CVIČNÝ TEST 41. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 7 III. Klíč 15 IV. Záznamový list 17
|
|
- Richard Svoboda
- před 7 lety
- Počet zobrazení:
Transkript
1 CVIČNÝ TEST 41 Mgr. Tomáš Kotler OBSAH I. Cvičný test 2 II. Autorské řešení 7 III. Klíč 15 IV. Záznamový list 17
2 I. CVIČNÝ TEST VÝCHOZÍ TEXT A OBRÁZEK K ÚLOZE 1 Je dán magický čtverec, pro nějž platí, že součty čísel v každém řádku a v každém sloupci jsou rovny témuž číslu. Uvnitř čtverce čtyři čísla chybí, čísla jsou označena písmeny a, b, c a d a b 5 3 c d Jakému číslu je roven součet čísel a, b, c, d? VÝCHOZÍ TEXT A OBRÁZEK K ÚLOZE 2 1 bod Terč na střelbu je kruhový, tvořený soustřednými kruhy, s černě zbarvenou dvojicí mezikruží a středovým kruhem. Poloměry kruhů tvoří aritmetickou posloupnost, nejmenší z kruhů má průměr 1 dm. Větší ze dvou černě zvýrazněných mezikruží má obsah 17,25π dm Jak je široké větší ze dvou černě zvýrazněných mezikruží? 2.2 Jaký je obvod celého terče? (Výsledek zaokrouhlete na celé dm.) max. 3 body 2 Maturita z matematiky 07
3 VÝCHOZÍ TEXT A OBRÁZEK K ÚLOZE 3 Je dána úsečka AB, její osa o, úhel BAX o velikosti 30 a přímka p, která je rovnoběžná s úsečkou AB. max. 2 body 3 Narýsujte na přímce p všechny takové body C tak, aby platilo: ACB = 30. V záznamovém listu uveďte celý postup řešení. (Proveďte čitelně, přesně a náležitě pouze všechny nutné konstrukční kroky, postup konstrukce není nutné uvádět.) 1 bod 4 Jakou nejmenší velikost musí mít strana čtverce, přičteme-li k obsahu čtverce obsah obdélníka, který má jednu stranu dvakrát a druhou stranu o 6 větší než čtverec, aby výsledný obsah byl větší nebo roven dvanáctinásobku obsahu čtverce? (Výsledek uveďte ve tvaru zlomku v základním tvaru.) Maturita z matematiky 07 3
4 VÝCHOZÍ TEXT A OBRÁZEK K ÚLOZE 5 Je dána exponenciální funkce f: y = 3 x 2 n, kde n je neznámé reálné číslo. Graf této funkce f prochází body X[3, 5], Y[2, 7]. Přímka p: y = 8 je asymptotou grafu této funkce f. max. 2 body 5.1 Určete číslo n v předpisu funkce f. 5.2 Určete, kterým jediným z vyznačených bodů A[1; 6], B[4; 3], C[5; 0,5], D[4; 1], E[3; 3] graf funkce f prochází. VÝCHOZÍ TEXT A OBRÁZEK K ÚLOZE 6 Z kostky hlíny o objemu 125 cm 3 vyrobili žáci v keramickém kroužku svícen tvaru krychle. Prostor, do níž se vkládá svíčka, má tvar válce o průměru 4 cm a výšce 1,5 cm. Při výrobě žáci žádnou hlínu neodebírali, ani nepřidávali. 1 bod 6 Kolik cm měří výška svícnu před vypálením v peci? Výsledek zaokrouhlete na setiny cm. (Případné další vlivy, které by mohly tvar a velikost svícnu ovlivnit, zanedbejte.) 4 Maturita z matematiky 07
5 VÝCHOZÍ TEXT K ÚLOZE 7 Jsou dány přímky p = {[2 t, 3 t], t R} a q = {[a + k, ak], k R}, kde a R. max. 2 body 7 Rozhodněte o každém tvrzení ( ), zda je pravdivé (ANO), či nikoli (NE): 7.1 Pro a = 1 jsou dané přímky totožné. 7.2 Pro a = 1 jsou dané přímky na sebe kolmé. 7.3 Pro a = 0 svírají dané přímky úhel Existuje kladné a takové, že přímka q prochází bodem [ 6, 8]. ANO NE VÝCHOZÍ TEXT K ÚLOZE 8 Pro přirozená čísla x je dána rovnice ( x 98 ) + ( x 99 ) = ( ). 8 Která z možností A E určuje počet řešení dané rovnice? A) žádné B) právě jedno C) právě dvě D) alespoň dvě E) nejvýše tři 2 body VÝCHOZÍ TEXT K ÚLOZE 9 Je dán výraz ( 3) n = 3 n 2. 9 Která z možností určuje možná n, pro které je výraz platný? A) n {1, 2, 3} B) n je přirozené číslo C) n je kladné reálné číslo D) n je sudé celé číslo E) žádné takové n neexistuje 2 body Maturita z matematiky 07 5
6 max. 4 body 10 Přiřaďte každé nerovnici s neznámou x ( ) množinu všech jejích řešení (A F) x 3 < (x 3) 2 1 x > 0 x x 2 A) (+ ; 2) (4; + ) B) 2, 4 C) (2, 4) D) (+ ; 2 4; + ) E) (+ ; 2) 4; + ) F) (+ ; 2 KONEC TESTU 6 Maturita z matematiky 07
7 II. AUTORSKÉ ŘEŠENÍ VÝCHOZÍ TEXT A OBRÁZEK K ÚLOZE 1 Je dán magický čtverec, pro nějž platí, že součty čísel v každém řádku a v každém sloupci jsou rovny témuž číslu. Uvnitř čtverce čtyři čísla chybí, čísla jsou označena písmeny a, b, c a d a b 5 3 c d Jakému číslu je roven součet čísel a, b, c, d? Z prvního řádku (případně jiných úplně vyplněných řádků a sloupců) určíme magický součet = 6. Součet všech čísel ve čtverci je tedy 4 6 = 24. Součet čísel na obvodu čtverce je = 10, součet čísel uvnitř čtverce je tedy = 14. Součet a + b + c + d je roven bod Řešení: 14 VÝCHOZÍ TEXT A OBRÁZEK K ÚLOZE 2 Terč na střelbu je kruhový, tvořený soustřednými kruhy, s černě zbarvenou dvojicí mezikruží a středovým kruhem. Poloměry kruhů tvoří aritmetickou posloupnost, nejmenší z kruhů má průměr 1 dm. Větší ze dvou černě zvýrazněných mezikruží má obsah 17,25π dm Jak je široké větší ze dvou černě zvýrazněných mezikruží? max. 3 body Maturita z matematiky 07 7
8 Obě zvýrazněná mezikruží mají stejnou šířku, ta je rovna rozdílu jejich poloměrů. Označíme-li postupně poloměry jednotlivých kruhů r 1,, r 6 a diferenci aritmetické posloupnosti d, pak platí, že poloměry kruhů lze popsat rovněž takto: r 1, r 1 + d, r 1 + 2d, r 1 + 3d, r 1 + 4d, r 1 + 5d, d > 0. Obsah většího mezikruží je πr 5 2 πr 42. Nahradíme zápis poloměrů upraveným zápisem pomocí poloměru středového kruhu a diference posloupnosti. 2 2 πr 5 πr 4 = π(r 1 + 4d) 2 π(r 1 + 3d) 2 2 = π(r 1 + 8r 1 d + 16d 2 2 r 1 6r 1 d 9d 2 ) = π(2r 1 d + 7d 2 ) 17,25π = = π(2r 1 d + 7d 2 ) Dosadíme hodnotu poloměru r 1 = 1 = 0, ± ( 17,25) 17,25π = π[2 d + 7d 2 ] 7d 2 + d 17,25 = 0 d 1,2 = d 2 7 1,2 = 1 ± d 1 = 1 22 = 23 d = = 21 = 1, Protože diference musí být kladná, jedná se o posloupnost, kde poloměr středového kruhu je 0,5 dm a každý další kruh má poloměr o 1,5 dm širší. Označená mezikruží tak mají šířku 1,5 dm. Řešení: 1,5 dm 2.2 Jaký je obvod celého terče? (Výsledek zaokrouhlete na celé dm.) Obvod O terče je roven O = 2πr 6 = 2π(r 1 + 5d) = 2π(0,5 + 7,5) = 16π 50 Terč má obvod přibližně 50 dm. Řešení: 50 dm 8 Maturita z matematiky 07
9 VÝCHOZÍ TEXT A OBRÁZEK K ÚLOZE 3 Je dána úsečka AB, její osa o, úhel BAX o velikosti 30 a přímka p, která je rovnoběžná s úsečkou AB. max. 2 body 3 Narýsujte na přímce p všechny takové body C tak, aby platilo: ACB = 30. V záznamovém listu uveďte celý postup řešení. (Proveďte čitelně, přesně a náležitě pouze všechny nutné konstrukční kroky, postup konstrukce není nutné uvádět.) Využijeme vlastnosti obvodových a úsekových úhlů v kružnici. Narýsujeme kolmici q k rameni AX úhlu BAX (1.) vedenou bodem A. Poté nalezneme její průsečík s osou o. Tento průsečík S (2.) je středem oblouku k (3.), který je (vyjma svých krajních bodů A, B) množinou všech takových bodů, ze kterých je vidět úsečka AB pod požadovaným úhlem o velikosti 30. Oblouk zkonstruujeme. Průsečíky oblouku k s přímkou p jsou hledané body C 1 a C 2 (4.). Řešení: Maturita z matematiky 07 9
10 1 bod 4 Jakou nejmenší velikost musí mít strana čtverce, přičteme-li k obsahu čtverce obsah obdélníka, který má jednu stranu dvakrát a druhou stranu o 6 větší než čtverec, aby výsledný obsah byl větší nebo roven dvanáctinásobku obsahu čtverce? (Výsledek uveďte ve tvaru zlomku v základním tvaru.) Označíme-li stranu čtverce a, potom a > 0. a 2 + 2a (a + 6) 12a 2 a 2 + 2a a 12a 2 9a 2 12a 0 3a(3a 4) 0 x (0; 4 3 ) x 3 4 ; + ) 3a + + 3a 4 + 3a(3a 4) + Nejmenším možným a je a = 4 3. Řešení: 4 3 VÝCHOZÍ TEXT A OBRÁZEK K ÚLOZE 5 Je dána exponenciální funkce f: y = 3 x 2 n, kde n je neznámé reálné číslo. Graf této funkce f prochází body X[3, 5], Y[2, 7]. Přímka p: y = 8 je asymptotou grafu této funkce f. 5.1 Určete číslo n v předpisu funkce f. max. 2 body 10 Maturita z matematiky 07
11 Protože asymptota grafu je přímka p: y = 8, a graf funkce y = 3 x 2 by měl asymptotu v přímce s předpisem y = 0, je n = 8. Určit n lze i tak, že do předpisu funkce f dosadíme souřadnice bodu X nebo Y. Dosaďme souřadnice bodu X[3; 5]. 5 = n n = n = 8 Řešení: n = Určete, kterým jediným z vyznačených bodů A[1; 6], B[4; 3], C[5; 0,5], D[4; 1], E[3; 3] graf funkce f prochází. Funkce f: y = 3 x 2 8 je rostoucí (vyloučíme tedy bod A), zakřivená (tři různé body jejího grafu neleží na stejné přímce, tj, vyloučíme bod B). Bod E vyloučíme, v takovém případě by nešlo o graf funkce, jednomu x = 3 by byly přiřazeny dva různé y (y = 5 a y = 3). Zbývají v úvahu jen body C a D. Aby bod ležel na grafu funkce, musí jeho souřadnice splňovat rovnici funkce. Dosadíme oba body a tuto podmínku ověříme. C[5; 0,5] = 27 8 = 19 0,5 C f D[4; 1] = 9 8 = 1 D f Podobným způsobem bychom mohli ověřit i ostatní nabízené body. Řešení: D[4; 1] VÝCHOZÍ TEXT A OBRÁZEK K ÚLOZE 6 Z kostky hlíny o objemu 125 cm 3 vyrobili žáci v keramickém kroužku svícen tvaru krychle. Prostor, do níž se vkládá svíčka, má tvar válce o průměru 4 cm a výšce 1,5 cm. Při výrobě žáci žádnou hlínu neodebírali, ani nepřidávali. 1 bod 6 Kolik cm měří výška svícnu před vypálením v peci? Výsledek zaokrouhlete na setiny cm. (Případné další vlivy, které by mohly tvar a velikost svícnu ovlivnit, zanedbejte.) Žáci vyrobili svícen z krychle, která měla objem 125 dm 3. Její hrana měla tedy délku 5 cm. Prostor, do kterého se vkládá svíčka, má tvar válce. Spočteme objem tohoto válce a tento objem přičteme k objemu původní kostky hlíny. Získáme tak objem krychle, jejíž tvar svícen má. Určíme její výšku v. Objem prostoru pro svíčku je π( 4 cm 2 ) 2 (1,5 cm) = 6π cm 3. Objem svícnu je 125 cm 3 + 6π cm 3 = ( π) cm 3. Pro výšku svícnu v platí: v = 3 ( π) cm 3 = 5,24 cm. Svícen má výšku přibližně 5,24 cm. Řešení: v = 5,24 cm Maturita z matematiky 07 11
12 VÝCHOZÍ TEXT K ÚLOZE 7 Jsou dány přímky p = {[2 t, 3 t], t R} a q = {[a + k, ak], k R}, kde a R. max. 2 body 7 Rozhodněte o každém tvrzení ( ), zda je pravdivé (ANO), či nikoli (NE): 7.1 Pro a = 1 jsou dané přímky totožné. 7.2 Pro a = 1 jsou dané přímky na sebe kolmé. 7.3 Pro a = 0 svírají dané přímky úhel Existuje kladné a takové, že přímka q prochází bodem [ 6, 8]. ANO NE 7.1 Dosadíme příslušné a a určíme počet společných bodů přímek řešením soustavy rovnic: I. 2 t = 1 + k II. 3 t = k I. k = 1 t II. k = 3 t 1 t = 3 t 1 3 Soustava nemá řešení, přímky jsou rovnoběžné. Tvrzení je nepravdivé. 7.2 Dosadíme příslušné a a určíme směrové vektory přímek a ověříme kolmost, po dosazení za parametr a. S p = ( 1, 1), S q = (1, 1). Protože skalární součin směrových vektorů přímek jo roven 0, přímky jsou kolmé. ( 1, 1) (1, 1) = 1 + ( 1)( 1) = = 0 Tvrzení je pravdivé. 7.3 Dosadíme příslušné a a sestavíme vzorec pro výpočet odchylky přímek ( 1) 0 ( 1) 2 + ( 1) = 1 2 = = cosφ φ = Tvrzení je pravdivé. 7.4 Aby bod [ 6, 8] ležel na přímce q, musí splňovat její rovnici. Dosadíme souřadnice bodu [ 6, 8] do rovnice přímky q. I. 6 = a + k II. 8 = ak I. k = 6 a II. 8 = a( 6 a) II. 8 = 6a a 2 a 2 + 6a + 8 = 0 (a + 4)(a + 2) = 0 a = 4 a = 2 Pro tato a přímka bodem [ 6, 8] prochází, žádné z nich ale není kladné. Tvrzení je nepravdivé. Řešení: NE, ANO, ANO, NE 12 Maturita z matematiky 07
13 VÝCHOZÍ TEXT K ÚLOZE 8 Pro přirozená čísla x je dána rovnice ( x 98 ) + ( x 99 ) = ( ). 8 Která z možností A E určuje počet řešení dané rovnice? A) žádné B) právě jedno C) právě dvě D) alespoň dvě E) nejvýše tři 2 body Využijeme vztah pro kombinační čísla vyplývající z Pascalova trojúhelníku: ( n n k ) + ( = k + 1) ( n + 1 kde n, k N k + 1), 0, n k > 0 a levou stranu rovnice pro přípustná x upravíme na tvar: ( x 98) + ( x 99) = ( x ). Z toho vyplývá: x + 1 = 100 x = 99. Rovnice má jediné řešení. Správně je možnost B. Řešení: B VÝCHOZÍ TEXT K ÚLOZE 9 Je dán výraz ( 3) n = 3 n 2. 9 Která z možností určuje možná n, pro které je výraz platný? A) n {1, 2, 3} B) n je přirozené číslo C) n je kladné reálné číslo D) n je sudé celé číslo E) žádné takové n neexistuje 2 body Protože druhá odmocnina je definovaná pro nezáporná čísla, musí být číslo ( 3) n kladné. Kladného čísla nedosáhneme, bude-li n = 3 (mocnina by byla záporná a jednalo by se o odmocninu ze záporného čísla, která není definovaná). Protože uvedená n jsou obsažena v možnostech A, B a C, přichází v úvahu pouze možnosti D a E. Je-li n sudé přirozené číslo, jedná se o mocniny ( 3) 2 = 3 2 ; ( 3) 4 = 3 4 atd., je-li n = 0 je ( 3) 0 = 1 = 3 0 a je-li n sudé záporné celé číslo, lze ji přepsat ( 3) 2 = 1 = 1 ; ( 3) ( 3) 4 = 1 = 1 atd. Obecně platí, ( 3) že mocniny záporných čísel se sudým celočíselným exponentem jsou nezáporné. Jde o možnost D. Řešení: D Maturita z matematiky 07 13
14 max. 4 body 10 Přiřaďte každé nerovnici s neznámou x ( ) množinu všech jejích řešení (A F) x 3 < (x 3) 2 1 x > 0 x x 2 A) (+ ; 2) (4; + ). B) 2, 4 C) (2, 4) D) (+ ; 2 4; + ) E) (+ ; 2) 4; + ) F) (+ ; Odstraníme absolutní hodnotu, třeba dle její algebraické definice. Pro x 3 je x 3 < 1 x < 4 x 3, 4). Pro x < 3 je x + 3 < 1 x > 2 x (2, 3). Řešením nerovnice jsou všechna x (2, 4). Řešení: C 10.2 Upravíme nerovnici (x 3) 2 1 x 3 1 Pro x 3 je x 3 1 x 4 x 4; + ). Pro x < 3 je x x 2 x (+ ; 2. Řešením nerovnice jsou všechna x (+ ; 2 4; + ). Řešení: D 10.3 x ( ; 2) x (2, 4) x (4; + ) x x 4 + x x 4 Řešením nerovnice jsou všechna x (+ ; 2) (4; + ). Řešení: A x 2 4 2x 2 x Řešením nerovnice jsou všechna x (+ ; 2. Řešení: F KONEC TESTU 14 Maturita z matematiky 07
15 III. KLÍČ 1) Maximální bodové ohodnocení je 20 bodů. Hranice úspěšnosti v testu je 7 bodů. 2) Úlohy 1 6 jsou otevřené. 3) Úlohy 7 10 jsou uzavřené s nabídkou možných odpovědí, kde u každé úlohy resp. podúlohy je právě jedna odpověď správná. Tabulka úspěšnosti Počet bodů Výsledná známka výborně chvalitebně dobře 10 7 dostatečně 6 a méně nedostatečně Úloha Správné řešení Počet bodů bod ,5 dm 2 body dm 1 bod 3 max. 2 body bod n = 8 1 bod 5.2 D [4; 1] 1 bod 6 5,24 cm 1 bod Maturita z matematiky 07 15
16 7 max. 2 body 4 podúlohy 2 b. 7.1 NE 3 podúlohy 1 b. 2 podúlohy 0 b. 7.2 ANO 1 podúloha 0 b. 0 podúloh 0 b. 7.3 ANO 7.4 NE 8 B 2 body 9 D 2 body 10 max. 4 body 4 podúlohy 4 b C 3 podúlohy 3 b. 2 podúlohy 2 b D 1 podúloha 1 b. 0 podúloh 0 b A 10.4 F 16 Maturita z matematiky 07
17 IV. ZÁZNAMOVÝ LIST 1) Maximální bodové ohodnocení je 20 bodů. Hranice úspěšnosti v testu je 7 bodů. 2) Úlohy 1 6 jsou otevřené. Zapište výsledek. V úloze 3 uveďte i celý postup řešení. 3) Úlohy 7 10 jsou uzavřené s nabídkou možných odpovědí, kde u každé úlohy resp. podúlohy je právě jedna odpověď správná. Zapište vybranou možnost. Tabulka úspěšnosti Počet bodů Výsledná známka výborně chvalitebně dobře 10 7 dostatečně 6 a méně nedostatečně Úloha Správné řešení Počet bodů 1 1 bod body bod 3 max. 2 body 4 1 bod bod bod 6 1 bod Maturita z matematiky 07 17
18 7 max. 2 body 4 podúlohy 2 b podúlohy 1 b. 2 podúlohy 0 b podúloha 0 b. 0 podúloh 0 b body 9 2 body 10 max. 4 body 4 podúlohy 4 b podúlohy 3 b. 2 podúlohy 2 b podúloha 1 b. 0 podúloh 0 b Maturita z matematiky 07
CVIČNÝ TEST 22. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 6 III. Klíč 13 IV. Záznamový list 15
CVIČNÝ TEST 22 Mgr. Tomáš Kotler OBSAH I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 13 IV. Záznamový list 15 I. CVIČNÝ TEST VÝCHOZÍ TEXT K ÚLOZE 1 Kontroloři Státní zemědělské a potravinářské inspekce
VíceCVIČNÝ TEST 36. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17
CVIČNÝ TEST 36 Mgr. Tomáš Kotler OBSAH I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17 I. CVIČNÝ TEST 1 Určete iracionální číslo, které je vyjádřeno číselným výrazem (6 2 π 4
VíceCVIČNÝ TEST 27. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 6 III. Klíč 13 IV. Záznamový list 15
CVIČNÝ TEST 27 Mgr. Tomáš Kotler OBSAH I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 13 IV. Záznamový list 15 I. CVIČNÝ TEST VÝCHOZÍ TEXT K ÚLOZE 1 Karel povídá: Myslím si celé číslo. Je záporné. Nyní
VíceCVIČNÝ TEST 17. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 6 III. Klíč 13 IV. Záznamový list 15
CVIČNÝ TEST 17 Mgr. Tomáš Kotler OBSAH I. Cvičný test II. Autorské řešení 6 III. Klíč 13 IV. Záznamový list 15 I. CVIČNÝ TEST VÝCHOZÍ TEXT A OBRÁZEK K ÚLOZE 1 Jsou dány funkce f: y = x + A, g: y = x B,
VíceMgr. Tomáš Kotler. I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17
Mgr. Tomáš Kotler I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17 1 bod 1 Určete průsečík P[x, y] grafů funkcí f: y = x + 2 a g: y = x 1 2, které jsou definovány na množině reálných
VíceCVIČNÝ TEST 5. OBSAH I. Cvičný test 2. Mgr. Václav Zemek. II. Autorské řešení 6 III. Klíč 17 IV. Záznamový list 19
CVIČNÝ TEST 5 Mgr. Václav Zemek OBSAH I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 17 IV. Záznamový list 19 I. CVIČNÝ TEST 1 Zjednodušte výraz (2x 5) 2 (2x 5) (2x + 5) + 20x. 2 Určete nejmenší trojciferné
VíceCVIČNÝ TEST 37. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 5 III. Klíč 13 IV. Záznamový list 15
CVIČNÝ TEST 37 Mgr. Tomáš Kotler OBSAH I. Cvičný test 2 II. Autorské řešení 5 III. Klíč 13 IV. Záznamový list 15 I. CVIČNÝ TEST VÝCHOZÍ TEXT A OBRÁZEK K ÚLOZE 1 Na staré hliněné desce je namalován čtverec
VíceCVIČNÝ TEST 38. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 5 III. Klíč 13 IV. Záznamový list 15
CVIČNÝ TEST 38 Mgr. Tomáš Kotler OBSAH I. Cvičný test II. Autorské řešení 5 III. Klíč 13 IV. Záznamový list 15 I. CVIČNÝ TEST 1 Pro a b a b zjednodušte výraz ( a b a ) ( b a b ). VÝCHOZÍ TEXT K ÚLOZE Jedním
VíceCVIČNÝ TEST 15. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17
CVIČNÝ TEST 15 Mgr. Tomáš Kotler OBSAH I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17 I. CVIČNÝ TEST VÝCHOZÍ TEXT K ÚLOZE 1 Je dána čtvercová mřížka, v níž každý čtverec má délku
VíceCVIČNÝ TEST 24. OBSAH I. Cvičný test 2. Mgr. Kateřina Nováková. II. Autorské řešení 6 III. Klíč 13 IV. Záznamový list 15
CVIČNÝ TEST 24 Mgr. Kateřina Nováková OBSAH I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 13 IV. Záznamový list 15 I. CVIČNÝ TEST VÝCHOZÍ TEXT K ÚLOZE 1 Písemnou práci z chemie psalo všech 28 žáků ze
VíceCVIČNÝ TEST 40. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 6 III. Klíč 13 IV. Záznamový list 15
CVIČNÝ TEST 40 Mgr. Tomáš Kotler OBSAH I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 13 IV. Záznamový list 15 I. CVIČNÝ TEST 1 Vypočtěte pro a 1; 3 hodnotu výrazu 4 + a 3 + a 3 ( 2). 1 bod VÝCHOZÍ TEXT
VíceCVIČNÝ TEST 43. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 6 III. Klíč 13 IV. Záznamový list 15
CVIČNÝ TEST 43 Mgr. Tomáš Kotler OBSAH I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 13 IV. Záznamový list 15 I. CVIČNÝ TEST 1 bod 1 Pro a, b R + určete hodnotu výrazu ( a b) 2 ( a + b) 2, víte-li,
VíceCVIČNÝ TEST 13. OBSAH I. Cvičný test 2. Mgr. Zdeňka Strnadová. II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17
CVIČNÝ TEST 13 Mgr. Zdeňka Strnadová OBSAH I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17 I. CVIČNÝ TEST VÝCHOZÍ TEXT A OBRÁZEK K ÚLOZE 1 V trojúhelníku ABC na obrázku dělí úsečka
VíceMgr. Tomáš Kotler. I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17
Mgr. Tomáš Kotler I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17 VÝCHOZÍ TEXT A OBRÁZEK K ÚLOZE 1 Na bájný zikkurat tvaru komolého kolmého jehlanu s větší podstavou u země vede
VíceCVIČNÝ TEST 48. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17
CVIČNÝ TEST 48 Mgr. Tomáš Kotler OBSAH I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17 I. CVIČNÝ TEST VÝCHOZÍ TEXT A OBRÁZEK K ÚLOZE 1 Je dán konvexní čtyřúhelník, jehož vnitřní
VíceCVIČNÝ TEST 39. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 5 III. Klíč 11 IV. Záznamový list 13
CVIČNÝ TEST 9 Mgr. Tomáš Kotler OBSAH I. Cvičný test II. Autorské řešení 5 III. Klíč 11 IV. Záznamový list 1 I. CVIČNÝ TEST 1 bod 1 Do kruhu je vepsán rovnostranný trojúhelník. Jakou část obsahu kruhu
VíceMgr. Tomáš Kotler. I. Cvičný test 2 II. Autorské řešení 7 III. Klíč 15 IV. Záznamový list 17
Mgr. Tomáš Kotler I. Cvičný test 2 II. Autorské řešení 7 III. Klíč 15 IV. Záznamový list 17 VÝCHOZÍ TEXT A OBRÁZEK K ÚLOZE 1 Je dán rovinný obrazec, v obrázku vyznačený barevnou výplní, který představuje
VíceCVIČNÝ TEST 49. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 5 III. Klíč 13 IV. Záznamový list 15
CVIČNÝ TEST 49 Mgr. Tomáš Kotler OBSAH I. Cvičný test 2 II. Autorské řešení 5 III. Klíč 13 IV. Záznamový list 15 I. CVIČNÝ TEST 1 bod 1 Kolik hodnot proměnné a R existuje takových, že diference aritmetické
VíceCVIČNÝ TEST 19. OBSAH I. Cvičný test 2. Mgr. Kateřina Nováková. II. Autorské řešení 5 III. Klíč 13 IV. Záznamový list 15
CVIČNÝ TEST 19 Mgr. Kateřina Nováková OBSAH I. Cvičný test 2 II. Autorské řešení 5 III. Klíč 13 IV. Záznamový list 15 I. CVIČNÝ TEST 1 Určete, kolikrát je rozdíl čísel 289 a 255 větší než jejich součet.
VíceCVIČNÝ TEST 51. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17
CVIČNÝ TEST 51 Mgr. Tomáš Kotler OBSAH I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17 I. CVIČNÝ TEST VÝCHOZÍ TEXT A OBRÁZEK K ÚLOZE 1 V obchodě s kouzelnickými potřebami v Kocourkově
VíceCVIČNÝ TEST 1. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 6 III. Klíč 21 IV. Záznamový list 23
CVIČNÝ TEST 1 Mgr. Tomáš Kotler OBSAH I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 21 IV. Záznamový list 23 I. CVIČNÝ TEST 1 Určete výraz V, který je největším společným dělitelem výrazů V 1 V 3 :
VíceCVIČNÝ TEST 35. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17
CVIČNÝ TEST 35 Mgr. Tomáš Kotler OBSAH I. Cvičný test II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17 I. CVIČNÝ TEST 1 Vypočtěte [( 3 3 ) ( 1 4 5 3 0,5 ) ] : 1 6 1. 1 bod VÝCHOZÍ TEXT K ÚLOZE
VíceCVIČNÝ TEST 25. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 6 III. Klíč 13 IV. Záznamový list 15
CVIČNÝ TEST 25 Mgr. Tomáš Kotler OBSAH I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 13 IV. Záznamový list 15 I. CVIČNÝ TEST VÝCHOZÍ TEXT A OBRÁZEK K ÚLOZE 1 V lidové výkupně barevných kovů vykoupili
VíceCVIČNÝ TEST 47. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 6 III. Klíč 13 IV. Záznamový list 15
CVIČNÝ TEST 47 Mgr. Tomáš Kotler OBSAH I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 3 IV. Záznamový list 5 I. CVIČNÝ TEST VÝCHOZÍ TEXT A OBRÁZEK K ÚLOZE Sbor chlapců a mužů se pro různé příležitosti
VíceCVIČNÝ TEST 9 OBSAH. Mgr. Václav Zemek. I. Cvičný test 2 II. Autorské řešení 5 III. Klíč 17 IV. Záznamový list 19
CVIČNÝ TEST 9 Mgr. Václav Zemek OBSAH I. Cvičný test 2 II. Autorské řešení 5 III. Klíč 17 IV. Záznamový list 19 I. CVIČNÝ TEST 1 Vypočítejte (7,5 10 3 2 10 2 ) 2. Výsledek zapište ve tvaru a 10 n, kde
VíceCVIČNÝ TEST 42. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 6 III. Klíč 13 IV. Záznamový list 15
CVIČNÝ TEST 42 Mgr. Tomáš Kotler OBSAH I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 13 IV. Záznamový list 15 I. CVIČNÝ TEST VÝCHOZÍ TEXT A OBRÁZEK K ÚLOZE 1 Na číselné ose jsou zakresleny obrazy čísel
VíceCVIČNÝ TEST 29. OBSAH I. Cvičný test 2. Mgr. Kateřina Nováková. II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17
CVIČNÝ TEST 29 Mgr. Kateřina Nováková OBSAH I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17 I. CVIČNÝ TEST VÝCHOZÍ TEXT K ÚLOZE 1 Smrk má vysokou klíčivost, jen 5 % semen nevyklíčí.
VíceCVIČNÝ TEST 55. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 7 III. Klíč 19 IV. Záznamový list 21
CVIČNÝ TEST 55 Mgr. Tomáš Kotler OBSAH I. Cvičný test 2 II. Autorské řešení 7 III. Klíč 9 IV. Záznamový list 2 I. CVIČNÝ TEST VÝCHOZÍ TEXT K ÚLOZE Jsou dány dva poměry 4 : a : 2 a b : 2 : 4, kde a, b jsou
VíceCVIČNÝ TEST 20. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 6 III. Klíč 13 IV. Záznamový list 15
CVIČNÝ TEST 20 Mgr. Tomáš Kotler OBSAH I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 13 IV. Záznamový list 15 I. CVIČNÝ TEST 1 bod 1 Jsou dána tři celá čísla A, B, C. Zvětšíme-li číslo A o 1, číslo
VíceCVIČNÝ TEST 23. OBSAH I. Cvičný test 2. Mgr. Kateřina Nováková. II. Autorské řešení 6 III. Klíč 13 IV. Záznamový list 15
CVIČNÝ TEST 23 Mgr. Kateřina Nováková OBSAH I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 13 IV. Záznamový list 15 I. CVIČNÝ TEST 1 Určete nulové body následujících výrazů. 1.1 V(a) = 9 a 27 3 a ; a
VíceCVIČNÝ TEST 10. OBSAH I. Cvičný test 2. Mgr. Renáta Koubková. II. Autorské řešení 6 III. Klíč 17 IV. Záznamový list 19
CVIČNÝ TEST 10 Mgr. Renáta Koubková OBSAH I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 17 IV. Záznamový list 19 I. CVIČNÝ TEST 1 Pro x R řešte rovnici: 5 x 1 + 5 x + 5 x + 3 = 3 155. 2 Za předpokladu
VíceCVIČNÝ TEST 53. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17
CVIČNÝ TEST 53 Mgr. Tomáš Kotler OBSAH I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17 I. CVIČNÝ TEST VÝCHOZÍ TEXT K ÚLOZE 1 Je dána funkce f: y = x p, x R {3}, kde p je reálný
VíceCVIČNÝ TEST 18. OBSAH I. Cvičný test 2. Mgr. Kateřina Nováková. II. Autorské řešení 6 III. Klíč 13 IV. Záznamový list 15
CVIČNÝ TEST 18 Mgr. Kateřina Nováková OBSAH I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 13 IV. Záznamový list 15 I. CVIČNÝ TEST VÝCHOZÍ TEXT K ÚLOZE 1 Anna zdědila 150 000 Kč a banka jí nabízí uložit
VíceCVIČNÝ TEST 2. OBSAH I. Cvičný test 2. Mgr. Václav Zemek. II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17
CVIČNÝ TEST 2 Mgr. Václav Zemek OBSAH I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17 I. CVIČNÝ TEST 1 Od součtu libovolného čísla x a čísla 256 odečtěte číslo x zmenšené o 256.
VíceCVIČNÝ TEST 11. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 6 III. Klíč 19 IV. Záznamový list 21
CVIČNÝ TEST 11 Mgr. Tomáš Kotler OBSAH I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 19 IV. Záznamový list 21 I. CVIČNÝ TEST VÝCHOZÍ TEXT K ÚLOZE 1 Je k dispozici m přepravek na ovoce. Prázdná přepravka
VíceCVIČNÝ TEST 14. OBSAH I. Cvičný test 2. Mgr. Václav Zemek. II. Autorské řešení 6 III. Klíč 19 IV. Záznamový list 21
CVIČNÝ TEST 14 Mgr. Václav Zemek OBSAH I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 19 IV. Záznamový list 21 I. CVIČNÝ TEST 1 bod 7x 11 1 Určete hodnotu výrazu pro x = 27. 11 7x 32 2 Aritmetický průměr
VíceCVIČNÝ TEST 56. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 7 III. Klíč 17 IV. Záznamový list 19
CVIČNÝ TEST 56 Mgr. Tomáš Kotler OBSAH I. Cvičný test 2 II. Autorské řešení 7 III. Klíč 7 IV. Záznamový list 9 I. CVIČNÝ TEST VÝCHOZÍ TEXT K ÚLOZE Vrchol komína Kocourkovské elektrárny vidí pozorovatel
Více2.1 Pokyny k otevřeným úlohám. Výsledky pište čitelně do vyznačených bílých polí. 2.2 Pokyny k uzavřeným úlohám
MATEMATIKA+ DIDAKTICKÝ TEST Maximální bodové hodnocení: 50 bodů Hranice úspěšnosti: 33 % 1 Základní informace k zadání zkoušky Didaktický test obsahuje 23 úloh. Časový limit pro řešení didaktického testu
VíceCVIČNÝ TEST 3. OBSAH I. Cvičný test 2. Mgr. Zdeňka Strnadová. II. Autorské řešení 7 III. Klíč 17 IV. Záznamový list 19
CVIČNÝ TEST 3 Mgr. Zdeňka Strnadová OBSAH I. Cvičný test 2 II. Autorské řešení 7 III. Klíč 17 IV. Záznamový list 19 I. CVIČNÝ TEST VÝCHOZÍ TEXT K ÚLOZE 1 Jsou dány intervaly A = ( ; 2), B = 1; 3, C = 0;
VíceCVIČNÝ TEST 12. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 6 III. Klíč 19 IV. Záznamový list 21
CVIČNÝ TEST 12 Mgr. Tomáš Kotler OBSAH I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 19 IV. Záznamový list 21 I. CVIČNÝ TEST VÝCHOZÍ TEXT K ÚLOZE 1 Písmena A, B, C a D vyjadřují každé jednu z číslic
VíceCVIČNÝ TEST 16. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 6 III. Klíč 13 IV. Záznamový list 15
CVIČNÝ TEST 16 Mgr. Tomáš Kotler OBSAH I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 13 IV. Záznamový list 15 I. CVIČNÝ TEST VÝCHOZÍ TEXT A OBRÁZEK K ÚLOZE 1 Brzký ranní vlak z Prahy do Brna zastavil
VíceVZOROVÝ TEST PRO 3. ROČNÍK (3. A, 5. C)
VZOROVÝ TEST PRO 3. ROČNÍK (3. A, 5. C) max. 3 body 1 Zjistěte, zda vektor u je lineární kombinací vektorů a, b, je-li u = ( 8; 4; 3), a = ( 1; 2; 3), b = (2; 0; 1). Pokud ano, zapište tuto lineární kombinaci.
VíceFAKULTA STAVEBNÍ VUT V BRNĚ PŘIJÍMACÍ ŘÍZENÍ PRO AKADEMICKÝ ROK
FAKULTA STAVEBNÍ VUT V BRNĚ PŘIJÍMACÍ ŘÍZENÍ PRO AKADEMICKÝ ROK 00 007 TEST Z MATEMATIKY PRO PŘIJÍMACÍ ZKOUŠKY ČÍSLO FAST-M-00-0. tg x + cot gx a) sinx cos x b) sin x + cos x c) d) sin x e) +. sin x cos
VíceCVIČNÝ TEST 8. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 7 III. Klíč 23 IV. Záznamový list 25
CVIČNÝ TEST 8 Mgr. Tomáš Kotler OBSAH I. Cvičný test 2 II. Autorské řešení 7 III. Klíč 23 IV. Záznamový list 25 I. CVIČNÝ TEST m 1 Vzorec F = κ 1 m R 2 vyjadřuje velikost gravitační síly, kterou na sebe
VíceCVIČNÝ TEST 4. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 7 III. Klíč 21 IV. Záznamový list 23
CVIČNÝ TEST 4 Mgr. Tomáš Kotler OBSAH I. Cvičný test 2 II. Autorské řešení 7 III. Klíč 21 IV. Záznamový list 23 I. CVIČNÝ TEST 1 Písmena A a B vyjadřují každá jednu z číslic 0, 1, 2, 3, 4, 5, 6, 7, 8,
VíceCVIČNÝ TEST 7. OBSAH I. Cvičný test 2. Mgr. Václav Zemek. II. Autorské řešení 6 III. Klíč 17 IV. Záznamový list 19
CVIČNÝ TEST 7 Mgr. Václav Zemek OBSAH I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 17 IV. Záznamový list 19 I. CVIČNÝ TEST 1 Určete přirozené číslo n tak, aby platilo: 3 + 12 + 27 = n. 1 bod 2 Doplňte
VíceMANUÁL K ŘEŠENÍ TESTOVÝCH ÚLOH
Krok za krokem k nové maturitě Maturita nanečisto 005 MA4 MANUÁL K ŘEŠENÍ TESTOVÝCH ÚLOH Matematika rozšířená úroveň Vážení vyučující! ředmětoví koordinátoři Centra pro zjišťování výsledků vzdělávání pro
VíceVZOROVÝ TEST PRO 2. ROČNÍK (2. A, 4. C)
VZOROVÝ TEST PRO. ROČNÍK (. A, 4. C) max. body 1 Vypočtěte danou goniometrickou rovnici a výsledek uveďte ve stupních a radiánech. cos x + sin x = 1 4 V záznamovém archu uveďte celý postup řešení. Řešte
VíceCvičné texty ke státní maturitě z matematiky
Cvičné texty ke státní maturitě z matematiky Pracovní listy s postupy řešení Brno 2010 RNDr. Rudolf Schwarz, CSc. Státní maturita z matematiky Obsah Obsah NIŽŠÍ úroveň obtížnosti 4 MAGZD10C0K01 říjen 2010..........................
Více2.1 Pokyny k otevřeným úlohám. 2.2 Pokyny k uzavřeným úlohám TESTOVÝ SEŠIT NEOTVÍREJTE, POČKEJTE NA POKYN!
MATEMATIKA DIDAKTICKÝ TEST Maximální bodové hodnocení: 50 bodů Hranice úspěšnosti: % Základní informace k zadání zkoušky Didaktický test obsahuje 26 úloh. Časový limit pro řešení didaktického testu je
VíceCvičné texty ke státní maturitě z matematiky
Cvičné texty ke státní maturitě z matematiky Pracovní listy s postupy řešení Brno 2010 RNDr. Rudolf Schwarz, CSc. Státní maturita z matematiky Úloha 1 1. a = s : 45 = 9.10180 45 = 9.101+179 45 = 9.10.10179
VíceMATEMATIKA. v úpravě pro neslyšící MAMZD19C0T01 DIDAKTICKÝ TEST SP-3-T SP-3-T-A
MATEMATIKA v úpravě pro neslyšící MAMZD9C0T0 DIDAKTICKÝ TEST 2 SP-3-T SP-3-T-A Maximální bodové hodnocení: 50 bodů Hranice úspěšnosti: 33 %. Základní informace k zadání zkoušky Didaktický test obsahuje
VíceZŠ ÚnO, Bratří Čapků 1332
Úvodní obrazovka Menu (vlevo nahoře) Návrat na hlavní stránku Obsah Výsledky Poznámky Záložky edunet Konec Matematika 2 (pro 12-16 let) LangMaster Obsah (střední část) výběr tématu - dvojklikem v seznamu
VíceModelové úlohy přijímacího testu z matematiky
PŘÍRODOVĚDECKÁ FAKULTA UNIVERZITY KARLOVY V PRAZE Modelové úlohy přijímacího testu z matematiky r + s r s r s r + s 1 r2 + s 2 r 2 s 2 ( ) ( ) 1 a 2a 1 + a 3 1 + 2a + 1 ( a b 2 + ab 2 ) ( a + b + b b a
VíceModelové úlohy přijímacího testu z matematiky
PŘÍRODOVĚDECKÁ FAKULTA UNIVERZITY KARLOVY V PRAZE Modelové úlohy přijímacího testu z matematiky r + s r s r s r + s 1 r2 + s 2 r 2 s 2 ( ) ( ) 1 a 2a 1 + a 3 1 + 2a + 1 ( a b 2 + ab 2 ) ( a + b + b b a
VíceMATEMATIKA základní úroveň obtížnosti
ILUSTRAČNÍ DIDAKTICKÝ TEST MATEMATIKA základní úroveň obtížnosti DIDAKTICKÝ TEST Didaktický test obsahuje 8 úloh. Časový limit pro řešení didaktického testu je uveden na záznamovém archu. Povolené pomůcky:
Vícec jestliže pro kladná čísla a,b,c platí 3a = 2b a 3b = 5c.
Úloha 1 1 b. Od součtu neznámého čísla a čísla 17 odečteme rozdíl těchto čísel v daném pořadí. Vypočtěte a zapište výsledek v. Úloha 2 1 b. 25 Na číselné ose jsou obrazy čísel 0 a 1 vzdáleny 5 mm. Určete
VícePříklady k analytické geometrii kružnice a vzájemná poloha kružnice a přímky
Příklady k analytické geometrii kružnice a vzájemná poloha kružnice a přímky Př. 1: Určete rovnice všech kružnic, které procházejí bodem A = * 6; 9+, mají střed na přímce p: x + 3y 18 = 0 a jejich poloměr
VíceAnalytická geometrie lineárních útvarů
) Na přímce: a) Souřadnice bodu na přímce: Analtická geometrie lineárních útvarů Bod P nazýváme počátek - jeho souřadnice je P [0] Nalevo od počátku leží čísla záporná, napravo čísla kladná. Každý bod
Více1 Analytická geometrie
1 Analytická geometrie 11 Přímky Necht A E 3 a v R 3 je nenulový Pak p = A + v = {X E 3 X = A + tv, t R}, je přímka procházející bodem A se směrovým vektorem v Rovnici X = A + tv, t R, říkáme bodová rovnice
VíceMatematika NÁRODNÍ SROVNÁVACÍ ZKOUŠKY BŘEZNA 2017
NÁRODNÍ SROVNÁVACÍ ZKOUŠKY Matematika T BŘEZNA 07 D : 4 BŘEZNA 07 P P P : 964 : 0 M M : 0 : 8,8 M : 8,8 % S : -7,5 M P : -,5 :,8 Zopakujte si základní informace ke zkoušce: n Test obsahuje 0 úloh a na
VíceMATEMATIKA. 2Pravidla správného zápisu odpovědí. 1Základní informace k zadání zkoušky DIDAKTICKÝ TEST. Testový sešit neotvírejte, počkejte na pokyn!
MATEMATIKA DIDAKTICKÝ TEST Maximální bodové hodnocení: 30 bodů Pro přijetí uchazečů je rozhodné umístění v sestupném pořadí uchazečů podle dosaženého bodového hodnocení. 1Základní informace k zadání zkoušky
VíceObecná rovnice kvadratické funkce : y = ax 2 + bx + c Pokud není uvedeno jinak, tak definičním oborem řešených funkcí je množina reálných čísel.
5. Funkce 9. ročník 5. Funkce ZOPAKUJTE SI : 8. ROČNÍK KAPITOLA. Funkce. 5.. Kvadratická funkce Obecná rovnice kvadratické funkce : y = ax + bx + c Pokud není uvedeno jinak, tak definičním oborem řešených
Více2.1 Pokyny k otevřeným úlohám. 2.2 Pokyny k uzavřeným úlohám TESTOVÝ SEŠIT NEOTVÍREJTE, POČKEJTE NA POKYN!
MATEMATIKA+ DIDAKTICKÝ TEST Maximální bodové hodnocení: 50 bodů Hranice úspěšnosti: 33 % Základní informace k zadání zkoušky Didaktický test obsahuje 23 úloh. Časový limit pro řešení didaktického testu
VíceJméno a příjmení. 2.1 Pokyny k otevřeným úlohám. 2.2 Pokyny k uzavřeným úlohám TESTOVÝ SEŠIT NEOTVÍREJTE, POČKEJTE NA POKYN!
MATEMATIKA 9 M9PBD19C0T02 DIDAKTICKÝ TEST Jméno a příjmení Počet úloh: 16 Maximální bodové hodnocení: 50 bodů Povolené pomůcky: pouze psací a rýsovací potřeby 1 Základní informace k zadání zkoušky Časový
VíceMatematika NÁRODNÍ SROVNÁVACÍ ZKOUŠKY DUBNA 2017
NÁRODNÍ SROVNÁVACÍ ZKOUŠKY Matematika T DUBNA 07 : 9. dubna 07 D : 830 P P P : 30 M. M. : 30 : 8,8 M. :, % S : -7,5 M. P : -,5 :,4 Zopakujte si základní informace ke zkoušce: n Test obsahuje 30 úloh a
VíceCVIČNÝ TEST 6. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 6 III. Klíč 19 IV. Záznamový list 21
CVIČNÝ TEST 6 Mgr. Tomáš Kotler OBSAH I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 19 IV. Záznamový list 21 I. CVIČNÝ TEST VÝCHOZÍ TEXT K ÚLOZE 1 Každý z n žáků jedné třídy z gymnázia v Přelouči se
VíceMATEMATIKA. vyšší úroveň obtížnosti DIDAKTICKÝ TEST MAGVD10C0T01. Testový sešit neotvírejte, počkejte na pokyn!
MATEMATIKA vyšší úroveň obtížnosti MAGVD10C0T01 DIDAKTICKÝ TEST Didaktický test obsahuje 21 úloh. Časový limit pro řešení didaktického testu je uveden na záznamovém archu. Povolené pomůcky: psací a rýsovací
VíceMATEMATIKA vyšší úroveň obtížnosti
MATEMATIKA vyšší úroveň obtížnosti DIDAKTICKÝ TEST MAMVD2C0T0 Maximální bodové hodnocení: 50 bodů Hranice úspěšnosti: 33 % Základní informace k zadání zkoušky Didaktický test obsahuje 23 úloh. Časový limit
VíceMATEMATIKA+ MAIPD14C0T01 DIDAKTICKÝ TEST. 2.1 Pokyny k otevřeným úlohám. 1 Základní informace k zadání zkoušky. 2.2 Pokyny k uzavřeným úlohám
MATEMATIKA+ DIDAKTICKÝ TEST MAIPD14C0T01 Maximální bodové hodnocení: 50 bodů Hranice úspěšnosti: 33 % 1 Základní informace k zadání zkoušky Didaktický test obsahuje 23 úloh. Časový limit pro řešení didaktického
VíceII. Zakresli množinu bodů, ze kterých vidíme úsečku délky 3 cm v zorném úhlu větším než 30 0 a menším než 60 0.
Ukázky typových maturitních příkladů z matematiky..reálná čísla. 3} x R; I. Zobrazte množiny A = {x є 3} < + x R; B = {x є II. Zapište ve tvaru zlomku číslo, 486.Komplexní čísla. I. Určete a + b, a - b,
VíceMATEMATIKA ZÁKLADNÍ ÚROVEŇ
NOVÁ MTURITNÍ ZKOUŠK Ilustrační test 2008 Základní úroveň obtížnosti MVCZMZ08DT MTEMTIK ZÁKLDNÍ ÚROVEŇ DIDKTICKÝ TEST Testový sešit obsahuje 8 úloh. Na řešení úloh máte 90 minut. Úlohy řešte v testovém
VíceMATEMATIKA 5. TŘÍDA. C) Tabulky, grafy, diagramy 1 - Tabulky, doplnění řady čísel podle závislosti 2 - Grafy, jízní řády 3 - Magické čtverce
MATEMATIKA 5. TŘÍDA 1 - Přirozená čísla a číslo nula a číselná osa, porovnávání b zaokrouhlování c zápis čísla v desítkové soustavě d součet, rozdíl e násobek, činitel, součin f dělení, dělení se zbytkem
VíceOdvození středové rovnice kružnice se středem S [m; n] a o poloměru r. Bod X ležící na kružnici má souřadnice [x; y].
Konzultace č. 6: Rovnice kružnice, poloha přímky a kružnice Literatura: Matematika pro gymnázia: Analytická geometrie, kap. 5.1 a 5. Sbírka úloh z matematiky pro SOŠ a studijní obory SOU. část, kap. 6.1
Více9. Je-li cos 2x = 0,5, x 0, π, pak tgx = a) 3. b) 1. c) neexistuje d) a) x ( 4, 4) b) x = 4 c) x R d) x < 4. e) 3 3 b
008 verze 0A. Řešeními nerovnice x + 4 0 jsou právě všechna x R, pro která je x ( 4, 4) b) x = 4 c) x R x < 4 e) nerovnice nemá řešení b. Rovnice x + y x = je rovnicí přímky b) dvojice přímek c) paraboly
VíceKOMPLEXNÍ ČÍSLA INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ
KOMPLEXNÍ ČÍSLA Gymnázium Jiřího Wolkera v Prostějově Výukové materiály z matematiky pro vyšší gymnázia Autoři projektu Student na prahu 21. století - využití ICT ve vyučování matematiky na gymnáziu INVESTICE
Více2.1 Pokyny k otevřeným úlohám. 2.2 Pokyny k uzavřeným úlohám TESTOVÝ SEŠIT NEOTVÍREJTE, POČKEJTE NA POKYN!
MATEMATIKA DIDAKTICKÝ TEST Maximální bodové hodnocení: 50 bodů Hranice úspěšnosti: 33 % 1 Základní informace k zadání zkoušky Didaktický test obsahuje 26 úloh. Časový limit pro řešení didaktického testu
VíceMatematika 1 MA1. 1 Analytická geometrie v prostoru - základní pojmy. 4 Vzdálenosti. 12. přednáška ( ) Matematika 1 1 / 32
Matematika 1 12. přednáška MA1 1 Analytická geometrie v prostoru - základní pojmy 2 Skalární, vektorový a smíšený součin, projekce vektoru 3 Přímky a roviny 4 Vzdálenosti 5 Příčky mimoběžek 6 Zkouška;
VíceJméno a příjmení. 2.1 Pokyny k otevřeným úlohám. 2.2 Pokyny k uzavřeným úlohám TESTOVÝ SEŠIT NEOTVÍREJTE, POČKEJTE NA POKYN!
MATEMATIKA 9 M9PCD19C0T03 DIDAKTICKÝ TEST Jméno a příjmení Počet úloh: 16 Maximální bodové hodnocení: 50 bodů Povolené pomůcky: pouze psací a rýsovací potřeby 1 Základní informace k zadání zkoušky Časový
VíceŠablona pro zadávání otázek pro přijímací řízení pro akademický rok 2009/2010
Šablona pro zadávání otázek pro přijímací řízení pro akademický rok 00/010 Zadavatel: Ekonomický přehled: kód 1 Matematické myšlení: kód Společensko historický přehled: kód Zadejte kód místo x do níže
VíceM - Pythagorova věta, Eukleidovy věty
M - Pythagorova věta, Eukleidovy věty Určeno jako učební text pro studenty dálkového studia. VARIACE 1 Tento dokument byl kompletně vytvořen, sestaven a vytištěn v programu dosystem - EduBase. Více informací
VíceMaturitní otázky z předmětu MATEMATIKA
Wichterlovo gymnázium, Ostrava-Poruba, příspěvková organizace Maturitní otázky z předmětu MATEMATIKA 1. Výrazy a jejich úpravy vzorce (a+b)2,(a+b)3,a2-b2,a3+b3, dělení mnohočlenů, mocniny, odmocniny, vlastnosti
Více14. přednáška. Přímka
14 přednáška Přímka Začneme vyjádřením přímky v prostoru Přímku v prostoru můžeme vyjádřit jen parametricky protože obecná rovnice přímky v prostoru neexistuje Přímka v prostoru je určena bodem A= [ a1
VíceMATURITNÍ TÉMATA Z MATEMATIKY
MATURITNÍ TÉMATA Z MATEMATIKY 1. Základní poznatky z logiky a teorie množin Pojem konstanty a proměnné. Obor proměnné. Pojem výroku a jeho pravdivostní hodnota. Operace s výroky, složené výroky, logické
VíceMATEMATIKA 9 M9PID15C0T01. 1 Základní informace k zadání zkoušky
MATEMATIKA 9 M9PID15C0T01 DIDAKTICKÝ TEST Jméno a příjmení Počet úloh: 17 Maximální bodové hodnocení: 50 bodů Povolené pomůcky: pouze psací a rýsovací potřeby 1 Základní informace k zadání zkoušky Časový
VícePožadavky k opravným zkouškám z matematiky školní rok 2014-2015
Požadavky k opravným zkouškám z matematiky školní rok 2014-2015 1. ročník (první pololetí, druhé pololetí) 1) Množiny. Číselné obory N, Z, Q, I, R. 2) Absolutní hodnota reálného čísla, intervaly. 3) Procenta,
VíceMATEMATIKA MAMZD13C0T04
MATEMATIKA MAMZD13C0T04 DIDAKTICKÝ TEST Maximální bodové hodnocení: 50 bodů Hranice úspěšnosti: 33 % 1 Základní informace k zadání zkoušky Didaktický test obsahuje 26 úloh. Časový limit pro řešení didaktického
Více2.1 Pokyny k otevřeným úlohám. 2.2 Pokyny k uzavřeným úlohám TESTOVÝ SEŠIT NEOTVÍREJTE, POČKEJTE NA POKYN!
MATEMATIKA 9 M9PID15C0T01 DIDAKTICKÝ TEST Jméno a příjmení Počet úloh: 17 Maximální bodové hodnocení: 50 bodů Povolené pomůcky: pouze psací a rýsovací potřeby 1 Základní informace k zadání zkoušky Časový
VíceJméno a příjmení. 2.1 Pokyny k otevřeným úlohám. 2.2 Pokyny k uzavřeným úlohám TESTOVÝ SEŠIT NEOTVÍREJTE, POČKEJTE NA POKYN!
MATEMATIKA 9 M9PAD9C0T0 DIDAKTICKÝ TEST Jméno a příjmení Počet úloh: 6 Maximální bodové hodnocení: 50 bodů Povolené pomůcky: pouze psací a rýsovací potřeby Základní informace k zadání zkoušky Časový limit
VíceMATEMATIKA 9 M9PID15C0T01. 1 Základní informace k zadání zkoušky
MATEMATIKA 9 M9PID15C0T01 DIDAKTICKÝ TEST Jméno a příjmení Počet úloh: 17 Maximální bodové hodnocení: 50 bodů Povolené pomůcky: pouze psací a rýsovací potřeby 1 Základní informace k zadání zkoušky Časový
VíceZnění otázky Odpověď a) Odpověď b) Odpověď c) Odpověď d) Správná odpověď C C B B C
Matematické myšlení: Znění otázky Odpověď a) Odpověď b) Odpověď c) Odpověď d) Správná odpověď. Které číslo doplníte místo 6 8 0. Které číslo doplníte místo 5 7 7 5 3. Které číslo doplníte místo 70 7 76
VíceTéma 5: PLANIMETRIE (úhly, vlastnosti rovinných útvarů, obsahy a obvody rovinných útvarů) Úhly 1) Jaká je velikost úhlu? a) 60 b) 80 c) 40 d) 30
Téma 5: PLANIMETRIE (úhly, vlastnosti rovinných útvarů, obsahy a obvody rovinných útvarů) Úhly 1) Jaká je velikost úhlu? a) 60 b) 80 c) 40 d) 30 2) Vypočtěte velikost úhlu : a) 150 10 b) 149 22 c) 151
VícePožadavky k opravným zkouškám z matematiky školní rok 2013-2014
Požadavky k opravným zkouškám z matematiky školní rok 2013-2014 1. ročník (první pololetí, druhé pololetí) 1) Množiny. Číselné obory N, Z, Q, I, R. 2) Absolutní hodnota reálného čísla, intervaly. 3) Procenta,
Více2.1 Pokyny k otevřeným úlohám. 2.2 Pokyny k uzavřeným úlohám TESTOVÝ SEŠIT NEOTVÍREJTE, POČKEJTE NA POKYN!
MATEMATIKA DIDAKTICKÝ TEST Maimální bodové hodnocení: 50 bodů Hranice úspěšnosti: 33 % Základní informace k zadání zkoušky Didaktický test obsahuje 26 úloh. Časový limit pro řešení didaktického testu je
VíceMaturitní témata profilová část
Seznam témat Výroková logika, úsudky a operace s množinami Základní pojmy výrokové logiky, logické spojky a kvantifikátory, složené výroky (konjunkce, disjunkce, implikace, ekvivalence), pravdivostní tabulky,
Více2. Zapište daná racionální čísla ve tvaru zlomku a zlomek uveďte v základním tvaru. 4. Upravte a stanovte podmínky, za kterých má daný výraz smysl:
KVINTA úlohy k opakování 1. Jsou dány množiny: = {xr; x - 9 5} B = {xr; 1 - x } a) zapište dané množiny pomocí intervalů b) stanovte A B, A B, A - B, B A. Zapište daná racionální čísla ve tvaru zlomku
VíceLineární funkcí se nazývá každá funkce, která je daná rovnicí y = ax + b, kde a, b jsou reálná čísla.
Lineární funkce Lineární funkcí se nazývá každá funkce, která je daná rovnicí y = ax + b, kde a, b jsou reálná čísla. Číslo b je hodnota funkce f v bodě 0. Definičním oborem lineární funkce je množina
VíceMATEMATIKA vyšší úroveň obtížnosti
MATEMATIKA vyšší úroveň obtížnosti DIDAKTICKÝ TEST MAMVD11C0T04 Maximální bodové hodnocení: 50 bodů Hranice úspěšnosti: 33 % 1 Základní informace k zadání zkoušky Didaktický test obsahuje 23 úloh. Časový
VíceExponenciální funkce. Exponenciální funkcí o základu a se nazývá funkce, která je daná rovnicí. Číslo a je kladné číslo, různé od jedničky a xεr.
Exponenciální funkce Exponenciální funkcí o základu a se nazývá funkce, která je daná rovnicí y = a x Číslo a je kladné číslo, různé od jedničky a xεr. Definičním oborem exponenciální funkce je tedy množina
VíceA[a 1 ; a 2 ; a 3 ] souřadnice bodu A v kartézské soustavě souřadnic O xyz
1/15 ANALYTICKÁ GEOMETRIE Základní pojmy: Soustava souřadnic v rovině a prostoru Vzdálenost bodů, střed úsečky Vektory, operace s vektory, velikost vektoru, skalární součin Rovnice přímky Geometrie v rovině
Více