MASARYKOVA UNIVERZITA P Ř ÍRODOVĚ DECKÁ FAKULTA ŽÁDOST O AKREDITACI. Bakalářského studijního programu. Matematika. Obor.
|
|
- Jana Pospíšilová
- před 8 lety
- Počet zobrazení:
Transkript
1 MASARYKOVA UNIVERZITA P Ř ÍRODOVĚ DECKÁ FAKULTA ŽÁDOST O AKREDITACI Bakalářského studijního programu Matematika Obor Obecná matematika Brno, ř íjen 2011
2 OBSAH OBSAH... 1 A Žádost o akreditaci / rozšíření nebo prodloužení doby platnosti akreditace bakalářského / magisterského stud. Programu... 3 Představení navrhovaných změn v bakalářském programu Matematika... 4 Obor: Obecná matematika... 5 B Charakteristika studijního programu a jeho oborů, pokud se na obory člení... 5 C Pravidla pro vytváření studijních plánů SP (oboru) a návrh témat prací... 7 C1 -Doporučený studijní plán E Personální zabezpečení studijního programu (studijního oboru) souhrnné údaje F Související vědecká, výzkumná, vývojová, umělecká a další tvůrčí činnost I Uskutečňování akreditovaného stud. programu mimo sídlo vysoké školy D-Charakteristika studijních předmětů Seznam předmětů oboru Obecná matematika Anotace předmětů oboru Obecná matematika FI:IB005 Formální jazyky a automaty I FI:MA007 Matematická logika F2100 Klasická, relativistická, kvantová a statistická fyzika JAM01 Angličtina pro matematiky I JAM02 Angličtina pro matematiky II JAM03 Angličtina pro matematiky III JAM04 Angličtina pro matematiky IV JA001 Odborná angličtina - zkouška M1100 Matematická analýza I M1110 Lineární algebra a geometrie I M1120 Diskrétní matematika M1130 Seminář z matematiky I M1141 Základy využití počítačů M1160 Úvod do programování I M2100 Matematická analýza II M2110 Lineární algebra a geometrie II M2120 Finanční matematika M2130 Seminář z matematiky II M2142 Systémy počítačové algebry M2150 Algebra I M2160 Úvod do programování II M3100 Matematická analýza III M3121 Pravděpodobnost a statistika I M3130 Lineární algebra a geometrie III M3150 Algebra II M4110 Lineární programování M4122 Pravděpodobnost a statistika II M4130 Výpočetní matematické systémy M4155 Teorie množin M4170 Míra a integrál M4180 Numerické metody I M4190 Diferenciální geometrie křivek a ploch M51XX Bakalářská práce 1 (MO, MA)...38 M5120 Lineární statistické modely I M5130 Globální analýza M5140 Teorie grafů M5160 Obyčejné diferenciální rovnice I M5170 Matematické programování M5180 Numerické metody II M61XX Bakalářská práce 2 (MO, MA)...42 M6110 Pojistná matematika M6120 Lineární statistické modely II M6140 Topologie M6150 Funkcionální analýza I
3 M6170 Analýza v komplexním oboru
4 A Žádost o akreditaci / rozšíření nebo prodloužení doby platnosti akreditace bakalářského / magisterského stud. Programu Vysoká škola Masarykova univerzita Součást vysoké školy Přírodovědecká fakulta STUDPROG st. doba titul Název studijního programu Matematika B-MA 3 roky Bc. Původní název SP Matematika platnost předchozí akreditace Typ žádosti prodloužení akreditace druh rozšíření Typ studijního programu Bakalářský rigorózní Forma studia prezenční řízení KKOV Obor v tomto dokumentu Obecná matematika prodloužení akreditace 1101R023 Obory v jiných dokumentech Statistika a analýza dat prodloužení akreditace 1101R031 Modelování a výpočty prodloužení akreditace 1802R035 Finanční a pojistná matematika - prodloužení akreditace 1103R008 Matematika se zaměřením na vzdělávání prodloužení akreditace 7504R015 Aplikovaná matematika pro víceoborové studium prodloužení akreditace 1103R037 Adresa www stránky jméno a heslo k přístupu na www kom, akred2011 Schváleno VR /UR /AR VR PřF MU podpis datum Dne rektora Kontaktní osoba doc. RNDr. Jan Paseka, CSc. paseka@math.muni.cz Garant studijního programu doc. RNDr. Jan Paseka, CSc. paseka@math.muni.cz 3
5 Představení navrhovaných změn v bakalářském programu Matematika Důvodem pro předložení akreditační žádosti je skutečnost, že převážné většině akreditovaných oborů v bakalářských programech Matematika a Aplikovaná matematika končí k stávající akreditace. Přírodovědecká fakulta Masarykovy univerzity považuje za vhodné upravit nabídku bakalářských oborů Ústavu matematiky a statistiky zejména z důvodu zvýšení propustnosti stávajících programů. Proto navrhuje spojit programy Matematika a Aplikovaná matematika do nově koncipovaného programu Matematika s tím, že se pro budoucí výuku počítá s obory Obecná matematika, Aplikovaná matematika pro víceoborové studium, Modelování a výpočty, Statistika a analýza dat, Finanční a pojistná matematika, Matematika se zaměřením na vzdělávání. Při návrhu změn jsme vycházeli z praktických zkušeností s realizováním uvedených oborů od roku 2002 (vyjma oboru Modelování a výpočty, který byl akreditován v roce 2010, a oboru Aplikovaná matematika pro víceoborové studium, který byl akreditován v roce 2011 jako náhrada za stávající jednooborové studium Matematika-Ekonomie). Ukazuje se, že současné rozdělení na dva programy vytváří zbytečnou psychologickou a administrativní bariéru pro studenty, kteří si při vstupu na naši univerzitu vyberou matematický obor z jednoho programu a během prvních semestrů zjistí, že by jim byl býval více vyhovoval matematický obor z druhého programu. Domníváme se, že při nově předloženém návrhu bude studium na oborech bakalářského programu, s návazností na obdobné změny v magisterských programech Matematika a Aplikovaná matematika, pro studenty přehlednější a mj. jim umožní snazší přechod mezi obory. Veškeré změny se však nedotkou jednoho z hlavních cílů programu, čímž je důkladná příprava absolventů k navazujícímu magisterskému studiu v programu Matematika. Z hlediska realizace není zamýšlené spojení obou programů do jednoho náročné, protože se úpravou nemění stávající studijní plány jednotlivých oborů a následně tedy ani skladba povinných a povinně volitelných předmětů, nebo jejich rozsah či vyučující. Každý obor programu specifikuje profil absolventa, který není nikterak dotčen navrhovanými změnami a který lze pro celý program stručně charakterizovat následujícícm způsobem. Absolvent programu Matematika získá všeobecné základní znalosti matematických disciplín, má rozvinuté abstraktní myšlení a schopnost tvůrčího přístupu k formulaci a řešení problémů. Může pokračovat v navazujícím magisterském studiu nebo se po doplnění konkrétních znalostí může dobře uplatnit přímo v praxi, v profesích souvisejících s informatikou, programováním, finanční sférou či ekonomikou. 4
6 Obor: Obecná matematika B Charakteristika studijního programu a jeho oborů, pokud se na obory člení Vysoká škola Masarykova univerzita Součást vysoké školy Přírodovědecká fakulta Název studijního programu Matematika (bakalářský) Název studijního oboru Obecná matematika Údaje o garantovi studijního oboru prof. RNDr. Ondřej Došlý, DrSc. Zaměření na přípravu k výkonu regulovaného povolání Charakteristika studijního oboru (studijního programu) Studijní obor obecná matematika poskytuje nejen znalosti základních matematických pojmů a metod, ale rozvíjí především logické a abstraktní myšlení a tím připravuje studenty pro další studium v některém z navazujících magisterských oborů. Začátek studia je směřován na zvládnutí základních disciplín potřebných pro další studium (matematická analýza, algebra, pravděpodobnost a statistika). Dále jsou součástí oboru povinně volitelné předměty prohlubující teoretický matematický základ. Výběr těchto předmětů odráží zamýšlené zaměření studenta ve zvoleném navazujícím magisterském studiu, které odpovídá tématu bakalářské práce. Profil absolventa studijního oboru (studijního programu) & cíle studia Absolvent oboru bude schopen reprodukovat hlavní výsledky základních matematických disciplín, identifikovat vzájemné interakce jednotlivých matematických oborů, aplikovat obecné matematické výsledky v konkrétních praktických problémech, interpretovat znalosti ze specializované odborné literatury nabyté samostudiem, vytvořit souvislý odborný text, formulovat ideje formálním matematickým jazykem. Cílem studia je poskytnout studentům ucelené vzdělání v základních matematických disciplínách. Absolvent oboru má rozvinuté abstraktní myšlení a schopnost tvůrčího přístupu k formulaci a řešení problémů. Je dobře připraven k navazujícímu magisterskému studiu matematiky. Po doplnění nezbytných konkrétních znalostí však může pokračovat i v magisterském studiu nematematických oborů nebo se může dobře uplatnit přímo v praxi, v profesích souvisejících s informatikou, finanční sférou či ekonomikou. Charakteristika změn od předchozí akreditace (v případě prodloužení platnosti akreditace) Ve srovnání s akreditací z roku 2002 (viz. OM.htm) dochází k následujícím podstatnějším změnám. Místo písemné části státní závěrečné zkoušky je zavedena zkouška ústní. Došlo k přesunům v rámci povinných a povinně volitelných předmětů, které se neprojeví v profilu absolventa oboru. Prostorové zabezpečení studijního programu Budova ve vlastnictví VŠ ANO Budova v nájmu doba platnosti nájmu Informační zabezpečení studijního programu 5
7 Informační zabezpečení bakalářského programu Matematika Informační zdroje jsou zabezpečeny dvěma samostatnými knihovnami: 1) Ústřední knihovna Přírodovědecké fakulty umístěna v areálu na Kotlářské ulici. 2) Knihovna univerzitního kampusu, nově vzniklá v roce 2007 transformací Ústřední knihovny Lékařské fakulty MU, Knihovny Fakulty sportovních studií a integrací části Ústřední knihovny PřF MU. Knihovna je umístěna v areálu univerzitního kampusu v Bohunicích a slouží zejména studijním programům chemie a biochemie. Ústřední knihovna PřF MU Knihovna univerzitního kampusu MU Celkový počet svazků Roční přírůstek knižních jednotek Počet odebíraných titulů časopisů Jsou součástí fondu kompaktní disky? ano ano Jsou součástí fondů videokazety? ano ano Otevírací hodiny knihovny/studovny 42 hod týdně 47 hod týdně v týdnu Provozuje knihovna počítačové inform. ano ano služby? Zajišťuje knihovna rešerše z databází? ne, uživatelé ano samoobslužně Je zapojena na CESNET/INTERNET? ano ano Počet stanic na CESNETu/INTERNETu Počet počítačů v knihovně/studovně Z toho počítačů zapojených v síti Citační databáze: Zentralblatt Math Database MathSciNet Web of Science, Web of Knowledge Journal Citation Report Scopus Seznam recenzovaných neimpaktovaných periodik vydávaných v ČR Elektronické časopisy: Archivum Mathematicum Časopisy z databáze SUWECO CZ Electronic Journals Library JSTOR ScienceDirect Zpravodaj Ústavu výpočetní techniky MU Knihovní služby: Knihovna matematických dokumentů 6
8 C Pravidla pro vytváření studijních plánů SP (oboru) a návrh témat prací Vysoká škola Masarykova univerzita Součást vysoké školy Přírodovědecká fakulta Název studijního programu Matematika (bakalářský) Název studijního oboru Obecná matematika Název předmětu rozsah způsob zák. druh před. přednášející dop. roč. Seznam předmětů je uveden v doporučeném studijním plánu, viz část C1. Obsah a rozsah SZZk Státní závěrečná zkouška sestává z obhajoby bakalářské práce a z ústní zkoušky. Charakteristika závěrečné práce a její obhajoba Zpracováním bakalářské práce student prokazuje orientaci v problematice dané tématem práce a schopnost odborné práce pod vedením vedoucího. U obhajoby bakalářské práce se hodnotí porozumění tématu a úroveň prezentace. Charakteristika ústní zkoušky Účelem zkoušky je prověřit, že absolvent je schopen vést debatu na jisté odborné úrovni. Cílem ústní zkoušky není opakovat zkoušky z jednotlivých předmětů a zkoušet detailní znalost teorie a důkazů. Smyslem je prokázat všeobecný přehled o základních pojmech a výsledcích z jednotlivých oborů a širších souvislostech mezi nimi. Vymezení rozsahu otázek k ústní zkoušce 1. Vektorové prostory a lineární zobrazení Vektorový prostor, vektorový podprostor, lineární obal množiny vektorů, lineární nezávislost, Steinitzova věta, báze, dimenze, souřadnice, matice přechodu od jedné báze k druhé. Průnik a součet podprostorů. Lineární zobrazení (homomorfismus), jeho jádro a obraz. Lineární izomorfismus. Matice lineárního zobrazení v daných bazích. 2. Soustavy lineárních rovnic, matice a determinanty Gaussova eliminace, operace s maticemi, hodnost matice, věty o struktuře řešení soustav lineárních rovnic, Frobeniova věta. Permutace, definice a vlastnosti determinantu. Laplaceův rozvoj. Výpočet inverzní matice, Cramerovo pravidlo. Numerické metody řešení soustav lineárních rovnic. Symetrické, ortogonální a unitární matice. 3. Prostory se skalárním součinem a lineární operátory na nich Skalární součin, ortonormální báze, ortogonální doplněk, kolmá projekce. Ortogonální a unitární operátory, jejich vlastní čísla a vektory. Samoadjungované operátory a jejich vlastní čísla a vektory. Souvislost se symetrickými bilineárními formami. Příklady těchto operátorů. 4. Vlastní čísla a vektory, Jordanův kanonický tvar Definice, charakteristický polynom, algebraická a geometrická násobnost vlastního čísla, vlastní 7
9 podprostor. Podobnost matic. Jordanova buňka. Věta o Jordanově charakteristickém tvaru. 5. Bilineární a kvadratické formy Definice, matice bilineární formy. Diagonalizace symetrické bilineární formy. Silvestrova věta o setrvačnosti pro reálné kvadratické formy. Signatura. Pozitivně definitní, negativně definitní a indefinitní kvadratické formy. Souvislost s hledáním extrémů funkcí více proměnných. 6. Afinní a euklidovská geometrie Definice afinního prostoru a podprostoru, parametrický popis afinních podprostorů, afinní podprostory a soustavy rovnic. Vzájemná poloha afinních podprostorů. Afinní zobrazení. Euklidovský afinní prostor, vzdálenost a odchylka afinních podprostorů v euklidovkém prostoru. 7. Kuželosečky a kvadriky Projektivní prostor, komplexifikace, kvadriky v projektivním a afinním prostoru. Pojem polární sdruženosti. Projektivní klasifikace. Tečny, asymptoty, střed. Afinní klasifikace. Osové roviny, osové přímky, vrcholy. Metrická klasifikace. Souvislost jednotlivých klasifikací s projektivní, afinní a ortogonální afinní grupou. 8. Základy obecné algebry Grupa, podgrupa, homomorfismus, izomorfismus a součin grup. Grupa permutací, grupa zbytkových tříd a další příklady grup. Lagrangeova věta a její důsledky. Klasifikace konečných komutativních grup. Okruh, těleso, homomorfismus okruhů. Svaz jako uspořádaná množina. Úplný svaz a důležité příklady úplných svazů. 9. Polynomy Polynomy, ireducibilní polynomy a kořeny polynomů. Numerické metody hledání kořenů polynomů. Násobné kořeny polynomů nad C a racionální kořeny polynomů nad Q. Základní věta algebry a charakterizace ireducibilních polynomů nad R. Konstrukce konečných těles. 10. Metrické prostory Metrika, příklady různých metrik. Otevřené, uzavřené množiny, uzávěr množiny, vnitřek množiny. Limita posloupnosti bodů, limita funkce mezi metrickými prostory. Spojitost funkce v bodě. Spojitost funkce na celém prostoru. Kompaktní množiny v metrických prostorech. Úplný metrický prostor. Banachova věta o kontrakci. 11. Derivace, parciální derivace a diferenciál Definice, geometrický význam, význam pro vyšetřování průběhu funkce a hledání extrémů. Věta o střední hodnotě, l'hospitalovo pravidlo pro výpočet limit. Aproximace funkce Taylorovým polynomem, numerické metody řešení nelineárních rovnic. Věta o implicitní funkci. 8
10 12. Extrémy reálných funkcí jedné a více proměnných Postačující a nutné podmínky pro existenci extrémů funkcí jedné i více proměnných na otevřené množině. Vázané extrémy. 13. Neurčitý integrál a Riemannův integrál v R Primitivní funkce, integrace metodou per partes, integrace podle věty o substituci. Definice Riemannova integrálu pomocí dělení intervalů, výpočet Riemannova integrálu pomocí primitivní funkce. 14. Obyčejné diferenciální rovnice Existence a jednoznačnost řešení. Metody řešení rovnic 1. řádu: separované proměnné, homogenní, lineární. Lineární rovnice 2. řádu s konstantními koeficienty, variace konstant, speciální pravé strany. 15. Číselné řady a řady funkcí Kriteria konvergence řad s nezápornými členy, absolutně a neabsolutně konvergentní číselné řady, komutativní zákon pro číselné řady. Mocninné řady, poloměr konvergence, Taylorův polynom a Taylorova řada, derivování a integrování mocninných řad, Fourierovy řady. 16. Integrální počet v R n Fubiniho věta, věta o transformaci integrálu, geometrické aplikace integrálu, křivkový a plošný integrál I. a II. druhu, Greenova věta, Gauss-Ostrogradského věta, Lebesgueův integrál. 17. Základy analýzy v komplexním oboru Holomorfní funkce, Cauchyova věta a Cauchyův vzorec. Elementární funkce v komplexním oboru. Izolované singularity, výpočty pomocí reziduí. 18. Základy pravděpodobnosti Kolmogorova axiomatická definice pravděpodobnosti; podmíněná pravděpodobnost: vzorec pro úplnou pravděpodobnost, Bayesův vzorec; nezávislost. 19. Náhodné veličiny a vektory Definice náhodných veličin a vektorů, diskrétní a absolutně spojité náhodné veličiny, distribuční funkce, pravděpodobnostní funkce, hustota, příklady diskrétních a spojitých rozdělení; číselné charakteristiky náhodných veličin a vektorů: střední hodnota, rozptyl, kvantily, kovariance, korelace; asymptotické vlastnosti náhodných veličin: zákon velkých čísel, centrální limitní věta. 20. Základy statistiky Náhodný výběr a statistiky jako odhady parametrických funkcí, jejich vlastnosti: nestrannost a konzistence; konstrukce bodových odhadů: metoda maximální věrohodnosti; intervalové 9
11 odhady; testy o parametrech normálního rozdělení. Požadavky na přijímací řízení Test studijních předpokladů (TSP), který je společný pro přijímací zkoušky na všechny fakulty MU s výjimkou fakulty lékařské a fakulty sociálních studií. Ukázky úloh TSP jsou na internetové adrese: TSP zkoumá schopnosti uchazeče úspěšně studovat na Masarykově univerzitě. Skládá se ze 70 otázek členěných do 7 subtestů po 10 otázkách. Testuje se: numerické myšlení, kulturní přehled, symbolické myšlení, analytické myšlení, úsudky, kritické myšlení, prostorová představivost, verbální myšlení. Další povinnosti / odborná praxe Návrh témat prací a obhájené práce Standardní doba zadání bakalářské práce je po 4. semestru studia. Základní podmínkou je předchozí získání nejméně 90 kreditů v předepsané skladbě. O zadání bakalářské práce na zvolené téma žádá student učitele, který téma navrhl. Zadáním bakalářské práce se učitel, který téma vypsal, stává pro studenta, který si ho vybral, vedoucím bakalářské práce. Ústav matematiky a statistiky písemné zadání bakalářských prací registruje a archivuje. Student může kterémukoliv učiteli Ústavu matematiky a statistiky navrhnout téma své bakalářské práce nebo se na tomto tématu dohodnout. V tomto případě navrhuje učitel téma bakalářské práce pro konkrétního studenta. Příklady obhájených závěrečných prací: Polopřímé součiny grup (viz Řídké matice a jejich použití v numerické matematice (viz Reálné, komplexní a kvaternionické vektorové bandly (viz Lineární diferenciální rovnice 2. řádu (viz Homogenní množiny (viz Další obhájená témata lze nalézt v Informačním systému Masarykovy univerzity - viz (položky Fakulta studia="přírodovědecká fakulta", Pracoviště=" ÚMS Ústavy PřF"). Návaznost na další stud. program Předpokládá se, že většina absolventů bude pokračovat v navazujícím magisterském studiu. K doporučeným oborům patří Matematická analýza, Geometrie, Algebra a diskrétní matematika, Matematika s informatikou, Matematické modelování a numerické výpočty. 10
12 C1 -Doporučený studijní plán Vytvoření studijního plánu podle pravidel studijního programu je zákonným právem studenta. Při sestavení studijního plánu musí student dodržet ustanovení Studijního a zkušebního řádu fakulty a Pravidla a podmínky pro vytváření studijního plánu v daném studijním programu. Jako východisko k tvorbě studijního plánu může student využít Doporučeného studijního plánu. Doporučený studijní plán rovnoměrně rozkládá studium do standardní doby tří let a může se stát závazným jedině volbou studenta. Zaručuje studentům, kteří podle něho studují splnění povinností nutných k ukončení vysokoškolského studia během standardní doby. Fakultní rozvrh (časová a prostorová alokace výuky předmětů pro daný semestr) je zpracován v návaznosti na doporučené studijní plány. Během prvních dvou let studia se student seznámí se základními matematickými obory a jeho studijní plán sestává téměř výhradně z povinných předmětů. Naopak ve 3. ročníku už je povinných předmětů minimálně a očekává se, že při výběru povinně volitelných předmětů do svého studijního plánu student zohlední, který obor by chtěl studovat v případném navazujícím magisterském studiu. Během svého studia musí student, z celkového počtu 180 kreditů, získat 120 kreditů z povinných předmětů (10 kreditů za bakalářskou práci, 2 kredity za jazykovou zkoušku, 2 kredity za sportovní aktivity a zbývajících 106 kreditů za základní matematické předměty). Kromě toho musí získat 33 kreditů za volitelné předměty, z toho převážnou část (alespoň 24 kreditů) za předměty z bloku povinně volitelných předmětů. Pro výběr předmětů za zbývajících 27 kreditů nejsou na studenta kladena žádná omezení. Přiložený studijní plán je rozepsán do jednotlivých semestrů tak, aby respektoval doporučené pořadí, v němž je vhodné povinné a povinně volitelné předměty studovat. Následuje seznam všech předmětů ze skupiny doporučených volitelných předmětů, z nichž si může student vybírat kdykoli během studia. Plán je doplněn informací o organizaci jazykové přípravy a výuky sportovních aktivit. 11
13 1. rok studia, studijní plán je závazný kód název předmětu kredit rozsah ukončení vyučující Podzimní semestr Povinné předměty M1100 Matematická analýza I 6+3 4/2 zk Šimon Hilscher M1110 Lineární algebra a geometrie I 4+2 2/2 zk Paseka M1120 Diskrétní matematika 4+2 2/2 zk Rosický M1130 Seminář z matematiky I 2 0/2 z Čadek,Klíma Jarní semestr Povinné předměty M2100 Matematická analýza II 6+3 4/2 zk Došlý M2110 Lineární algebra a geometrie II 4+2 2/2 zk Čadek M2130 Seminář z matematiky II 2 0/2 z Kruml M2150 Algebra I 4+2 2/2 zk Kučera 2. rok studia kód název předmětu kredit rozsah ukončení vyučující Podzimní semestr Povinné předměty M3100 Matematická analýza III 6+3 4/2 zk Došlý M3121 Pravděpodobnost a statistika I 4 2/2 z Koláček M3130 Lineární algebra a geometrie III 4+2 2/2 zk Vokřínek M3150 Algebra II 4+2 2/2 zk Kučera Povinně volitelné předměty M1160 Úvod do programování I 4+1 2/2 k Pelikán Jarní semestr Povinné předměty M4122 Pravděpodobnost a statistika II 4+2 2/2 zk Koláček M4170 Míra a integrál 4+2 2/2 zk Adamec M4180 Numerické metody I 4+2 2/2 zk Horová M4190 Diferenciální geometrie křivek a ploch 4+2 2/2 zk Šilhan Povinně volitelné předměty M4110 Lineární programování 3+2 2/1 zk Kunc 12
14 3. rok studia kód název předmětu kredit rozsah ukončení vyučující Podzimní semestr Povinné předměty JA001 Odborná angličtina - zkouška 2 0/0 zk Ševečková M51XX Bakalářská práce 1 (MO, MA) 5 0/0 z vedoucí práce Povinně volitelné předměty FI:MA007 Matematická logika 3+2 2/1 zk Kučera M5130 Globální analýza 3+2 2/1 zk Slovák M5160 Obyčejné diferenciální rovnice I 4+2 2/2 zk Kalas M5170 Matematické programování 3+2 2/1 zk Došlý M5180 Numerické metody II 3+2 2/1 zk Horová Jarní semestr Povinné předměty M61XX Bakalářská práce 2 (MO, MA) 5 0/0 z vedoucí práce M6140 Topologie 3+2 2/1 zk Rosický M6170 Analýza v komplexním oboru 4+2 2/2 zk Kalas Povinně volitelné předměty M4155 Teorie množin 2+2 2/0 zk Rosický M6150 Funkcionální analýza I 3+2 2/1 zk Lomtatidze Doporučené volitelné předměty po celou dobu studia kód název předmětu kredit rozsah ukončení vyučující Podzimní semestr M1141 Základy využití počítačů 3 1/2 z Plch M4130 Výpočetní matematické systémy 3 2/1 z Koláček M5120 Lineární statistické modely I 3+2 2/1 zk Forbelská M5140 Teorie grafů 3+2 2/1 zk Kunc Jarní semestr FI:IB005 Formální jazyky a automaty I 6+2 4/2 zk Křetínský F2100 Klasická, relativistická, kvantová a statistická fyzika 2+1 2/0 k Humlíček M2120 Finanční matematika 3+2 2/1 zk Niederle M2142 Systémy počítačové algebry 2 1/1 z Plch M2160 Úvod do programování II 4+1 2/2 k Pelikán M6110 Pojistná matematika 3+2 2/1 zk Niederle M6120 Lineární statistické modely II 4+2 2/2 zk Forbelská Jazyková příprava kód název předmětu kredit rozsah ukončení vyučující Podzimní semestr JAM01 Angličtina pro matematiky I 2 /2 z Ševečková 13
15 JAM03 Angličtina pro matematiky III 2 /2 z Ševečková Jarní semestr JAM02 Angličtina pro matematiky II 2 /2 z Ševečková JAM04 Angličtina pro matematiky IV 2 /2 z Ševečková Pro úspěšné absolvování povinné zkoušky z odborné angličtiny (JA001) může studentům pomoci absolvování předmětů Angličtina pro matematiky, kterou vyučuje oddělení jazyků. Stejné oddělení vyučuje také předměty dalších světových jazyků, které si mohou studenti začlenit do svého studijního plánu. Sportovní aktivity kód název předmětu kredit rozsah ukončení vyučující Povinné předměty Sportovní aktivity 2 0/2 z FSpS Student musí v průběhu studia získat dva zápočty z předmětu Sportovní aktivity. Předmět zajišťuje pro celou univerzitu Fakulta sportovních studií. 14
16 E Personální zabezpečení studijního programu (studijního oboru) souhrnné údaje Vysoká škola Masarykova univerzita Součást vysoké školy Přírodovědecká fakulta Název studijního programu Matematika (bakalářský) Název studijního oboru Název pracoviště: celkem prof. celkem Ústav matematiky a statistiky společné pro všechny obory přepoč. doc. přepoč. odb. as. z toho s věd. lektoři asistenti vědečtí počet p. celkem počet d. celkem hod. pracov , , THP 15
17 F Související vědecká, výzkumná, vývojová, umělecká a další tvůrčí činnost Vysoká škola Masarykova univerzita Součást vysoké školy Přírodovědecká fakulta Název studijního programu Matematika (bakalářský) Název studijního oboru společné pro všechny obory Informace o tvůrčí činnosti vysoké školy související se studijním oborem (studijním program) Výzkum na Ústavu matematiky a statistiky (dále jen UMS) zahrnuje několik hlavních odvětví teoretické a aplikované matematiky, zejména algebru, geometrii, matematickou analýzu, historii matematiky a matematické vzdělávání, statistiku a matematické modelování. Náš ústav dále zajišťuje výuku teoretické matematiky, finanční matematiky a matematiky pro učitele středních škol. UMS také nabízí matematické předměty pro ostatní vědní obory Přírodovědecké fakulty jako jsou fyzika, chemie, biologie, geografie. Učitelé našeho ústavu také vedou výuku všech hlavních matematických předmětů na Fakultě informatiky a některých předmětů na Ekonomicko-správní fakultě. UMS má akreditaci doktorského studijního programu v následujících směrech algebra, teorie čísel a matematická logika, geometrie, topologie a globální analýza, matematická analýza, obecné otázky matematiky (historie matematiky a matematické vzdělávání), pravděpodobnost, statistika a matematické modelování. Ve spolupráci s Masarykovou univerzitou UMS vydává odborný časopis Archivum Mathematicum ( Na našem ústavu také sídlí redakce odborného časopisu Differential Geometry and its Applications ( který je publikován vydavatelstvím Elsevier. Oba časopisy jsou indexovány v mezinárodních databázích Mathematical Reviews, Zentralblatt für Mathematik a Scopus. UMS v současné době řeší 1 výzkumný záměr MSM Matematické struktury a jejich fyzikální aplikace a na dalším výzkumném záměru participuje jako spoluvykonavatel MSM Vysoce paralelní a distribuované výpočetní systémy. Dále se UMS podílí na výzkumných centrech Centrum Jaroslava Hájka pro teoretickou a aplikovanou statistiku LC06024 a Centrum Eduarda Čecha pro algebru a geometrii - LC505. Mimo výše uvedené se na UMS řeší 10 projektů GAČR, 7 projektů MŠMT (1 Kontakt, 1 FRVŠ, 5 OPVK) a 4 projekty podpory studentů ve 16
18 vědecké činnosti na MU. UMS je také zapojena do 1 projektu 7.RP EU a 2 projektů Jihomoravského kraje (OPVK, SoMoPro). Na výzkumu UMS se podílí akademičtí pracovníci včetně školitelů, studentů doktorského i magisterského studia. UMS úzce spolupracuje s odbornými pracovišti ostatních vysokých škol i ústavy akademie věd. Výzkum není strukturován podle pracovišť. Evidence aktuálních projektů a projektů z předchozích období je přístupná na adrese Přehled řešených grantů a projektů (závazné jen pro magisterské programy) - VZHLEDEM K VELKÉMU POČTU JSOU UVEDENY POUZE PŘÍKLADY Pracoviště Názvy grantů a projektů získaných pro vědeckou, výzkumnou, uměleckou Zdroj Období a další tvůrčí činnost v oboru Ústav matematiky a statistiky Matematické struktury a jejich fyzikální aplikace ( MSM ) MŠMT 1/ /2011 Ústav matematiky a statistiky Kvalitativní vlastnosti řešení diferenciálních rovnic a jejich aplikace GAČR 1/ /2015 Ústav matematiky a statistiky Matematické struktury (MUNI/A/0964/2009) MU 1/ /2012 Ústav matematiky a statistiky Globální analýza a geometrie fibrovaných prostorů (GA201/09/0981) GAČR 1/ /2013 Ústav matematiky a statistiky Centrum Jaroslava Hájka pro teoretickou a aplikovanou statistiku (LC06024) MŠMT 1/ /2011 Ústav matematiky a statistiky Matematická statistika a modelování (MUNI/A/1001/2009) MU 1/ /2012 Ústav matematiky a statistiky Diferenční rovnice a dynamické rovnice na time scales III (GAP201/10/1032) GAČR 1/ /2014 Ústav matematiky a statistiky Algebraické metody v geometrii s potenciálem k aplikacím MŠMT 5/2011-4/2014 (CZ.1.07/2.3.00/ ) Ústav matematiky a statistiky Algebraické metody v kvantové logice (CZ.1.07/2.3.00/ ) MŠMT 7/2011-6/2014 Ústav matematiky a statistiky Algebraické metody v teorii automatů a formálních jazyků II (GA201/09/1313) GAČR 1/ /2011 Ústav matematiky a statistiky Grupy tříd ideálů algebraických číselných těles (GAP201/11/0276) GAČR 1/ /
19 I Uskutečňování akreditovaného stud. programu mimo sídlo vysoké školy Vysoká škola Masarykova univerzita Součást vysoké školy Přírodovědecká fakulta Název studijního programu Matematika Název instituce nebo pobočky VŠ, kde probíhá výuka SP mimo sídlo VŠ nebo fakulty Výuka veškerých programů je uskutečňována výhradně v sídle fakulty. 18
20 D-Charakteristika studijních předmětů Seznam předmětů oboru Obecná matematika FI:IB005 Formální jazyky a automaty I FI:MA007 Matematická logika F2100 Klasická, relativistická, kvantová a statistická fyzika JAM01 Angličtina pro matematiky I JAM02 Angličtina pro matematiky II JAM03 Angličtina pro matematiky III JAM04 Angličtina pro matematiky IV JA001 Odborná angličtina - zkouška M1100 Matematická analýza I M1110 Lineární algebra a geometrie I M1120 Diskrétní matematika M1130 Seminář z matematiky I M1141 Základy využití počítačů M1160 Úvod do programování I M2100 Matematická analýza II M2110 Lineární algebra a geometrie II M2120 Finanční matematika M2130 Seminář z matematiky II M2142 Systémy počítačové algebry M2150 Algebra I M2160 Úvod do programování II M3100 Matematická analýza III M3121 Pravděpodobnost a statistika I M3130 Lineární algebra a geometrie III M3150 Algebra II M4110 Lineární programování M4122 Pravděpodobnost a statistika II M4130 Výpočetní matematické systémy M4155 Teorie množin M4170 Míra a integrál M4180 Numerické metody I M4190 Diferenciální geometrie křivek a ploch M51XX Bakalářská práce 1 (MO, MA) M5120 Lineární statistické modely I M5130 Globální analýza M5140 Teorie grafů M5160 Obyčejné diferenciální rovnice I M5170 Matematické programování M5180 Numerické metody II M61XX Bakalářská práce 2 (MO, MA) M6110 Pojistná matematika M6120 Lineární statistické modely II M6140 Topologie M6150 Funkcionální analýza I M6170 Analýza v komplexním oboru 19
21 Anotace předmětů oboru Obecná matematika FI:IB005 Formální jazyky a automaty I Vyučující: prof. RNDr. Mojmír Křetínský CSc. Rozsah: 4/2. 6 kr. (plus ukončení). Doporučované ukončení: zk. Jiná možná ukončení: z. Cíle předmětu: Kurs by měl u studenta ozvinout schopnost abstrakce, seznámit ho s možnostmi konečné specifikace nekonečných objektů, zde konkrétně jazyků, a naučit se aktivně pracovat se základními výpočetními modelyů vytvořit předpoklady pro schopnosti vlastní formulace abstrakcí a jejich porozumění. Pojem jazyka a problém specifikace (nekonečných) jazyků; základní operace nad jazyky. Přepisovací systémy a gramatiky. Chomského hierarchie. Konečné automaty a regulární gramatiky; Pumping lemma, Myhillova--Nerodova věta, minimalizace. Nedeterministické konečné automaty, vztah k regulárním gramatikám. Vlastnosti regulárních jazyků; uzávěrové vlastnosti, regulární výrazy, Kleeneho věta, konečnost. Nástin aplikací (grep,..., lex). Bezkontextové gramatiky a jazyky; transformace bezkontextových gramatik, vybrané normální formy, pumping lemma, uzávěrové vlastnosti; konečnost a regularita. Zásobníkové automaty a jejich vztah k bezkontextovým gramatikám; nedeterministická syntaktická analýza shora dolů a zdola nahoru. Turingovy stroje. Rekursivní a rekursivně vyčíslitelné jazyky a funkce, uzávěrové vlastnosti. Lineárně ohraničené automaty. Deterministické zásobníkové automaty a deterministické bezkontextové jazyky; vlastnosti. Nástin aplikací (deterministické analýza shora -- princip; zdola -- nástroj yacc/bison). Výukové metody: přednášky, cvičení, samostudium. Volitelné domácí úlohy. Metody hodnocení: 2 písemné zkoušky během semestru a závěrečná písemná zkouška. Výsledky vnitrosemestrálních písemek se započítávají do výsledného hodnocení s vahou 15% za každou písemku. Všechny písemky bez pomocných materiálů. Černá, Ivana - Křetínský, Mojmír - Kučera, Antonín. Formální jazyky a automaty I. Elportál, Brno : Masarykova univerzita. ISSN X URL info Gruska, Jozef. Foundations of computing. London : International Thompson Computer Press, xv, 716 s. ISBN info Hopcroft, John E. - Ullman, Jeffrey D. Introduction to automata theory, languages, and computation. Reading : Addison-Wesley Publishing Company, s., ob. ISBN info Chytil, Michal. Automaty a gramatiky. Vyd. 1. Praha : SNTL - Nakladatelství technické literatury, s. info Kozen, Dexter C. Automata and computability. New York : Springer, xiii, 400. ISBN info Sipser, Michael. Introduction to the theory of computation. 2nd ed. Boston : Thomson Course Technology, xix, 431 p. ISBN info FI:MA007 Matematická logika Vyučující: doc. RNDr. Antonín Kučera Ph.D. Rozsah: 2/1. 3 kr. (plus ukončení). Doporučované ukončení: zk. Jiná možná ukončení: k, z. Cíle předmětu: Předmět pokrývá základní výsledky o výrokové a predikátové logice, včetně Gödelových vět o úplnosti a neúplnosti. Na konci kurzu bude student schopen: porozumět rozdílu mezi metapojmy a formálnímy pojmy; porozumět rozdílu mezi pravdivostí a dokazatelností; rozumět základním principům axiomatické výstavby matematických teorií a chápat fundamentální omezení tohoto přístupu; aktivně používat vyjadřovací aparát logiky 1. řádu; chápat základní obraty v důkazech Gödelových vět o úplnosti a neúplnosti a rozumět významu těchto výsledků. Výroková logika: výrokové formule, pravdivost, dokazatelnost, věta o úplnosti. 20
22 Predikátová logika: predikátové formule. Sémantika predikátové logiky: realizace, pravdivost. Axiomy predikátové logiky: dokazatelnost, věta o korektnosti, věta o dedukci. Věta o úplnosti: teorie, modely, Gödelova věta o úplnosti. Věta o kompaktnosti, Löwenheimova-Skolemova věta. Turingův stroj. Gödelova věta o neúplnosti. Výukové metody: Přednášky a cvičení v menších skupinách. Metody hodnocení: Přednášky: 2 hodiny/týden. Cvičení: 1 hodina/týden. Předmět je ukončen písemnou zkouškou. Mendelson, Elliott. Vvedenije v matematičeskuju logiku [Mendelson, 1976] : Introduction to mathematical logic (Orig.). Moskva : Nauka [Moskva], s. info Štěpánek, Petr. Matematická logika. 1. vyd. Praha : Státní pedagogické nakladatelství, s. info Kolář, Josef - Štěpánková, Olga - Chytil, Michal. Logika, algebry a grafy. Vyd. 1. Praha : SNTL - Nakladatelství technické literatury, s. info F2100 Klasická, relativistická, kvantová a statistická fyzika Vyučující: prof. RNDr. Josef Humlíček CSc. Rozsah: 2/0. 2 kr. (plus ukončení). Ukončení: k. Cíle předmětu: Kurs je zaměřen na rozbor základních pojmů a souvislostí klasické a moderní fyziky. Bude doprovázen prezentaceni vybraných objevů a aplikací. Klasická fyzika... Rozměry a vzdálenosti ve vesmíru a v mikrosvětě. Čas. Klasické pohybové rovnice. Rotace, sensory zrychlení. Hybnost a energie. Galileův princip relativity. Lagrangeův a Hamiltonův formalismus. Gravitační a elektromagnetické pole v klasické fyzice. Relativistická fyzika... Rychlost šíření interakcí. Současnost, interval, paradox dvojčat. Lorentzova transformace. Hybnost a energie. Vazebná energie, rozpad a slučování atomových jader. Kvantová fyzika... Dualismus vlna-částice. Stav, princip superpozice, Schrodingerova kočka. Operátory. Princip neurčitosti. Schrodingerova rovnice. Kvantová jáma, harmonický oscilátor, pohyb v centrálním poli. Statistická fyzika... Soustavy s velkým počtem stupňů volnosti, fázový prostor. Matice hustoty. Kanonické rozdělení. Fermionový a bozonový plyn. Přesuny náboje v polovodičových nanostrukturách. Výukové metody: Přednášky, presentace Metody hodnocení: Během semestru jsou zadávána témata pro stručný rozbor. K závěrečnému kolokviu je třeba vybrat a zpracovat alespoň jedno téma. Halliday, David - Resnick, Robert - Walker, Jearl. Fyzika. 1. vyd. Brno, Praha : Vutium, Prometheus, ISBN info Feynman, Richard Phillips - Leighton, Robert B. - Sands, Matthew. Feynmanovy přednášky z fyziky s řešenými příklady. 1. vyd. Praha : Fragment, s. ISBN info Feynmanovy přednášky z fyziky s řešenými příklady. Edited by Richard P. Feynman - Robert B. Leighton - Matthew Sands. 1. vyd. Havlíčkův Brod : Fragment, s. ISBN info Feynman, Richard Phillips - Leighton, Robert B. - Sands, Matthew. Feynmanovy přednášky z fyziky s řešenými příklady. 1. vyd. Havlíčkův Brod : Fragment, s. ISBN info Feynman, Richard Phillips. O povaze fyzikálních zákonů :sedmkrát o rytmech přírodních jevů. Vyd. 1. Praha : Aurora, s. ISBN info JAM01 Angličtina pro matematiky I Vyučující: Mgr. Hana Ševečková M.A. Rozsah: 0/2. 2 kr. Ukončení: z. Cíle předmětu: Po absolvování tohoto kurzu bude student schopen: porozumět odbornému textu/mluvenému projevu identifikovat hlavní myšlenky formulovat hlavní myšlenky interpretovat informaci z textu/mluveného projevu diskutovat o obecných a matematických tématech prezentovat jednoduchá matematická témata 21
23 s využitím základních prezentačních technik shrnout jednoduchý matematický text klasifikovat porovnávat určit příčiny a důsledky popsat proces aplikovat získané jazykové dovednosti na nová odborná témata Sylabus: Studium na univerzitě Studium na univerzitě ve Velké Británii Studium na univerzitě v USA a Kanadě Porovnání systémů ve Velké Británii a USA Akademické hodnosti a tituly Základní matematické výrazy Základní aritmetika Poslech přednášek MIT Výukové metody: Poslechová cvičení (videoklipy)s otázkami, nácvik porozumění čtenému populárněvědeckému a odbornému textu, překlad do češtiny, vypracování osnovy textu, psaní oficiální korespondence, procvičení a rozšíření obecné gramatiky a jevů odborného stylu, analýza složených substantiv, odvozování slov, procvičení a rozšiřování obecné, obecně-vědní a odborné slovní zásoby, latinske pojmy, obecná a akademická konverzace. Metody hodnocení: Výuka zakončena zápočtem - podmínkou je úspěšné vykonání zápočtového testu a 85% přítomnost ve výuce. Přehled doporučené literatury - viz informace učitele. The recommended literature - see the information of the teacher JAM02 Angličtina pro matematiky II Vyučující: Mgr. Hana Ševečková M.A. Rozsah: 0/2. 2 kr. Ukončení: z. Cíle předmětu: Po absolvování tohoto kurzu bude student schopen: porozumět odbornému textu/mluvenému projevu identifikovat hlavní myšlenky formulovat hlavní myšlenky interpretovat informaci z textu/mluveného projevu diskutovat o obecných a matematických tématech prezentovat jednoduchá matematická témata s využitím základních prezentačních technik shrnout jednoduchý matematický text klasifikovat porovnávat určit příčiny a důsledky popsat proces aplikovat získané jazykové dovednosti na nová odborná témata Sylabus: matematické texty + slovní zásoba, dostupné videopřednášky, zejména MIT, VOA Výukové metody: Poslechová cvičení (videoklipy)s otázkami, nácvik porozumění čtenému populárněvědeckému a odbornému textu, překlad do češtiny, vypracování osnovy textu, psaní oficiální korespondence, procvičení a rozšíření obecné gramatiky a jevů odborného stylu, analýza složených substantiv, odvozování slov, procvičení a rozšiřování obecné, obecně-vědní a odborné slovní zásoby, latinske pojmy, obecná a akademická konverzace. Metody hodnocení: Výuka zakončena zápočtem - podmínkou je úspěšné vykonání zápočtového testu a 85% přítomnost ve výuce. The recommended literature - see the information of the teacher Přehled doporučené literatury - viz informace učitele. JAM03 Angličtina pro matematiky III Vyučující: Mgr. Hana Ševečková M.A. Rozsah: 0/2. 2 kr. Ukončení: z. Cíle předmětu: Po absolvování tohoto kurzu bude student schopen: porozumět složitějšímu odbornému textu/mluvenému projevu (odborné přednášce) identifikovat hlavní myšlenky formulovat hlavní myšlenky interpretovat informaci z textu/mluveného projevu diskutovat o matematických tématech prezentovat matematická témata s využitím základních prezentačních technik shrnout složitější matematický text porovnávat argumentovat na odborné téma (obhájit svůj názor, oponovat, podpořit názor kolegy) sestavit vlastní strukturovaný životopis, vytvořit motivační dopis na základě konkrétního inzerátu z oboru, definovat a obhájit své kvality a dovednosti ve zkušebním pohovoru před kolektivem 22
24 Syllabus předmětu: Syllabus and important data for JAM03 Eva Čoupková, Course materials and homework: Topics ESP: 1) Fields of mathematics, Numbers, Notation and Rigor,Listening:Matrices. 2) Real numbers,listening: Linear Algebra. 3) Structure, sets, Listening: Differential Equations 4) Space, Four color theorem, Listening: Polynominals 5) Trigonometry Listening: Multivariable Calculus 6) Trigonometric functions, Listening: Green Theorem 7) Topology, Homeomorphism, Listening: Algorithms 8) Differential Equation, Listening: Divide-and-Conquer 9) Abstract Algebra Listening: African fractals 10) Order Theory Listening: Symmetry 11) The Travelling Salesman Problem I. Listening: Shortest paths I. 12) The Travelling Salesman Problem II. Listening: Shortest paths II. 13) Credit test Topics EAP: CV Job Application Job Interview Summary and conclusion Quoting, sources Presentations??? Výukové metody: Poslechová cvičení (videoklipy) s otázkami, nácvik porozumění čtenému populárněvědeckému a odbornému textu, překlad do češtiny, vypracování osnovy textu, psaní oficiální korespondence, procvičení a rozšíření obecné gramatiky a jevů odborného stylu, analýza složených substantiv, odvozování slov, procvičení a rozšiřování obecné, obecně-vědní a odborné slovní zásoby, latinske pojmy, obecná a akademická konverzace. Metody hodnocení: Výuka v každém semestru zakončena zápočtem - podmínkou je úspěšné vykonání zápočtového testu a 85% přítomnost ve výuce. Přehled doporučené literatury - viz informace učitele. The recommended literature - see the information of the teacher JAM04 Angličtina pro matematiky IV Vyučující: Mgr. Hana Ševečková M.A. Rozsah: 0/2. 2 kr. Ukončení: z. Cíle předmětu: Po absolvování tohoto kurzu bude student schopen: porozumět složitějšímu odbornému textu/mluvenému projevu (odborné přednášce) identifikovat hlavní myšlenky formulovat hlavní myšlenky interpretovat informaci z textu/mluveného projevu diskutovat o biologických tématech prezentovat biologická témata s využitím základních prezentačních technik shrnout složitější biologický text porovnávat argumentovat na odborné téma (obhájit svůj názor, oponovat, podpořit názor kolegy) prezentovat (svůj) výzkum s využitím pokročilých prezentačních technik a obhátjit svůj pohled v diskusi komunikovat na běžná i odborná témata s využitím vhodných jazykových prostředků Syllabus předmětu: 1. Odborné texty z matematiky a dalších příbuzných oborů podle zájmu a významnosti (vyžadovaná slovní zásoba) 2. Obecné matematické texty (vyžadovaná slovní zásoba) 3. Učební materiály z volně dostupných kurzů a videoklipy matematických přednášek převážně z MIT 4. Hlas Ameriky audiozáznamy zpravodajských pořadů, zpomalené pro ESL studenty Výukové metody: Poslechová cvičení (videoklipy) s otázkami, nácvik porozumění čtenému populárněvědeckému a odbornému textu, překlad do češtiny, vypracování osnovy textu, psaní oficiální korespondence, procvičení a rozšíření obecné gramatiky a jevů odborného stylu, analýza složených substantiv, odvozování slov, procvičení a rozšiřování obecné, obecně-vědní a odborné slovní zásoby, latinske pojmy, obecná a akademická konverzace. Metody hodnocení: Výuka v každém semestru zakončena zápočtem - podmínkou je úspěšné vykonání zápočtového testu a 85% přítomnost ve výuce. The recommended literature - see the information of the teacher Přehled doporučené literatury - viz informace učitele. JA001 Odborná angličtina - zkouška Vyučující: Mgr. Hana Ševečková M.A. Rozsah: 0/0. 2 kr. Ukončení: zk. Cíle předmětu: Zkouška prověří, že student je schopen zvládat následující dovednosti odpovídající úrovni B1 ERR - odborný jazyk porozumět odbornému textu/mluvenému projevu identifikovat hlavní myšlenky 23
25 formulovat hlavní myšlenky interpretovat informaci z textu/mluveného projevu diskutovat o obecných a odborných tématech hovořit o svém oboru - disponovat základní slovní zásobou svého oboru argumentovat shrnout jednoduchý odborný text klasifikovat, porovnávat, určit příčiny a důsledky, popsat proces, definovat 1.Písemná část: Akademická část (akademická gramatika, přiřazování, logická návaznost, tvoření slov, definice...); Odborný text - porozumění textu: hlavní myšlenka, logická návaznost, správnost tvrzení, synonyma... ); 2.Ústní část: Zkouška je zaměřena na prověření komunikačních dovedností v daném oboru. Studenti diskutují o daných oborových tématech viz ( Výukové metody: Zkouška Metody hodnocení: Písemný test, ústní zkouška Academic vocabulary in use. Edited by Michael McCarthy - Felicity O'Dell. Cambridge : Cambridge University Press, s. ISBN info Science.Keith Kelly.Macmillan 2008 Key words in science & technology :helping learners with real English. Edited by Bill Mascull. 1st ed. London : Harper Collins Publishers, xii, 210 s. ISBN info Academic writing course :study skills in English. Edited by R.R Jordan. 1st ed. Essex : Longman, s. ISBN info Donovan, Peter. Basic English for Science. 10. vyd. Oxford : University Press, s. ISBN info Nucleus ; English for science and technology. Edited by Martin Bates - Tony Dudley-Evans. info English for science. Edited by Fran Zimmerman. New Jersey : Regents/Prentice Hall, 1989 Physics:Reader.Ivana Tulajová, Masarykova univerzita Přírodovědecká fakulta 2000 Strahler, Alan H. - Strahler, Arthur Newell. Introducing physical geography. 4th ed. Hoboken, N.J. : J. Wiley, xxv, 728 s. ISBN X. info Plummer, Charles C. - McGeary, David. Physical geology :student study art notebook. 7th ed. Dubuque : Wm. C. Brown Communications, s. ISBN info Dean, Michael - Sikorzyńska, Anna. Opportunities., Intermediate., Language powerbook. Harlow : Pearson Education, s. : i. ISBN info Cunningham, Sarah - Bowler, Bill. Headway : intermediate : pronunciation. 1. vyd. Oxford : Oxford University Press, xi, 112 s. ISBN info Essential grammar in use. Edited by Raymond Murphy. 3rd ed. Cambridge : Cambridge University Press, xi, s ISBN info Murphy, Raymond. English grammar in use : a self-study reference and practice book for intermediate students. 2nd ed. Cambridge : Cambridge University Press, x, 350 s. ISBN info +Any materials aimed at preparation for B1 level examinations (e.g.pet). M1100 Matematická analýza I Vyučující: doc. RNDr. Roman Šimon Hilscher DSc. Rozsah: 4/2/0. 6 kr. (příf plus uk k 1 zk 2 plus 1 > 4). Ukončení: zk. Cíle předmětu: Jedná se o vstupní kurs matematické analýzy. Jeho cílem je seznámit posluchače se základy diferenciálního a integrálního počtu funkcí jedné proměnné. Výklad je koncipován tak, aby se srovnaly nestejné vstupní znalosti, se kterými přicházejí studenti ze středních škol. Studenti se budou orientovat v základních teoretických a praktických metodách diferenciálního a integrálního počtu funkcí jedné proměnné a budou schopni aplikovat tyto metody na praktické úlohy. Úvod: Reálná čísla a jejich základní vlastnosti, obecné vlastnosti reálných funkcí, elementární funkce. Funkce a posloupnosti: Posloupnosti reálných čísel. Limita a spojitost funkcí, vlastnosti spojitých funkcí. 24
26 Derivace funkce: základní pravidla, vlastnosti derivace, geometrický význam derivace, Taylorův vzorec, vyšetřování průběhu funkcí, křivky v rovině. Neurčitý integrál: primitivní funkce a její vlastnosti, základní integrační metody, speciální integrační postupy (integrály s goniometrickými, iracionálními a dalšími typy elementárních funkcí). Riemannův integrál a jeho vlastnosti: konstrukce Riemannova integrálu a jeho výpočet (Newton- Leibnizova formule), aplikace integrálu (plocha rovinných obrazců, délka křivky, objem a povrch pláště rotačního tělesa). Výukové metody: Přednášky o teorii s ilustrujícími řešenými příklady. Cvičení zaměřené na zvládnutí teoretických a praktických početních úloh. Metody hodnocení: Dvouhodinová písemka a ústní část zkoušky. Výsledky ze cvičení se částečně přenášejí do zkoušky. Došlá, Zuzana - Kuben, Jaromír. Diferenciální počet funkcí jedné proměnné. Brno : Masarykova Univerzita v Brně, s. skriptum. ISBN info Novák, Vítězslav. Integrální počet funkcí jedné proměnné. 1. vyd. Brno : Rektorát UJEP, s. info Demidovič, Boris Pavlovič. Sbírka úloh a cvičení z matematické analýzy. Translated by Miroslav Rozložník - Miroslav Tůma. 1. vyd. Havlíčkův Brod : Fragment, s. ISBN info Babula, Kamil. Protipříklady v matematické analýze. Brno : Masarykova univerzita, s. Bakalářská práce. info Novák, Vítězslav. Diferenciální počet v R. Brno : Masarykova univerzita Brno, s. ISBN info Jarník, Vojtěch. Diferenciální počet (I). 6. vyd. Praha : Academia, s. info Jarník, Vojtěch. Integrální počet (I). 5. vyd. Praha : Academia, s. info M1110 Lineární algebra a geometrie I Vyučující: doc. RNDr. Jan Paseka CSc. Rozsah: 2/2/0. 4 kr. (příf plus uk k 1 zk 2 plus 1 > 4). Ukončení: zk. Cíle předmětu: Lineární algebra patří k základům matematického vzdělání. Cílem kurzu je, aby studenti jednak porozuměli základním pojmům, které se týkají vektorových prostorů a lineárních zobrazení, a byli schopni je běžně používat, a dále aby se naučili početním dovednostem nutným k práci s maticemi a soustavami lineárních rovnic. Vektorové prostory. Operace s maticemi. Gaussova eliminace. Podprostory. Lineární nezávislost. Báze a dimenze. Souřadnice. Lineární zobrazení. Matice lineárního zobrazení. Afinní podprostory. Soustavy lineárních rovnic. Determinanty. Vektorové prostory se skalárním součinem. Výukové metody: Přednáška: teoretická výuka kombinovaná s praktickými příklady. Cvičení: teoretické cvičení zaměřené na procvičení základních pojmů a tvrzení, samostatné řešení úloh, včetně úloh komplexnějšího charakteru,domácí úlohy. Je nutná aktivní účast na cvičeních nebo získání 40 % bodů v rámci dvou zápočtových písemek. Metody hodnocení: Přednáška 2 hodiny týdně, cvičení 2 hodiny týdně. Zkouška písemná a ústní. Pro přístup ke zkoušce je nutné získat zápočet. Písemná zkouška bude mít část početní a teoretickou. U studentů, kteří uspějí 25
Požadavky k písemné přijímací zkoušce z matematiky do navazujícího magisterského studia pro neučitelské obory
Požadavky k písemné přijímací zkoušce z matematiky do navazujícího magisterského studia pro neučitelské obory Zkouška ověřuje znalost základních pojmů, porozumění teorii a schopnost aplikovat teorii při
Státní závěrečná zkouška z oboru Matematika a její použití v přírodních vědách
Státní závěrečná zkouška z oboru Matematika a její použití v přírodních vědách Ústní zkouška z oboru Náročnost zkoušky je podtržena její ústní formou a komisionálním charakterem. Předmětem bakalářské zkoušky
POŽADAVKY K SOUBORNÉ ZKOUŠCE Z MATEMATIKY
POŽADAVKY K SOUBORNÉ ZKOUŠCE Z MATEMATIKY Bakalářský studijní program B1101 (studijní obory - Aplikovaná matematika, Matematické metody v ekonomice, Aplikovaná matematika pro řešení krizových situací)
ŽÁDOST O AKREDITACI MASARYKOVA UNIVERZITA P Ř ÍRODOVĚ DECKÁ FAKULTA. Bakalářského studijního programu. Matematika. Obor
MASARYKOVA UNIVERZITA P Ř ÍRODOVĚ DECKÁ FAKULTA ŽÁDOST O AKREDITACI Bakalářského studijního programu Matematika Obor Aplikovaná matematika pro víceoborové studium Brno, ř íjen 2011 OBSAH OBSAH... 1 A Žádost
CZ 1.07/1.1.32/02.0006
PO ŠKOLE DO ŠKOLY CZ 1.07/1.1.32/02.0006 Číslo projektu: CZ.1.07/1.1.32/02.0006 Název projektu: Po škole do školy Příjemce grantu: Gymnázium, Kladno Název výstupu: Prohlubující semináře Matematika (MI
MASARYKOVA UNIVERZITA P Ř ÍRODOVĚ DECKÁ FAKULTA ŽÁDOST O AKREDITACI. Bakalářského studijního programu. Matematika
MASARYKOVA UNIVERZITA P Ř ÍRODOVĚ DECKÁ FAKULTA ŽÁDOST O AKREDITACI Bakalářského studijního programu Matematika Brno, ř íjen 2011 OBSAH OBSAH... 2 A Žádost o akreditaci / rozšíření nebo prodloužení doby
Studijní obor Učitelství matematiky pro střední školy (Navazující magisterský)
Přírodovědecká fakulta Masarykovy univerzity, Akreditace 2011 Studijní obor Učitelství matematiky pro střední školy (Navazující magisterský) Editovat Návrat na seznam studijních oborů Kód oboru Název oboru
DEFINICE,VĚTYADŮKAZYKÚSTNÍZKOUŠCEZMAT.ANALÝZY Ib
INFORMACE O PRŮBĚHU A POŽADAVKY KE ZKOUŠCE Z MAT. ANALÝZYIbVLS2010/11 Ke zkoušce mohou přistoupit studenti, kteří získali zápočet. Do indexu jej zapíši na zkoušce, pokud cvičící potvrdí, že na něj student
MASARYKOVA UNIVERZITA P Ř ÍRODOVĚ DECKÁ FAKULTA ŽÁDOST O AKREDITACI. Bakalářského studijního programu. Matematika. Obor. Statistika a analýza dat
MASARYKOVA UNIVERZITA P Ř ÍRODOVĚ DECKÁ FAKULTA ŽÁDOST O AKREDITACI Bakalářského studijního programu Matematika Obor Statistika a analýza dat Brno, ř íjen 2011 OBSAH OBSAH... 1 A Žádost o akreditaci /
MATURITNÍ TÉMATA Z MATEMATIKY
MATURITNÍ TÉMATA Z MATEMATIKY 1. Základní poznatky z logiky a teorie množin Pojem konstanty a proměnné. Obor proměnné. Pojem výroku a jeho pravdivostní hodnota. Operace s výroky, složené výroky, logické
B) výchovné a vzdělávací strategie jsou totožné se strategiemi vyučovacího předmětu Matematika.
4.8.3. Cvičení z matematiky Předmět Cvičení z matematiky je vyučován v sextě a v septimě jako volitelný předmět. Vzdělávací obsah vyučovacího předmětu Cvičení z matematiky vychází ze vzdělávací oblasti
MATEMATIKA B 2. Metodický list č. 1. Název tématického celku: Význam první a druhé derivace pro průběh funkce
Metodický list č. 1 Význam první a druhé derivace pro průběh funkce Cíl: V tomto tématickém celku se studenti seznámí s některými základními pojmy a postupy užívanými při vyšetřování průběhu funkcí. Tématický
Mgr. Ladislav Zemánek Maturitní okruhy Matematika 2013-2014. 1. Obor reálných čísel
Mgr. Ladislav Zemánek Maturitní okruhy Matematika 2013-2014 1. Obor reálných čísel - obor přirozených, celých, racionálních a reálných čísel - vlastnosti operací (sčítání, odčítání, násobení, dělení) -
Bonn, Rheinischen Friedrich-Wilhelms-Universität
Bonn, Rheinischen Friedrich-Wilhelms-Universität Seznam přednášek Bc s anotacemi http://www.mathematics.uni-bonn.de/files/bachelor/ba_modulhandbuch.pdf Studijní plán-požadavky http://www.mathematics.uni-bonn.de/studium/bachelor/studienprogramm
Gymnázium Česká a Olympijských nadějí, České Budějovice, Česká 64, 37021
Maturitní témata MATEMATIKA 1. Funkce a jejich základní vlastnosti. Definice funkce, def. obor a obor hodnot funkce, funkce sudá, lichá, monotónnost funkce, funkce omezená, lokální a globální extrémy funkce,
Matematika I. dvouletý volitelný předmět
Název předmětu: Zařazení v učebním plánu: Matematika I O7A, C3A, O8A, C4A dvouletý volitelný předmět Cíle předmětu Tento předmět je koncipován s cílem usnadnit absolventům gymnázia přechod na vysoké školy
Úlohy k přednášce NMAG 101 a 120: Lineární algebra a geometrie 1 a 2,
Úlohy k přednášce NMAG a : Lineární algebra a geometrie a Verze ze dne. května Toto je seznam přímočarých příkladů k přednášce. Úlohy z tohoto seznamu je nezbytně nutné umět řešit. Podobné typy úloh se
Tematický plán Obor: Informační technologie. Vyučující: Ing. Joanna Paździorová
Tematický plán Vyučující: Ing. Joanna Paździorová 1. r o č n í k 5 h o d i n t ý d n ě, c e l k e m 1 7 0 h o d i n Téma- Tematický celek Z á ř í 1. Opakování a prohloubení učiva základní školy 18 1.1.
Standard studijního programu Matematika se zaměřením na vzdělávání
Standard studijního Matematika se zaměřením na vzdělávání A. Specifika a obsah studijního : Typ bakalářský Oblast/oblasti vzdělávání Matematika/Učitelství 60 % /40 % 1 Základní tematické okruhy algebra
INOVACE MATEMATIKY PRO EKONOMY NA VŠE. Anketavroce2008
INOVACE MATEMATIKY PRO EKONOMY NA VŠE Anketavroce2008 Dne 11.12.2008 se obrátil člen katedry matematiky doc. RNDr. Jiří Henzler, CSc. na všechny učitele Vysoké školy ekonomické v Praze s následující výzvou:
Standard studijního programu Učitelství matematiky pro střední školy
Standard studijního Učitelství matematiky pro střední školy A. Specifika a obsah studijního : Typ navazující magisterský Oblast/oblasti vzdělávání Matematika/Učitelství 60 % / 40 % 1 Základní tematické
Karta předmětu prezenční studium
Karta předmětu prezenční studium Název předmětu: Číslo předmětu: 714-0513 Garantující institut: Garant předmětu: Vybrané kapitoly z matematiky (VKM) Katedra matematiky a deskriptivní geometrie doc. RNDr.
Maturitní témata z matematiky
Maturitní témata z matematiky G y m n á z i u m J i h l a v a Výroky, množiny jednoduché výroky, pravdivostní hodnoty výroků, negace operace s výroky, složené výroky, tabulky pravdivostních hodnot důkazy
Soulad studijního programu. Aplikovaná informatika
Standard studijního Aplikovaná informatika A. Specifika a obsah studijního : Typ Oblast/oblasti vzdělávání Základní tematické okruhy Kód Rozlišení Profil studijního Propojení studijního s tvůrčí činností
Matematika. ochrana životního prostředí analytická chemie chemická technologie Forma vzdělávání:
Studijní obor: Aplikovaná chemie Učební osnova předmětu Matematika Zaměření: ochrana životního prostředí analytická chemie chemická technologie Forma vzdělávání: denní Celkový počet vyučovacích hodin za
Maturitní otázky z předmětu MATEMATIKA
Wichterlovo gymnázium, Ostrava-Poruba, příspěvková organizace Maturitní otázky z předmětu MATEMATIKA 1. Výrazy a jejich úpravy vzorce (a+b)2,(a+b)3,a2-b2,a3+b3, dělení mnohočlenů, mocniny, odmocniny, vlastnosti
Standardní doba studia je 3 roky.
Bakalářský studijní obor Aplikovaná matematika pro víceoborové studium prezenční forma Standardní doba studia je 3 roky. Tento bakalářský obor se v současnosti studuje společně s oborem Ekonomie pro dvouoborová
Standard studijního programu Deskriptivní geometrie se zaměřením na vzdělávání
Standard studijního Deskriptivní geometrie se zaměřením na vzdělávání A. Specifika a obsah studijního : Typ bakalářský Oblast/oblasti vzdělávání Matematika/Učitelství 60 % /40 % 1 Základní tematické okruhy
A Žádost o akreditaci / rozšíření nebo prodloužení doby platnosti akreditace doktorského studijního programu Vysoká škola
A Žádost o akreditaci / rozšíření nebo prodloužení doby platnosti akreditace doktorského studijního programu STUDPROG st. doba titul 4 Ph.D. Původní název SP platnost předchozí akreditace 10.10.2014 Typ
M4140 Vybrané partie z matematické analýzy Přírodovědecká fakulta MU
M4140 Vybrané partie z matematické analýzy Přírodovědecká fakulta MU jaro 2010 Rozsah 4/2/0. 6 kr. Ukončení: zk. 1) Obyčejné diferenciální rovnice: 1.1. Úvod základní pojmy, přímé metody řešení některých
A - Žádost o prodloužení doby platnosti akreditace stud. programu
A - Žádost o prodloužení doby platnosti akreditace stud. programu st.doba titul 2 MgA. Původní název SP Platnost předchozí akred. 31.5.2006 druh rozšíření Typ žádosti prodloužení akreditace Typ studijního
ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE. Matematika 0A1. Cvičení, zimní semestr. Samostatné výstupy. Jan Šafařík
Vysoké učení technické v Brně Stavební fakulta ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE Matematika 0A1 Cvičení, zimní semestr Samostatné výstupy Jan Šafařík Brno c 2003 Obsah 1. Výstup č.1 2 2. Výstup
Učební plán 4. letého studia předmětu matematiky. Učební plán 6. letého studia předmětu matematiky
Učební plán 4. letého studia předmětu matematiky Ročník I II III IV Dotace 3 3+1 2+1 2+2 Povinnost povinný povinný povinný povinný Učební plán 6. letého studia předmětu matematiky Ročník 1 2 3 4 5 6 Dotace
Matematika 1 Jiˇr ı Fiˇser 19. z aˇr ı 2016 Jiˇr ı Fiˇser (KMA, PˇrF UP Olomouc) KMA MAT1 19. z aˇr ı / 19
Matematika 1 Jiří Fišer 19. září 2016 Jiří Fišer (KMA, PřF UP Olomouc) KMA MAT1 19. září 2016 1 / 19 Zimní semestr KMA MAT1 1 Úprava algebraických výrazů. Číselné obory. 2 Kombinatorika, základy teorie
Soulad studijního programu. Bioanorganická chemie
Standard studijního Bioanorganická chemie A. Specifika a obsah studijního : Typ Oblast/oblasti vzdělávání Základní tematické okruhy Kód Rozlišení Profil studijního Propojení studijního s tvůrčí činností
1. Číselné posloupnosti - Definice posloupnosti, základní vlastnosti, operace s posloupnostmi, limita posloupnosti, vlastnosti limit posloupností,
KMA/SZZS1 Matematika 1. Číselné posloupnosti - Definice posloupnosti, základní vlastnosti, operace s posloupnostmi, limita posloupnosti, vlastnosti limit posloupností, operace s limitami. 2. Limita funkce
Standard studijního programu Informatika se zaměřením na vzdělávání
Standard studijního Informatika se zaměřením na vzdělávání A. Specifika a obsah studijního : Typ bakalářský Oblast/oblasti vzdělávání Informatika/Učitelství 60 % / 40 % 1 Základní tematické okruhy Diskrétní
D - Přehled předmětů studijního plánu
D - Přehled předmětů studijního plánu Vysoká škola: Součást vysoké školy: Název studijního programu: Název studijního oboru: Slezská univerzita v Opavě Matematický ústav v Opavě Matematika Obecná matematika
Gymnázium Jiřího Ortena, Kutná Hora
Předmět: Cvičení z matematiky Náplň: Systematizace a prohloubení učiva matematiky Třída: 4. ročník Počet hodin: 2 Pomůcky: Učebna s dataprojektorem, PC, grafický program, tabulkový procesor Číselné obory
Netradiční výklad tradičních témat
Netradiční výklad tradičních témat J. Musilová, P. Musilová: Matematika pro porozumění i praxi I. VUTIUM, Brno 2006 (291 s.), 2009 (349 s.). J. Musilová, P. Musilová: Matematika pro porozumění i praxi
Bakalářské a diplomové práce. katedra matematiky
Bakalářské a diplomové práce katedra matematiky 31.10.2011 Závěrečné práce obecné informace databáze VŠKP výběr a zadání témat -kdy -jak zpracování práce odevzdání a obhajoba práce -kdy -jak okruhy témat
Maturitní témata profilová část
Seznam témat Výroková logika, úsudky a operace s množinami Základní pojmy výrokové logiky, logické spojky a kvantifikátory, složené výroky (konjunkce, disjunkce, implikace, ekvivalence), pravdivostní tabulky,
A - Žádost o akreditaci / rozšíření akreditace / prodloužení doby platnosti akreditace stud. programu
A - Žádost o akreditaci / rozšíření akreditace / prodloužení doby platnosti akreditace stud. programu stand. doba studia Název stud. prog./st. délka Původní název SP Platnost předchozí akred. druh rozšíření
Cvičení z matematiky jednoletý volitelný předmět
Název předmětu: Zařazení v učebním plánu: Cvičení z matematiky O8A, C4A, jednoletý volitelný předmět Cíle předmětu Obsah předmětu je zaměřen na přípravu studentů gymnázia na společnou část maturitní zkoušky
Požadavky ke zkoušce. Ukázková písemka
Požadavky ke zkoušce Zkouška z předmětu MATEMATIKA 1 má dvě části Písemná část: Písemná část se ještě dále rozděluje na praktickou část písemku a teoretickou část test. Písemka trvá 90 minut a je v ní
MATEMATIKA B 2. Integrální počet 1
metodický list č. 1 Integrální počet 1 V tomto tématickém celku se posluchači seznámí s některými definicemi, větami a výpočetními metodami užívanými v části matematiky obecně známé jako integrální počet
Systematizace a prohloubení učiva matematiky. Učebna s dataprojektorem, PC, grafický program, tabulkový procesor. Gymnázium Jiřího Ortena, Kutná Hora
Předmět: Náplň: Třída: Počet hodin: Pomůcky: Cvičení z matematiky Systematizace a prohloubení učiva matematiky 4. ročník 2 hodiny Učebna s dataprojektorem, PC, grafický program, tabulkový procesor Číselné
Rovnice matematické fyziky cvičení pro akademický školní rok 2013-2014
Harmonogram výuky předmětu Rovnice matematické fyziky cvičení pro akademický školní rok 2013-2014 Vedoucí cvičení: ing. Václav Klika, Ph.D. & MSc. Karolína Korvasová & & ing. Matěj Tušek, Ph.D. Katedra
Učitelství 2. stupně ZŠ tématické plány předmětů matematika
Učitelství 2. stupně ZŠ tématické plány předmětů matematika Povinné předměty: Matematická analýza I (KMD/MANA1)...2 Úvod do teorie množin (KMD/TMNZI)...4 Algebra 2 (KMD/ALGE2)...6 Konstruktivní geometrie
Matematický seminář. OVO ŠVP Tématický celek Učivo ŠVP Integrace Mezipředmětové vztahy. jejich soustavy. Spojitost funkce v bodě. Limita funkce v bodě
Řeší s porozumněním rovnice s parametrem Rovnice, nerovnice a jejich soustavy Řovnice, nerovnice a jejich soustavy Třetí, 24 hodin Zvolí vhodnou metodu řešení rovnice nebo nerovnice Vysvětlí zvolený způsob
MATEMATIKA I. Marcela Rabasová
MATEMATIKA I Marcela Rabasová Obsah: 1. Úvod 1.1. Osnovy předmětu 1.2. Literatura 1.3. Podmínky absolvování předmětu 1.4. Použité označení a symbolika 2. Funkce jedné reálné proměnné 2.1. Definice 2.2.
ZS: 2017/2018 NMAF061 F/2 J. MÁLEK. Matematika pro fyziky I. Posluchárna: T2 T1 Konzultační hodiny: pátek 9:40-10:30, posluchárna T5
ZS: 2017/2018 NMAF061 F/2 J. MÁLEK Matematika pro fyziky I OBECNÉ INFORMACE A SYLABUS Přednášející: Cvičící: Josef Málek Michal Báthory, Tomáš Los, Michal Pavelka, Vít Průša Termíny přednášek: Čtvrtek
MATEMATIKA A Metodický list č. 1
Metodický list č. 1 Název tématického celku: Lineární algebra I Základním cílem tohoto tématického celku je objasnit některé pojmy lineární algebry a poukázat na jejich vzájemnou souvislost. Posluchači
Gymnázium Jana Blahoslava, Ivančice, Lány 2. Školní vzdělávací program. Příloha č.1. Volitelné předměty
Gymnázium Jana Blahoslava, Ivančice, Lány 2 Školní vzdělávací program Příloha č.1 Volitelné předměty 2 OSMILETÉ VŠEOBECNÉ STUDIUM ČTYŘLETÉ VŠEOBECNÉ STUDIUM (zpracováno podle RVP ZV a RVP G) 1.2 Vzdělávací
MATURITNÍ OTÁZKY Z MATEMATIKY PRO ŠKOLNÍ ROK 2010/2011
MATURITNÍ OTÁZKY Z MATEMATIKY PRO ŠKOLNÍ ROK 2010/2011 1. Výroková logika a teorie množin Výrok, pravdivostní hodnota výroku, negace výroku; složené výroky(konjunkce, disjunkce, implikace, ekvivalence);
Standard studijního programu Učitelství deskriptivní geometrie pro střední školy
Standard studijního Učitelství deskriptivní geometrie pro střední školy A. Specifika a obsah studijního : Typ navazující magisterský Oblast/oblasti vzdělávání Matematika/Učitelství 60 % / 40 % 1 Základní
B-IIa Studijní plány pro bakalářské a magisterské SP - prezenčního
B-IIa Studijní plány pro bakalářské a magisterské SP - prezenčního Označení studijního plánu Studijní plán pro prezenční formu Povinné předměty způsob ověření počet kreditů PPZ ZT PPZ Matematická analýza
1. Fakulta aplikovaných věd a katedra matematiky
Kvaternion 1 (2012), 45 52 45 VÝUKA MATEMATICKÉ ANALÝZY NA ZÁPADOČESKÉ UNIVERZITĚ V PLZNI GABRIELA HOLUBOVÁ a JAN POSPÍŠIL Abstrakt. Cílem příspěvku je představit výuku matematické analýzy na Fakultě aplikovaných
Gymnázium Jiřího Ortena, Kutná Hora
Předmět: Náplň: Třída: Počet hodin: Pomůcky: Cvičení z matematiky algebra (CZMa) Systematizace a prohloubení učiva matematiky: Číselné obory, Algebraické výrazy, Rovnice, Funkce, Posloupnosti, Diferenciální
MATEMATIKA I. Požadavky ke zkoušce pro skupinu C 1. ročník 2014/15. I. Základy, lineární algebra a analytická geometrie
MATEMATIKA I Požadavky ke zkoušce pro skupinu C 1. ročník 2014/15 I. Základy, lineární algebra a analytická geometrie 1. Základní pojmy (a) Základy teorie množin: množina a její prvky, podmnožina, průnik,
Maturitní okruhy z matematiky - školní rok 2007/2008
Maturitní okruhy z matematiky - školní rok 2007/2008 1. Některé základní poznatky z elementární matematiky: Číselné obory, dělitelnost přirozených čísel, prvočísla a čísla složená, největší společný dělitel,
Standard studijního programu Fyzika se zaměřením na vzdělávání
Standard studijního Fyzika se zaměřením na vzdělávání A. Specifika a obsah studijního : Typ bakalářský Oblast/oblasti vzdělávání Fyzika/Učitelství 60% / 40% Základní tematické okruhy Mechanika, termodynamika
Význam a výpočet derivace funkce a její užití
OPAKOVÁNÍ ZÁKLADŮ MATEMATIKY Metodický list č. 1 Význam a výpočet derivace funkce a její užití 1. dílčí téma: Výpočet derivace přímo z definice a pomocí základních vzorců. K tomuto tématu je třeba zopakovat
Vysoké učení technické v Brně, Fakulta strojního inženýrství MATEMATIKA 2
Vysoké učení technické v Brně, Fakulta strojního inženýrství MATEMATIKA 2 Požadavky ke zkoušce pro skupinu C 1. ročník 2014/15 I. Diferenciální počet funkcí více proměnných 1. Funkce více proměnných (a)
Studijní program je těsně vázán na vědeckou činnost Katedry experimentální fyziky PřF UP či praxí Forma studia
Standard studijního Didaktika fyziky A. Specifika a obsah studijního : Typ doktorský Oblast vzdělávání Fyzika/Učitelství 40 %/60 % Základní tematické okruhy Mechanika, termodynamika a kinetická teorie,
Maturitní témata z matematiky
Maturitní témata z matematiky 1. Lineární rovnice a nerovnice a) Rovnice a nerovnice s absolutní hodnotou absolutní hodnota reálného čísla definice, geometrický význam, srovnání řešení rovnic s abs. hodnotou
Matematika drsně a svižně -- nekonvenční projekt výuky a učebnice www.math.muni.cz/matematika_drsne_svizne
Matematika drsně a svižně -- nekonvenční projekt výuky a učebnice www.math.muni.cz/matematika_drsne_svizne 1 Jak vlastně studenti vnímají matematiku? počítání s čísly? pravidla na přerovnávání písmenek?
Matematika PRŮŘEZOVÁ TÉMATA
Matematika ročník TÉMA 1-4 Operace s čísly a - provádí aritmetické operace v množině reálných čísel - používá různé zápisy reálného čísla - používá absolutní hodnotu, zapíše a znázorní interval, provádí
Standard studijního programu Chemie se zaměřením na vzdělávání
Standard studijního Chemie se zaměřením na vzdělávání A. Specifika a obsah studijního : Typ bakalářský Oblast/oblasti vzdělávání Chemie/Učitelství, 60 % / 40 % 1 Základní tematické okruhy obecná chemie,
V tomto předmětu se využívá stejných výchovných a vzdělávacích strategií jako v předmětu Matematika. Gymnázium Pierra de Coubertina, Tábor
Název ŠVP Motivační název Datum 15.6.2009 Název RVP Verze 01 Dosažené vzdělání Střední vzdělání s maturitní zkouškou Platnost od 1.9.2009 Forma vzdělávání Koordinátor Délka studia v letech: denní forma
Standard studijního programu Učitelství chemie pro střední školy
Standard studijního Učitelství chemie pro střední školy A. Specifika a obsah studijního : Typ navazující magisterský Oblast/oblasti vzdělávání Chemie/Učitelství, 60 % / 40 % 1 Základní tematické okruhy
Standard studijního programu Učitelství informatiky pro střední školy
Standard studijního Učitelství informatiky pro střední školy A. Specifika a obsah studijního : Typ navazující magisterský Oblast/oblasti vzdělávání Informatika/Učitelství 60 % /40 % 1 Základní tematické
MATEMATICKÉ PRAKTIKUM
MATEMATICKÉ PRAKTIKUM Sbírka řešených příkladů z matematiky pro studenty vysokých škol Miloš Kaňka Vědecký redaktor: prof. RNDr. Josef Matušů, DrSc. Miloš Kaňka Matematické praktikum Sbírka řešených příkladů
MATEMATIKA B. Lineární algebra I. Cíl: Základním cílem tohoto tématického celku je objasnit některé pojmy lineární algebry a
MATEMATIKA B metodický list č. 1 Lineární algebra I Základním cílem tohoto tématického celku je objasnit některé pojmy lineární algebry a poukázat na jejich vzájemnou souvislost. Posluchači se seznámí
METODICKÝ NÁVOD MODULU
Centrum celoživotního vzdělávání METODICKÝ NÁVOD MODULU Název Základy matematiky modulu: Zkratka: ZM Počet kreditů: 4 Semestr: Z/L Mentor: Petr Dolanský Tutor: Petr Dolanský I OBSAH BALÍČKU STUDIJNÍCH
Požadavky ke zkoušce
Požadavky ke zkoušce Zkouška z předmětu MATEMATIKA 2 má dvě části Písemná část: Písemná část se ještě dále rozděluje na praktickou část písemku a teoretickou část test. Písemka trvá 90 minut a je v ní
Studijní obor: Bioanalytik odborný pracovník v laboratorních metodách
Magisterský studijní program Biochemie (doplněk ke studijnímu katalogu zveřejněnému na webových stránkách fakultu http://www.sci.muni.cz/katalog/katalog2015/katalogbch.pdf) Garant studijního programu Prof.
MINISTERSTVO ŠKOLSTVÍ, MLÁDEŽE A TĚLOVÝCHOVY. Učební osnova předmětu MATEMATIKA. pro studijní obory SOŠ a SOU (8 10 hodin týdně celkem)
MINISTERSTVO ŠKOLSTVÍ, MLÁDEŽE A TĚLOVÝCHOVY Učební osnova předmětu MATEMATIKA pro studijní obory SOŠ a SOU (8 10 hodin týdně celkem) Schválilo Ministerstvo školství, mládeže a tělovýchovy dne 14. 6. 2000,
Ukázka knihy z internetového knihkupectví www.kosmas.cz
Ukázka knihy z internetového knihkupectví www.kosmas.cz (tištěná ISBN 978-80-247-7512-8 (elektronická verze ve formátu verze) PDF) Grada Publishing, a.s. 2012 U k á z k a k n i h y z i n t e r n e t o
MATEMATIKA I Požadavky ke zkoušce pro 1. ročník, skupina A 2017/18
MATEMATIKA I Požadavky ke zkoušce pro 1. ročník, skupina A 2017/18 I. Základy, lineární algebra a analytická geometrie 1. Základní pojmy (a) Základy teorie množin: množina a její prvky, podmnožina, průnik,
Požadavky znalostí ke státní bakalářské zkoušce
Požadavky znalostí ke státní bakalářské zkoušce Matematická analýza 1. Posloupnosti reálných čísel, limity, elementární funkce. Posloupnost, limita posloupnosti, věty o limitách, vybrané posloupnosti.
Pedagogická činnost Matematického ústavu v Opavě Slezské univerzity v Opavě v roce 2016
Pedagogická činnost Matematického ústavu v Opavě Slezské univerzity v Opavě v roce 216 Zpracovala: Ing. Jana Šindlerová Dne 2. 2. 217 dokument schválila Vědecká rada Matematického ústavu v Opavě. 1. Studijní
Magisterský studijní obor Aplikovaná matematika pro
Magisterský studijní obor Aplikovaná matematika pro víceoborové studium prezenční forma Standardní doba studia je 2 roky. Tento magisterský obor se v současnosti studuje společně s oborem Ekonomie pro
ÚVOD DO MATEMATICKÉ BIOLOGIE I. UKB, pav. A29, RECETOX, dv.č.112 Institut biostatistiky a analýz
ÚVOD DO MATEMATICKÉ BIOLOGIE I. prof. Ing. Jiří Holčík, CSc. UKB, pav. A29, RECETOX, dv.č.112 holcik@iba.muni.cz zástupce ředitele IBA PřF a LF MU pro výuku: RNDr. Tomáš Pavlík, Ph.D. e-mail: pavlik@iba.muni.cz
Matematika I A ukázkový test 1 pro 2014/2015
Matematika I A ukázkový test 1 pro 2014/2015 1. Je dána soustava rovnic s parametrem a R x y + z = 1 x + y + 3z = 1 (2a 1)x + (a + 1)y + z = 1 a a) Napište Frobeniovu větu (existence i počet řešení). b)
Matematika I A ukázkový test 1 pro 2011/2012. x + y + 3z = 1 (2a 1)x + (a + 1)y + z = 1 a
Matematika I A ukázkový test 1 pro 2011/2012 1. Je dána soustava rovnic s parametrem a R x y + z = 1 a) Napište Frobeniovu větu. x + y + 3z = 1 (2a 1)x + (a + 1)y + z = 1 a b) Vyšetřete počet řešení soustavy
VOLITELNÉ PŘEDMĚTY 3. ročník
VOLITELNÉ PŘEDMĚTY 3. ročník Školní rok: 2017 2018 Předměty: 1. Blok zaměřený na matematiku, fyziku a IVT - matematický - z fyziky a informatiky 2. Blok společenskovědních předmětů - dějepisný - společenskovědní
ZS: 2018/2019 NMAF063 F/3 Josef MÁLEK. Matematika pro fyziky III
ZS: 2018/2019 NMAF063 F/3 Josef MÁLEK Matematika pro fyziky III OBECNÉ INFORMACE A SYLABUS Přednášející: Cvičící: Josef Málek Tomáš Los, Michal Pavelka, Michal Pavelka, Vít Průša Termíny přednášek: čtvrtek
Tématické okruhy k magisterské státní závěrečné zkoušce z matematiky s didaktikou pro 2. stupeň ZŠ
Tématické okruhy k magisterské státní závěrečné zkoušce z matematiky s didaktikou pro 2. stupeň ZŠ Státní závěrečná magisterská zkouška v navazujícím magisterském studiu učitelství matematiky pro ZŠ je
Standard studijního programu Didaktika chemie
Standard studijního Didaktika chemie A. Specifika a obsah studijního : Typ doktorský Oblast/oblasti vzdělávání Chemie/Učitelství, 40 %/60 % Základní tematické okruhy obecná chemie, anorganická chemie,
MASARYKOVA UNIVERZITA Ekonomicko-správní fakulta
MASARYKOVA UNIVERZITA Ekonomicko-správní fakulta PŘIJÍMACÍ ŘÍZENÍ AKADEMICKÝ ROK 2007/2008 V souladu s 50, odst. 8 zákona č. 111/98 Sb., o vysokých školách a o změně a doplnění dalších zákonů (zákon o
Nezbytnou součástí ústní zkoušky je řešení matematických příkladů, které student obdrží při zadání otázky.
Maturitní témata Matematika Školní rok 2016/17 Nezbytnou součástí ústní zkoušky je řešení matematických příkladů, které student obdrží při zadání otázky. Příprava ke zkoušce trvá 15 minut, ústní zkouška
Pedagogická činnost Matematického ústavu v Opavě Slezské univerzity v Opavě v roce 2013
Pedagogická činnost Matematického ústavu v Opavě Slezské univerzity v Opavě v roce 2013 Zpracovala: Ing. Jana Šindlerová Dokument schválila Vědecká rada Matematického ústavu v Opavě dne 19. 2. 2014. 1.
Drsná matematika III 1. přednáška Funkce více proměnných: křivky, směrové derivace, diferenciál
Drsná matematika III 1. přednáška Funkce více proměnných: křivky, směrové derivace, diferenciál Jan Slovák Masarykova univerzita Fakulta informatiky 16. 9. 2008 Obsah přednášky 1 Literatura 2 Funkce a
Okruhy otázek z anglického jazyka, matematiky a fyziky pro přijímací řízení do doktorských studijních programů na Fakultě strojního inženýrství
Okruhy otázek z anglického jazyka, matematiky a fyziky pro přijímací řízení do doktorských studijních programů na Fakultě strojního inženýrství Požadavky z anglického jazyka k přijímací zkoušce do doktorského
Požadavky k zápočtu a ke zkoušce z předmětu Matematická analýza 2 kód NMMA102, letní semestr 2012 2013. Luboš Pick
Požadavky k zápočtu a ke zkoušce z předmětu Matematická analýza 2 kód NMMA102, letní semestr 2012 2013 Luboš Pick Obsah Popis předmětu 1 Zápočet 1 Zkouška 2 Celkové hodnocení zkoušky 4 Seznamy požadovaných
Sociologie (jednooborové studium) N 6703 Sociologie (Platnost akreditace: )
Sociologie (jednooborové studium) N 6703 Sociologie (Platnost akreditace: 22.7. 2011 31.7. 2019) PP povinné předměty OBOROVÉ PŘEDMĚTY POVINNÉ 1 PP1 Výzkumné praktikum 0p + 3s Z p 5 PhDr. Jiří Vinopal,
Pedagogická činnost Matematického ústavu v Opavě Slezské univerzity v Opavě v roce 2014 Zpracovala: Ing. Jana Šindlerová
Pedagogická činnost Matematického ústavu v Opavě Slezské univerzity v Opavě v roce 2014 Zpracovala: Ing. Jana Šindlerová Dokument schválila Vědecká rada Matematického ústavu dne 17. února 2015. 1. Studijní
MINISTERSTVO ŠKOLSTVÍ, MLÁDEŽE A TĚLOVÝCHOVY. Učební osnova předmětu MATEMATIKA. pro nástavbové studium. varianta B 6 celkových týd.
MINISTERSTVO ŠKOLSTVÍ, MLÁDEŽE A TĚLOVÝCHOVY Učební osnova předmětu MATEMATIKA pro nástavbové studium (hodinová dotace: varianta A 4 až 5 celkových týd. hodin, varianta B 6 celkových týd. hodin) Schválilo
České vysoké učení technické v Praze Fakulta jaderná a fyzikálně inženýrská OKRUHY. ke státním závěrečným zkouškám BAKALÁŘSKÉ STUDIUM
OKRUHY ke státním závěrečným zkouškám BAKALÁŘSKÉ STUDIUM Obor: Studijní program: Aplikace přírodních věd 1. Vektorový prostor R n 2. Podprostory 3. Lineární zobrazení 4. Matice 5. Soustavy lineárních rovnic