3. Měření na vlnovodné lince

Rozměr: px
Začít zobrazení ze stránky:

Download "3. Měření na vlnovodné lince"

Transkript

1 3. Měření na vlnovodné lince 3.1 Úvod Ve vlnovodu se vlna šíří ázovou rychlostí v. Fázová rychlost závisí na tvaru a rozměrech příčného průřezu vlnovodu, na parametrech prostředí uvnitř vlnovodu (permitivita, ztráty) a na kmitočtu. Fázovou rychlost dominantního vidu TE 10 obdélníkového vlnovodu vypočítáme dle v c (3.1) 1 a kde a je šířka vlnovodu, c značí rychlost světla a 0 = c/ je délka vlny ve volném prostoru (vakuu). Ze známé ázové rychlosti pak můžeme vypočíst délku vlny ve vlnovodu v (3.2) Napájíme-li vlnovod vlnou, jejíž kmitočet je nižší nežli kritický kmitočet vlnovodu, vlna se od vstupu odrazí zpět ke zdroji a vlnovodem neprochází žádná enerie. Hodnotu kritického kmitočtu vypočítáme ze vztahu c 2a 0 (3.3) Není-li vlnovod zakončen přizpůsobenou zátěží, část enerie se od zátěže odráží zpět ke zdroji a ve vlnovodu vznikne stojaté vlnění. Vzdálenost sousedních minim stojaté vlny (uzlů) je v x 2 (3.4) 2 Vzdálenost sousedních maxim stojaté vlny (kmiten) je stejná. Stojaté vlnění charakterizujeme poměrem stojatých vln (PSV). PSV vypočteme jako poměr amplitudy stojatého vlnění v maximu (kmitně) a minimu (uzlu) max PSV (3.5) min Při dokonalém přizpůsobení zátěže (nic se neodráží zpět ke zdroji) je PSV = 1. Při dokonalém nepřizpůsobení (vše se odráží ke zdroji) je PSV. Z hodnoty PSV můžeme vypočíst velikost činitele odrazu PSV 1 (3.6) PSV 1 Jsou-li ztráty ve vedení zanedbatelné, velikost činitele odrazu podél celého vedení se nemění. Fázi činitele odrazu na zátěži vypočítáme podle vztahu xm (3.7) kde x m je vzdálenost uzlu od místa připojení zátěže

2 Je-li vlnovod zakončen zkratem, je první uzel vzdálen od zkratu /2. Dle (3.7) je áze v místě zátěže (0) = 3. Činitel odrazu na konci vlnovodu je tedy roven (0) = 1. Intenzita pole v uzlu min = 0 a dle vztahu (3.5) PSV. 3.2 Cíle práce 1. Seznámit se s konstrukcí a použitím vlnovodné měřicí linky. 2. Ověřit kmitočtovou závislost délky vlny ve vlnovodu. 3. Změřit činitele odrazu daných zátěží. 3.3 Přístroje a pomůcky Vlnovodné měřicí vedení R100 (a = 22,4 mm, b = 9,7 mm) Mikrovlnný enerátor R&S SMF100A (1 22 GHz) Atenuátor (plynulý zeslabovač) TESLA QFV (2 30 db) Nízkorekvenční milivoltmetr Tesla BM 579 Zátěže (úseky vlnovodu, trychtýřové antény, zkrat) 3.4 Domácí příprava Zopakujte si základní poznatky o vlastnostech vln ve vlnovodech. Vypočtěte závislost délky vlny ve vlnovodu R100 na kmitočtu; <8 GHz až 12 GHz>. Zakreslete ji do rau spolu s kmitočtovou závislostí délky vlny ve vzduchu. Připravte si postup vyhodnocení poměru stojatých vln z výsledků měření na měřicím vedení s diodovým detektorem. 3.5 Metoda měření Měřicí souprava sestává z mikrovlnného enerátoru G, proměnného atenuátoru A a vlnovodné měřicí linky s vlnovodem R100 obdélníkového průřezu. Napětí na výstupu diodového detektoru sondy linky se měří milivoltmetrem mv (obr. 3.1). G A linka Z mv Obr. 3.1 spořádání měřicí soupravy. V posuvném vozíku linky je zabudována sonda, která snímá elektrické pole ve vlnovodu, rezonátor a detektor. Detektor převede vysokorekvenční napětí indukované v sondě na snadno měřitelné stejnosměrné (nebo nízkorekvenční) napětí. Posouváme-li sondu podél vedení, mění se výstupní napětí detektoru podle intenzity pole v místě sondy. Pomocí měřítka na lince můžeme určit polohu uzlů i kmiten stojatého vlnění. Z výchylek měřidla detektoru (po korekci jeho nelinearity) můžeme určit hodnotu poměru stojatých vln. Při měření délky vlny ve vlnovodu je vhodné zakončit linku zkratem, protože minima výchylky měřidla detektoru jsou pak velmi ostrá. První uzel stojatého vlnění je v místě zkratu a další uzly se opakují ve vzdálenostech /

3 Neznámou zátěž charakterizuje její činitel odrazu (0). Jeho modul vypočteme ze změřeného poměru stojatých vln PSV (vztah 3.5), jeho ázi určíme z posunutí pozice uzlů vůči jejich polohám při zkratu, jak je zřejmé ze vztahu (3.7). 3.6 Zadání úlohy 1. Změřte polohy uzlů na měřicím vedení zakončeném zkratem a vypočtete jejich vzdálenosti. rčete délku vlny ve vlnovodu a srovnejte ji s hodnotou vypočtenou v domácí přípravě. 2. Pro zadané zátěže (trychtýřová anténa, otevřené ústí vlnovodu) určete hodnoty poměru stojatých vln PSV a modul a ázi činitele odrazu (0) v místě zátěže. Zhodnoťte přizpůsobení měřených zátěží. 3. Změřte průběh výstupního napětí detektoru mezi uzlem a kmitnou při zkratované lince. Zakreslete cejchovní křivku detektoru a využijte ji při kontrole měření zátěží v úloze Poznámky k měření Abychom mohli detekovat napětí nízkorekvenčním milivoltmetrem, musí být sinál enerovaný mikrovlnným enerátor amplitudově modulovaný. Hloubka modulace je libovolná a na přesnost měření nemá vliv (doporučeno je 30 %). Při nastavení a kalibraci přístroje postupujte dle návodu, který je na pracovišti. Při vlastním měření je nutné zabránit ovlivňování enerátoru změnami zátěže. Atenuátor A (obr. 3.1) je proto tvořen kaskádou dvou atenuátorů. První atenuátor (blíž ke enerátoru) nemusí být cejchovaný; jeho útlum zajišťuje ochranu enerátoru. Druhý atenuátor se využívá pro vlastní měření. K přesnému nastavení útlumu tohoto proměnného atenuátoru slouží jeho lineární stupnice (černá) a přiložená korekční křivka. Pomocná stupnice v db (červená) je využitelná pouze pro kontrolu a orientační určení útlumu Obr. 3.2 Posuvný vozík se sondou, rezonátorem a detektorem: (1) šroub pro nastavení hloubky zasunutí sondy, (2) šroub pro vyladění rezonátoru do rezonance, (3) šroub pro posuv vozíku podél linky. Vlnovodná linka má v širší stěně vlnovodu podélnou drážku, kterou do dutiny vlnovodu zasahuje sonda (kolík) pro snímání elektrického pole uvnitř vlnovodu. Hloubku zasunutí sondy je možno měnit otáčením šroubu 1 na vrcholu hlavice sondy (obr. 3.2) Při hlubším zasunutí však dochází k deormaci pole ve vlnovodu a výsledky měření jsou zkreslené. Proto nastavení hloubky zasunutí sondy neměňte. Vozík podél vedení posouváme ručním šroubem 3 (někdy i s jemným posuvem). Polohu vozíku měříme měřítkem s noniem. Napětí indukované v sondě budí dutinový rezonátor. Rezonátor je třeba vyladit do rezonance na kmitočtu měření otáčením šroubu 2 uprostřed hlavice sondy

4 Rezonance je indikována maximální výchylkou milivoltmetru. Úroveň sinálu je vhodné atenuátorem nastavit tak, aby v kmitně bylo na vstupu milivoltmetru napětí asi 10 mv až 30 mv. Při měření délky vlny ve vlnovodu výstup linky zkratujeme a určíme polohy uzlů stojaté vlny v rozsahu měřítka délek linky. Abychom měřili přesně, musíme využít nonia na měřítku. Dále musíme využít souměrně ležících bodů se stejnou výchylkou měřidla (minimum je uprostřed nich). Délka vlny je pak rovna dvojnásobku vzdálenosti sousedních minim. Pro zvýšení přesnosti je vhodné vypočítat průměrnou vzdálenost minim a tu pak dosadit do výpočtu délky vlny ve vlnovodu. Nyní se zaměřte na měření činitele odrazu zátěže. Zátěží nahradíme zkrat na konci linky a stejně jako v předchozím určíme s maximální přesností polohy minim stojaté vlny. Posuv minim vůči polohám při zkratu na konci linky určuje hodnotu x m ve vztahu (3.7) pro výpočet áze činitele odrazu. Jsou-li minima posunuta směrem ke enerátoru, je hodnota x m je kladná. Modul činitele odrazu vypočteme z PSV dle vztahu (3.6). Výpočet však komplikuje nelinearita detektoru (výchylka měřidla na výstupu detektoru není lineárně úměrná vysokorekvenčnímu sinálu v místě sondy). Vliv této nelinearity lze vyloučit, použijeme-li měřidlo na výstupu detektoru jen jako indikátor jisté stálé úrovně: Sondu posuneme do uzlu, atenuátorem nastavíme vhodnou výchylku na měřidle detektoru a odečteme útlum atenuátoru. Sondu přesuneme do kmitny a zvětšíme útlum atenuátoru tak, aby měřidlo detektoru znovu ukazovalo původní výchylku. rčíme hodnotu poměru stojatých vln PSV (v db) jako rozdíl útlumů atenuátoru. Nelinearita detektoru se neuplatní, protože měřidlo indikuje stejnou úroveň sinálu v místě sondy. Při výše popsaném měření si poznamenáme také výchylky měřidla v kmitně a v uzlu při stejném útlumu atenuátoru. Tyto údaje využijeme při kontrole hodnoty PSV pomocí cejchovní křivky detektoru. Při rozsáhlejším měření je výhodné změřit cejchovní křivku diodového detektoru. Cejchovní křivka je závislostí vysokorekvenčního napětí na výstupu sondy v a nízkorekvenčního napětí det, které detekujeme měřidlem. Cejchovní křivku v = ( det ) pak využijeme při korekci nelinearity detektoru. Při měření cejchovní křivky zkratujeme konec linky (stojatá vlna má harmonický průběh amplitudy), posouváme vozík do vhodných poloh x i a odečítáme výchylky měřidla detektoru det. Úroveň vysokorekvenčního sinálu v místě sondy pak vypočteme právě s uvážením harmonického průběhu amplitudy stojaté vlny 2 v sin x x i 0 kde x 0 je poloha uzlu na zkratované lince a je konstanta úměrnosti. Při vlastním měření odečítáme na nízkorekvenčním měřidle napětí det a z cejchovní křivky určujeme odpovídající v /. Jelikož při výpočtu PSV dle vztahu (3.5) počítáme poměr napětí, konstanta úměrnosti se vykrátí. 3.8 Zpracování výsledků v MATLABu Při měření délky vlny ve vlnovodu určíme polohy šesti uzlů x(1), x(2) až x(6). Následně vypočítáme vzdálenosti mezi uzly a určíme jejich průměrnou hodnotu

5 lam = 0; or n=1:5 lam = lam + (x(n+1) x(n)); end lam = lam / 5; Nyní se věnujme výpočtu PSV zadané zátěže. Změřili jsme poměr stojatých vln PSV (v db) jako rozdíl útlumů atenuátoru v kmitně a v uzlu PSV_dB. Hodnotu PSV tedy stačí přepočítat z decibelů do absolutního vyjádření PSV db = 20 lo (PSV); tedy PSV = 10^(PSV_dB / 20); Dosazením PSV do vztahu (3.6) vypočteme modul činitele odrazu rho = (PSV 1) / (PSV + 1); Dále jsme změřili, že první uzel stojaté vlny leží ve vzdálenosti x_min od konce vedení. Dosazením do (3.7) vypočteme ázi činitele odrazu na zátěži phi = pi + 4*pi*x_min/lam; % výsledek v radiánech Nyní se zaměřme na cejchovní křivku. Mezi uzlem a kmitnou změříme v deseti bodech polohu sondy y(n) a detekované napětí det(n), kde n=1:10. Odpovídající vysokorekvenční napětí vypočítáme následovně: or n=1:10 v(n) = det(10) * sin( 2*pi*( x(n)-x(1)) / lam); end Závislost det na v vyneseme do rau plot( det, v); Tím máme výsledky měření zpracovány. 3.9 Kontrolní otázky 1. O kolik milimetrů a kterým směrem (vzhledem k zátěži) se posune uzel, nahradíme-li zkrat na konci linky zátěží, která vykazuje na vstupních svorkách ázi činitele odrazu 45? Délka vlny na vedení je = 40 mm. 2. Při stejné výchylce nízkorekvenčního detektoru v uzlu a v kmitně byly odečteny útlumy atenuátoru 8 db a 14 db. Jak velký je modul činitele odrazu měřené zátěže? 3. rčete nejnižší kmitočet sinálu, který je možno přenést vlnovodem použité měřicí linky. Jakých hodnot nabývají veličiny a v na tomto kmitočtu? 4. Je-li linka na konci nakrátko, uzly stojatého vlnění mají souřadnice 20 mm a 40 mm (nula je na straně zátěže). Po záměně zkratu zátěží se uzel posunul na souřadnici 25 mm. Jakou ázi má činitel odrazu na zátěži? 5. Při měření na kmitočtu 6 GHz měl jeden z uzlů stojaté vlny souřadnici 40 mm. rčete polohu nejbližšího sousedního uzlu. Příčné rozměry vlnovodu jsou 34 mm a 15 mm. 6. Při měření na vlnovodné lince byla v kmitně stojatých vln výchylka měřidla detektoru 80 dílků při útlumu atenuátoru 10 db. Po přemístění sondy do uzlu klesla výchylka na 20 dílků a k nastavení původní hodnoty bylo nutno snížit útlum atenuátoru na 4 db. Vypočtěte modul činitele odrazu měřené zátěže

Měření vlnové délky, impedance, návrh impedančního přizpůsobení

Měření vlnové délky, impedance, návrh impedančního přizpůsobení Měření vlnové délky, impedance, návrh impedančního přizpůsobení 1. Zadání: a) Změřte závislost v na kmitočtu pro f 8,12GHz. b) Změřte zadanou impedanci a impedančně ji přizpůsobte. 2. Schéma měřicí soupravy:

Více

1. Měření parametrů koaxiálních napáječů

1. Měření parametrů koaxiálních napáječů . Měření parametrů koaxiálních napáječů. Úvod Napáječ je vedení, které spojuje zdroj a zátěž. Vlastnosti napáječe popisujeme charakteristickou impedancí Z [], měrnou fází [rad/m] a měrným útlumem [/m].

Více

1. Měření vlastností koaxiálních vedení

1. Měření vlastností koaxiálních vedení BEVA: měření vlastností koaxiálních vedení 1. Měření vlastností koaxiálních vedení 1.1 Úvod Napáječ je vedení, které spojuje zdroj a zátěž. Vlastnosti napáječe popisujeme charakteristickou impedancí 0

Více

1. Zadání. 2. Teorie úlohy ID: 78 357. Jméno: Jan Švec. Předmět: Elektromagnetické vlny, antény a vedení. Číslo úlohy: 7. Měřeno dne: 30.3.

1. Zadání. 2. Teorie úlohy ID: 78 357. Jméno: Jan Švec. Předmět: Elektromagnetické vlny, antény a vedení. Číslo úlohy: 7. Měřeno dne: 30.3. Předmět: Elektromagnetické vlny, antény a vedení Úloha: Symetrizační obvody Jméno: Jan Švec Měřeno dne: 3.3.29 Odevzdáno dne: 6.3.29 ID: 78 357 Číslo úlohy: 7 Klasifikace: 1. Zadání 1. Změřte kmitočtovou

Více

4 Napětí a proudy na vedení

4 Napětí a proudy na vedení 4 Napětí a proudy na vedení předchozí kapitole jsme se seznámili s šířením napěťové a proudové vlny podél přenosového vedení. Diskutovali jsme podobnost šíření vlny podél vedení s šířením vlny volným prostorem.

Více

Vysokofrekvenční a mikrovlnná technika návody pro mikrovlnné laboratorní experimenty MĚŘENÍ MIKROVLNNÉHO VÝKONU

Vysokofrekvenční a mikrovlnná technika návody pro mikrovlnné laboratorní experimenty MĚŘENÍ MIKROVLNNÉHO VÝKONU rotokol č. 1 MĚŘENÍ MIKROVLNNÉHO VÝKONU Jméno studenta (-ů):........... Datum měření:.................. 1. Měřič výkonu TESLA QXC 9 automatický bolometrický můstek se samočinným vyvažováním a přímým čtením

Více

2. Měření parametrů symetrických vedení

2. Měření parametrů symetrických vedení . ěření parametrů symetrických vedení. Úvod V praxi používáme jak nesymetrická vedení (koaxiální kabel, mikropáskové vedení) tak vedení symetrická (dvouvodičové vedení). Aby platila klasická teorie vedení,

Více

Rovinná harmonická elektromagnetická vlna

Rovinná harmonická elektromagnetická vlna Rovinná harmonická elektromagnetická vlna ---- 1. příklad -------------------------------- 2 GHz prochází prostředím s parametry: r 5, r 1, 0.005 S / m. Amplituda intenzity magnetického pole je H m 0.25

Více

Jaký význam má kritický kmitočet vedení? - nejnižší kmitočet vlny, při kterém se vlna začíná šířit vedením.

Jaký význam má kritický kmitočet vedení? - nejnižší kmitočet vlny, při kterém se vlna začíná šířit vedením. Jaký význam má kritický kmitočet vedení? - nejnižší kmitočet vlny, při kterém se vlna začíná šířit vedením. Na čem závisí účinnost vedení? účinnost vedení závisí na činiteli útlumu β a na činiteli odrazu

Více

Měřicí přístroje a měřicí metody

Měřicí přístroje a měřicí metody Měřicí přístroje a měřicí metody Základní elektrické veličiny určují kvalitativně i kvantitativně stav elektrických obvodů a objektů. Neelektrické fyzikální veličiny lze převést na elektrické veličiny

Více

ochranným obvodem, který chrání útlumové články před vnějším náhodným přetížením.

ochranným obvodem, který chrání útlumové články před vnějším náhodným přetížením. SG 2000 je vysokofrekvenční generátor s kmitočtovým rozsahem 100 khz - 1 GHz (s option až do 2 GHz), s možností amplitudové i kmitočtové modulace. Velmi užitečnou funkcí je také rozmítání výstupního kmitočtu

Více

Teoretický úvod: [%] (1)

Teoretický úvod: [%] (1) Vyšší odborná škola a Střední průmyslová škola elektrotechnická Božetěchova 3, Olomouc Laboratoře elektrotechnických měření Název úlohy Číslo úlohy ZESILOVAČ OSCILÁTOR 101-4R Zadání 1. Podle přípravku

Více

Měření rozložení fází intenzity el. pole na plošné anténě v pásmu 11 GHz

Měření rozložení fází intenzity el. pole na plošné anténě v pásmu 11 GHz Měření rozložení fází intenzity el. pole na plošné anténě v pásmu 11 GHz Ing. Radek Dohnal Doc. Ing. Vladislav Škorpil, CSc. Ústav telekomunikací Fakulta elektrotechniky a komunikačních technologií Vysoké

Více

MĚŘENÍ Laboratorní cvičení z měření. Měření oteplovací charakteristiky, část 3-3-4

MĚŘENÍ Laboratorní cvičení z měření. Měření oteplovací charakteristiky, část 3-3-4 MĚŘENÍ Laboratorní cvičení z měření Měření oteplovací charakteristiky, část Číslo projektu: Název projektu: Šablona: III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Sada: 20 Číslo materiálu: VY_32_INOVACE_

Více

4. Měření rychlosti zvuku ve vzduchu. A) Kalibrace tónového generátoru

4. Měření rychlosti zvuku ve vzduchu. A) Kalibrace tónového generátoru 4. Měření rychlosti zvuku ve vzduchu Pomůcky: 1) Generátor normálové frekvence 2) Tónový generátor 3) Digitální osciloskop 4) Zesilovač 5) Trubice s reproduktorem a posuvným mikrofonem 6) Konektory A)

Více

Střední průmyslová škola elektrotechnická a informačních technologií Brno

Střední průmyslová škola elektrotechnická a informačních technologií Brno Střední průmyslová škola elektrotechnická a informačních technologií Brno Číslo a název projektu: CZ.1.07/1.5.00/34.0521 Investice do vzdělání nesou nejvyšší úrok Autor: Ing. Bohumír Jánoš Tématická sada:

Více

PRAKTIKUM I. Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK. úloha č. 10 Název: Rychlost šíření zvuku. Pracoval: Jakub Michálek

PRAKTIKUM I. Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK. úloha č. 10 Název: Rychlost šíření zvuku. Pracoval: Jakub Michálek Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK PRAKTIKUM I. úloha č. 10 Název: Rychlost šíření zvuku Pracoval: Jakub Michálek stud. skup. 15 dne: 20. března 2009 Odevzdal dne: Možný

Více

Laboratorní práce č. 1: Měření délky

Laboratorní práce č. 1: Měření délky Přírodní vědy moderně a interaktivně FYZIKA 3. ročník šestiletého a 1. ročník čtyřletého studia Laboratorní práce č. 1: Měření délky G Gymnázium Hranice Přírodní vědy moderně a interaktivně FYZIKA 3.

Více

ÚTLUM KABELŮ A PSV. Měřeni útlumu odrazu (Impedančního přizpůsobení) antény

ÚTLUM KABELŮ A PSV. Měřeni útlumu odrazu (Impedančního přizpůsobení) antény . ÚTLUM KABELŮ A PSV Měření výkonu vysílače 1. indikátor DMU zapněte přepínačem 5 do polohy PWR 3. do konektoru ANT (2) připojte impedančně přizpůsobenou zátěž 4. do konektoru AP (1) připojte vhodným krátkým

Více

Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK. Posuzoval:... dne:...

Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK. Posuzoval:... dne:... Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK Praktikum 1 Úloha č. 10 Název: Rychlost šíření zvuku Pracoval: Jan Kotek stud.sk.: 17 dne: 2.3.2012 Odevzdal dne:... možný počet bodů

Více

Základní měření s výchylkovými multimetry Laboratorní cvičení č. 1

Základní měření s výchylkovými multimetry Laboratorní cvičení č. 1 Základní měření s výchylkovými multimetry Laboratorní cvičení č. 1 Cíle cvičení: seznámit se s laboratorním zdrojem stejnosměrných napětí Diametral P230R51D, seznámit se s výchylkovým (ručkovým) multimetrem

Více

Jak měřit Q rezonančního obvodu s VNA (Aprílové kibicování od OK5US ) 8/4/2013

Jak měřit Q rezonančního obvodu s VNA (Aprílové kibicování od OK5US ) 8/4/2013 Jak měřit Q rezonančního obvodu s VNA (Aprílové kibicování od OK5US ) 8/4/2013 ( VNA = Vektorový analyzátor obvodů), minivna a i ty od HP, Rhode Schwarz či Agilent. Reakce na webový článek OK1CJB. http://www.ok1cjb.cz/index.php?option=com_content&view=article&id=719:3-860&catid=8:minivna-prakticky&itemid=15.

Více

MĚŘENÍ Laboratorní cvičení z měření. Měření magnetických veličin, část 3-9-3

MĚŘENÍ Laboratorní cvičení z měření. Měření magnetických veličin, část 3-9-3 MĚŘENÍ Laboratorní cvičení z měření Měření magnetických veličin, část 3-9-3 Číslo projektu: CZ..07/.5.00/34.0093 Název projektu: Inovace výuky na VOŠ a SPŠ Šumperk Šablona: III/ Inovace a zkvalitnění výuky

Více

Fyzikální praktikum FJFI ČVUT v Praze

Fyzikální praktikum FJFI ČVUT v Praze Fyzikální praktikum FJFI ČVUT v Praze Úloha 2: Hysterezní smyčka Datum měření: 11. 3. 2016 Doba vypracovávání: 10 hodin Skupina: 1, pátek 7:30 Vypracoval: Tadeáš Kmenta Klasifikace: 1 Zadání 1. DÚ: Zjistěte,

Více

Střední průmyslová škola elektrotechnická a informačních technologií Brno

Střední průmyslová škola elektrotechnická a informačních technologií Brno Střední průmyslová škola elektrotechnická a informačních technologií Brno Číslo a název projektu: CZ.1.07/1.5.00/34.0521 Investice do vzdělání nesou nejvyšší úrok Autor: Ing. Bohumír Jánoš Tématická sada:

Více

Rozšíření rozsahu miliampérmetru a voltmetru, cejchování kompenzátorem

Rozšíření rozsahu miliampérmetru a voltmetru, cejchování kompenzátorem FJFI ČVUT v Praze Fyzikální praktikum I Úloha 9 Verze 161010 Rozšíření rozsahu miliampérmetru a voltmetru, cejchování kompenzátorem Abstrakt: V úloze si osvojíte práci s jednoduchými elektrickými obvody.

Více

Teorie elektronických obvodů (MTEO)

Teorie elektronických obvodů (MTEO) Teorie elektronických obvodů (MTEO) Laboratorní úloha číslo 10 návod k měření Filtr čtvrtého řádu Seznamte se s principem filtru FLF realizace a jeho obvodovými komponenty. Vypočtěte řídicí proud všech

Více

Vektorové obvodové analyzátory

Vektorové obvodové analyzátory Radioelektronická měření (MREM, LREM) Vektorové obvodové analyzátory 9. přednáška Jiří Dřínovský Ústav radioelektroniky FEKT VUT v Brně Úvod Jedním z nejběžnějších inženýrských problémů je měření parametrů

Více

Střední od 1Ω do 10 6 Ω Velké od 10 6 Ω do 10 14 Ω

Střední od 1Ω do 10 6 Ω Velké od 10 6 Ω do 10 14 Ω Měření odporu Elektrický odpor základní vlastnost všech pasivních a aktivních prvků přímé měření ohmmetrem nepříliš přesné používáme nepřímé měřící metody výchylkové můstkové rozsah odporů ovlivňující

Více

Akustická měření - měření rychlosti zvuku

Akustická měření - měření rychlosti zvuku Akustická měření - měření rychlosti zvuku Úkol : 1. Pomocí přizpůsobené Kundtovy trubice určete platnost vztahu λ = v / f. 2. Určete rychlost zvuku ve vzduchu pomocí Kundtovy a Quinckeho trubice. Pomůcky

Více

Klasické a inovované měření rychlosti zvuku

Klasické a inovované měření rychlosti zvuku Klasické a inovované měření rychlosti zvuku Jiří Tesař katedra fyziky, Pedagogická fakulta JU Klíčová slova: Rychlost zvuku, vlnová délka, frekvence, interference vlnění, stojaté vlnění, kmitny, uzly,

Více

Kompenzovaný vstupní dělič Analogový nízkofrekvenční milivoltmetr

Kompenzovaný vstupní dělič Analogový nízkofrekvenční milivoltmetr Kompenzovaný vstupní dělič Analogový nízkofrekvenční milivoltmetr. Zadání: A. Na předloženém kompenzovaném vstupní děliči k nf milivoltmetru se vstupní impedancí Z vst = MΩ 25 pf, pro dělící poměry :2,

Více

TRANZISTOROVÝ ZESILOVAČ

TRANZISTOROVÝ ZESILOVAČ RANZISOROÝ ZESILOAČ 301-4R Hodnotu napájecího napětí určí vyučující ( CC 12). 1. Pro zadanou hodnotu I C 2 ma vypočtěte potřebnou hodnotu R C a zvolte nejbližší hodnotu rezistoru z řady. 2. Zvolte hodnotu

Více

ρ = měrný odpor, ρ [Ω m] l = délka vodiče

ρ = měrný odpor, ρ [Ω m] l = délka vodiče 7 Kapitola 2 Měření elektrických odporů 2 Úvod Ohmův zákon definuje ohmický odpor, zkráceně jen odpor, R elektrického vodiče jako konstantu úměrnosti mezi stejnosměrným proudem I, který protéká vodičem

Více

Pokud není uvedeno jinak, uvedený materiál je z vlastních zdrojů autora

Pokud není uvedeno jinak, uvedený materiál je z vlastních zdrojů autora Číslo projektu Číslo materiálu Název školy Autor Název Téma hodiny Předmět Ročník /y/ CZ.1.07/1.5.00/34.0394 VY_3_INOVACE_EM_.0_měření kmitočtové charakteristiky zesilovače Střední odborná škola a Střední

Více

L a b o r a t o r n í c v i č e n í z f y z i k y

L a b o r a t o r n í c v i č e n í z f y z i k y ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE K ATEDRA FYZIKY L a b o r a t o r n í c v i č e n í z f y z i k y Jméno TUREČEK Daniel Datum měření 15.11.2006 Stud. rok 2006/2007 Ročník 2. Datum odevzdání 29.11.2006

Více

popsat princip činnosti základních zapojení čidel napětí a proudu samostatně změřit zadanou úlohu

popsat princip činnosti základních zapojení čidel napětí a proudu samostatně změřit zadanou úlohu 9. Čidla napětí a proudu Čas ke studiu: 15 minut Cíl Po prostudování tohoto odstavce budete umět popsat princip činnosti základních zapojení čidel napětí a proudu samostatně změřit zadanou úlohu Výklad

Více

Měření výkonu jednofázového proudu

Měření výkonu jednofázového proudu Měření výkonu jednofázového proudu Návod k laboratornímu cvičení Úkol: a) eznámit se s měřením činného výkonu zátěže elektrodynamickým wattmetrem se dvěma možnými způsoby zapojení napěťové cívky wattmetru.

Více

Hlavní parametry rádiových přijímačů

Hlavní parametry rádiových přijímačů Hlavní parametry rádiových přijímačů Zpracoval: Ing. Jiří Sehnal Pro posouzení základních vlastností rádiových přijímačů jsou zavedena normalizovaná kritéria parametry, podle kterých se rádiové přijímače

Více

Měření tíhového zrychlení reverzním kyvadlem

Měření tíhového zrychlení reverzním kyvadlem 43 Kapitola 7 Měření tíhového zrychlení reverzním kyvadlem 7.1 Úvod Tíhové zrychlení je zrychlení volného pádu ve vakuu. Závisí na zeměpisné šířce a nadmořské výšce. Jako normální tíhové zrychlení g n

Více

MĚŘENÍ Laboratorní cvičení z měření. Měření na elektrických strojích - transformátor, část 3-2-4

MĚŘENÍ Laboratorní cvičení z měření. Měření na elektrických strojích - transformátor, část 3-2-4 MĚŘENÍ Laboratorní cvičení z měření Měření na elektrických strojích - transformátor, část Číslo projektu: Název projektu: Šablona: III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Sada: 20 Číslo materiálu:

Více

MĚŘENÍ NAPĚTÍ A PROUDŮ VE STEJNOSMĚRNÝCH OBVODECH.

MĚŘENÍ NAPĚTÍ A PROUDŮ VE STEJNOSMĚRNÝCH OBVODECH. MĚŘENÍ NAPĚTÍ A PROUDŮ VE STEJNOSMĚRNÝCH OBVODECH. 1. Měření napětí ručkovým voltmetrem. 1.1 Nastavte pomocí ovládacích prvků na ss zdroji napětí 10 V. 1.2 Přepněte voltmetr na rozsah 120 V a připojte

Více

2 Přímé a nepřímé měření odporu

2 Přímé a nepřímé měření odporu 2 2.1 Zadání úlohy a) Změřte jednotlivé hodnoty odporů R 1 a R 2, hodnotu odporu jejich sériového zapojení a jejich paralelního zapojení, a to těmito způsoby: přímou metodou (RLC můstkem) Ohmovou metodou

Více

Tel-30 Nabíjení kapacitoru konstantním proudem [V(C1), I(C1)] Start: Transient Tranzientní analýza ukazuje, jaké napětí vytvoří proud 5mA za 4ms na ka

Tel-30 Nabíjení kapacitoru konstantním proudem [V(C1), I(C1)] Start: Transient Tranzientní analýza ukazuje, jaké napětí vytvoří proud 5mA za 4ms na ka Tel-10 Suma proudů v uzlu (1. Kirchhofův zákon) Posuvným ovladačem ohmické hodnoty rezistoru se mění proud v uzlu, suma platí pro každou hodnotu rezistoru. Tel-20 Suma napětí podél smyčky (2. Kirchhofův

Více

FYZIKÁLNÍ PRAKTIKUM FJFI ČVUT V PRAZE. Mikrovlny

FYZIKÁLNÍ PRAKTIKUM FJFI ČVUT V PRAZE. Mikrovlny FYZIKÁLNÍ PRAKTIKUM FJFI ČVUT V PRAZE Datum měření: 25.3.2011 Jméno: Jakub Kákona Pracovní skupina: 4 Ročník a kroužek: Pa 9:30 Spolupracovníci: Jana Navrátilová Hodnocení: Mikrovlny Abstrakt V úloze je

Více

Fyzikální praktikum FJFI ČVUT v Praze

Fyzikální praktikum FJFI ČVUT v Praze Fyzikální praktikum FJFI ČVUT v Praze Úloha 9: Rozšíření rozsahu miliampérmetru a voltmetru. Cejchování kompenzátorem. Datum měření: 15. 10. 2015 Skupina: 8, čtvrtek 7:30 Vypracoval: Tadeáš Kmenta Klasifikace:

Více

1 U Zapište hodnotu časové konstanty derivačního obvodu. Vyznačte měřítko na časové ose v uvedeném grafu.

1 U Zapište hodnotu časové konstanty derivačního obvodu. Vyznačte měřítko na časové ose v uvedeném grafu. v v 1. V jakých jednotkách se vyjadřuje proud uveďte název a značku jednotky. 2. V jakých jednotkách se vyjadřuje indukčnost uveďte název a značku jednotky. 3. V jakých jednotkách se vyjadřuje kmitočet

Více

11. Odporový snímač teploty, měřicí systém a bezkontaktní teploměr

11. Odporový snímač teploty, měřicí systém a bezkontaktní teploměr 11. Odporový snímač teploty, měřicí systém a bezkontaktní teploměr Otázky k úloze (domácí příprava): Pro jakou teplotu je U = 0 v případě použití převodníku s posunutou nulou dle obr. 1 (senzor Pt 100,

Více

1.1 Paralelní spolupráce transformátorů stejného nebo rozdílného výkonu

1.1 Paralelní spolupráce transformátorů stejného nebo rozdílného výkonu 1.1 Paralelní spolupráce transformátorů stejného nebo rozdílného výkonu Cíle kapitoly: Cílem úlohy je ověřit teoretické znalosti při provozu dvou a více transformátorů paralelně. Dalším úkolem bude změřit

Více

C p. R d dielektrické ztráty R sk odpor závislý na frekvenci C p kapacita mezi přívody a závity

C p. R d dielektrické ztráty R sk odpor závislý na frekvenci C p kapacita mezi přívody a závity RIEDL 3.EB-6-1/8 1.ZADÁNÍ a) Změřte indukčnosti předložených cívek ohmovou metodou při obou možných způsobech zapojení měřících přístrojů. b) Měření proveďte při kmitočtech měřeného proudu 50, 100, 400

Více

Synchronní detektor, nazývaný též fázově řízený usměrňovač, je určen k měření elektrolytické střední hodnoty periodického signálu podle vztahu.

Synchronní detektor, nazývaný též fázově řízený usměrňovač, je určen k měření elektrolytické střední hodnoty periodického signálu podle vztahu. ZADÁNÍ: ) Seznamte se se zapojením a principem činnosti synchronního detektoru 2) Změřte statickou převodní charakteristiku synchronního detektoru v rozsahu vstupního ss napětí ±V a určete její linearitu.

Více

PRAKTIKUM III. Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK. Pracoval: Jan Polášek stud. skup. 11 dne 23.4.2009.

PRAKTIKUM III. Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK. Pracoval: Jan Polášek stud. skup. 11 dne 23.4.2009. Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK PRAKTIKUM III Úloha č. XXVI Název: Vláknová optika Pracoval: Jan Polášek stud. skup. 11 dne 23.4.2009 Odevzdal dne: Možný počet bodů

Více

Teorie elektronických

Teorie elektronických Teorie elektronických obvodů (MTEO) Laboratorní úloha číslo 1 návod k měření Zpětná vazba a kompenzace Změřte modulovou kmitočtovou charakteristiku invertujícího zesilovače v zapojení s operačním zesilovačem

Více

Operační zesilovač, jeho vlastnosti a využití:

Operační zesilovač, jeho vlastnosti a využití: Truhlář Michal 6.. 5 Laboratorní práce č.4 Úloha č. VII Operační zesilovač, jeho vlastnosti a využití: Úkol: Zapojte operační zesilovač a nastavte jeho zesílení na hodnotu přibližně. Potvrďte platnost

Více

Měření na bipolárním tranzistoru.

Měření na bipolárním tranzistoru. Měření na bipolárním tranzistoru Změřte a nakreslete čtyři výstupní charakteristiky I C = ( CE ) bipolárního tranzistoru PNP při vámi zvolených hodnotách I B Změřte a nakreslete dvě převodní charakteristiky

Více

13 Měření na sériovém rezonančním obvodu

13 Měření na sériovém rezonančním obvodu 13 13.1 Zadání 1) Změřte hodnotu indukčnosti cívky a kapacity kondenzátoru RC můstkem, z naměřených hodnot vypočítej rezonanční kmitočet. 2) Generátorem nastavujte frekvenci v rozsahu od 0,1 * f REZ do

Více

Měření a analýza mechanických vlastností materiálů a konstrukcí. 1. Určete moduly pružnosti E z ohybu tyče pro 4 různé materiály

Měření a analýza mechanických vlastností materiálů a konstrukcí. 1. Určete moduly pružnosti E z ohybu tyče pro 4 různé materiály FP 1 Měření a analýza mechanických vlastností materiálů a konstrukcí Úkoly : 1. Určete moduly pružnosti E z ohybu tyče pro 4 různé materiály 2. Určete moduly pružnosti vzorků nepřímo pomocí měření rychlosti

Více

Korekční křivka měřícího transformátoru proudu

Korekční křivka měřícího transformátoru proudu 5 Přesnost a korekční křivka měřícího transformátoru proudu 5.1 Zadání a) Změřte hodnoty sekundárního proudu při zvyšujícím se vstupním proudu pro tři různé transformátory. b) U všech naměřených proudů

Více

Laboratorní úloha č.8 MĚŘENÍ STATICKÝCH A DYNAMICKÝCH CHARAKTERISTIK

Laboratorní úloha č.8 MĚŘENÍ STATICKÝCH A DYNAMICKÝCH CHARAKTERISTIK Laboratorní úloha č.8 MĚŘENÍ STATICKÝCH A DYNAMICKÝCH CHARAKTERISTIK a/ PNEUMATICKÉHO PROPORCIONÁLNÍHO VYSÍLAČE b/ PNEUMATICKÉHO P a PI REGULÁTORU c/ PNEUMATICKÉHO a SOLENOIDOVÉHO VENTILU ad a/ Cejchování

Více

Měření času, periody, šíře impulsu a frekvence osciloskopem

Měření času, periody, šíře impulsu a frekvence osciloskopem http://www.coptkm.cz/ Měření času, periody, šíře impulsu a frekvence osciloskopem Měření času S měřením času, neboli se stanovením doby, která uběhne při zobrazení určité části průběhu, při kontrole časové

Více

METODICKÝ LIST Z ELEKTROENERGETIKY PRO 3. ROČNÍK řešené příklady

METODICKÝ LIST Z ELEKTROENERGETIKY PRO 3. ROČNÍK řešené příklady STŘEDNÍ PRŮMYSLOVÁ ŠKOLA ELEKTROTECHNICKÁ BRNO,KOUNICOVA16 METODICKÝ LIST Z ELEKTROENERGETIKY PRO 3. ROČNÍK řešené příklady Třída : K4 Název tématu : Metodický list z elektroenergetiky řešené příklady

Více

2.6. Vedení pro střídavý proud

2.6. Vedení pro střídavý proud 2.6. Vedení pro střídavý proud Při výpočtu krátkých vedení počítáme většinou buď jen s činným odporem vedení (nn) nebo u vn s činným a induktivním odporem. 2.6.1. Krátká jednofázová vedení nn U krátkých

Více

Měření délky, určení objemu tělesa a jeho hustoty

Měření délky, určení objemu tělesa a jeho hustoty Úloha č. 1a Měření délky, určení objemu tělesa a jeho hustoty Úkoly měření: 1. Seznámení se s měřicími přístroji posuvné měřítko, mikrometr, laboratorní váhy. 2. Opakovaně (10x) změřte rozměry dvou zadaných

Více

Střední průmyslová škola elektrotechnická a informačních technologií Brno

Střední průmyslová škola elektrotechnická a informačních technologií Brno Střední průmyslová škola elektrotechnická a informačních technologií Brno Číslo a název projektu: CZ.1.07/1.5.00/34.0521 Investice do vzdělání nesou nejvyšší úrok Autor: Ing. Bohumír Jánoš Tématická sada:

Více

MĚŘENÍ Laboratorní cvičení z měření Měření parametrů operačních zesilovačů část Teoretický rozbor

MĚŘENÍ Laboratorní cvičení z měření Měření parametrů operačních zesilovačů část Teoretický rozbor MĚŘENÍ Laboratorní cvičení z měření část 3-7-1 Teoretický rozbor Výukový materiál Číslo projektu: CZ.1.07/1.5.00/34.0093 Šablona: III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Sada: 1 Číslo materiálu:

Více

MĚŘENÍ Laboratorní cvičení z měření. Měření na elektrických strojích - transformátor, část 3-2-3

MĚŘENÍ Laboratorní cvičení z měření. Měření na elektrických strojích - transformátor, část 3-2-3 MĚŘENÍ Laboratorní cvičení z měření Měření na elektrických strojích - transformátor, část Číslo projektu: Název projektu: Šablona: III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Sada: 20 Číslo materiálu:

Více

3. Kmitočtové charakteristiky

3. Kmitočtové charakteristiky 3. Kmitočtové charakteristiky Po základním seznámení s programem ATP a jeho preprocesorem ATPDraw následuje využití jednotlivých prvků v jednoduchých obvodech. Jednotlivé příklady obvodů jsou uzpůsobeny

Více

V následujícím obvodě určete metodou postupného zjednodušování hodnoty zadaných proudů, napětí a výkonů. Zadáno: U Z = 30 V R 6 = 30 Ω R 3 = 40 Ω R 3

V následujícím obvodě určete metodou postupného zjednodušování hodnoty zadaných proudů, napětí a výkonů. Zadáno: U Z = 30 V R 6 = 30 Ω R 3 = 40 Ω R 3 . STEJNOSMĚNÉ OBVODY Příklad.: V následujícím obvodě určete metodou postupného zjednodušování hodnoty zadaných proudů, napětí a výkonů. Z 5 5 4 4 6 Schéma. Z = 0 V = 0 Ω = 40 Ω = 40 Ω 4 = 60 Ω 5 = 90 Ω

Více

Jméno a příjmení. Ročník. Měřeno dne. 11.3.2013 Příprava Opravy Učitel Hodnocení. Charakteristiky optoelektronických součástek

Jméno a příjmení. Ročník. Měřeno dne. 11.3.2013 Příprava Opravy Učitel Hodnocení. Charakteristiky optoelektronických součástek FYZIKÁLNÍ PRAKTIKUM Ústav fyziky FEKT VUT BRNO Jméno a příjmení Petr Švaňa Ročník 1 Předmět IFY Kroužek 38 ID 155793 Spolupracoval Měřeno dne Odevzdáno dne Ladislav Šulák 25.2.2013 11.3.2013 Příprava Opravy

Více

popsat činnost základních zapojení operačních usměrňovačů samostatně změřit zadanou úlohu

popsat činnost základních zapojení operačních usměrňovačů samostatně změřit zadanou úlohu 4. Operační usměrňovače Čas ke studiu: 15 minut Cíl Po prostudování tohoto odstavce budete umět popsat činnost základních zapojení operačních usměrňovačů samostatně změřit zadanou úlohu Výklad Operační

Více

Vysokofrekvenční transformátory a vedení

Vysokofrekvenční transformátory a vedení Vysokofrekvenční transformátory a vedení Úkol měření: 1. Stanovte amplitudovou a fázovou přenosovou charakteristiku předložených vzorků vf. transformátorů 2. Stanovte vstupní impedanci předložených vzorků

Více

2. Vlnění. π T. t T. x λ. Machův vlnostroj

2. Vlnění. π T. t T. x λ. Machův vlnostroj 2. Vlnění 2.1 Vlnění zvláštní případ pohybu prostředí Vlnění je pohyb v soustavě velkého počtu částic navzájem vázaných, kdy částice kmitají kolem svých rovnovážných poloh. Druhy vlnění: vlnění příčné

Více

MĚŘENÍ RYCHLOSTI ŠÍŘENÍ ZVUKU V PLYNECH

MĚŘENÍ RYCHLOSTI ŠÍŘENÍ ZVUKU V PLYNECH Úloha č. 6 MĚŘENÍ RYCHLOSTI ŠÍŘENÍ ZVUKU V PLYNECH ÚKOL MĚŘENÍ: 1. V zapojení dvou RC generátorů nalezněte na obrazovce osciloskopu Lissajousovy obrazce pro frekvence 1:1, 2:1, 3:1, 2:3 a 1:4 a zakreslete

Více

A:Cejchování termočlánku na bod tání čistého kovu B:Měření teploty termočlánkem C:Cejchování termoelektrického snímače KET/MNV (9.

A:Cejchování termočlánku na bod tání čistého kovu B:Měření teploty termočlánkem C:Cejchování termoelektrického snímače KET/MNV (9. A:Cejchování termočlánku na bod tání čistého kovu B:Měření teploty termočlánkem C:Cejchování termoelektrického snímače KET/MNV (9. cvičení) Vypracoval : Martin Dlouhý Osobní číslo : A08B0268P A: Cejchování

Více

Laboratorní úloha č. 2 Vzájemná induktivní vazba dvou kruhových vzduchových cívek - Faradayův indukční zákon. Max Šauer

Laboratorní úloha č. 2 Vzájemná induktivní vazba dvou kruhových vzduchových cívek - Faradayův indukční zákon. Max Šauer Laboratorní úloha č. Vzájemná induktivní vazba dvou kruhových vzduchových cívek - Faradayův indukční zákon Max Šauer 14. prosince 003 Obsah 1 Popis úlohy Úkol měření 3 Postup měření 4 Teoretický rozbor

Více

Určeno pro posluchače všech bakalářských studijních programů FS

Určeno pro posluchače všech bakalářských studijních programů FS rčeno pro posluchače všech bakalářských studijních programů FS. STEJNOSMĚNÉ OBVODY pravil ng. Vítězslav Stýskala, Ph D. září 005 Příklad. (výpočet obvodových veličin metodou postupného zjednodušováni a

Více

11 Základy výpočetního elektromagnetismu

11 Základy výpočetního elektromagnetismu Základy výpočetního elektromagnetismu Při praktickém návrhu antén a dalších vysokofrekvenčních komponentů většinou vycházíme z přibližných návrhových vztahů V dalším kroku je zapotřebí hrubě navrženou

Více

ČVUT FEL. Obrázek 1 schéma zapojení měřícího přípravku. Obrázek 2 realizace přípravku

ČVUT FEL. Obrázek 1 schéma zapojení měřícího přípravku. Obrázek 2 realizace přípravku Laboratorní měření 2 Seznam použitých přístrojů 1. Laboratorní zdroj stejnosměrného napětí Vývojové laboratoře Poděbrady 2. Generátor funkcí Instek GFG-8210 3. Číslicový multimetr Agilent, 34401A 4. Digitální

Více

PRAKTIKUM II Elektřina a magnetismus

PRAKTIKUM II Elektřina a magnetismus Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK PRAKTIKUM II Elektřina a magnetismus Úloha č.: VIII Název: Měření impedancí rezonanční metodou Pracoval: Pavel Brožek stud. skup. 12

Více

1.1 Měření parametrů transformátorů

1.1 Měření parametrů transformátorů 1.1 Měření parametrů transformátorů Cíle kapitoly: Jedním z cílů úlohy je stanovit základní parametry dvou rozdílných třífázových transformátorů. Dvojice transformátorů tak bude podrobena měření naprázdno

Více

Úloha č. 7 Disperzní vlastnosti optických vlnovodů

Úloha č. 7 Disperzní vlastnosti optických vlnovodů Úloha č. 7 Disperzní vlastnosti optických vlnovodů 1 Teoretický úvod Optické vláknové vlnovody jsou důležitou komponentou optických komunikačních sítí. Jejich nejvýznamnějším parametrem je měrný útlum

Více

teorie elektronických obvodů Jiří Petržela obvodové funkce

teorie elektronických obvodů Jiří Petržela obvodové funkce Jiří Petržela obvod jako dvojbran dvojbranem rozumíme elektronický obvod mající dvě brány (vstupní a výstupní) dvojbranem může být zesilovač, pasivní i aktivní filtr, tranzistor v některém zapojení, přenosový

Více

Impedanční děliče - příklady

Impedanční děliče - příklady Impedanční děliče - příklady Postup řešení: Vyznačení impedancí, tvořících dělič Z Z : podélná impedance, mezi svorkami a Z : příčná impedance, mezi svorkami a ' ' Z ' Obecné vyjádření impedancí nebo admitancí

Více

Určeno studentům středního vzdělávání s maturitní zkouškou, druhý ročník, měření elektrického proudu

Určeno studentům středního vzdělávání s maturitní zkouškou, druhý ročník, měření elektrického proudu Určeno studentům středního vzdělávání s maturitní zkouškou, druhý ročník, měření elektrického proudu Pracovní list - příklad vytvořil: Ing. Lubomír Kořínek Období vytvoření VM: říjen 2013 Klíčová slova:

Více

Parametry měřicích přístrojů, kalibrace a měření optických tras?

Parametry měřicích přístrojů, kalibrace a měření optických tras? Parametry měřicích přístrojů, kalibrace a měření optických tras? Kalibrační laboratoř MIKROKOM provádí kalibrace: měřidel optického výkonu zdrojů optického záření měřidel útlumu optických reflektometrů

Více

Zvuk. 1. základní kmitání. 2. šíření zvuku

Zvuk. 1. základní kmitání. 2. šíření zvuku Zvuk 1. základní kmitání - vzduchem se šíří tlakové vzruchy (vzruchová vlna), zvuk je systémem zhuštěnin a zředěnin - podstatou zvuku je kmitání zdroje zvuku a tím způsobené podélné vlnění elastického

Více

7 Měření transformátoru nakrátko

7 Měření transformátoru nakrátko 7 7.1 adání úlohy a) změřte charakteristiku nakrátko pro proudy dané v tabulce b) vypočtěte poměrné napětí nakrátko u K pro jmenovitý proud transformátoru c) vypočtěte impedanci nakrátko K a její dílčí

Více

Jak ovlivňují parametry měřicích přístrojů výsledky měření optických tras?

Jak ovlivňují parametry měřicích přístrojů výsledky měření optických tras? Jak ovlivňují parametry měřicích přístrojů výsledky měření optických tras? aneb zkušenosti s měřením tras a kalibrací přístrojů Martin Hájek, Karel Dvořák MIKROKOM s.r.o. Faktory ovlivňující naměřené výsledky

Více

Fyzikální sekce přírodovědecké fakulty Masarykovy univerzity v Brně FYZIKÁLNÍ PRAKTIKUM. Speciální praktikum z abc

Fyzikální sekce přírodovědecké fakulty Masarykovy univerzity v Brně FYZIKÁLNÍ PRAKTIKUM. Speciální praktikum z abc Fyzikální sekce přírodovědecké fakulty Masarykovy univerzity v Brně FYZIKÁLNÍ PRAKTIKUM Speciální praktikum z abc Zpracoval: Jan Novák Naměřeno: 1. ledna 2001 Obor: F Ročník: IV Semestr: IX Testováno:

Více

PROTOKOL O LABORATORNÍM CVIČENÍ

PROTOKOL O LABORATORNÍM CVIČENÍ STŘEDNÍ PRŮMYSLOVÁ ŠKOLA V ČESKÝCH BUDĚJOVICÍCH, DUKELSKÁ 13 PROTOKOL O LABORATORNÍM CVIČENÍ Provedl: Tomáš PRŮCHA Datum: 9. 11. 2009 Číslo: Kontroloval: Datum: 5 Pořadové číslo žáka: 19 Třída: 4.EA ÚLOHA:

Více

2. Fyzikální kyvadlo (2.2) nebo pro homogenní tělesa. kde r je vzdálenost elementu dm, resp. dv, od osy otáčení, ρ je hustota tělesa, dv je objem

2. Fyzikální kyvadlo (2.2) nebo pro homogenní tělesa. kde r je vzdálenost elementu dm, resp. dv, od osy otáčení, ρ je hustota tělesa, dv je objem 30. Fyzikální kyvadlo 1. Klíčová slova Fyzikální kyvadlo, matematické kyvadlo, kmitavý pohyb, perioda, doba kyvu, tíhové zrychlení, redukovaná délka fyzikálního kyvadla, moment setrvačnosti tělesa, frekvence,

Více

Přehled veličin elektrických obvodů

Přehled veličin elektrických obvodů Přehled veličin elektrických obvodů Ing. Martin Černík, Ph.D Projekt ESF CZ.1.7/2.2./28.5 Modernizace didaktických metod a inovace. Elektrický náboj - základní vlastnost některých elementárních částic

Více

Určeno studentům středního vzdělávání s maturitní zkouškou, druhý ročník, měření elektrického napětí

Určeno studentům středního vzdělávání s maturitní zkouškou, druhý ročník, měření elektrického napětí Určeno studentům středního vzdělávání s maturitní zkouškou, druhý ročník, měření elektrického napětí Pracovní list - příklad vytvořil: Ing. Lubomír Kořínek Období vytvoření VM: říjen 2013 Klíčová slova:

Více

Laboratorní práce č. 3: Měření vlnové délky světla

Laboratorní práce č. 3: Měření vlnové délky světla Přírodní vědy moderně a interaktivně SEMINÁŘ FYZIKY Laboratorní práce č. 3: Měření vlnové délky světla G Gymnázium Hranice Přírodní vědy moderně a interaktivně SEMINÁŘ FYZIKY Gymnázium G Hranice Test

Více

Měření vlastností a základních parametrů elektronických prvků

Měření vlastností a základních parametrů elektronických prvků Číslo projektu Číslo materiálu Název školy Autor Název Téma hodiny Předmět Ročník /y/ Z.1.07/1.5.00/34.0394 VY_32_NOVAE_EM_1.10_měření parametrů bipolárního tranzistoru Střední odborná škola a Střední

Více

PRAKTIKUM III. Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK. Název: Studium ohybových jevů v laserovém svazku

PRAKTIKUM III. Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK. Název: Studium ohybových jevů v laserovém svazku Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK PRAKTIKUM III. Úloha č. 6 Název: Studium ohybových jevů v laserovém svazku Pracoval: Lukáš Vejmelka obor (kruh) FMUZV (73) dne 10.3.2014

Více

1. Měření hodnoty Youngova modulu pružnosti ocelového drátu v tahu a kovové tyče v ohybu

1. Měření hodnoty Youngova modulu pružnosti ocelového drátu v tahu a kovové tyče v ohybu Měření modulu pružnosti Úkol : 1. Měření hodnoty Youngova modulu pružnosti ocelového drátu v tahu a kovové tyče v ohybu Pomůcky : - Měřící zařízení s indikátorovými hodinkami - Mikrometr - Svinovací metr

Více

Hřebenová trychtýřová anténa

Hřebenová trychtýřová anténa Rok / Year: Svazek / Volume: Číslo / Number: 2013 15 6 Hřebenová trychtýřová anténa Ridge Horn Antenna Petr Vašina, Jaroslav Láčík xvasin05@stud.feec.vutbr.cz, lacik@feec.vutbr.cz Fakulta elektrotechniky

Více

OVMT Měření vnějších rozměrů

OVMT Měření vnějších rozměrů Měření vnějších rozměrů Základní pojmy Při kontrole výrobků se zjišťuje, zda odpovídají požadavkům rozměry, tvary a jakost ploch při použití předepsaných měřicích postupů. Zásady správného měření 1. Pro

Více

1. Změřte modul pružnosti v tahu E oceli z protažení drátu. 2. Změřte modul pružnosti v tahu E oceli a duralu nebo mosazi z průhybu trámku.

1. Změřte modul pružnosti v tahu E oceli z protažení drátu. 2. Změřte modul pružnosti v tahu E oceli a duralu nebo mosazi z průhybu trámku. 1 Pracovní úkoly 1. Změřte modul pružnosti v tahu E oceli z protažení drátu. 2. Změřte modul pružnosti v tahu E oceli a duralu nebo mosazi z průhybu trámku. 3. Výsledky měření graficky znázorněte, modul

Více