ZIMNÍCH KAPALIN DO OSTŘIKOVAČŮ V PROVOZU
HODNOCENÍ PŘÍSTROJŮ PRO MĚŘENÍ JAKOSTI ZIMNÍCH KAPALIN DO OSTŘIKOVAČŮ V PROVOZU Ja SKOLIL 1*, Štefa ČORŇÁK 2*, Ja ULMAN 3 1* Velvaa, a.s., 273 24 Velvary, Česká republika 2,3 Uiverzita obray v Brě, Kouicova
VíceANALÝZA A KLASIFIKACE DAT
ANALÝZA A KLASIFIKACE DA prof. Ig. Jří Holčík, CSc. INVESICE Isttut DO bostatstky ROZVOJE VZDĚLÁVÁNÍ a aalýz IV. LINEÁRNÍ KLASIFIKACE pokračováí Isttut bostatstky a aalýz (SUPPOR VECOR MACHINE SVM) SEPARABILNÍ
VícePRAVDĚPODOBNOST A STATISTIKA
PRAVDĚPODOBNOT A TATITIKA Přpomeutí pojmů,, P m θ, R θ R - pravděpodobostí prostor - parametrcký prostor - parametrcká fukce,, T - áhodý vektor defovaý a pravděpodobostím prostoru,, P θ s hustotou f x,
VíceRegulace frekvence a velikosti napětí Řízení je spojeno s dodávkou a přenosem činného a jalového výkonu v soustavě.
18. Řízeí elektrizačí soustavy ES je spojeí paralelě pracujících elektráre, přeosových a rozvodých sítí se spotřebiči. Provoz je optimálě spolehlivá hospodárá dodávka kvalití elektrické eergie. Stěžejími
Víceě ú ě ú ů ě ů ě é ú ž ú ě Ú ů ů ě é š ů ě ě Ú ě ě ě ň é ň é Ú é é ěž é é ž Ú ž ž ž ů ě ě ž ě é ě ě ů é ň Č ž é Č ě Č ň ů ú ěž ú ú Č Ú ě ú ů Ú ě ú ě ů Ú é é ě é ú ě ú Ú ě é ú ú ů ú ď Č Ř é ě ú ů ů ě ě š
VícePojem času ve finančním rozhodování podniku
Pojem času ve fiačím rozhodováí podiku 1.1. Výzam faktoru času a základí metody jeho vyjádřeí Fiačí rozhodováí podiku je ovlivěo časem. Peěží prostředky získaé des mají větší hodotu ež tytéž peíze získaé
Více