b může být 3členná variace ze dvou prvků a, b.

Rozměr: px
Začít zobrazení ze stránky:

Download "b může být 3členná variace ze dvou prvků a, b."

Transkript

1 Variace s opaováím Variace té třídy s opaováím z prvů je uspořádaá tice sestaveá z těchto prvů ta, že aždý se v í vysytuje ejvýše rát. Přílad: Uveďte všechy čleé variace s opaováím ze tří prvů (, (, ( c), (, (, ( c), ( c,, ( c,, ( c) c,. a, c. Pozáma: Variace té třídy (bez opaováí) z prvů existovaly pouze pro. Variace té třídy s opaováím z prvů existují i pro a, b může být 3čleá variace ze dvou prvů b. Počet V ( ) > ; ( ) všech variací té třídy s opaováím z prvů je ( ) Ja určíme počet variací -té třídy s opaováím z prvů? Každý čle uspořádaé tice je možé vybrat způsoby. Podle ombiatoricého pravidla součiu je počet těchto uspořádaých tic rove součiu.... V. rát Permutace opaováím Aagram je usupeí písme, teré vzie přemístěím písme slova ebo věty, jejíž obsah chceme utajit. V aagramu AABIIKKMNOORT resp. MINIKABAROTOK je uryt ázev této apitoly. V miulosti jsme se zabývali permutacemi z prvů, tj. uspořádaými -ticemi, v ichž je aždý z daých prvů zastoupe právě jedou. Zoumejme yí uspořádaé supiy, v ichž je aždý z daých prvů, ozačme je a, a, a3,..., a, zastoupe aspoň jedou, a to v předem určeém počtu: -rát prve a, -rát prve a,..., -rát prve a. Vypišme pro ilustraci všechy tyto uspořádaé supiy pro případ dvou prvů b, v ichž se prve a opauje dvarát a prve b třirát, tj. pro případ, 3 ; jde o tyto uspořádaé pětice: ( a,, ( a,, ( a,, ( a,, ( b ( b,, ( b,, ( b,, ( b,, ( b,,,. Tyto supiy jsou příladem permutací s opaováím, přesěji permutací s opaováím ze dvou prvů, z ichž jede se opauje dvarát a druhý třirát. Permutace s opaováím z prvů je uspořádaá -tice sestaveá z těchto prvů ta, že aždý se v í vysytuje aspoň jedou. Ozačíme-li,,...,, olirát se aždý z daých prvů má opaovat, platí zřejmě..., je , taže jde o uspořádaé -tice, ; je-li v ichž je aždý z prvů právě jedou, tj. o permutace bez opaováí., všech permutací s opaováím z prvů, v ichž se jedotlivé prvy opaují - -rát, je. Počet P (,..., ) rát, -rát,..., P (,,..., ) ( )!!...!!

2 Pozáma: Postup, ja se došlo předchozímu vzorci ajdete v učebici Matematia pro gymázia Kombiatori pravděpodobost, statistia a straě 40 a schéma a straě 4. Všiměme si ještě zajímavého vztahu pro počet permutací s opaováím ze dvou prvů, z ichž jede se -rát: opauje -rát a druhý ( ) P (, ) [ + ( ) ]!!! ( )!! ( ) C! ( ) Kombiace s opaováím Kombiace se ědy opaují, většiou ty epřízivé. Posledím druhem supi, terým se budeme zabývat, jsou supiy, ve terých ezáleží a pořadí a jejichž čley se mohou opaovat. Setáváte se s imi třeba tehdy, dyž zaplaceí určitého obosu vybíráte z peěžey baovy či mice. Koli částe můžete apř. zaplatit třemi micemi, máte-li v peěžece oruové, dvouoruové a pětioruové mice, aždý druh aspoň v pěti exemplářích? Každé částce odpovídá supia tří micí, v íž ezáleží a pořadí a v íž jedotlivé mice emusí mít růzou hodotu; jde o tyto supiy:,, ;,, ;,, 5;,, ;,, 5, 5, 5;,, ;,, 5;, 5, 5; 5, 5, 5 Z tohoto přehledu už sado určíte, oli a jaé částy můžete za daých podmíe zaplatit. Uvedeé supiy jsou příladem ombiací s opaováím, přesěji -čleých ombiací s opaováím z prvů. -čleá ombiace s opaováím z prvů je euspořádaá -tice sestaveá z těchto prvů ta, že aždý se v í vysytuje ejvýše -rát. Určíme yí počet všech -čleých ombiací s opaováím z prvů, terý ozačíme ( ) C. Obecý postup si uážeme a orétím příladu z úvodu tohoto čláu, de je uvede výčet všech 3čleých ombiací s opaováím ze tří prvů,, 5. Každou tuto ombiaci s opaováím zašifrujeme pomocí uspořádaé supiy teče a svislých čáre tato: Mysleme si, že máme tři přihrády - prví pro exempláře prvu, druhou pro exempláře prvu a třetí pro exempláře prvu 5. Rozhraí mezi sousedími přihrádami jsou zázorěa svislou čarou (potřebujeme dvě čáry: pro rozhraí mezi. a. přihrádou a pro rozhraí mezi. a 3. přihrádou). Pro aždý z daých prvů zareslíme do příslušé přihrády toli teče, olirát se v daé ombiaci teto prve vysytuje; evysytuje-li se v í, zůstae příslušá přihráda prázdá. Dostaeme ta toto přiřazeí:,,, 5, 5,,,,,, 5,, 5,,, 5, 5,, 5 5, 5, 5 Půjde-li obecě o -čleé ombiace s opaováím z prvů, přiřadíme stejým způsobem aždé ombiaci uspořádaou supiu s tečami a čárami, tj. permutaci s opaováím ze dvou prvů, -rát. Protože toto přiřazeí je vzájemě jedozačé, platí z ichž jede se opauje -rát a druhý ( ) [ + ( ) ]!! ( )! ( + )! C ( ) P(, )! ( )! Je vidět, že aždé 3čleé ombiaci s opaováím ze tří prvů,, 5 odpovídá jediá uspořádaá pětice o třech tečách a dvou čárách a taé obráceě. To vša zameá, že počet C 3 ( 3) těchto ombiací s opaováím je rove počtu permutací s opaováím ze dvou prvů, z ichž jede se opauje třirát a druhý dvarát, tj. že platí C 3 3 P 3,. ( ) ( ) ( + )! ( )! ( + )! + [( + ) ]!!.!

3 Počet ( ) všech -čleých ombiací s opaováím z prvů je ( ) C + C Přílady: ) Určete počet všech trojúhelíů, z ichž žádé dva ejsou shodé a jejichž aždá straa má veliost vyjádřeou ěterým z čísel +, + +, + 3,...,, de je přirozeé číslo. Koli těchto trojúhelíů je rovorameých, rovostraých? ) V sáču jsou červeé, modré a zeleé uličy; uličy téže barvy jsou erozlišitelé. Určete, olia způsoby lze vybrat pět uliče, jestliže v sáču je aspoň pět uliče od aždé barvy; pět červeých, čtyři modré a čtyři zeleé. 3) Určete počet vádrů, jejichž veliosti hra jsou přirozeá čísla ejvýše rová deseti. Koli je v tomto počtu rychlí? 4) V oviovém stáu je e oupi deset druhů pohledů, přičemž aždý druh je dispozici v padesáti exemplářích. Určete, olia způsoby lze zaoupit 5 pohledů; 5 pohledů; c) 8 růzých pohledů. 5) Určete počet všech trojúhelíů, z ichž žádé dva ejsou shodé a jejichž aždá straa má veliost vyjádřeou jedím z čísel 4, 5, 6, 7. 6) Ze všech bílých šachových figure bez rále a dámy (tj. z osmi pěšců, dvou věží, dvou jezdců a dvou střelců) vybereme trojici, dvojici. Jaý je počet možostí pro jejich složeí? 7) V sadě 3 aret je aždá z ásledujících aret čtyřirát: sedmič osmič devít desít spode, svrše, rál, eso; arty téže hodoty jsou přitom rozlišey těmito "barvami": červeá, zeleá, žaludy, ule. Určete, olia způsoby je možo vybrat čtyři arty, jestliže se rozlišují pouze "barvy" jedotlivých aret; rozlišují pouze hodoty jedotlivých aret. 8) Apolloiovou úlohou se rozumí úloha sestrojit ružici, terá má tři z těchto vlastostí: prochází daým bodem, dotýá se daé přímy, dotýá se daé ružice. (Ozačíme-li tyto vlastosti po řadě písmey B, p,, můžeme aždou Apolloiovu úlohu zapsat pomocí trojice z těchto písme; ta apř. úloha B začí úlohu sestrojit ružici procházející daým bodem a dotýající se dvou daých ružic.) Určete počet všech Apolloiových úloh. 9) Koli růzých euspořádaých trojic mohou dát počty o a jedotlivých ostách při vrhu třemi ostami? (Jde o obvylou ostu s jedím až šesti oy a jedotlivých stěách.) Úlohy opaováí ) Určete, olia způsoby lze přemístit písmea slova Mississippi; oli z ich ezačíá písmeem M? ) Určete počet všech trojúhelíů, z ichž žádé dva ejsou shodé a jejichž aždá straa má jedu z veliostí daých čísly 4, 5, 6, 7, 8, 9. 3) Kihova má pět regálů, do aždého se vejde 0 ih. Určete, olia způsoby lze do ihovy umístit 0 ih. [Návod: Myslete si, že regály jsou umístěy vedle sebe a aždé dva sousedí jsou odděley stejým předmětem.] 4) V samoobsluze mají čtyři druhy ávy, aždý po padesáti gramech. Určete, olia způsoby lze oupit 50 gramů ávy, jestliže balíčů aždého druhu mají dostatečý počet; od dvou druhů mají deset balíčů a od zbývajících dvou pouze po čtyřech balíčcích. 5) Určete, olia způsoby lze z padesátihaléřových a oruových micí zaplatit částu 6 Kč, Kč, jsou-li oba druhy micí dispozici v dostatečém možství. [Návod: Každou částu lze zašifrovat pomocí písme (oruové mice) a p (dvě padesátihaléřové mice); apř. čtyřem oruovým a čtyřem padesátihaléřovým micím odpovídá zápis pp.]

4 6) Určete, olia způsoby si mohou tři osoby rozdělit osm stejých jable. [Návod: Každé rozděleí osmi jable mezi tři osoby A, B, C lze zašifrovat pomocí euspořádaé osmice z těchto písme; apř. AAABBBBC začí příděl tří jable osobě A, čtyř jable osobě B a jedoho jabla osobě C.] 7) Určete, olia způsoby si mohou tři osoby rozdělit čtyři stejá jabla a šest stejých hruše. [Návod: Rozděleí jable a hruše jsou a sobě ezávislá, dále pa viz předchozí přílad.]

5 Přílady:Určete, oli způsobů, jimiž lze přemístit písmea slova ABRAKADABRA. Určete, v olia z ich žádá dvojice sousedích písme eí tvořea dvěma písmey A; žádá pětice sousedích písme eí tvořea pěti písmey A. Určete počet všech čtyřciferých přirozeých čísel dělitelých devíti, v jejich deadicém zápisu ejsou jié číslice ež 0,,, 5, 7. Určete počet způsobů, jimiž lze umístit všechy bíle šachové figury (rál, dám věže, jezdci, střelci, 8 pěšáů) a dvě pevě zvoleé řady šachovice 8 x 8; a libovolé dvě řady šachovice 8 x 8. Určete počet všech deseticiferých přirozeých čísel, jejichž ciferý součet je rove třem. Koli z ich je sudých? Určete, olia způsoby je možo přemístit písmea slova BATERKA ta, aby se souhlásy a samohlásy střídaly. [Návod: Na začátu a a oci musí být souhlása.] Ze sedmi uliče, z ichž jsou čtyři modré (avzájem erozlišitelé), jeda bílá, jeda červeá a jeda zeleá, máme vybrat a položit do řady vedle sebe pět uliče. Kolia způsoby to lze provést?

Předmět: Ročník: Vytvořil: Datum: MATEMATIKA TŘETÍ MGR. JÜTTNEROVÁ 15. 9. 2012 Název zpracovaného celku: KOMBINACE, POČÍTÁNÍ S KOMBINAČNÍM ČÍSLY

Předmět: Ročník: Vytvořil: Datum: MATEMATIKA TŘETÍ MGR. JÜTTNEROVÁ 15. 9. 2012 Název zpracovaného celku: KOMBINACE, POČÍTÁNÍ S KOMBINAČNÍM ČÍSLY Předmět: Ročík: Vytvořil: Datum: MATEMATIKA TŘETÍ MGR. JÜTTNEROVÁ. 9. 0 Název zpracovaého celku: KOMBINACE, POČÍTÁNÍ S KOMBINAČNÍM ČÍSLY DEFINICE FAKTORIÁLU Při výpočtech úloh z kombiatoriky se používá!

Více

Úvod do zpracování měření

Úvod do zpracování měření Laboratorí cvičeí ze Základů fyziky Fakulta techologická, UTB ve Zlíě Cvičeí č. Úvod do zpracováí měřeí Teorie chyb Opakujeme-li měřeí téže fyzikálí veličiy za stejých podmíek ěkolikrát za sebou, dostáváme

Více

FINANČNÍ MATEMATIKA. Jarmila Radová KBP VŠE Praha

FINANČNÍ MATEMATIKA. Jarmila Radová KBP VŠE Praha FINANČNÍ MATEMATIA Jarmila Radová BP VŠE Praha Osova Jedoduché úročeí Diskotováí krátkodobé ceé papíry Metody vedeí a výpočtu úroku z běžého účtu Skoto Složeé úrokováí Budoucí hodota auity spořeí Současá

Více

2.5.10 Přímá úměrnost

2.5.10 Přímá úměrnost 2.5.10 Přímá úměrost Předpoklady: 020508 Př. 1: 1 kwh hodia elektrické eergie stojí typicky 4,50 Kč. Doplň do tabulky kolik Kč stojí růzá možství objedaé elektrické eergie. Zkus v tabulce ajít zajímavé

Více

KOMPLEXNÍ ČÍSLA (druhá část)

KOMPLEXNÍ ČÍSLA (druhá část) KOMPLEXNÍ ČÍSLA (druhá část) V prví kaptole jsme se seáml s algebrackým tvarem komplexího čísla. Některé výpočty s komplexím čísly je však lépe provádět ve tvaru goometrckém. Po. V ásledujícím textu předpokládám

Více

2. část: Základy matematického programování, dopravní úloha. Ing. Michal Dorda, Ph.D.

2. část: Základy matematického programování, dopravní úloha. Ing. Michal Dorda, Ph.D. 2. část: Základy matematického programováí, dopraví úloha. 1 Úvodí pomy Metody a podporu rozhodováí lze obecě dělit a: Eaktí metody metody zaručuící alezeí optimálí řešeí, apř. Littlův algortimus, Hakimiho

Více

3.1.4 Trojúhelník. Předpoklady: 3103. Každé tři různé body neležící v přímce určují trojúhelník. C. Co to je, víme. Jak ho definovat?

3.1.4 Trojúhelník. Předpoklady: 3103. Každé tři různé body neležící v přímce určují trojúhelník. C. Co to je, víme. Jak ho definovat? 3..4 Trojúhelní Předpolady: 303 Každé tři různé body neležící v přímce určují trojúhelní. o to je, víme. Ja ho definovat? Př. : Definuj trojúhelní jao průni polorovin. Trojúhelní je průni polorovin, a.

Více

Geometrická posloupnost a její užití, pravidelný růst a pokles, nekonečná geometrická řada. 1 n. r s. [ a)22 ; b)31,5 ; c)-50 ; d)0 ; e)

Geometrická posloupnost a její užití, pravidelný růst a pokles, nekonečná geometrická řada. 1 n. r s. [ a)22 ; b)31,5 ; c)-50 ; d)0 ; e) 9 Geometrická posloupost její užití, prvidelý růst pokles, ekoečá geometrická řd Geometrická posloupost Je dá posloupost { }. Tuto posloupost zveme geometrická, jestliže pro kždé dv po sobě ásledující

Více

Řešení: Dejme tomu, že pan Alois to vezme popořadě od jara do zimy. Pro výběr fotky z jara má Alois dvanáct možností. Tady není co počítat.

Řešení: Dejme tomu, že pan Alois to vezme popořadě od jara do zimy. Pro výběr fotky z jara má Alois dvanáct možností. Tady není co počítat. KOMBINATORIKA ŘEŠENÉ PŘÍKLADY Příklad 1 Pan Alois dostal od vedení NP Šumava za úkol vytvořit propagační poster se čtyřmi fotografiemi Šumavského národního parku, každou z jiného ročního období (viz obrázek).

Více

Dopravní stroje a zařízení odborný základ - 2015

Dopravní stroje a zařízení odborný základ - 2015 Dopraví stroje a zařízeí odbor zálad - 05 Idetifiačí číslo: Počet otáze: 5 Čas : 60 miut Počet bodů Hodoceí Bodové hodoceí otáze: otáza body 0 0 3 0 0 5 0 OTÁZKY: ) Vypočtěte eálí poměr rozděleí brzdch

Více

Katedra elektrotechniky Fakulta elektrotechniky a informatiky, VŠB - TU Ostrava

Katedra elektrotechniky Fakulta elektrotechniky a informatiky, VŠB - TU Ostrava Katedra elektrotechiky Fakulta elektrotechiky a iformatiky, VŠB - TU Ostrava 10. STŘÍDAVÉ STROJE Obsah 1. Asychroí stroje 1. Výzam a použití asychroích strojů 1.2 Pricip čiosti a provedeí asychroího motoru.

Více

2.1. Pojem funkce a její vlastnosti. Reálná funkce f jedné reálné proměnné x je taková

2.1. Pojem funkce a její vlastnosti. Reálná funkce f jedné reálné proměnné x je taková .. Funkce a jejich graf.. Pojem funkce a její vlastnosti. Reálná funkce f jedné reálné proměnné je taková binární relace z množin R do množin R, že pro každé R eistuje nejvýše jedno R, pro které [, ] f.

Více

Diamantová suma - řešení příkladů 1.kola

Diamantová suma - řešení příkladů 1.kola Diamantová suma - řešení příladů.ola. Doažte, že pro aždé přirozené číslo n platí.n + 2.n + + n.n < 2. Postupujeme matematicou inducí. Levou stranu nerovnosti označme s n. Nejmenší n, pro než má smysl

Více

GEOMETRICKÁ TĚLESA. Mnohostěny

GEOMETRICKÁ TĚLESA. Mnohostěny GEOMETRICKÁ TĚLESA Geometrické těleso je prostorový geometrický útvar, který je omezený (ohraničený), tato hranice mu náleží. Jeho povrch tvoří rovinné útvary a také různé složitější plochy. Geometrická

Více

4. cvičení: Pole kruhové, rovinné, Tělesa editace těles (sjednocení, rozdíl, ), tvorba složených objektů

4. cvičení: Pole kruhové, rovinné, Tělesa editace těles (sjednocení, rozdíl, ), tvorba složených objektů 4. cvičení: Pole kruhové, rovinné, Tělesa editace těles (sjednocení, rozdíl, ), tvorba složených objektů Příklad 1: Pracujte v pohledu Shora. Sestrojte kružnici se středem [0,0,0], poloměrem 10 a kružnici

Více

Metodický list pro první soustředění kombinovaného Bc. studia předmětu MATEMATIKA A3

Metodický list pro první soustředění kombinovaného Bc. studia předmětu MATEMATIKA A3 Metodický list pro prví soustředěí kombiovaého Bc. studia předmětu MATEMATIKA A3 Název tématického celku: Úvod do problematiky diskrétí matematiky Cíl: Cílem tohoto tématického celku je vymezeí oblasti

Více

P r a V I d l a. C Esk A Pr Av i dla

P r a V I d l a. C Esk A Pr Av i dla Cˇ e s k á P r a V I d l a C Esk A Pr Av i dla Obsah 20 figurek průzkumníků ve 4 různých barvách 1 zeď s hieroglyfy 1 herní deska 7 destiček podlahy ``kámen a písek`` 16 skarabů 6 malých karet prokletí

Více

ij m, velikosti n je tvořen (n m) rozměr-ným polem dat x 11 ... x 12 ... x 22 x n1 ... x n2 7.1 Druhy korelačních koeficientů

ij m, velikosti n je tvořen (n m) rozměr-ným polem dat x 11 ... x 12 ... x 22 x n1 ... x n2 7.1 Druhy korelačních koeficientů 1 7 KORELACE Pro vyádřeí itezity vztahů ezi složkai ξ ξ -rozěrého áhodého vektoru 1 ξ se používá korelačích koeficietů Data tvoří áhodý výběr z -rozěrého rozděleí áhodého vektoru ξ Neuvažue se obyčeě a

Více

INSTITUT FYZIKY. Měření voltampérové charakteristiky polovodičové diody

INSTITUT FYZIKY. Měření voltampérové charakteristiky polovodičové diody Vypracoval protokol: INSTITUT FYZIKY Číslo pracoviště: Spolupracoval(i)při měřeí: Skupia: Fakulta: FMMI Laboratoř: F222 Měřeí voltampérové charakteristiky polovodičové diody Datum měřeí: Datum odevzdáí:

Více

5. cvičení 4ST201_řešení

5. cvičení 4ST201_řešení cvičící. cvičení 4ST201_řešení Obsah: Informace o 1. průběžném testu Pravděpodobnostní rozdělení 1.část Vysoká škola ekonomická 1 1. Průběžný test Termín: pátek 26.3. v 11:00 hod. a v 12:4 v průběhu cvičení

Více

2.2.2 Zlomky I. Předpoklady: 020201

2.2.2 Zlomky I. Předpoklady: 020201 .. Zlomky I Předpoklady: 0001 Pedagogická poznámka: V hodině je třeba postupovat tak, aby se ještě před jejím koncem začala vyplňovat tabulka u posledního příkladu 9. V loňském roce jsme si zopakovali

Více

Periodicita v časové řadě, její popis a identifikace

Periodicita v časové řadě, její popis a identifikace Periodicita v časové řadě, její popis a idetifikace 1 Periodicita Některé časové řady obsahují periodickou složku. Pomocí vybraých ástrojů spektrálí aalýzy budeme tuto složku idetifikovat. Mějme fukci

Více

ČÁST PÁTÁ POZEMKY V KATASTRU NEMOVITOSTÍ

ČÁST PÁTÁ POZEMKY V KATASTRU NEMOVITOSTÍ ČÁST PÁTÁ POZEMKY V KATASTRU NEMOVITOSTÍ Pozemkem se podle 2 písm. a) katastrálního zákona rozumí část zemského povrchu, a to část taková, která je od sousedních částí zemského povrchu (sousedních pozemků)

Více

Gymnázium, Praha 10, Voděradská 2 Projekt OBZORY

Gymnázium, Praha 10, Voděradská 2 Projekt OBZORY Gymnázium, Praha 10, Voděradská 2 Projekt OBZORY INDIVIDUÁLNÍ VÝUKA Matematika METODIKA Soustavy rovnic Mgr. Marie Souchová květen 2011 Tato část učiva následuje po kapitole Rovnice. Je rozdělena do částí

Více

Příprava na 1. čtvrtletní písemku pro třídu 1EB

Příprava na 1. čtvrtletní písemku pro třídu 1EB Variace 1 Příprava na 1. čtvrtletní písemku pro třídu 1EB Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz. 1. Číselné

Více

Lineární algebra. Vektorové prostory

Lineární algebra. Vektorové prostory Lineární algebra Vektorové prostory Operační program Vzdělávání pro konkurenceschopnost Název projektu: Inovace magisterského studijního programu Fakulty ekonomiky a managementu Registrační číslo projektu:

Více

Jan Březina. Technical University of Liberec. 17. března 2015

Jan Březina. Technical University of Liberec. 17. března 2015 TGH03 - stromy, ukládání grafů Jan Březina Technical University of Liberec 17. března 2015 Kružnice - C n V = {1, 2,..., n} E = {{1, 2}, {2, 3},..., {i, i + 1},..., {n 1, n}, {n, 1}} Cesta - P n V = {1,

Více

35! n! n k! = n k k! n k! k! = n k

35! n! n k! = n k k! n k! k! = n k Do školí jídely přišla skupia 35 žáků. Určete kolika způsoby se mohli seřadit do froty u výdeje obědů. Řešeí: Počet možostí je 1 2... 35=35! (Permutace bez opakováí) Permutací bez opakováí z -prvkové možiy

Více

Opakování. Metody hodnocení efektivnosti investic. Finanční model. Pravidla pro sestavení CF. Investiční fáze FINANČNÍ MODEL INVESTIČNÍHO ZÁMĚRU

Opakování. Metody hodnocení efektivnosti investic. Finanční model. Pravidla pro sestavení CF. Investiční fáze FINANČNÍ MODEL INVESTIČNÍHO ZÁMĚRU Metody hodoceí efektvost vestc Opakováí Typy vazeb v uzlové síťové grafu K čeu slouží stude využtelost Fačí odel vestčího záěru Časová hodota peěz Metody vyhodoceí Napšte strukturu propočtu Fačí odel FINANČNÍ

Více

MANUÁL PRO HODNOCENÍ OTEVŘENÝCH TESTOVÝCH ÚLOH MATEMATIKA SADA B (TEST PRO PŘIJÍMACÍ ZKOUŠKY DO 8LETÉHO GYMNÁZIA)

MANUÁL PRO HODNOCENÍ OTEVŘENÝCH TESTOVÝCH ÚLOH MATEMATIKA SADA B (TEST PRO PŘIJÍMACÍ ZKOUŠKY DO 8LETÉHO GYMNÁZIA) PH-M5MBCINT MANUÁL PRO HODNOCENÍ OTEVŘENÝCH TESTOVÝCH ÚLOH MATEMATIKA SADA B (TEST PRO PŘIJÍMACÍ ZKOUŠKY DO 8LETÉHO GYMNÁZIA) 1. TYPY TESTOVÝCH ÚLOH V TESTU První dvě úlohy (1 2) jsou tzv. úzce otevřené

Více

Svobodná chebská škola, základní škola a gymnázium s.r.o. Znaky dělitelnosti - Procvičování. Dušan Astaloš. samostatná práce, případně skupinová práce

Svobodná chebská škola, základní škola a gymnázium s.r.o. Znaky dělitelnosti - Procvičování. Dušan Astaloš. samostatná práce, případně skupinová práce METODICKÝ LIST DA11 Název tématu: Autor: Předmět: Znaky dělitelnosti - Procvičování Dušan Astaloš Matematika Ročník: 6. Učebnice: Kapitola, oddíl: Metody výuky: Formy výuky: fixační samostatná práce, případně

Více

Název školy: Gymnázium Jana Nerudy, škola hl. města Prahy. Předmět, mezipředmětové vztahy: matematika a její aplikace

Název školy: Gymnázium Jana Nerudy, škola hl. města Prahy. Předmět, mezipředmětové vztahy: matematika a její aplikace Název: Kombiatoria Autor: Mgr. Haa Čerá Název šoly: Gymázium Jaa Nerudy, šola hl. města Prahy Předmět, mezipředmětové vztahy: matematia a její apliace Ročí: 5. ročí Tématicý cele: Kombiatoria a pravděpodobost

Více

Exponenciála matice a její užití. fundamentálních matic. Užití mocninných řad pro rovnice druhého řádu

Exponenciála matice a její užití. fundamentálních matic. Užití mocninných řad pro rovnice druhého řádu 1 Tutoriál č. 3 Exponenciála matice a její užití řešení Cauchyovy úlohy pro lineární systémy užitím fundamentálních matic. Užití mocninných řad pro rovnice druhého řádu 0.1 Exponenciála matice a její užití

Více

Statistika ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE FAKULTA DOPRAVNÍ. Jiří Volf, Adam Kratochvíl, Kateřina Žáková. Semestrální práce - 0 -

Statistika ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE FAKULTA DOPRAVNÍ. Jiří Volf, Adam Kratochvíl, Kateřina Žáková. Semestrální práce - 0 - ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE FAKULTA DOPRAVNÍ Jiří Volf, Adam Kratochvíl, Kateřina Žáková 2 34 Statistika Semestrální práce - 0 - 1. Úvod Popis úlohy: V této práci se jedná se o porovnání statistických

Více

Rostislav Horčík. 13. října 2006

Rostislav Horčík. 13. října 2006 3. přednáška Rostislav Horčík 13. října 2006 1 Lineární prostory Definice 1 Lineárním prostorem nazýváme každou neprázdnou množinu L, na které je definováno sčítání + : L L L a násobení reálným číslem

Více

Úlohy domácího kola kategorie C

Úlohy domácího kola kategorie C 50. ročník Matematické olympiády Úlohy domácího kola kategorie 1. Najděte všechna trojmístná čísla n taková, že poslední trojčíslí čísla n 2 je shodné s číslem n. Student může při řešení úlohy postupovat

Více

Konzultace z předmětu MATEMATIKA pro čtvrtý ročník dálkového studia

Konzultace z předmětu MATEMATIKA pro čtvrtý ročník dálkového studia -1- Kozultace z předmětu MATEMATIKA pro čtvrtý ročík dálkového studia 1) Základy procetového počtu ) Poslouposti a jejich využití ve fiačí matematice 3) Úlohy ekoomického charakteru 4) Úlohy jedoduchého

Více

Novinky verzí SKLADNÍK 4.24 a 4.25

Novinky verzí SKLADNÍK 4.24 a 4.25 Novinky verzí SKLADNÍK 4.24 a 4.25 Zakázky standardní přehled 1. Možnosti výběru 2. Zobrazení, funkce Zakázky přehled prací 1. Možnosti výběru 2. Mistři podle skupin 3. Tisk sumářů a skupin Zakázky ostatní

Více

1. K o m b i n a t o r i k a

1. K o m b i n a t o r i k a . K o m b i a t o r i k a V teorii pravděpodobosti a statistice budeme studovat míru výskytu -pravděpodobostvýsledků procesů, které mají áhodý charakter, t.j. při opakováí za stejých podmíek se objevují

Více

Soustava kapalina + tuhá látka Izobarický fázový diagram pro soustavu obsahující vodu a chlorid sodný

Soustava kapalina + tuhá látka Izobarický fázový diagram pro soustavu obsahující vodu a chlorid sodný Soustv kpl + tuhá látk Izobrcký fázový dgrm pro soustvu obshující vodu chlord sodý t / o C H 2 O (s) + esyceý roztok 30 20 10 0-10 -20 t I t II esyceý roztok 2 1 p o NCl (s) + syceý roztok eutektcký bod

Více

3.5.8 Otočení. Předpoklady: 3506

3.5.8 Otočení. Předpoklady: 3506 3.5.8 Otočení Předpoklady: 3506 efinice úhlu ze základní školy: Úhel je část roviny ohraničená dvojicí polopřímek se společným počátečním bodem (konvexní a nekonvexní úhel). Nevýhody této definice: Nevíme,

Více

10 je 0,1; nebo taky, že 256

10 je 0,1; nebo taky, že 256 LIMITY POSLOUPNOSTÍ N Á V O D Á V O D : - - Co to je Posloupnost je parta očíslovaných čísel. Trabl je v tom, že aby to byla posloupnost, musí těch čísel být nekonečně mnoho. Očíslovaná čísla, to zavání

Více

2.3.19 Grafické řešení soustav lineárních rovnic a nerovnic

2.3.19 Grafické řešení soustav lineárních rovnic a nerovnic .3.19 Grafické řešení soustav lineárních rovnic a nerovnic Předpoklad: 307, 311 Př. 1: Vřeš soustavu rovnic + =. Pokud se také o grafické řešení. = 5 Tak jednoduchou soustavu už jsme dlouho neměli: + =

Více

c sin Příklad 2 : v trojúhelníku ABC platí : a = 11,6 dm, c = 9 dm, α = 65 0 30. Vypočtěte stranu b a zbývající úhly.

c sin Příklad 2 : v trojúhelníku ABC platí : a = 11,6 dm, c = 9 dm, α = 65 0 30. Vypočtěte stranu b a zbývající úhly. 9. Úvod do středoškolského studia - rozšiřující učivo 9.. Další znalosti o trojúhelníku 9... Sinova věta a = sin b = sin c sin Příklad : V trojúhelníku BC platí : c = 0 cm, α = 45 0, β = 05 0. Vypočtěte

Více

SOUTĚŽNÍ ŘÁD soutěží ČSOB v orientačním běhu

SOUTĚŽNÍ ŘÁD soutěží ČSOB v orientačním běhu SOUTĚŽNÍ ŘÁD soutěží ČSOB v orientačním běhu I. ZÁKLADNÍ USTANOVENÍ 1.1 Soutěžní řád soutěží ČSOB v orientačním běhu (SŘ) stanovuje podmínky mistrovských a dlouhodobých soutěží v orientačním běhu na území

Více

6. KOMBINATORIKA 181. 6.1. Základní pojmy 181 6.1.1. Počítání s faktoriály a kombinačními čísly 182. 6.2. Variace 184. 6.3.

6. KOMBINATORIKA 181. 6.1. Základní pojmy 181 6.1.1. Počítání s faktoriály a kombinačními čísly 182. 6.2. Variace 184. 6.3. Zálady matematiy Kombiatoria. KOMBINATORIKA 8.. Záladí pojmy 8... Počítáí s fatoriály a ombiačími čísly 8.. Variace 8.. Permutace 85.. Kombiace 87.5. Biomicá věta 89 Úlohy samostatému řešeí 9 Výsledy úloh

Více

metodická příručka DiPo násobení a dělení (čísla 6, 7, 8, 9) násobilkové karty DiPo

metodická příručka DiPo násobení a dělení (čísla 6, 7, 8, 9) násobilkové karty DiPo metodická příručka DiPo násobení a dělení () PLUS násobilkové karty DiPo OlDiPo, spol. s r.o. tř. Svobody 20 779 00 Olomouc telefon: 585 204 055 mobil: 777 213 535 e-mail: oldipo@oldipo.cz web: www.oldipo.cz

Více

a m1 a m2 a mn zobrazení. Operaci násobení u matic budeme definovat jiným způsobem.

a m1 a m2 a mn zobrazení. Operaci násobení u matic budeme definovat jiným způsobem. 1 Matice Definice 1 Matice A typu (m, n) je zobrazení z kartézského součinu {1, 2,,m} {1, 2,,n} do množiny R Matici A obvykle zapisujeme takto: a 1n a 21 a 22 a 2n A =, a m1 a m2 a mn kde a ij R jsou její

Více

Metodika kontroly naplněnosti pracovních míst

Metodika kontroly naplněnosti pracovních míst Metodika kontroly naplněnosti pracovních míst Obsah Metodika kontroly naplněnosti pracovních míst... 1 1 Účel a cíl metodického listu... 2 2 Definice indikátoru Počet nově vytvořených pracovních míst...

Více

2.1 Pokyny k otevřeným úlohám. 2.2 Pokyny k uzavřeným úlohám TESTOVÝ SEŠIT NEOTVÍREJTE, POČKEJTE NA POKYN!

2.1 Pokyny k otevřeným úlohám. 2.2 Pokyny k uzavřeným úlohám TESTOVÝ SEŠIT NEOTVÍREJTE, POČKEJTE NA POKYN! MATEMATIKA DIDAKTICKÝ TEST Maximální bodové hodnocení: 50 bodů Hranice úspěšnosti: 33 % Základní informace k zadání zkoušky Didaktický test obsahuje 26 úloh. Časový limit pro řešení didaktického testu

Více

řádově různě rostoucí rostou řádově stejně rychle dvě funkce faktor izomorfismus neorientovaných grafů souvislý graf souvislost komponenta

řádově různě rostoucí rostou řádově stejně rychle dvě funkce faktor izomorfismus neorientovaných grafů souvislý graf souvislost komponenta 1) Uveďte alespoň dvě řádově různě rostoucí funkce f(n) takové, že n 2 = O(f(n)) a f(n) = O(n 3 ). 2) Platí-li f(n)=o(g 1 (n)) a f(n)=o(g 2 (n)), znamená to, že g 1 (n) a g 2 (n) rostou řádově stejně rychle

Více

C) Pojem a znaky - nositelem územní samosprávy jsou územní samosprávné celky, kterými jsou v ČR

C) Pojem a znaky - nositelem územní samosprávy jsou územní samosprávné celky, kterými jsou v ČR Správní právo dálkové studium VIII. Územní samospráva A) Historický vývoj na území ČR - po roce 1918 při vzniku ČSR zpočátku převzala předchozí uspořádání rakousko uherské - samosprávu představovaly obce,

Více

JARNÍ ŠKOLA NSZM 2005 METODIKA NSZM PODKLADOVÝ MATERIÁL

JARNÍ ŠKOLA NSZM 2005 METODIKA NSZM PODKLADOVÝ MATERIÁL JARNÍ ŠKOLA NSZM 2005 METODIKA NSZM PODKLADOVÝ MATERIÁL POPIS místního/regionálního systému realizace Projektu Zdravé město a místní Agendy 21 Organizační zázemí zodpovědné osoby a pracovníci PZM a MA21;

Více

Moderní technologie ve studiu aplikované fyziky CZ.1.07/2.2.00/07.0018. 3. Reálná čísla

Moderní technologie ve studiu aplikované fyziky CZ.1.07/2.2.00/07.0018. 3. Reálná čísla Moderní technologie ve studiu aplikované fyziky CZ..07/..00/07.008 3. Reálná čísla RACIONÁLNÍ A IRACIONÁLNÍ ČÍSLA Význačnými množinami jsou číselné množiny. K nejvýznamnějším patří množina reálných čísel,

Více

6. Matice. Algebraické vlastnosti

6. Matice. Algebraické vlastnosti Matematický ústav Slezské univerzity v Opavě Učební texty k přednášce ALGEBRA I, zimní semestr 2000/2001 Michal Marvan 6 Matice Algebraické vlastnosti 1 Algebraické operace s maticemi Definice Bud te A,

Více

269/2015 Sb. VYHLÁŠKA

269/2015 Sb. VYHLÁŠKA 269/2015 Sb. - rozúčtování nákladů na vytápění a příprava teplé vody pro dům - poslední stav textu 269/2015 Sb. VYHLÁŠKA ze dne 30. září 2015 o rozúčtování nákladů na vytápění a společnou přípravu teplé

Více

M - Příprava na čtvrtletní písemnou práci

M - Příprava na čtvrtletní písemnou práci M - Příprava na čtvrtletní písemnou práci Určeno pro třídu 1ODK. VARIACE 1 Tento dokument byl kompletně vytvořen, sestaven a vytištěn v programu dosystem - EduBase. Více informací o programu naleznete

Více

Numerická integrace. 6. listopadu 2012

Numerická integrace. 6. listopadu 2012 Numerická integrace Michal Čihák 6. listopadu 2012 Výpočty integrálů v praxi V přednáškách z matematické analýzy jste se seznámili s mnoha metodami výpočtu integrálů. V praxi se ale poměrně často můžeme

Více

PŘÍKLAD NA VÁŽENÝ ARITMETICKÝ PRŮMĚR Z INTERVALOVÉHO ROZDĚLENÍ ČETNOSTI

PŘÍKLAD NA VÁŽENÝ ARITMETICKÝ PRŮMĚR Z INTERVALOVÉHO ROZDĚLENÍ ČETNOSTI PŘÍKLAD NA VÁŽENÝ ARITMETICKÝ PRŮMĚR Z INTERVALOVÉHO ROZDĚLENÍ ČETNOSTI Přílad 0.6 Pracoví, terý spravuje podovou databáz, eportoval do tabulového procesoru všechy pracovíy podu Alfa Blatá s ěterým sledovaým

Více

1) Vypočítej A) 32 B) 44 C) 48 D) 56. 2) Urči číslo, které se skrývá za A ve výpočtu: 8 5 A) 12 B) 13 C) 14 D) 15

1) Vypočítej A) 32 B) 44 C) 48 D) 56. 2) Urči číslo, které se skrývá za A ve výpočtu: 8 5 A) 12 B) 13 C) 14 D) 15 Varianta A 4 4 4 4 4 4 4 4 1) Vypočítej A) 32 B) 44 C) 48 D) 56 2) Urči číslo, které se skrývá za A ve výpočtu: 8 5 20 120 A. A) 12 B) 13 C) 14 D) 15 3) Najdi největší a nejmenší trojciferné číslo skládající

Více

Metodika k hodnocení biologické účinnosti insekticidních přípravků mořidel proti křísku polnímu v obilninách

Metodika k hodnocení biologické účinnosti insekticidních přípravků mořidel proti křísku polnímu v obilninách Metodika k hodnocení biologické účinnosti insekticidních přípravků mořidel proti křísku polnímu v obilninách Poznámka: Tato metodika je doplněním metodiky EPPO 1/70 (3) Aphid vectors of BYDV. Je zaměřena

Více

DODATEČNÉ INFORMACE XXIII.

DODATEČNÉ INFORMACE XXIII. V Praze dne 6. června 2014 DODATEČNÉ INFORMACE XXIII. Vážení dodavatelé, v souladu s ustanovením 49 odst. 1 zákona č. 137/2006 Sb., o veřejných zakázkách, ve znění pozdějších předpisů (dále jen ZVZ ),

Více

ř ý ý š Ě Á š Á š š š ž é ř ů é ý é š ý ý š ý š é ž é ř ž ř ý ž ý š ř ý ř ý ř ř ž ů ř é ň ů ý é ň ř ř ř ž ý é Ž Í ť ú ř é é Ď Ž é Š ř š Š ý ž ý Ě ž é Š ř š Š ý é ř ý š ý ů é ř é ž é š ř š Š ý ž é ř ž ý

Více

Definice 6.2.1. z = f(x,y) vázané podmínkou g(x,y) = 0 jsou z geometrického hlediska lokálními extrémy prostorové křivky k, Obr. 6.2.1. Obr. 6.2.

Definice 6.2.1. z = f(x,y) vázané podmínkou g(x,y) = 0 jsou z geometrického hlediska lokálními extrémy prostorové křivky k, Obr. 6.2.1. Obr. 6.2. Výklad Dalším typem extrémů, kterým se budeme zabývat jsou tzv. vázané extrémy. Hledáme extrémy nějaké funkce vzhledem k předem zadaným podmínkám. Definice 6.2.1. Řekneme, že funkce f : R n D f R má v

Více

ÚŘ Č Ý Č Ú Ú ť Ů Ú Č Š Ý Ý Ř É Ť Č Č Ú Ú Ú é š ž Ú é Ť é Č Ú é Ů Ú é š Ú Ť Ť é Í š é š š Ť ť Í éí š Ú Ť Ú Ú Ů Ť é ť Ú ť Ú Š ť Č Ú é Ú é ž š é Ť Ú Ú ť é Ž é é Ť é Ť Ť Ú Ú é é Í é Í Ť Ú ť Í Í Ť é Ť Í Ú Ť

Více

4.5.1 Magnety, magnetické pole

4.5.1 Magnety, magnetické pole 4.5.1 Magnety, magnetické pole Předpoklady: 4101 Pomůcky: magnety, kancelářské sponky, papír, dřevěná dýha, hliníková kulička, měděná kulička (drát), železné piliny, papír, jehla (špendlík), korek (kus

Více

Modul Řízení objednávek. www.money.cz

Modul Řízení objednávek. www.money.cz Modul Řízení objednávek www.money.cz 2 Money S5 Řízení objednávek Funkce modulu Obchodní modul Money S5 Řízení objednávek slouží k uskutečnění hromadných akcí s objednávkami, které zajistí dostatečné množství

Více

11 Soustavy rovnic a nerovnic, Determinanty a Matice

11 Soustavy rovnic a nerovnic, Determinanty a Matice 11 Soustavy rovnic a nerovnic, Determinanty a Matice (r zné typy soustav rovnic a nerovnic, matice druhy matic, operace s maticemi, hodnost matice, inverzní matice, Gaussova elimina ní metoda, determinanty

Více

5.2.2 Rovinné zrcadlo

5.2.2 Rovinné zrcadlo 5.2.2 Rovinné zrcadlo ředpoklady: 5101, 5102, 5201 Terminologie pro přijímačky z fyziky Optická soustava = soustava optických prostředí a jejich rozhraní, která mění směr chodu světelných paprsků. Optické

Více

Posilování sociálního dialogu v místním a regionálním správním sektoru. Diskusní dokument

Posilování sociálního dialogu v místním a regionálním správním sektoru. Diskusní dokument EPSU/CEMR seminář 11. prosince 2008, Bratislava 1) Co je sociální dialog? Je důležité vysvětlit, co znamená sociální dialog, protože tento termín se obvykle nepoužívá ve všech evropských zemích pro popis

Více

I. kolo kategorie Z6

I. kolo kategorie Z6 58. ročník Matematické olympiády I. kolo kategorie Z6 Z6 I 1 Naobrázkuječtvercovásíť,jejížčtvercemajístranudélky1cm.Vsítijezakreslen obrazec vybarvený šedě. Libor má narýsovat přímku, která je rovnoběžná

Více

Komentář k datovému standardu a automatizovaným kontrolám obsahu F_ODPRZ_BAT

Komentář k datovému standardu a automatizovaným kontrolám obsahu F_ODPRZ_BAT Komentář k datovému standardu a automatizovaným kontrolám obsahu F_ODPRZ_BAT Ohlašovací povinnost: Roční zpráva zpětného odběru baterií a akumulátorů Formulář: F_ ODPRZ_BAT Dle příslušné legislativy: Příloha

Více

Vážeí zákazíci dovolujeme si Vás upozorit že a tuto ukázku kihy se vztahují autorská práva tzv. copyright. To zameá že ukázka má sloužit výhradì pro osobí potøebu poteciálího kupujícího (aby èteáø vidìl

Více

6 VYBRANÁ ROZDLENÍ DISKRÉTNÍ NÁHODNÉ VELIINY

6 VYBRANÁ ROZDLENÍ DISKRÉTNÍ NÁHODNÉ VELIINY 6 VYBRANÁ ROZDLENÍ DISKRÉTNÍ NÁHODNÉ VELIINY Rozdleí áhodé veliiy je edis, terým defiujeme ravdodobost jev, jež lze touto áhodou veliiou osat. Záladím rozdleím oisujícím výbry bez vraceí je hyergeometricé

Více

MATEMATIKA I VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA STAVEBNÍ JIŘÍ NOVOTNÝ ZÁKLADY LINEÁRNÍ ALGEBRY

MATEMATIKA I VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA STAVEBNÍ JIŘÍ NOVOTNÝ ZÁKLADY LINEÁRNÍ ALGEBRY VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA STAVEBNÍ JIŘÍ NOVOTNÝ MATEMATIKA I ZÁKLADY LINEÁRNÍ ALGEBRY STUDIJNÍ OPORY PRO STUDIJNÍ PROGRAMY S KOMBINOVANOU FORMOU STUDIA Typeset by L A TEX 2ε, Podpořeno projektem

Více

22 Cdo 2694/2015 ze dne 25.08.2015. Výběr NS 4840/2015

22 Cdo 2694/2015 ze dne 25.08.2015. Výběr NS 4840/2015 22 Cdo 2694/2015 ze dne 25.08.2015 Výběr NS 4840/2015 22 Cdo 209/2012 ze dne 04.07.2013 C 12684 Bezúplatné nabytí členského podílu v bytovém družstvu jedním z manželů od jeho rodičů nepředstavuje investici

Více

4 DVOJMATICOVÉ HRY. Strategie Stiskni páku Sed u koryta. Stiskni páku (8, 2) (5, 3) Sed u koryta (10, 2) (0, 0)

4 DVOJMATICOVÉ HRY. Strategie Stiskni páku Sed u koryta. Stiskni páku (8, 2) (5, 3) Sed u koryta (10, 2) (0, 0) 4 DVOJMATICOVÉ HRY Strategie Stiskni páku Sed u koryta Stiskni páku (8, 2) (5, 3) Sed u koryta (10, 2) (0, 0) 125 DVOJMATICOVÁ HRA Je-li speciálně množina hráčů Q = {1, 2} a prostory strategií S 1, S 2

Více

Usnesení. Dražební vyhlášku o provedení elektronické dražby věcí nemovitých

Usnesení. Dražební vyhlášku o provedení elektronické dražby věcí nemovitých EXEKUTORSKÝ ÚŘAD CHEB MGR. DAVID KONCZ SOUDNÍ EXEKUTOR 26. dubna 10, Cheb 35002 tel., fax: +420 355 318 111, +420 355 318 110 e-mail: podatelna@eucheb.cz www.eucheb.cz IDDS: 9u8g8ka Usnesení č.j.: 074

Více

Žáci mají k dispozici pracovní list. Formou kolektivní diskuze a výkladu si osvojí grafickou minimalizaci zápisu logické funkce

Žáci mají k dispozici pracovní list. Formou kolektivní diskuze a výkladu si osvojí grafickou minimalizaci zápisu logické funkce Číslo projektu Číslo materiálu Název školy Autor Název Téma hodiny Předmět Ročník /y/ CZ.1.07/1.5.00/34.0394 VY_32_INOVACE_9_ČT_1.09_ grafická minimalizace Střední odborná škola a Střední odborné učiliště,

Více

Matematický KLOKAN 2009 www.matematickyklokan.net. kategorie Benjamín

Matematický KLOKAN 2009 www.matematickyklokan.net. kategorie Benjamín Matematický KLOKAN 2009 www.matematickyklokan.net kategorie Benjamín Úlohy za 3 body 1. Hodnota kterého výrazu je sudé číslo? (A) 200 + 9 (B) 200 9 (C) 200 9 (D) 2 + 0 + 0 + 9 (E) 2 0 + 0 + 9 2. Kolik

Více

Staroegyptská matematika. Hieratické matematické texty

Staroegyptská matematika. Hieratické matematické texty Staroegyptská matematika. Hieratické matematické texty Stanovení kvality piva a chleba In: Hana Vymazalová (author): Staroegyptská matematika. Hieratické matematické texty. (Czech). Praha: Český egyptologický

Více

1 HRA V EXPLICITNÍM TVARU

1 HRA V EXPLICITNÍM TVARU HR V EXPLICITÍM TVRU. ÚVOD.. Hr im Uvžujme jedoduchou hru, kdy dv hráči ozčme je čísly, 2 mjí před sebou dvě hromádky, z ichž kždá je tvoře dvěm fzolemi. Hráč musí vzít z jedé hromádky jedu ebo dvě fzole,

Více

úzkým propojením se rozumí stav, kdy jsou dvě nebo více fyzických či právnických osob spojeny:

úzkým propojením se rozumí stav, kdy jsou dvě nebo více fyzických či právnických osob spojeny: Příloha č. 1 Srovnávací tabulka k návrhu zákona o finančních konglomerátech s legislativou ES Ustanovení zákona Navrhovaný předpis ČR 36 Změna zákona o bankách 4 V 4 odst. 5 písm. g) se slova s úzkým propojením,

Více

VNITŘNÍ SMĚRNICE číslo

VNITŘNÍ SMĚRNICE číslo VNITŘNÍ SMĚRNICE číslo sociální služba domov pro osoby se zdravotním postižením (DOZP) chráněné bydlení (CHB) odlehčovací služba (OS) standard kvality služeb číslo PŘEDMĚT: Směrnice k úhradám sociálních

Více

OBEC MALÉ PŘÍTOČNO Obecně závazná vyhláška č. 1/2010 o místních poplatcích ČÁST I. ZÁKLADNÍ USTANOVENÍ

OBEC MALÉ PŘÍTOČNO Obecně závazná vyhláška č. 1/2010 o místních poplatcích ČÁST I. ZÁKLADNÍ USTANOVENÍ OBEC MALÉ PŘÍTOČNO Obecně závazná vyhláška č. 1/2010 o místních poplatcích Zastupitelstvo obce Malé Přítočno se na svém zasedání dne 21.12.2010 usneslo vydat na základě 14 odst. 2 zákona č. 565/1990 Sb.,

Více

V molekulách obou skupin uhlovodíků jsou atomy uhlíku mezi sebou vázány pouze vazbami jednoduchými (sigma).

V molekulách obou skupin uhlovodíků jsou atomy uhlíku mezi sebou vázány pouze vazbami jednoduchými (sigma). ALKANY, CYKLOALKANY UHLOVODÍKY ALIFATICKÉ (NECYKLICKÉ) CYKLICKÉ NASYCENÉ (ALKANY) NENASYCENÉ (ALKENY, ALKYNY APOD.) ALICYKLICKÉ (NEAROMA- TICKÉ) AROMATICKÉ (ARENY) NASYCENÉ (CYKLO- ALKANY) NENASYCENÉ (CYKLOALKENY

Více

Zkouška Jestliže 17 % z 215 t je 36,55 t, potom 83 % z 215 t je 215 t 36,55 t = 178,45 t.

Zkouška Jestliže 17 % z 215 t je 36,55 t, potom 83 % z 215 t je 215 t 36,55 t = 178,45 t. Úlohy na procenta Řešíme buď: Přes jedno procento. Užitím vzorce č = z. p, kde č je část základu odpovídající danému počtu procent, z je základ, p je počet procent odpovídající dané části základu vyjádřený

Více

Předmět: Ročník: Vytvořil: Datum: ŠČERBOVÁ M. PAVELKA V. NOSNÍKY NOSNÍKY

Předmět: Ročník: Vytvořil: Datum: ŠČERBOVÁ M. PAVELKA V. NOSNÍKY NOSNÍKY Předmět: Ročník: Vytvořil: Datum: MECHANIKA PRVNÍ ŠČERBOVÁ M. PAVELKA V. 16. ČERVNA 2012 Název zpracovaného celku: NOSNÍKY NOSNÍKY Nosníky jsou zpravidla přímá tělesa (pruty) uloţená na podporách nebo

Více

1. DÁLNIČNÍ A SILNIČNÍ SÍŤ V OKRESECH ČR

1. DÁLNIČNÍ A SILNIČNÍ SÍŤ V OKRESECH ČR 1. DÁIČNÍ A SIIČNÍ SÍŤ V OKRESE ČR Pro dopravu nákladů, osob a informací jsou nutné podmínky pro její realizaci, jako je kupříkladu vhodná dopravní infrastruktura. V případě pozemní silniční dopravy to

Více

Obecně závazná vyhláška č. 1/2007 o místních poplatcích

Obecně závazná vyhláška č. 1/2007 o místních poplatcích Obec Křesetice Obecně závazná vyhláška č. 1/2007 o místních poplatcích Zastupitelstvo obce Křesetice se na svém zasedání dne 16.01.2007 usnesením č.? usneslo vydat na základě 14 odst. 2 zákona č. 565/1990

Více

1.2.5 Reálná čísla I. Předpoklady: 010204

1.2.5 Reálná čísla I. Předpoklady: 010204 .2.5 Reálná čísla I Předpoklady: 00204 Značíme R. Reálná čísla jsou čísla, kterými se vyjadřují délky úseček, čísla jim opačná a 0. Každé reálné číslo je na číselné ose znázorněno právě jedním bodem. Každý

Více

Kód uchazeče ID:... Varianta: 15

Kód uchazeče ID:... Varianta: 15 Fakulta informačních technologií ČVUT v Praze Přijímací zkouška z matematiky 2013 Kód uchazeče ID:.................. Varianta: 15 1. V únoru byla zaměstnancům zvýšena mzda o 15 % lednové mzdy. Následně

Více

Termostatický směšovací ventil 2005. 04. Technický popis. Max. pracovní tlak: 1 MPa = 10 bar

Termostatický směšovací ventil 2005. 04. Technický popis. Max. pracovní tlak: 1 MPa = 10 bar TA MATIC 3400 11 5 15 CZ Termostatický směšovací ventil 2005. 04 Technický popis Oblast použití: Ventil je určen především jako centrální směšovač pro přípravu teplé užitkové vody (TUV) ve větších obytných

Více

http://cs.wikipedia.org/wiki/elektromotor

http://cs.wikipedia.org/wiki/elektromotor http://cs.wikipedia.org/wiki/elektromotor Krokové motory princip funkce, metody řízení Občas se v praxi vyskytne potřeba pohonu, který umí přesně nastavit svoji polohu a tuto polohu i přes působící síly

Více

Změny dispozic objektu observatoře ČHMÚ v Košeticích

Změny dispozic objektu observatoře ČHMÚ v Košeticích O D Ů V O D N Ě N Í V E Ř E J N É Z A K Á Z K Y Dokument slouží ke správnému zpracování odůvodnění veřejné zakázky podle ustanovení 86 odst. 2 a 156 ZVZ, ve smyslu vyhlášky Ministerstva pro místní rozvoj

Více

POSOUZENÍ STAVU HLAVNÍHO OBJEKTU BUDOVY Č. OR. 10 V JEZDECKÉ ULICI V PROSTĚJOVĚ

POSOUZENÍ STAVU HLAVNÍHO OBJEKTU BUDOVY Č. OR. 10 V JEZDECKÉ ULICI V PROSTĚJOVĚ z.č.: 13-1672-81 POSOUZENÍ STAVU HLAVNÍHO OBJEKTU BUDOVY Č. OR. 10 V JEZDECKÉ ULICI V PROSTĚJOVĚ Vypracoval: Ing. Daniel Lemák, Ph.D. Zhotovitel: Zakázkové číslo: 13-1672-81 Objednatel: STATIKA Olomouc,

Více

Číslicová technika 3 učební texty (SPŠ Zlín) str.: - 1 -

Číslicová technika 3 učební texty (SPŠ Zlín) str.: - 1 - Číslicová technika učební texty (SPŠ Zlín) str.: - -.. ČÍTAČE Mnohá logická rozhodnutí jsou založena na vyhodnocení počtu opakujících se jevů. Takovými jevy jsou např. rychlost otáčení nebo cykly stroje,

Více

ÚROKVÁ SAZBA A VÝPOČET BUDOUCÍ HODNOTY

ÚROKVÁ SAZBA A VÝPOČET BUDOUCÍ HODNOTY ÚROKVÁ SAZBA A VÝOČET BUDOUÍ HODNOTY. Tp a duh úočeí, budoucí hodota ivestice Úo - odměa za zísáí úvěu (cea za službu peěz) Ročí úoová sazba (mía)() úo v % z hodot apitálu za časové období řipisováí úoů:

Více

Leadership JudgementIndicator -LJI (Test stylůvedení)

Leadership JudgementIndicator -LJI (Test stylůvedení) Leadership JudgementIndicator -LJI (Test stylůvedení) Hogrefe Testcentrum, Praha 2012 Autoři: M. Lock, R. Wheeler Autořičeskéverze:R. Bahbouh, V. Havlůj(ed.), M. Konečný, H. Peterková, E. Rozehnalová LJI

Více

Stále ještě váháte s přihlášením? Když už jsme řádně přihlášeni? Jak bude turnaj koncipován?

Stále ještě váháte s přihlášením? Když už jsme řádně přihlášeni? Jak bude turnaj koncipován? 4. roverský kmen Griffins ~ 1. středisko Ještěd ~ griffins.skautlib.cz Ahoj všichni roveři a rangers, přihlášené týmy, ale i vy, co stále ještě váháte... V tomto textu se dozvíte všechny důležité informace,

Více