ÚROKOVÁ SAZBA A VÝPOČET BUDOUCÍ HODNOTY
|
|
- Olga Kovářová
- před 9 lety
- Počet zobrazení:
Transkript
1 ÚROKOVÁ SAZBA A VÝPOČET BUDOUÍ HODNOTY 1. Typy a druhy úročeí, budoucí hodota ivestice Úrok - odměa za získáí úvěru (cea za službu peěz) Ročí úroková sazba (míra)(r) úrok v % z hodoty kapitálu za časové období Připisováí úroků: p.a. ročí p.q. čtvrtletí p.d. deí p.s. půlročí p.m. měsíčí Doba splatosti () doba, po kterou je peěží částka zapůjčea Typy úročeí - jedoduché: vyplaceé úroky se epřičítají k původímu kapitálu a dále se eúročí - složeé: úroky se přičítají a dále úročí - spojité: počet úročeí roste do ekoeča Jedoduché FV = PV * ( 1 + r * ) Složeé FV = PV * ( 1 + r ) m* m r (i) úroková sazba (t) doba splatosti m frekvece připisováí úroků FV future value PV prezet value Závislost úroku a době splatosti kapitálu 200 Kapitál Úrok 175 r = 20% 150 r = 10% úrok Počátečí kapitál čas
2 Př: Vypočítejte koečou hodotu vkladu Kč uložeou a dobu 5 let s úrokovou 1 sazbou 5% ( 10%, 20%) při jedoduchém úročeí. Př: Jakou částku obdrží pa Neveselý ze svého šestiměsíčího termíovaého vkladu Kč úročeého 5 % p.a.? Daň z úroků je 15 %. Př: Jaká je cea peěz půjčeých v zastavárě, účtuje-li si zastavára 2 % za týde? 3 Počítejte: a) jedoduché úročeí b) složeé úročeí Př: Zjistěte, jakou hodotu bude mít vklad Kč po letech, bude-li 4 průměré zhodoceí 3 % - 8 % - 13 %. doba 5 let Zhodoceí 3 % 8 % 13 % 10 let 15 let 20 let Př: Idiái prodali Holaďaům ostrov Mahatta v roce 1626 za 24 $. Kolik by měli 5 Idiái des, kdyby tuto hotovost eutratili za ohivou vodu, ale uložili do baky a úrok 5, 7 ebo 9 % p.a.? Uvažujte a) jedoduché úročeí b) složeé úročeí 24 $ od r % 7% 9% jedoduché složeé Př: Jaké jsou úrokové áklady úvěru ve výši Kč jedorázově splatého za 8 6 měsíců ( 30 dů ) včetě úroku, je-li úroková sazba 9% p.a.? Př: Jak velkou kupí sílu bude mít 1 mil. Kč za 30 let, očekává-li se iflace 5% ročě? 7 Př: Spočítej a zázori, jak se měí výše zúročeého kapitálu (FV) s rostoucím počtem 8 úrokových období za rok, a vkladu ,- a ročí úrokovou sazbou 10 %. Sestav tabulku a graf
3 2. Přepočet ročích úrokových sazeb při růzé periodě připisováí úroků. Př: Zjistěte, jakou hodotu bude mít vklad Kč po 5, 10, letech, bude-li 9 průměré zhodoceí 3%. Porovejte jedoduché a složeé úrokováí. Graf. Př: Zjistěte, jakou hodotu bude mít vklad Kč po 5 letech, bude-li průměré 10 zhodoceí 5% a úroky budou připisováy p.a., p.s., p.q., p.m., p.d.. Graf. Používaé kódy: - AT - započítává se skutečý počet dí smluvího vztahu. Obvykle se epočítá 1. de - 30E celé měsíce se započítávají bez ohledu a skutečý počet dí jako 30 dů - 30A liší se od 30E maximálě o jede de, který je započte pouze v případě, že koec smluvího vztahu připade a posledí de v měsíci a současě začátek eí posledí de v měsíci Délka roku je 365 ebo 360 dí - AT/365 aglická metoda - AT/360 fracouzská, či meziárodí - 30E/360 ěmecká, či obchodí Př: Rozhoděte, která variata termíovaého účtu je výhodější 11 a) 12% ročí úroková sazba s p.d. b) 12,5% ročí úroková sazba s p.s. Efektiví úroková sazba (r e ) - ročí úroková sazba, která dává za rok při p.a. stejou budoucí hodotu jako ročí úroková sazba při častějším připisováí úroků. Saha o dosažeí stejého fiačího efektu při úročeí p.a. ( omiálí úr. sazba při ročím úrokovacím období je vyšší ež při úrokovacím období kratším ež rok) Umožňuje porovat růzé úrokové sazby srovávaé za stejé časové období, avšak s růzou četostí připisováí úroků. r m 1 + r e = (1 + ) m Př: Najděte r, která odpovídá úrokové sazbě 10% p.a., jsou-li úroky připisováy 12 a) p.s. b) p.q. c) p.m. Spojité připisováí úroků i e - azývá se úroková itezita FV = PV * ( 1 + r ) m* m lim (1 + m FV = PV * ( e r* ) r e = e r m r ) m = e r Př: Na kolik vzroste kapitál Kč za 5 let při spojitém úročeí a sazbě 5,5%? 13
4 3. Budoucí hodota auity, auita Budoucí hodota auity - pravidelé vklady jistiy (stejé částky) během celého období spořeí - úroky z úroků - spořeí a vkladí kížku, otevřeého podílového fodu, stavebí spořeí FV = m r m A r Auita - výše pravidelé (stále stejé) splátky úvěru během celého období spláceí - úroky z úroků - splátka hypotéky, úvěru stavebího spořeí, spotřebitelského úvěru, pravidelé čerpáí aspořeé částky po určitou dobu ( důchod, reta) PV r A = 1 1 r 1+ m m Př: Kolik aspoří pa Trpělivý za 30 let, spoří-li pravidelě měsíčě Kč: a) a termíovaý vklad (Ø ročí úrok 3%) b) do fodu peěžího trhu (Ø ročí zhodoceí 6%) c) do akciového fodu (Ø ročí zhodoceí 15%) Př: Kolik bude muset pravidelě měsíčě splácet paí Důvěřivá, vezme-li si úvěr Kč a 5 let za předpokladu, že úrok čií 12% p.a. a jde o auití spláceí? Peěží tok: Pohyb peěžích prostředků v čase (platby) a to jak příjmy (zaméko +) tak výdaje (zaméko - ). Př: Uvažujme peěží toky daé tabulkou a úrokovou mírou 4% při a) ročím připisováí úroků, b) spojitém připisováí. Roky Peěží toky Př: Účastík stavebího spořeí s aspořeou částkou Kč za rok získal od státu příspěvek 25% z aspořeé částky (2.250 Kč). Baka mu abídla úročeí 3% ročě. Vypočtěte: a) cílovou částku spořeí b) výos z této ivestice 4
5 4.Diskot a růzé druhy diskotováí (D) Je odměa ode de výplaty do de splatosti pohledávky (předlhůtí úročeí) - rozdíl mezi FV a PV - D = FV*d* d = diskotí míra (%) - Používá se ejčastěji pro eskot směek, část áhrady předem - Krátkodobé ceé papíry s jmeovitou hodotou jako hodotou budoucí. - státí pokladí poukázky (zisk je rozdíl mezi kupí a omiálí hodotou) - krátkodobá splatost Diskotováí: Výpočet současé hodoty z hodoty budoucí Př Osoba A vystavila osobě B směku a částku Kč s dobou splatosti 14 1 rok, s diskotí mírou 8%. Kolik osoba A ve skutečosti obdrží? Př Vypočítejte, kolik dostae vyplaceo kliet, jemuž baka eskotuje směku 15 o omiálí hodotě Kč 35 dí před dobou splatosti při diskotí sazbě 9% p.a. Vztah mezi polhůtí úrokovou sazbou a diskotí sazbou. Při použití diskotu je: současá hodota PV = FV *(1 - d*) budoucí hodota Při použití jedoduchého polhůtího úročeí je: současá hodota budoucí hodota FV = PV * (1 + r*) 5
6 Nomiálí výše kapitálu diskot 800 d = 10% 700 vyplaceý kapitál d = 20% čas 0,25 0,5 0,75 1 Př Porovejte diskotí sazbu a polhůtí úrokovou sazbu Eskotováa směka splatá za půl roku o omiálí hodotě Kč s ročí diskotí sazbou 12%. 2. Jedoduché úročeí s ročí úrokovou sazbou 12%, přičemž za půl roku se musí splatit Kč. Shodé výosy: r = 1 d d Diskotí faktor (v) udává současou hodotu jedotkového vkladu, který je splatý za 1 rok při úrokové sazbě r. Složeé: v = ( 1 + r ) -1 Jedoduché: v = ( 1 + r ) -1 Spojité: v = e -r PV = FV * v Smíšeé úročeí: Doba úročeí eí v celých letech, 0 je počet celých let, l je zbytek doby úročeí lomeý počtem příslušých jedotek za rok. FV = Pv * ( 1 + r ) 0 * ( 1 + l * r ) Př Kolik musíme uložit, abychom za 5 let a 3 měsíce měli obos Kč 17 při úrokové sazbě 9,6% p.a.? Úroky jsou připisováy jedou za rok, poecháváy a účtu a dále úročey. Př V ozámeí o aukci 91 deích SPP s omiálí hodotou 1 mil. Kč je jako max. 18 akceptovatelá (ročí) úroková míra uvedeo 5,65%. Jaká cea SPP odpovídala této úrokové míře? Jakou (ročí) míru zisku realizoval ivestor, který SPP koupil za tuto ceu a prodal ji za 58 dí (tj. 33 dy před splatostí) za ceu Kč? Př Směka a $ je splatá za dva roky a 5 měsíců. Jaký je její základ 19 při spojitém úrokováí s ročí omiálí úrokovou mírou 15%? 6
7 VZTAH MEZI BUDOUÍ A SOUČASNOU HODNOTOU VÝNOS INVESTIE, VÝNOSOVÁ KŘIVKA 1. Výos do splatosti pro pokladičí poukázku či bezkupoovou obligaci Obligace (Dluhopisy) - je dlouhodobý ceý papír, který vyjadřuje dlužický závazek emiteta vůči oprávěému majiteli dluhopisu Doba splatosti kdy dochází ke splaceí omiálí hodoty dluhopisu - může být upravea emitet si vyhradí právo a předčasé splaceí dluhopisů - (call opce), toto právo může být dáo majiteli dluhopisu (put opce) - dluhopisy s pevou kupoovou úrokovou sazbou - dluhopisy s pohyblivou kupoovou úrokovou sazbou (PRIBOR, LIBOR) - dluhopisy s ulovým kupoem ea dluhopisu (P) trží, teoretická P = F ( 1+ y) ( 1+ y) ( 1+ y) ( 1+ y) ročí kupoová úroková platba F omiálí hodota dluhopisu Počátečí - P = (1 + y) y * (1 + y) - + F * y = Koečá - P = ( 1 + y ) 1 + F y Př: Vypočítej teoretickou ceu dluhopisu s pevou kupoovou sazbou 10% p.a., 20 omiálí hodotou 1000 Kč, se splatostí 3 roky a při trží úrokové míře 11%. - je li kupo ulový Př: Vypočítejte teoretickou ceu dluhopisu s ulovým kupoem se splatostí 3 roky, 21 omiálí hodota dluhopisu čií 1000 Kč, při trží úrokové míře 11% p.a. Výos z dluhopisu (y) - kupoový úrokový výos - rozdíl mezi ceou kupí a prodejí (F) y NK FV = PV 1 Dluhopis s ulovým kupoem (y) Př: Jaký je výos dluhopisu s dobou splatosti 5 let, jestliže kupí cea byla Kč a 22 prodejí cea Kč? Úroky byly připisováy p.a., p.s., p.q. a p.m. 7
8 Př: Kolik bude stát obligace s omiálí hodotou Kč, splatá za 3 (5 let) roky, 23 jestliže její výos je 8% (9%)? Kupoová výosost Běžá výosost y k =. 100 yb =. 100 P trží cea F P Výosost do doby splatosti ( y DS ) P TR = F = 1 + y DS (1 + y DS ) 2 (1 + y DS ) (1 + y DS ) Výosost za dobu držby ( y DD ) P 0 = F = 1 + y DD (1 + y DD ) 2 (1 + y DD ) (1 + y DD ) P 0 aktuálí trží cea Alikvotí úrokový výos (AUV) - část kupoového úrokového výosu, odpovídající době od výplaty posledího kupou do de, ke kterému jej počítáme AUV % = p k * t v 360 p k kupoová úroková sazba dluhopisu t v délka výosového období Výosové období AUV P = B + B s ( 1 + y) 360 ( 1+ y) 360 ( 1+ y) 360 ( 1+ y) 360 B F B kde l je počet let do splatosti dluhopisu Čistá cea dluhopisu P L L P = P + AUV 8
9 Jiý ukazatel výososti- redita zjedodušeí výososti do doby splatosti P P0 r = + Výosost za dobu držby: P0 k P0 Aproximace zjedodušeí výpočtů výososti do doby splatosti Hawawiy ( F P) + r DS 0,6P + 0, 4F Obchodí metoda ( F P) + r DS P Př: Uvažujte dva pětileté dluhopisy v omiálí hodotě Kč s ročími kupoy, 24 přičemž dluhopis 1 má kupoovou sazbu 6% a trží ceu Kč a dluhopis 2 má kupoovou sazbu 14% a trží ceu Kč. Spočtěte a) běžý výos b) výos do splatosti c) aproximativí výosy. Př: Uvažujte tři pětileté dluhopisy v omiálí hodotě Kč s ročími kupoy, 25 přičemž dluhopis 1 má kupoovou sazbu 9,8% a trží ceu Kč, dluhopis 2 má kup. Sazbu 6% a trží ceu Kč a dluhopis 3 má kup. Sazbu 14% a trží ceu Kč. Spočtěte pro tyto dluhopisy a) hrubý výos do splatosti, b) čistý výos do splatosti s daňovou sazbou 15 %. Př: Jaké čisté výososti dosáhe kliet, jestliže uložil a počátku roku Kč a 26 šestiměsíčí termíovaý vklad při 10% úrokové sazbě p.a. a v poloviě roku kapitál včetě vyplaceých úroků zovu okamžitě uložil a šestiměsíčí term. Vklad při 12% úrokové sazbě p.a.?úroky z vkladů podléhají dai z příjmů ve výši 15%. Př: Dluhopis s pevou kupoovou úrokovou platbou má kup. Sazbu 10% p.a., omiálí 27 hodotu Kč a kupí ceu 950 Kč. Po jedom roce se dluhopis prodal za ceu Kč. Jaká byla hrubá a čistá výosost, jestliže úroky podléhají dai z příjmu 25%. 9
10 VÝNOSOVÉ KŘIVKY - vztah mezi výosem do splatosti a dobou do splatosti dluhopisů (státí) - kokrétí dluhopisy lišící se pouze dobou do splatosti (shodé další vlastosti) - s delší dobou do splatosti větší výos (rostoucí) Výosová křivka: bezkupoových dluhopisů kupoových dluhopisů Forwardová Rostoucí Klesající Výos do splatosti Výos do splatosti Doba splatosti Doba splatosti Bezkup. dluh. Kup. dluh. Forward. výosy Bootstrappig odhad výosové křivky bezkupoových dluhopisů pomocí kupoových dluhopisů Př: Máme tři kupoové dluhopisy v om. hodotě Kč s ročími kupoy jedoletý s kup. sazbou 5,8% a trží ceou Kč 2 - dvouletý s kup. sazbou 7,2% a trží ceou Kč 3 - tříletý s kup. sazbou 8,9% a trží ceou Kč. Odhaděte odpovídající hodoty výosové křivky bezkupoových dluhopisů. 10
11 FORWARDOVÁ KŘIVKA (očekáváí) - zázorňuje závislost mezi forwardovými výosy do splatosti a dobou do splatosti bezkupoových či kupoových dluhopisů - křivky rostoucí: forwardová leží vždy ad výosovými křivkami - je z roku a rok, z roku a dva, z roku a tři - křivky klesající: forwardová leží vždy pod výosovými křivkami - je-li rostoucí: trh očekává zvýšeí úrokových sazeb - je-li klesající, očekává sížeí úrokových sazeb F, k = ( k + ) y k k + y k DURAE Je to aritmetický průměr dob do splatosti jedotlivých plateb (kromě pořizovací cey), které souvisejí s dluhopisem a jsou vážey velikostmi plateb diskotovaých ke di emise. - průměrá doba do splatosti - průměrá doba pro získáí příjmů spojeých s dluhopisem (Macaulayova) D Mac = 1 2 F ( 1+ y) ( 1+ y) ( 1+ y) P dále je durace mírou citlivosti dluhopisu a změy tržích sazeb (modifikovaá) D mod = D Mac (1 + y) 11
12 D mod durace je tím ižší čím: P = 1 P y vyšší jsou platby plyoucí z dluhopisu do splatosti dříve platba z daého istrumetu astává kratší je celková doba do splatosti PV - čím meší hodota durace, tím meší jsou změy v jeho trží ceě vzhledem ke změám tržích úrokových sazeb P + 4% y - 1% y Př: Vypočítejte D Mac, D mod dluhopisu s pevou kupoovou úrokovou sazbou 8%, jestliže 30 omiálí hodota dluhopisu je Kč, doba do splatosti 3 roky, aktuálí trží cea je 950,25 Kč a výosost do doby splatosti tedy 10%. (Kupoové platby jsou vyplácey 1x ročě, prví bude ásledovat za rok). O kolik se změí cea tohoto dluhopisu, jestliže se změí úrokové sazby o 1%. Změy hodot dluhopisu při změách trží úrokové míry. Př: V tabulce jsou uvedey změy počátečí a kocové hodoty tříletého dluhopisu 31 v omiálí hodotě Kč s ročími kupoy a kup. sazbou 10% při trží úrokové míře 10%, jestliže trží úroková míra klese (vzroste) o 5% (tj. i = + 5 %). i PV PV FV FV -5% , , ,50-157,5 0% , ,00 5% 8 858, , ,50 162,5 Zpřesěí aproximací výpočtu durace se azývá kovexita.(x) X = 1. t (t +1). (1 + r) -t + (+1) FV (1 + r) - (1 + r) 2 PV 12
13 DLUHOPISOVÉ PORTFOLIO DURAE Je aritmetický průměr dob do splatosti jedotlivých plateb (kromě pořizovací cey), které souvisejí s dluhopisem a jsou vážey velikostmi plateb diskotovaých ke di emise. D - průměrá doba do splatosti - průměrá doba pro získáí příjmů spojeých s dluhopisem (Macaulayova) + F y ( 1+ y) ( 1+ y) 1 P1 + 2 P2 + + P = Dmac = P P mac Př: Vypočítej durace pro dluhopis s trží úrokovou mírou 10% Doba do splatosti Kupoová sazba c: 5% 10% 15% 1 1,0000 1,0000 1, ,8490 2,7355 2, , , , , , dále je durace mírou citlivosti dluhopisu a změy tržích sazeb (modifikovaá), o kolik se změí cea dluhopisu opačým směrem při změě výosů D - 1 P = P y durace je tím ižší čím: vyšší jsou platby plyoucí z dluhopisu do splatosti dříve platba z daého istrumetu astává kratší je celková doba do splatosti mod čím meší hodota durace, tím meší jsou změy v jeho trží ceě vzhledem ke změám tržích úrokových sazeb - vztah mezi ceou dluhopisu a výosem: 1. PV y 2. PV y Př: Uvažujme tříletý bezkupóový dluhopis, který má omiálí hodotu FV = Kč a poskytuje výos 5%. Do tohoto kupou ivestujeme a) a 2 roky b) a 5 let. Vypočtěte výos, ztrátu, jestliže de po ákupu se výosy síží, respektive zvýší o 1%. 13
14 Při změě ve výosech hrozí: a) riziko kapitálové ztráty ( zvýší-li se výosy) b) riziko ztráty z reivestice (síží-li se výosy) Ivestičí horizot: krátký utrpíme ztrátu při vzestupu výosů (kapitálová ztráta > výos z reivestice) dlouhý utrpíme ztrátu při poklesu výosů (ztráta z reivestice > kapitálový výos) Saha o elimiaci obou uvedeých rizik (imuizaci): Je-li ivestičí horizot rove (Macaulayově) duraci, potom se výosy a ztráty avzájem pokrývají, a to při vzestupu i poklesu výosů. Durace kupóového dluhopisu je vážeý průměr durací (dob do splatosti) jedotlivých peěžích toků reprezetovaých kupóy a omiálí hodotou, kde váhy odpovídají podílu jedotlivých diskotovaých peěžích toků a celkové ceě dluhopisu. Durace kupóového dluhopisu je středí (průměrá) doba života tohoto dluhopisu. D = D P + D P D P 1 1 P + P P Durace portfolia složeého z dluhopisů je vážeý průměr durací jedotlivých dluhopisů, přičemž váhy odpovídají podílu ce jedotlivých dluhopisů a celkové ceě portfolia. D = w 1 D 1 + w 2 D w D Př: hceme ivestovat částku Kč a dobu 3 let, přičemž k dispozici máme bezkupóové dluhopisy s dobou splatosti 1, 2, 3, 4, 5 let s jedotým výosem 5% (uvažujeme plochou výosovou křivku). Vytvoříme portfolia A, B, takto: A = 3, FV = Kč B = 2, FV = Kč = 4, FV = Kč = 1, FV = Kč =5, FV = Kč Kovexita portfolia složeého z dluhopisů je vážeý průměr kovexit jedotlivých dluhopisů, přičemž váhy odpovídají podílu ce jedotlivých dluhopisů a celkové ceě portfolia. X = X P + X 1 1 P X P + P P P 14
15 P B A 5% Y (%) Klesou-li výosy o 1%, zhodotí se portfolio o větší výos (koruový i procetí) ež o kolik klese jeho hodota, zvýší-li se výosy o 1% Př: hceme ivestovat částku Kč, přičemž máme k dispozici dluhopisy A, B s ásledujícími parametry: A: = 5, c = 12%, y = 12% B: = 2, c = 0%, y = 10% Jak budeme ivestovat a 3 roky? 15
16 Forvardové kotrakty forvardy DERIVÁTY - termíovaé kotrakty plěí v budoucosti Forvard závazek koupit či prodat Opčí kotrakty opce Opce právo koupit či prodat - určitý počet akcií - určitý počet akcií - za určeou ceu - za určeou ceu - k dohodutému datu - k dohodutému datu Forvard: - mám závazek koupit dlouhá pozice ( log positio ) - mám závazek prodat krátká pozice ( short positio ) F cea forvardu S obchodí cea T okamžik uzavřeí kotraktu t - okamžik uzavřeí obchodu r spojitá ročí úroková míra F t = S t e r (T-t) Př: ea akcie je Kč, přičemž ročí forwardová cea je rova F t = Kč při ročí úrokové míře 8%. Jakým způsobem tuto situaci využijeme? Futures kotrakty: stadardizovaé všichi akupují (prodávají) stejý kotrakt a předem staoveý počet akcií, vypořádaý ke stejému datu a většiou garatovaý burzou či jiak Riziko ztráty: dlouhá pozice (koupit) musím koupit, i když cea akcií poklese - ( S T F t ) krátká pozice (prodat) musím prodat, i když cea akcií stoupe - ( F t S T ) Krátká Dlouhá F t S T 16
17 Opce právo koupit či prodat all opce (ákupí) právo koupit Put opce (prodejí) právo prodat - určitý počet akcií - určitý počet akcií - za určeou ceu X - za určeou ceu X - k dohodutému datu - k dohodutému datu dlouhá pozice kupuje Evropské opce může být uplatěa pouze v čase T Americká opce může být uplatěa i před časem T all opce uplatěa právě tehdy když S T > X zisk = max { S T - X ; 0} Put opce uplatěa právě tehdy když S T < X zisk = max { X - S T ; 0} krátká pozice prodává zisk zisk call put X cea X cea Platba za vstup do dlouhé pozice c zisk zisk all short all log c X -c X cea cea 17
18 zisk zisk c cea X Put log X Put short -c cea 18
ÚROKVÁ SAZBA A VÝPOČET BUDOUCÍ HODNOTY. Závislost úroku na době splatnosti kapitálu
ÚROKVÁ SAZBA A VÝPOČET BUDOUÍ HODNOTY. Typy a druhy úročeí, budoucí hodota ivestice Úrok - odměa za získáí úvěru (cea za službu peěz) Ročí úroková sazba (míra)(i) úrok v % z hodoty kapitálu za časové období
VíceDURACE A INVESTIČNÍ HORIZONT PŘI INVESTOVÁNÍ DO DLUHOPISŮ
DURACE A INVESTIČNÍ HORIZONT PŘI INVESTOVÁNÍ DO DLUHOPISŮ Ivestičí horizot IH: doba, po kterou má ivestor v daé ivestici vázáy své peíze. Při ivestici do dluhopisu jsme vystavei riziku změy výosů Uvažujme
VícePojem času ve finančním rozhodování podniku
Pojem času ve fiačím rozhodováí podiku 1.1. Výzam faktoru času a základí metody jeho vyjádřeí Fiačí rozhodováí podiku je ovlivěo časem. Peěží prostředky získaé des mají větší hodotu ež tytéž peíze získaé
VíceFinanční řízení podniku. Téma: Časová hodnota peněz
Fiačí řízeí podiku Téma: Časová hodota peěz Faktor času se ve fiačím řízeí uplatňuje a) při rozhodováí o ivesticích b) při staoveí trží cey majetku podiku c) při ukládáí volých peěžích prostředků d) při
Vícecenný papír, jehož koupí si investor zajistí předem definované peněžní toky, které obdrží v budoucnosti
DLUHOPISY ceý papír, jehož koupí si ivestor zajistí předem defiovaé peěží toky, které obdrží v budoucosti podle doby splatosti ~ 1 rok dlouhodobé dluhopisy Pokladičí poukázky
VíceI. Výpočet čisté současné hodnoty upravené
I. Výpočet čisté současé hodoty upraveé Příklad 1 Projekt a výrobu laserových lamp pro dermatologii vyžaduje ivestici 4,2 mil. Kč. Předpokládají se rovoměré peěží příjmy po zdaěí ve výši 1,2 mil. Kč ročě
Více4 DOPADY ZPŮSOBŮ FINANCOVÁNÍ NA INVESTIČNÍ ROZHODOVÁNÍ
4 DOPADY ZPŮSOBŮ FACOVÁÍ A VESTČÍ ROZHODOVÁÍ 77 4. ČSTÁ SOUČASÁ HODOTA VČETĚ VLVU FLACE, CEOVÝCH ÁRŮSTŮ, DAÍ OPTMALZACE KAPTÁLOVÉ STRUKTURY Čistá současá hodota (et preset value) Jedá se o dyamickou metodu
Více-1- Finanční matematika. Složené úrokování
-- Fiačí ateatika Složeé úrokováí Při složeé úročeí se úroky přičítají k počátečíu kapitálu ( k poskytutí úvěru, k uložeéu vkladu ) a společě s í se úročí. Vzorec pro kapitál K po letech při složeé úročeí
VícePřehled vztahů k problematice jednoduchého úročení a úrokové sazby
Přehled vztahů k poblematice jedoduchého úočeí a úokové sazby Pozámka: Veškeé úokové sazby /předlhůtí i polhůtí/, diskotí sazby, míy iflace a sazby daě z příjmů je do uvedeých vzoců uto dosazovat v jejich
VíceÚROKVÁ SAZBA A VÝPOČET BUDOUCÍ HODNOTY
ÚROKVÁ SAZBA A VÝOČET BUDOUÍ HODNOTY. Tp a duh úočeí, budoucí hodota ivestice Úo - odměa za zísáí úvěu (cea za službu peěz) Ročí úoová sazba (mía)() úo v % z hodot apitálu za časové období řipisováí úoů:
VíceVarianta Pravděpodobnost Výnos A 1 Výnos A 2 1 0,1 1% 0,1 3% 0,3 2 0,2 12% 2,4 28% 5,6 3 0,3 6% 1,8 14% 4,2
Dobrý den. Kladno, 22. 3. 2007 21:35 Chtěl bych se všem omluvit za ten závěr přednášky. Bohužel mě chyba v jednom z příkladů vykolejila natolik, že jsem se již velice těžko soustředil na svůj výkon. Chtěl
VíceČasová hodnota peněz. Metody vyhodnocení efektivnosti investic. Příklad
Metody vyhodoceí efektvost vestc Časová hodota peěz Metody vyhodoceí Časová hodota peěz Prostředky, které máme k dspozc v současost mají vyšší hodotu ež prostředky, které budeme mít k dspozc v budoucost.
VíceI. Výpočet čisté současné hodnoty upravené
I. Výpočet čisté současé hodoty upraveé Příklad 1 Projekt a výrobu laserových lamp pro dermatologii vyžaduje ivestici 4,2 mil. Kč. Předpokládají se rovoměré peěží příjmy po zdaěí ve výši 1,2 mil. Kč ročě
VíceFINANČNÍ MATEMATIKA SBÍRKA ÚLOH
FINANČNÍ MATEMATIKA SBÍRKA ÚLOH Zpracováo v rámci projektu " Vzděláváí pro kokureceschopost - kokureceschopost pro Třeboňsko", registračí číslo CZ.1.07/1.1.10/02.0063 Gymázium, Třeboň, Na Sadech 308 Autor:
Více8.2.10 Příklady z finanční matematiky I
8..10 Příklady z fiačí matematiky I Předoklady: 807 Fiačí matematika se zabývá ukládáím a ůjčováím eěz, ojišťováím, odhady rizik aod. Poměrě důležitá a výosá discilía. Sořeí Při sořeí vkladatel uloží do
Více2. Finanční rozhodování firmy (řízení investic a inovací)
2. Fiačí rozhodováí firmy (řízeí ivestic a iovací) - fiačí rozhodováí je podmožiou fiačího řízeí (domiatí) - kompoety = složky: výběr optimálí variaty zdrojů fiacováí užití získaých prostředků uvážeí vlivu
VíceII. METODICKÉ PŘÍKLADY SESTAVENÍ VÝKAZU PAP
Istituce i zazameaé operace jsou fiktiví. Ukázkové případy - sezam Případ Vykazující účetí Vykázaé Části I až XIII Straa jedotka (zkráceě až 3) A Půjčka od baky Město, v roce +1, T2 v roce +1, T7, T8,
VíceFINANČNÍ MATEMATIKA. Jarmila Radová KBP VŠE Praha
FINANČNÍ MATEMATIA Jarmila Radová BP VŠE Praha Osova Jedoduché úročeí Diskotováí krátkodobé ceé papíry Metody vedeí a výpočtu úroku z běžého účtu Skoto Složeé úrokováí Budoucí hodota auity spořeí Současá
Více2,3 ČTYŘI STANDARDNÍ METODY I, ČTYŘI STANDARDNÍ METODY II
2,3 ČTYŘI STADARDÍ METODY I, ČTYŘI STADARDÍ METODY II 1.1.1 Statické metody a) ARR - Average Rate of Retur průměrý ročí čistý zisk (po zdaěí) ARR *100 % ( 20 ) ivestic do projektu V čitateli výrazu ( 20
VíceDLUHOPISY. Třídění z hlediska doby splatnosti
DLUHOISY - dlouhodobý obchodovatelý ceý papír - má staoveou dobu splatost - vyadřue závaze emteta oblgace (dlužía) vůč matel oblgace (věřtel) Tříděí z hledsa doby splatost - rátodobé : splatost do 1 rou
VíceSPOŘENÍ. Spoření krátkodobé
SPOŘENÍ Krátkodobé- doba spořeí epřesáhe jedo úrokové období (obvykle 1 rok). Úroky jsou přpsováy a koc doby spořeí. Jedotlvé složky jsou úročey a základě jedoduchého úročeí. Dlouhodobé doba spořeí bude
VíceFINANČNÍ A INVESTIČNÍ MATEMATIKA 1 Metodický list č. 1
FINANČNÍ A INVESTIČNÍ MATEMATIKA 1 Metodický list č. 1 Název tématického celku: Úroková sazba a výpočet budoucí hodnoty Cíl: Základním cílem tohoto tematického celku je vysvětlit pojem úroku a roční úrokové
VíceČeské účetní standardy 006 Kurzové rozdíly
České účetí stadardy METODICKÝ ig. u Vykazováí v Vymezeí w Oceňováí Odpisováí, postup účtováí y Ivetarizace z Aalytická evidece { Podrozvahová evidece Zveřejňováí České účetí stadardy 2017 2 22 1 v Vymezeí
VíceTržní ceny odrážejí a zahrnují veškeré informace předpokládá se efektivní trh, pro cenu c t tedy platí c t = c t + ε t.
Techická aalýza Techická aalýza z vývoje cey a obchodovaých objemů akcie odvozuje odhad budoucího vývoje cey. Dalšími metodami odhadu vývoje ce akcií jsou apř. fudametálí aalýza (zkoumá podrobě účetictví
VícePODNIKOVÁ EKONOMIKA 3. Cena cenných papírů
Semárky, předášky, bakalářky, testy - ekoome, ace, účetctví, ačí trhy, maagemet, právo, hstore... PODNIKOVÁ EKONOMIKA 3. Cea ceých papírů Ceé papíry jsou jedím ze způsobů, jak podk může získat potřebý
Více8.3.1 Vklady, jednoduché a složené úrokování
8..1 Vklady, jedoduché a složeé úrokováí Předoklady: 81 Fiačí matematika se zabývá ukládáím a ůjčováím eěz, ojišťováím, odhady rizik aod. Poměrě důležitá a výosá discilía. Sořeí Při sořeí vkladatel uloží
VíceMakroekonomie cvičení 1
Makroekoomie cvičeí 1 D = poptávka. S = Nabídka. Q = Možství. P = Cea. Q* = Rovovážé možství (Q E ). P* = Rovovážá caa (P E ). L = Práce. K = Kapitál. C = Spotřeba domácosti. LR = Dlouhé období. SR = Krátké
VíceVzorový příklad na rozhodování BPH_ZMAN
Vzorový příklad a rozhodováí BPH_ZMAN Základí charakteristiky a začeí symbol verbálí vyjádřeí iterval C g g-tý cíl g = 1,.. s V i i-tá variata i = 1,.. m K j j-té kriterium j = 1,.. v j x ij u ij váha
VíceFINANČNÍ A INVESTIČNÍ MATEMATIKA RNDr. Petr Budinský, CSc. FINANČNÍ MATEMATIKA Budoucí hodnota při různých typech úročení FINANČNÍ A INVESTIČNÍ MATEMATIKA 2 Příklad: Uvažujme FV = 100.000 Kč a úrokovou
Více12. N á h o d n ý v ý b ě r
12. N á h o d ý v ý b ě r Při sledováí a studiu vlastostí áhodých výsledků pozáme charakter rozděleí z toho, že opakovaý áhodý pokus ám dává za stejých podmíek růzé výsledky. Ty odpovídají hodotám jedotlivých
VíceObligace obsah přednášky
Obligace obsah přednášky 1) Úvod do cenných papírů 2) Úvod do obligací (vymezení, dělení) 3) Cena obligace (teoretická, tržní, kotace) 4) Výnosnost obligace 5) Cena kupónové obligace mezi kupónovými platbami
VíceEkonomika podniku. Katedra ekonomiky, manažerství a humanitních věd Fakulta elektrotechnická ČVUT v Praze. Ing. Kučerková Blanka, 2011
Evropský socálí fod Praha & EU: Ivesujee do vaší budoucos Ekooka podku aedra ekooky, aažersví a huaích věd Fakula elekroechcká ČVUT v Praze Ig. učerková Blaka, 20 Úrokový poče, základy fačí aeaky (BI-EP)
Více- Období splátek (stejné jako úrokovací období x odlišné od úrokovacího období)
5.1. UMO µrování DLUHU 87 5.1 Umoµrováí dluhu Nejµcastµejší metoda spláceí úroµceého úvµeru (p ujµcky, dluhu) je umoµreí daého úvµeru (amortizatio). okud jsou splátky stejµe velké, jedá se o problém µrešeý
VíceTento materiál vznikl díky Operačnímu programu Praha Adaptabilita CZ.2.17/3.1.00/33254
Evropský sociálí fod Praha & EU: Ivestujeme do vaší budoucosti Teto materiál vzikl díky Operačímu programu Praha Adaptabilita CZ.2.17/3.1.00/33254 Maažerské kvatitativí metody II - předáška č.1 - Dyamické
Více6 Intervalové odhady. spočteme aritmetický průměr, pak tyto průměry se budou chovat jako by pocházely z normálního. nekonečna.
6 Itervalové odhady parametrů základího souboru V předchozích kapitolách jsme se zabývali ejprve základím zpracováím experimetálích dat: grafické zobrazeí dat, výpočty výběrových charakteristik kapitola
Více19.10.2015. Finanční matematika. Čas ve finanční matematice. Finanční matematika v osobních a rodinných financích
Finanční matematika v osobních a rodinných financích Garant: Ing. Martin Širůček, Ph.D. Lektor: Ing. Martin Širůček, Ph.D. - doktorské studium oboru Finance na Provozně ekonomické fakultě Mendelovy univerzity
VíceD = H = 1. člen posloupnosti... a 1 2. člen posloupnosti... a 2 3. člen posloupnosti... a 3... n. člen posloupnosti... a n
/9 POSLOUPNOSTI Zákldí pojmy: Defiice poslouposti Vlstosti poslouposti Určeí poslouposti Aritmetická posloupost Geometrická posloupost Užití poslouposti. Defiice poslouposti Př. Sestrojte grf fukce y =.x
VíceFINANČNÍ A INVESTIČNÍ MATEMATIKA Metodický list č. 1
FINANČNÍ A INVESTIČNÍ MATEMATIKA Metodický list č. 1 Název tématického celku: Úroková sazba a výpočet budoucí hodnoty Cíl: Základním cílem tohoto tematického celku je vysvětlit pojem úroku a roční úrokové
VíceDeskriptivní statistika 1
Deskriptiví statistika 1 1 Tyto materiály byly vytvořey za pomoci gratu FRVŠ číslo 1145/2004. Základí charakteristiky souboru Pro lepší představu používáme k popisu vlastostí zkoumaého jevu určité charakteristiky
VíceMod(x) = 2, Med(x) = = 2
Pracoví list č.. Při zjišťováí počtu ezletilých dětí ve třiceti vybraých rodiách byly získáy tyto výsledky:,,,,,,,,,,,,,,,,,,,,,,,,,,,,,. Uspořádejte získaé údaje do tabulky rozděleí četostí a vyjádřete
Více10.3 GEOMERTICKÝ PRŮMĚR
Středí hodoty, geometrický průměr Aleš Drobík straa 1 10.3 GEOMERTICKÝ PRŮMĚR V matematice se geometrický průměr prostý staoví obdobě jako aritmetický průměr prostý, pouze operace jsou o řád vyšší: místo
VícePřípravný kurz FA. Finanční matematika Martin Širůček 1
Přípravný kurz FA Finanční matematika 1 Úvod čas ve finanční matematice, daně, inflace Jednoduché a složené úročení, kombinace Spoření a pravidelné investice Důchody (současná hodnota anuity) Kombinace
VícePODNIKOVÁ EKONOMIKA A MANAGEMENT (2-letý) (písemný test, varianta C)
Přijímací řízeí pro akademický rok 24/ a magisterský studijí program: PODNIKOVÁ EKONOMIKA A MANAGEMENT (2-letý) (písemý test, variata C) Zde alepte své uiverzití číslo U každé otázky či podotázky v ásledujícím
VícePENÍZE, BANKY, FINANČNÍ TRHY
PENÍZE, BANKY, FINANČNÍ TRHY Úročení 2 1. Jednoduché úročení Kapitál, Jistina označení pro peněžní částku Úrok odměna věřitele, u dlužníka je to cena za úvěr = CENA PENĚZ Doba splatnosti doba, po kterou
VíceJednotlivé snímky lze použít jako studijní materiál.
Číslo projektu Číslo mteriálu CZ..7/../.9 VY Iovce_8_MA_._ Využití geometrické poslouposti prcoví list Název školy Středí odborá škol Středí odboré učiliště, Hustopeče, Msrykovo ám. Autor Temtický celek
VíceMetodika projektů generujících příjmy
Příloha: 9 Metodka projektů geerujících příjmy Účost: 23. 1. 2009 Verze č. 6.0 1. Výchozí podmíky - Obecá pravdla Postup u projektů geerujících příjmy vychází z čláku 55 Obecého ařízeí č. 1083/2006 a vyplývá
Víceje konvergentní, právě když existuje číslo a R tak, že pro všechna přirozená <. Číslu a říkáme limita posloupnosti ( ) n n 1 n n n
8.3. Limity ěkterých posloupostí Předpoklady: 83 Pedagogická pozámka: Tuto a tři ásledující hodiy je možé probrat za dvě vyučovací hodiy. V této hodiě je možé vyechat dokazováí limit v příkladu 3. Opakováí
VíceFINANČNÍ MATEMATIKA- SLOŽENÉ ÚROKOVÁNÍ
Projek ŠABLONY NA GVM Gymázium Velké Meziříčí regisračí číslo projeku: CZ..7/../.98 IV- Iovace a zkvaliěí výuky směřující k rozvoji maemaické gramoosi žáků sředích škol FINANČNÍ MATEMATIA- SLOŽENÉ ÚROOVÁNÍ
VíceFINANČNÍ MATEMATIKA- JEDNODUCHÉ ÚROKOVÁNÍ
Projek ŠABLONY NA GVM Gymázium Velké Meziříčí regisračí číslo projeku: CZ..7/.5./34.948 IV-2 Iovace a zkvaliěí výuky směřující k rozvoji maemaické gramoosi žáků sředích škol FINANČNÍ MATEMATIA- JEDNODCHÉ
Více6. FUNKCE A POSLOUPNOSTI
6. FUNKCE A POSLOUPNOSTI Fukce Dovedosti:. Základí pozatky o fukcích -Chápat defiici fukce,obvyklý způsob jejího zadáváí a pojmy defiičí obor hodot fukce. U fukcí zadaých předpisem umět správě operovat
VíceVýroční zpráva fondů společnosti Pioneer investiční společnost, a.s. - neauditovaná
Výročí zpráva fodů společosti Pioeer ivestičí společost, a.s. - eauditovaá Obsah 1. Účetí závěrka: Pioeer Sporokoto, Pioeer obligačí fod, Pioeer růstový fod, Pioeer dyamický fod, Pioeer akciový fod, BALANCOVANÝ
VíceTéma: Jednoduché úročení
Téma: Jednoduché úročení 1. Půjčili jste 10 000 Kč. Za 5 měsíců Vám vrátili 11 000 Kč. Jaká byla výnosnost této půjčky (při jaké úrokové sazbě jste ji poskytli)? [24 % p. a.] 2. Za kolik dnů vzroste vklad
Vícef B 6. Funkce a posloupnosti 3 patří funkci dané předpisem y = 2 x + 3. [všechny] 1) Rozhodněte, která z dvojic [ ;9][, 0;3 ][, 2;7]
6. Fukce a poslouposti ) Rozoděte, která z dvojic [ ;9[, 0; [, ; patří fukci daé předpisem y +. [všecy ) Auto má spotřebu 6 l beziu a 00 km. Na začátku jízdy mělo v plé ádrži 6 l beziu. a) Vyjádřete závislost
VíceVyužití účetních dat pro finanční řízení
Využtí účetích dat pro fačí řízeí KAPITOLA 4 V rác této kaptoly se zaěříe a časovou hodotu peěz (a to včetě oceňováí ceých papírů), která se prolíá celý vestčí rozhodováí, dále a fačí aalýzu (vycházející
VíceDůchody. Současná hodnota anuity. Důchody rozdělení. Důchody univerzální vztah. a) Bezprostřední b) Odložený. a) Dočasný b) Věčný
Důchody Současná hodnota anuity Důchody rozdělení a) Bezprostřední b) Odložený a) Dočasný b) Věčný a) Předlhůtní b) Polhůtní Existence jednoho univerzálního vzorečku! Ostatní vztahy jsou pouze odvozené
VícePODNIKOVÁ EKONOMIKA A MANAGEMENT (2-letý) (písemný test, varianta B)
Přijímací řízeí pro akademický rok 24/5 a magisterský studijí program: PODNIKOVÁ EKONOMIKA A MANAGEMENT (2-letý) (písemý test, variata B) Zde alepte své uiverzití číslo U každé otázky či podotázky v ásledujícím
VícePŘIJÍMACÍ ŘÍZENÍ PRO ŠKOLNÍ ROK 2012/2013
PŘIJÍMACÍ ŘÍZENÍ PRO ŠKOLNÍ ROK 2012/2013 OSNOVA 1. Práví předpisy 2. Přijímací řízeí 3. Termíy 4. Hodoceí uchazečů 5. Rozhodutí 6. Další kola přijímacího řízeí 7. Zápisový lístek 8. Jedoté přijímací zkoušky
VíceVyužití čisté současné hodnoty při posuzování investičních projektů
Bakoví istitut vysoká škola Praha Matematika a statistika Využití čisté současé hodoty při posuzováí ivestičích projektů Bakalářská práce Autor: Jiří Buk Bakoví maagemet, komerčí bakovictví Vedoucí práce:
VíceSPOTŘEBITELSKÝ ÚVĚR. Na začátku provedeme inicializaci proměnných jejich vynulováním příkazem "restart". To oceníme při opakovaném použití dokumentu.
SPOTŘEBITELSKÝ ÚVĚR Úloha 3 - Fiacováí stavebích úprav Rozhodli jsme se pro stavebí úpravy v bytě. Po zhotoveí rozpočt a tyto úpravy jsme zjistili, že ám chybí ještě 30 000,-Kč. Máme možost si tto část
Více3 Jednoduchý a složený úrok, budoucí a současná hodnota, střadatel, fondovatel, nestejné peněžní proudy
3 Jednoduchý a složený úrok, budoucí a současná hodnota, střadatel, fondovatel, nestejné peněžní proudy Stejné nominální částky mají v různých obdobích různou hodnotu tj. koruna dnes má jinou hodnotu,
Více10.2.3 VÁŽENÝ ARITMETICKÝ PRŮMĚR S REÁLNÝMI VAHAMI
Středí hodoty Artmetcý průměr vážeý Aleš Drobí straa 0 VÁŽENÝ ARITMETICKÝ PRŮMĚR S REÁLNÝMI VAHAMI Zatím jsme počítal s tím, že četost ve vztahu pro vážeý artmetcý průměr byla přrozeá čísla Četost mohou
VíceOPRAVENKA MANAŽERSKÉ FINANCE (1.vydání 2009)
str. 24 odkaz před kapitolou 3.4 => kapitole 15 Dividendová politika str. 58, příklad 5.1 správné zadání zní: Akciová společnost Belladona a. s. se základním kapitálem ve výši 35 mil. Kč, který je rozdělen
VíceFINANČNÍ A INVESTIČNÍ MATEMATIKA 2
FINANČNÍ A INVESTIČNÍ MATEMATIKA 2 Metodický list č. 1 Název tématického celku: Dluhopisy a dluhopisové portfolio I. Cíl: Základním cílem tohoto tematického celku je popsat dluhopisy jako investiční instrumenty,
VíceP2: Statistické zpracování dat
P: Statistické zpracováí dat Úvodem - Statistika: věda, zabývající se shromažďováím, tříděím a ásledým popisem velkých datových souborů. - Základem statistiky je teorie pravděpodobosti, založeá a popisu
VíceSekvenční logické obvody(lso)
Sekvečí logické obvody(lso) 1. Logické sekvečí obvody, tzv. paměťové čley, jsou obvody u kterých výstupí stavy ezávisí je a okamžitých hodotách vstupích sigálů, ale jsou závislé i a předcházejících hodotách
VícePro statistické šetření si zvolte si statistický soubor např. všichni žáci třídy (několika tříd, školy apod.).
STATISTIKA Statistické šetřeí Proveďte a vyhodoťte statistické šetřeí:. Zvolte si statistický soubor. 2. Zvolte si určitý zak (zaky), které budete vyhodocovat. 3. Určete absolutí a relativí četosti zaků,
VícePříloha č. 7 Dodatku ke Smlouvě o službách Systém měření kvality Služeb
Příloha č. 7 Dodatku ke Smlouvě o službách Systém měřeí kvality Služeb Dodavatel a Objedatel se dohodli a ahrazeí Přílohy C - Systém měřeí kvality Služeb Obchodích podmíek Smlouvy o službách touto Přílohou
VíceSTATISTIKA. Statistika se těší pochybnému vyznamenání tím, že je nejvíce nepochopeným vědním oborem. H. Levinson
STATISTIKA Statistika se těší pochybému vyzameáí tím, že je ejvíce epochopeým vědím oborem. H. Leviso Charakterizace statistického souboru Statistický soubor Prvek souboru Zak prvku kvatitativí teplota,
Více1 Oceňování finančního majetku, jednoduchý a složený úrok, budoucí a současná hodnota
1 Oceňování finančního majetku, jednoduchý a složený úrok, budoucí a současná hodnota Stejné nominální částky mají v různých obdobích různou hodnotu tj. koruna dnes má jinou hodnotu, než koruna zítra.
Víceje konvergentní, právě když existuje číslo a R tak, že pro všechna přirozená <. Číslu a říkáme limita posloupnosti ( ) n n 1 n n n
8.3. Limity ěkterých posloupostí Předpoklady: 83 Opakováí z miulé hodiy: 8 Hodoty poslouposti + se pro blížící se k ekoeču blíží k a to tak že mezi = posloupostí a číslem eexistuje žádá mezera říkáme že
VíceINFLUENCE OF THE ENVIRONMENTAL LEGISLATION ON THE VALUE OF THE ENTERPRISE TECHNICAL EQUIPMENT
INFLUENCE OF THE ENVIRONMENTAL LEGISLATION ON THE VALUE OF THE ENTERPRISE TECHNICAL EQUIPMENT VLIV ENVIRONMENTÁLNÍ LEGISLATIVY NA HODNOTU TECHNICKÝCH ZAŘÍZENÍ PODNIKU Paseka P., Mareček J. Departmet of
Více8.2.1 Aritmetická posloupnost I
8.2. Aritmetická posloupost I Předpoklady: 80, 802, 803, 807 Pedagogická pozámka: V hodiě rozdělím třídu a dvě skupiy a každá z ich dělá jede z prvích dvou příkladů. Čley posloupostí pak při kotrole vypíšu
Více1 POPISNÁ STATISTIKA V PROGRAMU MS EXCEL
Elea Mielcová, Radmila Stoklasová a Jaroslav Ramík; Statistické programy POPISNÁ STATISTIKA V PROGRAMU MS EXCEL RYCHLÝ NÁHLED KAPITOLY Žádý výzkum se v deší době evyhe statistickému zpracováí dat. Je jedo,
Více17. Statistické hypotézy parametrické testy
7. Statistické hypotézy parametrické testy V této části se budeme zabývat statistickými hypotézami, pomocí vyšetřujeme jedotlivé parametry populace. K takovýmto šetřeím většiou využíváme ám již dobře zámé
VíceInvestiční činnost. Existují různá pojetí investiční činnosti: Z pohledu ekonomické teorie. Podnikové pojetí investic
Ivesičí čios Exisují růzá pojeí ivesičí čiosi: Z pohledu ekoomické eorie Podikové pojeí ivesic Klasifikace ivesic v podiku 1) Hmoé (věcé, fyzické, kapiálové) ivesice 2) Nehmoé (emaeriálí) ivesice 3) Fiačí
VíceFinanční matematika. Mgr. Tat ána Funioková, Ph.D. 17. 9. 2012. Katedra matematických metod v ekonomice
Finanční matematika 1. přednáška Mgr. Tat ána Funioková, Ph.D. Vysoká škola báňská Technická univerzita Ostrava Katedra matematických metod v ekonomice 17. 9. 2012 Mgr. Tat ána Funioková, Ph.D. (VŠB TUO)
VícePříloha č. 9 PPŽP Metodika projektů generujících příjmy
Příloha č. 9 PPŽP Metodika projektů geerujících příjmy Účiost: 1. 4. 2010 Verze č. 11.0 ~ 1 ~ 1. Výchozí podmíky - Obecá pravidla Postup u projektů geerujících příjmy vychází z čláku 55 Obecého ařízeí
VícePravděpodobnost a aplikovaná statistika
Pravděpodobost a aplikovaá statistika MGR. JANA SEKNIČKOVÁ, PH.D. 4. KAPITOLA STATISTICKÉ CHARAKTERISTIKY 16.10.2017 23.10.2017 Přehled témat 1. Pravděpodobost (defiice, využití, výpočet pravděpodobostí
Více8. Základy statistiky. 8.1 Statistický soubor
8. Základy statistiky 7. ročík - 8. Základy statistiky Statistika je vědí obor, který se zabývá zpracováím hromadých jevů. Tvoří základ pro řadu procesů řízeí, rozhodováí a orgaizováí, protoţe a základě
VíceMATICOVÉ HRY MATICOVÝCH HER
MATICOVÉ HRY FORMULACE, KONCEPCE ŘEŠENÍ, SMÍŠENÉ ROZŠÍŘENÍ MATICOVÝCH HER, ZÁKLADNÍ VĚTA MATICOVÝCH HER CO JE TO TEORIE HER A ČÍM SE ZABÝVÁ? Teorie her je ekoomická vědí disciplía, která se zabývá studiem
VíceAnalýza cenných papírů 2 Luděk BENADA E-mail: 75970@mail.muni.cz č. dveří 533 508 Boris ŠTURC sturc@mail.muni.cz Konzultační hodiny: pá 16:20-17:5017:50 čt dle dohody Dluhopisy Dluhový instrument CP peněžního
VíceSbírka příkladů z finanční matematiky Michal Veselý 1
Sbírka příkladů z finanční matematiky Michal Veselý 1 Jednoduché úročení Příklad 1.1. Do banky jste na běžný účet uložil(a) vklad ve výši 95 000 Kč dne 15. 8. 2013 a i s úroky jej vybral(a) dne 31. 12.
Vícezákladním prvkem teorie křivek v počítačové grafice křivky polynomiální n
Petra Suryková Modelováí křivek základím prvkem teorie křivek v počítačové grafice křivky polyomiálí Q( t) a a t... a t polyomiálí křivky můžeme sado vyčíslit sado diferecovatelé lze z ich skládat křivky
VícePODNIKOVÁ EKONOMIKA A MANAGEMENT (2-letý) (písemný test)
Přijímací řízeí pro akademický rok 2007/08 a magisterský studijí program: Zde alepte své uiverzití číslo PODNIKOVÁ EKONOMIKA A MANAGEMENT (2-letý) (písemý test) U každé otázky či podotázky v ásledujícím
Více(varianta s odděleným hodnocením investičních nákladů vynaložených na jednotlivé privatizované objekty)
(variata s odděleým hodoceím ivestičích ákladů vyaložeých a jedotlivé privatizovaé objekty) Vypracoval: YBN CONSULT - Zalecký ústav s.r.o. Ig. Bedřich Malý Ig. Yvetta Fialová, CSc. Václavské áměstí 1 110
VíceUkázka knihy z internetového knihkupectví www.kosmas.cz
Ukázka knihy z internetového knihkupectví www.kosmas.cz U k á z k a k n i h y z i n t e r n e t o v é h o k n i h k u p e c t v í w w w. k o s m a s. c z, U I D : K O S 1 8 7 6 2 Edice Osobní a rodinné
VíceÚroková sazba. Typy úrokových sazeb: pevné (fixní) pohyblivé
Úroky, úročení Úroková sazba Typy úrokových sazeb: pevné (fixní) pohyblivé Úrokové období roční p.a. (per annum), pololetní p.s. (per semestre), čtvrtletní p.q. (per quartale), měsíční p.m. (per mensem),
VíceMendelova univerzita v Brně Statistika projekt
Medelova uverzta v Brě Statstka projekt Vypracoval: Marek Hučík Obsah 1. Úvod... 3. Skupové tříděí... 3 o Data:... 3 o Počet hodot:... 3 o Varačí rozpětí:... 3 o Počet tříd:... 4 o Šířka tervalu:... 4
VíceČasová hodnota peněz (2015-01-18)
Časová hodnota peněz (2015-01-18) Základní pojem moderní teorie financí. Říká nám, že peníze svoji hodnotu v čase mění. Díky časové hodnotě peněz jsme schopni porovnat různé investiční nebo úvěrové nabídky
VíceFinanční řízení podniku cvičení 1. I) Vývoj vztahů mezi celkovým majetkem a kapitálem má svá ustálená pravidla.
Finanční řízení podniku cvičení 1 I) Vývoj vztahů mezi celkovým majetkem a kapitálem má svá ustálená pravidla. Některé vztahy mezi majetkem a kapitálem 1) Majetek je ve stejné výši jako kapitál, proto
VíceNáhodný výběr 1. Náhodný výběr
Náhodý výběr 1 Náhodý výběr Matematická statistika poskytuje metody pro popis veliči áhodého charakteru pomocí jejich pozorovaých hodot, přesěji řečeo jde o určeí důležitých vlastostí rozděleí pravděpodobosti
VíceDruhy cenných papírů: - majetkové (akcie, podílové listy) - dlužné (dluhopisy, hyp.zástavní listy, směnky, ad.)
4. Účtování cenných papírů Druhy cenných papírů: - majetkové (akcie, podílové listy) - dlužné (dluhopisy, hyp.zástavní listy, směnky, ad.) Cenné papíry členění (v souladu s IAS 39) : k prodeji k obchodování
VíceFinanční management. Nejefektivnější portfolio (leží na hranici) dle Markowitze: Polemika o významu dividendové politiky
Finanční management Dividendová politika, opce, hranice pro cenu opce, opční techniky Nejefektivnější portfolio (leží na hranici dle Markowitze: existuje jiné s vyšším výnosem a nižší směrodatnou odchylkou
VícePODNIKOVÁ EKONOMIKA A MANAGEMENT (2-letý) (písemný test)
Přijímací řízeí pro akademický rok 2007/08 a magisterský studijí program: Zde alepte své uiverzití číslo PODNIKOVÁ EKONOMIKA A MANAGEMENT (2-letý) (písemý test) U každé otázky či podotázky v ásledujícím
VíceTEORETICKÉ PŘEDPOKLADY Garantovaných produktů
TEORETICKÉ PŘEDPOKLADY Garantovaných produktů 1 Výnosově -rizikový profil Knockoutprodukty Warrants Výnosová-šance Garantované produkty Dluhopisy Diskontové produkty Airbag Bonus Indexové produkty Akciové
VíceK n = lim K 0.(1 + i/m) m.n. K n = K 0.e i.n. Stav kapitálu při spojitém úročení:
Finanční matematika Spojité úročení Doposud při výpočtu stavu kapitálu na konci doby uložení byl proveden za (tacitního) předpokladu, že četnost připisování úroku za 1 rok m je konečné číslo délka jednoho
Více6. Posloupnosti a jejich limity, řady
Moderí techologie ve studiu aplikovaé fyziky CZ..07/..00/07.008 6. Poslouposti a jejich limity, řady Posloupost je speciálí, důležitý příklad fukce. Při praktickém měřeí hodot určité fyzikálí veličiy dostáváme
VíceRadim Gottwald. Úvod
VYUŽITÍ URACE U OBLIGACÍ PŘI ZAJIŠTĚNÍ PROTI RIZIKU ZMĚNY ÚROKOVÉ SAZBY # Radim Gottwald Úvod Na finančních trzích existuje mnoho typů cenných papírů vhodných k investování. Jedním z nich jsou obligace.
VíceOpakování. Metody hodnocení efektivnosti investic. Finanční model. Pravidla pro sestavení CF. Investiční fáze FINANČNÍ MODEL INVESTIČNÍHO ZÁMĚRU
Metody hodoceí efektvost vestc Opakováí Typy vazeb v uzlové síťové grafu K čeu slouží stude využtelost Fačí odel vestčího záěru Časová hodota peěz Metody vyhodoceí Napšte strukturu propočtu Fačí odel FINANČNÍ
VíceFinanční trhy Úvod do finančních derivátů
Finanční trhy Úvod do finančních derivátů Ing. Gabriela Oškrdalová e-mail: oskrdalova@mail.muni.cz Tento studijní materiál byl vytvořen jako výstup z projektu č. CZ.1.07/2.2.00/15.0189. 2.2.2013 Finanční
Více