Reálné gymnázium a základní škola města Prostějova 5.22 Učební osnovy: Seminář a cvičení z matematiky
|
|
- Libuše Dušková
- před 9 lety
- Počet zobrazení:
Transkript
1 Zpracování osnov předmětu Cvičení z matematiky koordinoval Mgr. Petr Spisar Časová dotace : Vyšší gymnázium: 5.N 2 hodiny 3.V 2 hodiny 6.N 2 hodiny 4.V 2 hodiny Celková dotace: 4 hodiny Charakteristika předmětu Na povinné hodiny matematiky navazuje od třetího ročníku vyššího gymnázia dvouletý volitelný seminář, který dává prostor pro nadstandardní látku i nové metody. Jeho obsah se aktuálně obměňuje podle požadavků a zaměření žáků. Jeho cílem je prohloubení učiva matematiky, rozšíření o nová témata a prohloubení vztahů mezi matematikou a přírodními vědami. Učivo je logicky zařazováno tak, aby kopírovalo již probrané učivo matematiky a pomohlo tak studentům utřídit si již získané znalosti pro přípravu k maturitě. Důraz je kladen na dobré pochopení matematických pojmů, na zvládnutí matematických dovedností, geometrickou představivost, schopnost abstrakce a logického myšlení. Výuka rovněž zahrnuje schopnost tvořivě pracovat s informacemi, dovednost formulovat a argumentovat a aplikovat získané znalosti v ostatních vědeckých disciplinách i v běžném životě. Cíle předmětu Osvojení základních matematických pojmů, rozvoj aktivního a tvořivého porozumění kvantitativních nebo prostorových vztahů. Matematika vede žáky k poznání skutečnosti, že k řešení úloh lze zvolit různé postupy. Rozvíjí u žáků důvěru ve vlastní schopnosti, vede je k soustavné sebekontrole, systematičnosti, vytrvalosti a přesnosti. Formuje osobnost žáka. Klade důraz na porozumění a osvojení si některých algoritmů, terminologie, symboliky a způsobů jejich využití. Výchovné a vzdělávací strategie Při výuce učitelé využívají audiovizuální techniku. Výuka probíhá převážně frontálně, může být doplněna skupinovou a samostatnou prací v počítačových učebnách. Klíčové kompetence: Kompetence k učení - Student si osvojuje matematické pojmy, symboly a odbornou terminologii. - Aktivně řeší matematické úkoly a problémy. - Vyhledává a třídí informace, uvádí do souvislosti nově nabyté poznatky s praxí. Kompetence k řešení problému - Student navrhuje postupy a řešení, diskutuje o nich. - Vnímá a rozpozná problém a hledá nejvhodnější způsob řešení. - Učitel vede žáky k využívání náčrtů a schémat, odvozuje některé vzorce a podporuje jejich odvozování i během řešení úloh. 22 / 42
2 Kompetence komunikativní - Student si osvojuje odbornou terminologii. - vyjadřuje se věcně a srozumitelně, komentuje svůj postup řešení u tabule. - Využívá internet a další informační technologie. Kompetence sociální a personální - Student posiluje své sebevědomí. - Respektuje pravidla práce v týmu a sám ovlivňuje kvalitu společné práce. - Učitel oceňuje studenty, kteří se dovedou zeptat na nejasnost a problém. Kompetence občanské - Učitel podporuje zodpovědný vztah k plnění povinností a ke studiu. - Vede studenty k toleranci a ke kritickému hodnocení názorů svých i jiných žáků. Kompetence pracovní - Student je schopen pracovní koncentrace. - Dokáže zhodnotit výsledky své práce, hledá vlastní řešení nebo pracuje podle předem stanoveného postupu. - Učitel vede studenty k využívání jejich znalostí získaných v matematice při přípravě na další vzdělání a profesní zaměření. 23 / 42
3 ROČ VÝSTUP UČIVO 3. roč. vyšší G 3. roč. - čte a zapisuje tvrzení v symbolickém jazyce matematiky - provádí správně operace s množinami, množiny využívá při řešení úloh - řeší slovní úlohy užitím Vennových diagramů - pracuje správně s výroky, užívá správně logické spojky a kvantifikátory - přesně formuluje své myšlenky a srozumitelně se vyjadřuje - vhodnými metodami provádí důkazy matematických vět - provádí operace s mocninami, upravuje číselné výrazy - efektivně upravuje výrazy s proměnnými, určuje definiční obor výrazů - rozkládá mnohočleny na součin vytýkáním a užitím vzorců - řeší lineární a kvadratické rovnice, nerovnice a jejich soustavy, diskutuje řešitelnost nebo počet řešení - rozlišuje ekvivalentní a neekvivalentní úpravy, zdůvodní, kdy je zkouška nutnou součástí řešení, geometricky interpretuje číselné, algebraické a funkční vztahy, graficky znázorňuje řešení rovnic, nerovnic a jejich soustav - analyzuje a řeší problémy, v nichž aplikuje řešení lineárních a kvadratických rovnic a jejich soustav - řeší konstrukční úlohy užitím množin všech bodů dané vlastnosti, pomocí konstrukce délek úseček daných výrazem - využívá náčrt při řešení rovinného problému - řeší konstrukční úlohy pomocí shodných zobrazení a stejnolehlosti 3NV1 Množiny a výroky - Množiny, operace s množinami (sjednocení, průnik, rozdíl množin, doplněk množiny v množině, podmnožina, rovnost množin, Vennovy diagramy) - Operace s výroky, obměněná implikace, obrácená implikace, negace, řešení slovních úloh užitím výrokové logiky - Přímý důkaz, nepřímý důkaz, důkaz sporem 3NV2 Mocniny, mnohočleny, lomené výrazy - Mocniny s přirozeným a celým exponentem - Mnohočleny, rozklad mnohočlenů - Lomené výrazy, početní operace s nimi - Vyjádření neznámé ze vzorce 3NV3 Základní typy rovnic a nerovnic - Lineární rovnice a nerovnice - Rovnice a nerovnice s absolutní hodnotou - Soustavy lineárních rovnic a nerovnic - Kvadratická rovnice a nerovnice - Rovnice s neznámou ve jmenovateli a pod odmocninou - Lineární a kvadratická rovnice s parametrem - Reciproké rovnice 3NV4 Konstrukční úlohy - Konstrukční úlohy řešené pomocí množin bodů daných vlastností - Konstrukce na základě výpočtu 3NV5 Zobrazení v rovině - Shodná zobrazení: identita, osová a středová souměrnost, posunutí, otočení, skládání osových 24 / 42 PRŮŘEZOVÁ TÉMATA MEZIPŘEDMĚTOVÉ VZTAHY, POZNÁMKY PT DRUH Ch, F vyjádření neznámé ze vzorců
4 3. roč. 3. roč. - načrtne grafy elementárních funkcí (v základním i posunutém tvaru) a určí jejich vlastnosti - formuluje a zdůvodňuje vlastnosti studovaných funkcí - využívá poznatky o funkcích při řešení rovnic - v úlohách aplikuje funkční vztahy a úpravu výrazů, pracuje s proměnnými a iracionálními čísly - řeší planimetrické a stereometrické problémy motivované praxí - ovládá operace s komplexními čísly v algebraickém a goniometrickém tvaru, při řešení úloh umí využít rovnosti komplexních čísel - vysvětlí vzájemné přiřazení komplexních čísel a bodů Gaussovy roviny, geometrický význam absolutní hodnoty a argumentu komplexního čísla - řeší kvadratické a binomické rovnice v oboru komplexních čísel Reálné gymnázium a základní škola města Prostějova souměrností; - Podobná zobrazení: stejnolehlost - Konstrukční úlohy řešené pomocí shodných a podobných zobrazení 3NV6 Funkce - Pojem funkce, definiční obor, obor hodnot, složená funkce, vlastnosti funkcí - Lineární funkce - Funkce absolutní hodnota - Kvadratická funkce - Nepřímá úměrnost, racionální lomená funkce - Mocninné funkce - Exponenciální a logaritmické funkce - Exponenciální a logaritmické rovnice 3NV7 Goniometrické funkce a trigonometrie - Goniometrické funkce a jejich grafy - Goniometrické vzorce, vztahy mezi hodnotami goniometrických funkcí - Goniometrické rovnice - Sinová a kosinová věta, užití trigonometrických vzorců v úlohách z praxe 3NV8 Komplexní čísla - Početní výkony s komplexními čísly v algebraickém a goniometrickém a exponenciálním tvaru - Moivreova věta - Binomická rovnice - Kvadratická rovnice s reálnými a komplexními koeficienty užití logaritmů k výpočtům v chemii a ve fyzice F: skládání sil 25 / 42
5 ROČ VÝSTUP UČIVO 4. roč. vyšší G 6. roč. - zobrazí ve volné rovnoběžné projekci hranol a jehlan, sestrojí a zobrazí rovinný řez těchto těles nebo jejich průnik s přímkou - určuje vzdálenosti odchylky geometrických útvarů - využívá náčrt při řešení prostorového problému - v úlohách početní geometrie aplikuje funkční vztahy, trigonometrii a úpravy výrazů 4NV1 Stereometrie Polohové a metrické vlastnosti - Volné rovnoběžné promítání, určení řezu těles rovinou a průnik přímky s rovinou - Příčka mimoběžek - Metrické vztahy prostorových útvarů řešené stereometricky (vzdálenosti a odchylky rovinných a prostorových útvarů) PRŮŘEZOVÁ TÉMATA MEZIPŘEDMĚTOVÉ VZTAHY, POZNÁMKY PT DRUH P roč. 6. roč. - řeší stereometrické problémy motivované praxí 4NV2 Tělesa - Tělesa: hranol, jehlan, čtyřstěn, válec, kužel, koule; mnohostěny, povrchy a objemy těles a jejich částí - řeší analyticky polohové a metrické úlohy o lineárních útvarech v rovině a v prostoru - využívá metod analytické geometrie při řešení komplexních úloh a problémů - využívá charakteristické vlastnosti kuželoseček k určení analytického vyjádření - z analytického vyjádření (z osové nebo vrcholové rovnice) určí základní údaje o kuželosečce - řeší analyticky úlohy na vzájemnou polohu přímky a kuželosečky (diskusí znaménka diskriminantu kvadratické rovnice) - řeší reálné problémy s kombinatorickým podtextem (charakterizuje možné případy, vytváří model pomocí kombinatorických skupin a určuje jejich počet) - upravuje výrazy s faktoriály a kombinačními 4NV3 Analytická geometrie v rovině a v prostoru Souřadnice, vektory - Polohové vztahy dvou přímek, přímky a roviny a dvou rovin řešené analyticky - Metrické vztahy prostorových útvarů řešené analyticky (vzdálenost bodů, bodu od přímky, bodu od roviny, dvou rovnoběžných přímek, přímky od roviny s ní rovnoběžné, dvou rovnoběžných rovin; odchylka dvou přímek, přímky od roviny, dvou rovin) 4NV4 Kuželosečky a kulová plocha - Kružnice, elipsa, parabola a hyperbola: ohniskové definice kuželoseček, rovnice kuželoseček - Vzájemná poloha přímky a kuželosečky - Tečna kuželosečky a její rovnice - Kulová plocha 4NV5 Kombinatorika, pravděpodobnost a statistika - Variace, permutace a kombinace bez opakování a s opakováním - Faktoriál, kombinační číslo, binomická věta, Pascalův trojúhelník 26 / 42 F: vektorové veličiny rychlost, zrychlení
6 4. roč. 6. roč. čísly - využívá kombinatorické postupy při výpočtu pravděpodobnosti - diskutuje a kriticky zhodnotí statistické informace a daná statistická sdělení, vytváří a vyhodnocuje závěry a předpovědi (hypotézy) na základě dat - volí a užívá vhodné statistické metody k analýze a zpracování dat (využívá výpočetní techniku) - reprezentuje graficky soubory dat, čte a interpretuje tabulky, diagramy a grafy - řeší aplikační úlohy s využitím poznatků o posloupnostech - interpretuje z funkčního hlediska složené úrokování, aplikuje exponenciální funkci a geometrickou posloupnost ve finanční matematice - vysvětlí pojmy nekonečná řada a součet nekonečné řady; pomocí základních kritérií konvergence určí chování jednodušších řad - aplikuje znalosti limit a derivací funkce při vyšetřování průběhu funkce - vypočítá určitý integrál složitějších funkcí - aplikuje znalosti výpočtu určitého integrálu v geometrii Reálné gymnázium a základní škola města Prostějova - Pravděpodobnost náhodný jev a jeho pravděpodobnost, pravděpodobnost sjednocení a průniku jevů, nezávislost jevů, podmíněná pravděpodobnost - Práce s daty analýza a zpracování dat v různých prezentacích, statistický soubor a jeho charakteristiky 4NV6 Posloupnosti a řady - Aritmetická a geometrická posloupnost - Finanční matematika - Nekonečná geometrická řada, její součet, podmínky konvergence 4NV7 Diferenciální počet - Monotónnost funkce, lokální a globální extrémy - Konvexnost a konkávnost funkce, inflexní body - Asymptota bez směrnice a se směrnicí - Vyšetřování průběhu funkce 4NV8 Integrální počet - Integrace úpravou integrandu, metodou per partes a metodou substituční, rozklad na parciální zlomky - Určitý integrál: výpočet - Aplikace určitého integrálu v geometrii a fyzice Mediální produkty a jejich významy Uživatelé F, Ch: zpracování dat, protokoly z laboratorních prací, chyby měření Finanční matematika P 52 P 53 P / 42
Vyučovací předmět Matematika Týdenní hodinová dotace 4 hodiny Ročník
Vyučovací předmět Matematika Týdenní hodinová dotace 4 hodiny Ročník 1. Roční hodinová dotace 144 hodiny Výstupy Učivo Průřezová témata, mezipředmětové vztahy Žák provádí správně operace s množinami, množiny
Vzdělávací oblast: Matematika a její aplikace Vzdělávací obor: Matematika a její aplikace. Předmět: Matematika
Vzdělávací oblast: Matematika a její aplikace Vzdělávací obor: Matematika a její aplikace Oblast a obor jsou realizovány v povinném předmětu Matematika a ve volitelných předmětech Deskriptivní geometrie
Dodatek č. 3 ke školnímu vzdělávacímu programu. Strojírenství. (platné znění k 1. 9. 2009)
Střední průmyslová škola Jihlava tř. Legionářů 1572/3, Jihlava Dodatek č. 3 ke školnímu vzdělávacímu programu Strojírenství (platné znění k 1. 9. 09) Tento dodatek nabývá platnosti dne 1. 9. 13 (počínaje
Vzdělávací oblast: Matematika a její aplikace. Obor vzdělávací oblasti: Seminář z matematiky. Ročník: 7. Poznámky
Vzdělávací oblast: Matematika a její aplikace Obor vzdělávací oblasti: Seminář z matematiky Ročník: 7. Výstupy - kompetence Učivo Průřezová témata,přesahy, a další poznámky - převádí jednotky délky, času,
Matematika - Tercie Matematika tercie Výchovné a vzdělávací strategie Učivo ŠVP výstupy
- Tercie Matematika Výchovné a vzdělávací strategie Kompetence k řešení problémů Kompetence komunikativní Kompetence sociální a personální Kompetence občanská Kompetence k učení Kompetence pracovní Učivo
Profilová část maturitní zkoušky 2015/2016
Střední průmyslová škola, Přerov, Havlíčkova 2 751 52 Přerov Profilová část maturitní zkoušky 2015/2016 TEMATICKÉ OKRUHY A HODNOTÍCÍ KRITÉRIA Studijní obor: 78-42-M/01 Technické lyceum Předmět: MATEMATIKA
Maturitní okruhy z matematiky školní rok 2007/2008
Maturitní okruhy z matematiky školní rok 2007/2008 1. ALGEBRAICKÉ VÝRAZY 2 2 2 3 3 3 a ± b ; a b ; a ± b ; a ± b 1.1. rozklad výrazů na součin: vytýkání, užití vzorců: ( ) ( ) 1.2. určování definičního
CHARAKTERISTIKA PŘEDMĚTU MATEMATIKA VE ČTYŘLETÉM STUDIU A VE VYŠŠÍM STUPNI OSMILETÉHO STUDIA
Gymnázium F. X. Šaldy, Liberec CHARAKTERISTIKA PŘEDMĚTU MATEMATIKA VE ČTYŘLETÉM STUDIU A VE VYŠŠÍM STUPNI OSMILETÉHO STUDIA obsah předmětu Vzdělávací obsah vyučovacího předmětu Matematika vychází z oboru
MINISTERSTVO ŠKOLSTVÍ, MLÁDEŽE A TĚLOVÝCHOVY. Učební osnova předmětu MATEMATIKA. pro studijní obory SOŠ a SOU (13 15 hodin týdně celkem)
MINISTERSTVO ŠKOLSTVÍ, MLÁDEŽE A TĚLOVÝCHOVY Učební osnova předmětu MATEMATIKA pro studijní obory SOŠ a SOU (13 15 hodin týdně celkem) Schválilo Ministerstvo školství, mládeže a tělovýchovy dne 14.června
Gymnázium Jiřího Ortena, Kutná Hora. volné rovnoběžné promítání průmětna
Předmět: Matematika Náplň: Stereometrie, Analytická geometrie, Komplexní čísla Třída: 3. ročník Počet hodin: 4 hodiny týdně Pomůcky: PC a dataprojektor Volné rovnoběžné promítání Zobrazí ve volném rovnoběžném
Seminář z matematiky. jednoletý volitelný předmět
Název předmětu: Zařazení v učebním plánu: Seminář z matematiky O8A, C4A, jednoletý volitelný předmět Cíle předmětu Obsah předmětu je koncipován pro přípravu studentů k úspěšnému zvládnutí profilové (školní)
5.19 Deskriptivní geometrie. Charakteristika vyučovacího předmětu. 1. Obsahové, časové a organizační vymezení vyučovacího předmětu
5.19 Deskriptivní geometrie Charakteristika vyučovacího předmětu 1. Obsahové, časové a organizační vymezení vyučovacího předmětu Vzdělávací obsah vyučovacího předmětu Deskriptivní geometrie vychází ze
Tematická oblast: Funkce (VY_32_INOVACE_05_2)
Tematická oblast: (VY_32_INOVACE_05_2) Autor: RNDr. Yvetta Bartáková, Mgr. Petra Drápelová, Mgr. Jaroslava Vrbková, Mgr. Jarmila Zelená Vytvořeno: 2013-2014 Anotace: Digitální učební materiály slouží k
Mgr. Ladislav Zemánek Maturitní okruhy Matematika 2013-2014. 1. Obor reálných čísel
Mgr. Ladislav Zemánek Maturitní okruhy Matematika 2013-2014 1. Obor reálných čísel - obor přirozených, celých, racionálních a reálných čísel - vlastnosti operací (sčítání, odčítání, násobení, dělení) -
MATURITNÍ TÉMATA Z MATEMATIKY
MATURITNÍ TÉMATA Z MATEMATIKY 1. Základní poznatky z logiky a teorie množin Pojem konstanty a proměnné. Obor proměnné. Pojem výroku a jeho pravdivostní hodnota. Operace s výroky, složené výroky, logické
1.3. Cíle vzdělávání v oblasti citů, postojů, hodnot a preferencí
1. Pojetí vyučovacího předmětu 1.1. Obecný cíl vyučovacího předmětu Základním cílem předmětu Matematický seminář je navázat na získané znalosti a dovednosti v matematickém vzdělávání a co nejefektivněji
Výstupy - kompetence Téma - Učivo Průřezová témata,přesahy - čte, zapisuje a porovnává přirozená čísla. - přirozená čísla
Vzdělávací oblast: Matematika a její aplikace Obor vzdělávací oblasti: Matematika Ročník: 6 Výstupy - kompetence Téma - Učivo Průřezová témata,přesahy - čte, zapisuje a porovnává přirozená čísla Opakování
Maturitní témata profilová část
Seznam témat Výroková logika, úsudky a operace s množinami Základní pojmy výrokové logiky, logické spojky a kvantifikátory, složené výroky (konjunkce, disjunkce, implikace, ekvivalence), pravdivostní tabulky,
Učební plán 4. letého studia předmětu matematiky. Učební plán 6. letého studia předmětu matematiky
Učební plán 4. letého studia předmětu matematiky Ročník I II III IV Dotace 3 3+1 2+1 2+2 Povinnost povinný povinný povinný povinný Učební plán 6. letého studia předmětu matematiky Ročník 1 2 3 4 5 6 Dotace
DODATEK č. 2 ke dni 1. 9. 2013 KE ŠKOLNÍMU VZDĚLÁVACÍMU PROGRAMU PRO OBOR OBCHODNÍ AKADEMIE
GYMNÁZIUM A STŘEDNÍ ODBORNÁ ŠKOLA ZDRAVOTNICKÁ A EKONOMICKÁ VYŠKOV DODATEK č. 2 ke dni 1. 9. 2013 KE ŠKOLNÍMU VZDĚLÁVACÍMU PROGRAMU PRO OBOR OBCHODNÍ AKADEMIE Dodatkem jsou změněny skutečnosti, které vznikly
Základní škola Moravský Beroun, okres Olomouc
Charakteristika vyučovacího předmětu matematika Vyučovací předmět má časovou dotaci čtyři hodiny týdně v prvním ročníku, pět hodin týdně ve druhém až pátém ročníku, pět hodin týdně v šestém ročníku a čtyři
P ř e d m ě t : M A T E M A T I K A
04-ŠVP-Matematika-P,S,T,K strana 1 (celkem 11) 1. 9. 2014 P ř e d m ě t : M A T E M A T I K A Charakteristika předmětu: Matematika vytváří postupným osvojováním matematických pojmů, útvarů, algoritmů a
MATEMATIKA Charakteristika vyučovacího předmětu 2. stupeň
MATEMATIKA Charakteristika vyučovacího předmětu 2. stupeň Obsahové, časové a organizační vymezení Předmět Matematika se vyučuje jako samostatný předmět v 6. až 8. ročníku 4 hodiny týdně, v 9. ročníku 3
Maturitní okruhy z matematiky - školní rok 2007/2008
Maturitní okruhy z matematiky - školní rok 2007/2008 1. Některé základní poznatky z elementární matematiky: Číselné obory, dělitelnost přirozených čísel, prvočísla a čísla složená, největší společný dělitel,
A B C D E F 1 Vzdělávací oblast: Člověk a příroda 2 Vzdělávací obor: Zeměpis 3 Ročník: 7. 4 Klíčové kompetence (Dílčí kompetence) Rozdělení světa
A B C D E F Vzdělávací oblast: Člověk a příroda 2 Vzdělávací obor: Zeměpis 3 Ročník: 7. 4 Klíčové kompetence (Dílčí kompetence) 5 Kompetence Komunikativní Formuluje a vyjadřuje myšlenky v logickém sledu
Matematika ve 4. ročníku
Matematika ve 4. ročníku září Čte a zapisuje přirozená čísla. učebnice strana 3 9 Počítá po stovkách a desítkách. chvilky strana 1 8 Čte, píše a zobrazuje čísla na číselné ose, teploměru, modelu. kalkulačka
Maturitní témata z matematiky
Maturitní témata z matematiky G y m n á z i u m J i h l a v a Výroky, množiny jednoduché výroky, pravdivostní hodnoty výroků, negace operace s výroky, složené výroky, tabulky pravdivostních hodnot důkazy
B) výchovné a vzdělávací strategie jsou totožné se strategiemi vyučovacího předmětu Matematika.
4.8.3. Cvičení z matematiky Předmět Cvičení z matematiky je vyučován v sextě a v septimě jako volitelný předmět. Vzdělávací obsah vyučovacího předmětu Cvičení z matematiky vychází ze vzdělávací oblasti
Cvičení z matematiky - volitelný předmět
Volitelný předmět : Období ročník : Cvičení z matematiky - volitelný předmět 3. období 8. ročník Učební texty : Sbírky úloh, Testy k přijímacím zkouškám, Testy Scio, Kalibro,... Očekávané výstupy předmětu
Reálná čísla a výrazy. Početní operace s reálnými čísly. Složitější úlohy se závorkami. Slovní úlohy. Číselné výrazy. Výrazy a mnohočleny
A B C D E F 1 Vzdělávací oblast: Matematika a její aplikace 2 Vzdělávací obor: Cvičení z matematiky 3 Ročník: 9. 4 Klíčové kompetence (Dílčí kompetence) 5 Kompetence k učení učí se vybírat a využívat vhodné
Základní škola Fr. Kupky, ul. Fr. Kupky 350, 518 01 Dobruška 5.2 MATEMATIKA A JEJÍ APLIKACE - 5.2.1 MATEMATIKA A JEJÍ APLIKACE Matematika 6.
5.2 MATEMATIKA A JEJÍ APLIKACE 5.2.1 MATEMATIKA A JEJÍ APLIKACE Matematika 6. ročník RVP ZV Obsah RVP ZV Kód RVP ZV Očekávané výstupy ŠVP Školní očekávané výstupy ŠVP Učivo ČÍSLO A PROMĚNNÁ M9101 provádí
Maturitní otázky z předmětu MATEMATIKA
Wichterlovo gymnázium, Ostrava-Poruba, příspěvková organizace Maturitní otázky z předmětu MATEMATIKA 1. Výrazy a jejich úpravy vzorce (a+b)2,(a+b)3,a2-b2,a3+b3, dělení mnohočlenů, mocniny, odmocniny, vlastnosti
Dodatek č. 3 ke školnímu vzdělávacímu programu. Technické lyceum. (platné znění k 1. 9. 2009)
Střední průmyslová škola Jihlava tř. Legionářů 72/3, Jihlava Dodatek č. 3 ke školnímu vzdělávacímu programu Technické lyceum (platné znění k 1. 9. 09) Tento dodatek nabývá platnosti dne 1. 9. 13 (počínaje
Matematika. ochrana životního prostředí analytická chemie chemická technologie Forma vzdělávání:
Studijní obor: Aplikovaná chemie Učební osnova předmětu Matematika Zaměření: ochrana životního prostředí analytická chemie chemická technologie Forma vzdělávání: denní Celkový počet vyučovacích hodin za
MINISTERSTVO ŠKOLSTVÍ, MLÁDEŽE A TĚLOVÝCHOVY. Učební osnova předmětu MATEMATIKA. pro nástavbové studium. varianta B 6 celkových týd.
MINISTERSTVO ŠKOLSTVÍ, MLÁDEŽE A TĚLOVÝCHOVY Učební osnova předmětu MATEMATIKA pro nástavbové studium (hodinová dotace: varianta A 4 až 5 celkových týd. hodin, varianta B 6 celkových týd. hodin) Schválilo
AUTORKA Barbora Sýkorová
ČÍSLO SADY III/2 AUTORKA Barbora Sýkorová NÁZEV SADY: Číslo a proměnná číselné označení DUM NÁZEV DATUM OVĚŘENÍ DUM TŘÍDA ANOTACE PLNĚNÉ VÝSTUPY KLÍČOVÁ SLOVA FORMÁT (pdf,, ) 1 Pracovní list číselné výrazy
MATEMATIKA STUDIJNÍ POŽADAVKY PRO JEDNOTLIVÉ ROČNÍKY STUDIA
MATEMATIKA STUDIJNÍ POŽADAVKY PRO JEDNOTLIVÉ ROČNÍKY STUDIA Osmileté studium 1. ročník 1. Opakování a prohloubení učiva 1. 5. ročníku Číslo, číslice, množiny, přirozená čísla, desetinná čísla, číselné
ŠVP Gymnázium Ostrava-Zábřeh. 4.8.19. Úvod do deskriptivní geometrie
4.8.19. Úvod do deskriptivní geometrie Vyučovací předmět Úvod do deskriptivní geometrie je na naší škole nabízen v rámci volitelných předmětů v sextě, septimě nebo v oktávě jako jednoletý dvouhodinový
Předmět: Matematika. Charakteristika vyučovacího předmětu:
Vzdělávací oblast: Vzdělávací obor: Matematika a její aplikace Matematika a její aplikace Oblast a obor jsou realizovány v povinném předmětu matematika a ve volitelných předmětech Deskriptivní geometrie,
4. Výčtem prvků f: {[2,0],[3,1],[4,2],[5,3]}
1/27 FUNKCE Základní pojmy: Funkce, definiční obor, obor hodnot funkce Kartézská soustava souřadnic, graf funkce Opakování: Číselné množiny, úpravy výrazů, zobrazení čísel na reálné ose Funkce: Zápis:
Gymnázium Česká a Olympijských nadějí, České Budějovice, Česká 64, 37021
Maturitní témata MATEMATIKA 1. Funkce a jejich základní vlastnosti. Definice funkce, def. obor a obor hodnot funkce, funkce sudá, lichá, monotónnost funkce, funkce omezená, lokální a globální extrémy funkce,
TÉMA VÝSTUP UČIVO PRŮŘEZOVÁ TÉMATA
Matematika ročník TÉMA G5 5.1 Teorie množin, provádí správně operace s množinami, výroková logika množiny vyžívá při řešení úloh; pracuje správně s výroky, užívá správně logické spojky a kvantifikátory;
MAT_303 Název: VY_32_INOVACE_01_MAT_303_OZŠ_reálná_čísla_II.docx. MAT_304 Název: VY_32_INOVACE_01_MAT_304_OZŠ_zlomky.docx
Název školy: SPŠ Ústí nad Labem, středisko Resslova Číslo projektu: CZ.1.07/1.5.00/34.10.1036 Klíčová aktivita: III/2 Inovace a zkvalitnění výuky prostřednictvím ICT. Digitální učební materiály Autor:
Gymnázium Jiřího Ortena, Kutná Hora
Předmět: Cvičení z matematiky Náplň: Systematizace a prohloubení učiva matematiky Třída: 4. ročník Počet hodin: 2 Pomůcky: Učebna s dataprojektorem, PC, grafický program, tabulkový procesor Číselné obory
Systematizace a prohloubení učiva matematiky. Učebna s dataprojektorem, PC, grafický program, tabulkový procesor. Gymnázium Jiřího Ortena, Kutná Hora
Předmět: Náplň: Třída: Počet hodin: Pomůcky: Cvičení z matematiky Systematizace a prohloubení učiva matematiky 4. ročník 2 hodiny Učebna s dataprojektorem, PC, grafický program, tabulkový procesor Číselné
PŘEDMĚT: MATEMATIKA Školní výstupy Učivo Průřezová témata Poznámky, přesahy
PŘEDMĚT: MATEMATIKA ROČNÍK: PRVNÍ/KVINTA Školní výstupy Učivo Průřezová témata Poznámky, přesahy Žák určuje číselný obor daného čísla (N, Z, Q, R) a rozlišuje základní vlastnosti číselných oborů pracuje
Seminář z matematiky. 2 hodiny ve 3. ročníku, 4 hodiny ve 4. ročníku. Charakteristika předmětu
Seminář z matematiky 2 hodiny ve 3. ročníku, 4 hodiny ve 4. ročníku Charakteristika předmětu Předmět Seminář z matematiky navazuje na základní výuku matematiky. Slouží k rozšiřování a prohlubování již
Tematický plán Obor: Informační technologie. Vyučující: Ing. Joanna Paździorová
Tematický plán Vyučující: Ing. Joanna Paździorová 1. r o č n í k 5 h o d i n t ý d n ě, c e l k e m 1 7 0 h o d i n Téma- Tematický celek Z á ř í 1. Opakování a prohloubení učiva základní školy 18 1.1.
Maturitní témata z matematiky
Maturitní témata z matematiky 1. Lineární rovnice a nerovnice a) Rovnice a nerovnice s absolutní hodnotou absolutní hodnota reálného čísla definice, geometrický význam, srovnání řešení rovnic s abs. hodnotou
TÉMA VÝSTUP UČIVO PRŮŘEZOVÁ TÉMATA
Matematika ročník TÉMA G5 5.1 Teorie množin, provádí správně operace s množinami, výroková logika množiny vyžívá při řešení úloh; pracuje správně s výroky, užívá správně logické spojky a kvantifikátory;
Matematika PRŮŘEZOVÁ TÉMATA
Matematika ročník TÉMA 1-4 Operace s čísly a - provádí aritmetické operace v množině reálných čísel - používá různé zápisy reálného čísla - používá absolutní hodnotu, zapíše a znázorní interval, provádí
Zvyšování kvality výuky technických oborů
Zvyšování kvality výuky technických oborů Klíčová aktivita IV. Inovace a zkvalitnění výuky směřující k rozvoji matematické gramotnosti žáků středních škol Téma IV.. Kvadratické funkce, rovnice a nerovnice
TÉMA VÝSTUP UČIVO PRŮŘEZOVÁ TÉMATA
Matematika ročník TÉMA G5 VÝSTUP 5.1 Teorie množin, provádí správně operace s množinami, výroková logika množiny vyžívá při řešení úloh; pracuje správně s výroky, užívá správně logické spojky a kvantifikátory;
12.16 Obsah ř e z u... 95 12.17 O bjem y a povrchy těles... 96 13 Vektory... 99 13.1 Vektor, souřadnice vektoru... 99 13.2 Sčítání a odčítání
O bsah Předm luva... 9 1 Základní poznatky o výrocích a m nožinách... 10 1.1 Výrok, operace s výroky... 10 1.2 O bm ěněná implikace, obrácená implikace... 10 1.3 Negace složených výroků... 11 1.4 V ýroky
4. R O V N I C E A N E R O V N I C E
4. R O V N I C E A N E R O V N I C E 4.1 F U N K C E A J E J Í G R A F Funkce (definice, značení) Způsoby zadání funkce (tabulka, funkční předpis, slovní popis, graf) Definiční obor funkce (definice, značení)
Gymnázium Jiřího Ortena, Kutná Hora. Průřezová témata Poznámky. Téma Školní výstupy Učivo (pojmy) volné rovnoběžné promítání průmětna
Předmět: Matematika Náplň: Stereometrie, Analytická geometrie Třída: 3. ročník a septima Počet hodin: 4 hodiny týdně Pomůcky: PC a dataprojektor, učebnice Stereometrie Volné rovnoběžné promítání Zobrazí
Fyzika - Kvarta Fyzika kvarta Výchovné a vzdělávací strategie Učivo ŠVP výstupy
- Kvarta Fyzika Výchovné a vzdělávací strategie Kompetence k řešení problémů Kompetence komunikativní Kompetence sociální a personální Kompetence občanská Kompetence k učení Kompetence pracovní Učivo magnetické
Maturitní témata od 2013
1 Maturitní témata od 2013 1. Úvod do matematické logiky 2. Množiny a operace s nimi, číselné obory 3. Algebraické výrazy, výrazy s mocninami a odmocninami 4. Lineární rovnice a nerovnice a jejich soustavy
CZ 1.07/1.1.32/02.0006
PO ŠKOLE DO ŠKOLY CZ 1.07/1.1.32/02.0006 Číslo projektu: CZ.1.07/1.1.32/02.0006 Název projektu: Po škole do školy Příjemce grantu: Gymnázium, Kladno Název výstupu: Prohlubující semináře Matematika (MI
Nezbytnou součástí ústní zkoušky je řešení matematických příkladů, které student obdrží při zadání otázky.
Maturitní témata Matematika Školní rok 2016/17 Nezbytnou součástí ústní zkoušky je řešení matematických příkladů, které student obdrží při zadání otázky. Příprava ke zkoušce trvá 15 minut, ústní zkouška
5.3. Matematika a její aplikace
5.3. Matematika a její aplikace Vzdělávací oblast je realizována v předmětu Matematika. 5.3.1. Charakteristika vzdělávací oblasti Vzdělávací oblast Matematika a její aplikace je v základním vzdělávání
KVADRATICKÉ ROVNICE A NEROVNICE (včetně řešení v C)
Projekt ŠABLONY NA GVM Gymnázium Velké Meziříčí registrační číslo projektu: CZ.1.07/1.5.00/34.0948 IV-2 Inovace a zkvalitnění výuky směřující k rozvoji matematické gramotnosti žáků středních škol KVADRATICKÉ
Do vyučovacího předmětu Seminář z matematiky a fyziky jsou začleněna tato průřezová témata:
Seminář z matematiky a fyziky Obsahové vymezení Vyučovací předmět Seminář z matematiky a fyziky navazuje na vzdělávací obsah vzdělávacích oborů Fyzika a Matematika a její aplikace. Vychází také z katalogu
A B C D E F 1 Vzdělávací oblast: Matematika a její aplikace 2 Vzdělávací obor: Matematika 3 Ročník: 6. 4 Klíčové kompetence.
A B C D E F 1 Vzdělávací oblast: Matematika a její aplikace 2 Vzdělávací obor: Matematika 3 Ročník: 6. 4 Klíčové kompetence Výstupy Učivo Průřezová témata Evaluace žáka Poznámky (Dílčí kompetence) 5 Kompetence
MINISTERSTVO ŠKOLSTVÍ, MLÁDEŽE A TĚLOVÝCHOVY. Učební osnova předmětu MATEMATIKA
MINISTERSTVO ŠKOLSTVÍ, MLÁDEŽE A TĚLOVÝCHOVY Učební osnova předmětu MATEMATIKA pro střední odborné školy s humanitním zaměřením (6 8 hodin týdně celkem) Schválilo Ministerstvo školství, mládeže a tělovýchovy
Předmět: Matematika. Charakteristika vyučovacího předmětu:
Vzdělávací oblast: Vzdělávací obor: Matematika a její aplikace Matematika a její aplikace Oblast a obor jsou realizovány v povinném předmětu Matematika a ve volitelných předmětech Deskriptivní geometrie
MATURITNÍ OTÁZKY Z MATEMATIKY PRO ŠKOLNÍ ROK 2010/2011
MATURITNÍ OTÁZKY Z MATEMATIKY PRO ŠKOLNÍ ROK 2010/2011 1. Výroková logika a teorie množin Výrok, pravdivostní hodnota výroku, negace výroku; složené výroky(konjunkce, disjunkce, implikace, ekvivalence);
Zvyšování kvality výuky technických oborů
Zvyšování kvality výuky technických oborů Klíčová aktivita IV. Inovace a zkvalitnění výuky směřující k rozvoji matematické gramotnosti žáků středních škol Téma IV.. Kvadratické funkce, rovnice a nerovnice
MINISTERSTVO ŠKOLSTVÍ, MLÁDEŽE A TĚLOVÝCHOVY. Učební osnova předmětu MATEMATIKA. pro studijní obory SOŠ a SOU (8 10 hodin týdně celkem)
MINISTERSTVO ŠKOLSTVÍ, MLÁDEŽE A TĚLOVÝCHOVY Učební osnova předmětu MATEMATIKA pro studijní obory SOŠ a SOU (8 10 hodin týdně celkem) Schválilo Ministerstvo školství, mládeže a tělovýchovy dne 14. 6. 2000,
Předmět: Matematika. Charakteristika vyučovacího předmětu:
Vzdělávací oblast: Vzdělávací obor: Matematika a její aplikace Matematika a její aplikace Oblast a obor jsou realizovány v povinném předmětu Matematika a ve volitelných předmětech Základní cvičení z matematiky,
Zvyšování kvality výuky technických oborů
Zvyšování kvality výuky technických oborů Klíčová aktivita IV. Inovace a zkvalitnění výuky směřující k rozvoji matematické gramotnosti žáků středních škol Téma IV.. Kvadratické funkce, rovnice a nerovnice
Vyučovací předmět: Matematika. Charakteristika vyučovacího předmětu
Vyučovací předmět: Matematika Školní vzdělávací program pro základní vzdělávání Základní školy a mateřské školy Dobrovice Charakteristika vyučovacího předmětu Obsahové, časové a organizační vymezení předmětu
MATEMATIKA Maturitní témata společná část MZ vyšší úroveň (vychází z Katalogu požadavků MŠMT)
MATEMATIKA Maturitní témata společná část MZ vyšší úroveň (vychází z Katalogu požadavků MŠMT) 1. Číselné obory 1.1 Přirozená čísla provádět aritmetické operace s přirozenými čísly rozlišit prvočíslo a
Zvyšování kvality výuky technických oborů
Zvyšování kvality výuky technických oborů Klíčová aktivita IV. Inovace a zkvalitnění výuky směřující k rozvoji matematické gramotnosti žáků středních škol Téma IV.. Kvadratické funkce, rovnice a nerovnice
Gymnázium Jiřího Ortena, Kutná Hora
Předmět: Náplň: Cvičení z matematiky geometrie (CZMg) Systematizace a prohloubení učiva matematiky Planimetrie, Stereometrie, Analytická geometrie, Kombinatorika, Pravděpodobnost a statistika Třída: 4.
Číslo a početní operace Numerace v oboru do 20 Modelování situací v prostředí. Evidence počtu souborů a objektů.
A B C D E F 1 Vzdělávací oblast: Matematika a její aplikace 2 Vzdělávací obor: Matematika 3 Vzdělávací předmět: Matematika ( alternativní verze podle koncepce prof. M. Hejného ) 4 Ročník: 1. 5 Klíčové
Základy matematiky kombinované studium 714 0365/06
Základy matematiky kombinované studium 714 0365/06 1. Některé základní pojmy: číselné množiny, intervaly, operace s intervaly (sjednocení, průnik), kvantifikátory, absolutní hodnota čísla, vzorce: 2. Algebraické
Kvadratické rovnice pro studijní obory
Variace 1 Kvadratické rovnice pro studijní obory Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz. 1. Kvadratické
1. a) Lineární rovnice a nerovnice s absolutní hodnotou. b) Skalární součin vektorů, úhel dvou vektorů, kolmost a rovnoběžnost vektorů.
. a) Lineární rovnice a nerovnice s absolutní hodnotou. b) Skalární součin vektorů, úhel dvou vektorů, kolmost a rovnoběžnost vektorů. A.: Řeš v R : 4 B.: Vypočti velikosti vnitřních úhlů v trojúhelníku
Maturitní zkouška z matematiky (v profilové části) Informace o zkoušce, hodnocení zkoušky, povolené pomůcky a požadavky
Maturitní zkouška z matematiky (v profilové části) Informace o zkoušce, hodnocení zkoušky, povolené pomůcky a požadavky A. Informace o zkoušce Písemná maturitní zkouška z matematiky v profilové části se
5.2 Vzdělávací oblast - Matematika a její aplikace 5.2.1 Matematika 5.2.2 Cvičení z matematiky
5.2 Vzdělávací oblast - Matematika a její aplikace 5.2.1 Matematika 5.2.2 Cvičení z matematiky Ročník 2. Hodinová dotace Matematika 3 3 3 2 Cvičení z matematiky 0 0 R (2) R (2) Vyučovací předmět Matematika
Cvičení z matematiky - volitelný předmět
Vyučovací předmět : Období ročník : Učební texty : Cvičení z matematiky - volitelný předmět 3. období 9. ročník Sbírky úloh, Testy k přijímacím zkouškám, Testy Scio, Kalibro aj. Očekávané výstupy předmětu
CHARAKTERISTIKA. VZDĚLÁVACÍ OBLAST VYUČOVACÍ PŘEDMĚT ZODPOVÍDÁ MATEMATIKA A JEJÍ APLIKACE MATEMATIKA Mgr. Dana Rauchová
CHARAKTERISTIKA VZDĚLÁVACÍ OBLAST VYUČOVACÍ PŘEDMĚT ZODPOVÍDÁ MATEMATIKA A JEJÍ APLIKACE MATEMATIKA Mgr. Dana Rauchová Obsah vzdělávacího oboru Matematika a její aplikace je rozdělen na čtyři tématické
Gymnázium Jiřího Ortena, Kutná Hora
Předmět: Náplň: Třída: Počet hodin: Pomůcky: Cvičení z matematiky algebra (CZMa) Systematizace a prohloubení učiva matematiky: Číselné obory, Algebraické výrazy, Rovnice, Funkce, Posloupnosti, Diferenciální
Komplexní čísla, Kombinatorika, pravděpodobnost a statistika, Posloupnosti a řady
Předmět: Náplň: Třída: Počet hodin: Pomůcky: Matematika Komplexní čísla, Kombinatorika, pravděpodobnost a statistika, Posloupnosti a řady 4. ročník a oktáva 3 hodiny týdně PC a dataprojektor, učebnice
3.4.1. Tabulace učebního plánu
3.4.1. Tabulace učebního plánu Vzdělávací obsah pro vyučovací předmět: MATEMATIKA Ročník: Kvinta, 1. ročník Tématická Číselné obory Druhy čísel (N, Z, Q, R, I) - prezentuje přehled číselných oborů Mocniny
1. Učební osnovy Matematika a její aplikace. ŠVP - učební osnovy - Karlínské gymnázium, Praha 8, Pernerova 25
1. Učební osnovy 1.1. Matematika a její aplikace Charakteristika vzdělávací oblasti Výuka na gymnáziu rozvíjí a prohlubuje pochopení kvantitativních a prostorových vztahů reálného světa, utváří kvantitativní
Reálné gymnázium a základní škola města Prostějova Školní vzdělávací program pro ZV Ruku v ruce
2 MATEMATIKA A JEJÍ APLIKACE UČEBNÍ OSNOVY 2. 2 Cvičení z matematiky Časová dotace 7. ročník 1 hodina 8. ročník 1 hodina 9. ročník 1 hodina Charakteristika: Předmět cvičení z matematiky doplňuje vzdělávací
Základní škola Blansko, Erbenova 13 IČO
Základní škola Blansko, Erbenova 13 IČO 49464191 Dodatek Školního vzdělávacího programu pro základní vzdělávání Škola v pohybu č.j. ERB/365/16 Škola: Základní škola Blansko, Erbenova 13 Ředitelka školy:
Obsahové, časové a organizační vymezení vyučovacího předmětu
Matematika Charakteristika vyučovacího předmětu Předmět Matematika zahrnuje vzdělávací obor Matematika a její aplikace. Výuka matematiky přispívá k pochopení kvantitativních a prostorových vztahů reálného
Předmět: Matematika. Charakteristika vyučovacího předmětu:
Vzdělávací oblast: Vzdělávací obor: Matematika a její aplikace Matematika a její aplikace Oblast a obor jsou realizovány v povinném předmětu Matematika a ve volitelných předmětech Deskriptivní geometrie
MATEMATIKA Maturitní témata společná část MZ základní úroveň (vychází z Katalogu požadavků MŠMT)
MATEMATIKA Maturitní témata společná část MZ základní úroveň (vychází z Katalogu požadavků MŠMT) 1. Číselné obory 1.1 Přirozená čísla provádět aritmetické operace s přirozenými čísly rozlišit prvočíslo
Vyučovací hodiny mohou probíhat v multimediální učebně a odborných učebnách s využitím interaktivní tabule.
Charakteristika předmětu 2. stupně Matematika je zařazena do vzdělávací oblasti Matematika a její aplikace. Vyučovací předmět má časovou dotaci v 6. ročníku 4 hodiny týdně, v 7., 8. a 9 ročníku bylo použito
Matematický seminář. OVO ŠVP Tématický celek Učivo ŠVP Integrace Mezipředmětové vztahy. jejich soustavy. Spojitost funkce v bodě. Limita funkce v bodě
Řeší s porozumněním rovnice s parametrem Rovnice, nerovnice a jejich soustavy Řovnice, nerovnice a jejich soustavy Třetí, 24 hodin Zvolí vhodnou metodu řešení rovnice nebo nerovnice Vysvětlí zvolený způsob
KOMPLEXNÍ ČÍSLA INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ. Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky
KOMPLEXNÍ ČÍSLA Gymnázium Jiřího Wolkera v Prostějově Výukové materiály z matematiky pro vyšší gymnázia Autoři projektu Student na prahu 21. století - využití ICT ve vyučování matematiky na gymnáziu INVESTICE
Matematika - Prima. množiny zavedení pojmů množina, prvek, sjednocení, průnik, podmnožina
- Prima Matematika Výchovné a vzdělávací strategie Kompetence k řešení problémů Kompetence komunikativní Kompetence občanská Kompetence sociální a personální Kompetence k učení Kompetence pracovní Učivo
1. ČÍSLO A POČETNÍ OPERACE
Příloha č.5 Standardy Matematika 1. ČÍSLO A POČETNÍ OPERACE Vzdělávací obor Matematika Tematický okruh Číslo a početní operace Očekávaný M-5-1-01 výstup RVP ZV Žák využívá při pamětném i písemném počítání
Předmět Matematika zahrnuje vzdělávací obor Matematika a její aplikace.
Matematika Charakteristika vyučovacího předmětu Předmět Matematika zahrnuje vzdělávací obor Matematika a její aplikace. Výuka matematiky přispívá k pochopení kvantitativních a prostorových vztahů reálného
Předmět Matematika zahrnuje vzdělávací obor Matematika a její aplikace.
Matematika Charakteristika vyučovacího předmětu Předmět Matematika zahrnuje vzdělávací obor Matematika a její aplikace. Výuka matematiky přispívá k pochopení kvantitativních a prostorových vztahů reálného
1. Učební osnovy Matematika a její aplikace. ŠVP - učební osnovy - Karlínské gymnázium, Praha 8, Pernerova 25
1. Učební osnovy 1.1. Matematika a její aplikace Charakteristika vzdělávací oblasti Výuka na gymnáziu rozvíjí a prohlubuje pochopení kvantitativních a prostorových vztahů reálného světa, utváří kvantitativní