ISBN
|
|
- Aneta Křížová
- před 8 lety
- Počet zobrazení:
Transkript
1
2
3 Scott Olsen Záhadný zlatý řez Největší tajemství přírody Wooden Books Limited 2013 Published by Arrangement with Alexian Limited. Translation Petr Holčák, 2009 Designed and typeset by Wooden Books Ltd, Glastonbury, UK. Všechna práva vyhrazena. Žádná část této publikace nesmí být rozmnožována a rozšiřována jakýmkoli způsobem bez předchozího písemného svolení nakladatele. Druhé vydání v českém jazyce (první elektronické). Z anglického originálu The Golden Section. Natures Greatest Secret přeložil Petr Holčák. Odpovědná redaktorka Tereza Ješátková. Sazba Michaela Procházková. Konverze do elektronické verze Tomáš Zeman. Vydalo v roce 2014 nakladatelství Dokořán, s. r. o., Holečkova 9, Praha 5, dokoran@dokoran.cz, jako svou 733. publikaci (174. elektronická). ISBN
4 ZÁHADNÝ ZLATÝ ŘEZ NEJVĚTŠÍ TAJEMSTVÍ PŘÍRODY Scott Olsen
5 Hlubokou vděčností jsem zavázán svým milovaným rodičům Ilene a Clarionovi. Za příspěvky děkuji: Keithu Critchlowovi, Johnu Michellovi, Lanci Hardingovi, Benjaminu Brytonovi, Garthu Normanovi, Marku Reynoldsovi, Robinu Heathovi, Richardu Heathovi, Pablu Amaringovi, Zachariahu Gregorymu a zejména vydavateli Johnu Martineauovi. Jsem vděčný za diskuse s Danem Pedoem, Davidem Bohmem, Hustonem Smithem, Douglasem Bakerem, Stephenem Phillipsem, Edgarem Mitchellem, Davidem Fidelerem, Garileem Pedrozou, Robertem Powellem Sr., Alexejem Stachovem, Michaelem Baronem a Billem Fossem. Zvláštní dík skládám své ženě Pam. Děkuji své škole CFCC za vědeckou dovolenou. Další zdroje: P. Hemenway: Divine Proportion; G. Doczi: Power of Limits; M. Schneider: Golden Section Workbook; Kairos-foundation Ф worksheets; M. Livio: Golden Ratio (česky Zlatý řez, 2006); M. Ghyka: Geometry of Art & Life; H. E. Huntley: Divine Proportion; R. A. Dunlap: The Golden Ratio. Hodina svobodných umění, raný dřevoryt Francina Gaffuria.
6 Obsah Úvod 1 Mysterium fí 2 Poměr, průměry a úměra 4 Platónova rozdělená úsečka 6 Fí v rovině 8 Fibonacciho posloupnost 10 Struktury fylotaxe 12 Řád v rozmanitosti 14 Kouzla s Lucasovými čísly 16 Veškerá stvoření 18 Fí v lidském těle 20 Růst a zmenšování 22 Exponenciály a spirály 24 Zlatá symetrie 26 Fí v lidské kultuře 28 Dny dávnověku 30 Kalich mi po okraj plníš 32 Posvátná tradice 34 Fí v malířství 36 Melodie a harmonie 38 Není všechno zlato 40 Zlatý kalich 42 Zlaté mnohostěny 44 Fí na nebesích 46 Rezonance a vědomí 48 Kámen mudrců 50 Dodatek I: Rovnice s fí 52 Dodatek II: Fibonacciho a Lucasovy vzorce 53 Dodatek III: Nekonečná dyáda 54 Dodatek IV: Obdélníky návrhářů 57 Dodatek V: Zlatá fyzika 58 Dodatek VI: Další Lucasovo kouzlo 60 Dodatek VII: Úhly fylotaxe 60
7
8 Úvod Příroda ukrývá jedno úžasné tajemství, jeho strážci je však horlivě brání před všemi, kdo by je mohli znesvětit nebo zneužít. Čas od času jsou odměřené díly té dávné moudrosti v tichosti odhalovány těm z lidí, kteří se naučili pozorovat očima a naslouchat ušima. Základními podmínkami jsou otevřenost, vnímavost, nadšení a opravdový zájem o pochopení hlubšího smyslu divů přírody, jež před námi denně defilují. Mnozí z nás však spíše probloumají životem v polospánku jako ochrnutí a jsou hluší a slepí k úchvatnému řádu, jenž nás obklopuje. Stezka vyznačená znameními však existuje a udržuje se. Jádrem střeženého odkazu je studium čísel, harmonie, geometrie a kosmologie, které nás dovádí mlžinami času zpět ke kulturám starého Egypta, Babylonu, Indie a Číny. Jeho jasné projevy nacházíme v půdorysu a vztazích kamenných kruhů a podzemních prostor postavených ve starověké Evropě, stejně jako u neolitických kamenných bloků v Británii, vytvarovaných do podoby pěti pravidelných těles. Další znamení jsou rozeseta v artefaktech a stavbách Mayů a dalších středoamerických kultur. Když se vrátíme přes oceán zpět, vidíme, jak je gotičtí kameníci vtělili do tvarů katedrál. Velký pythagorejský filozof Platón ve svých spisech i přednáškách naznačoval, byť v hádankách, že ke všem těmto tajemstvím existuje jediný zlatý klíč. Mohu vám zde slíbit: budete-li ochotni se mnou postupovat krok za krokem touto stručnou knížkou, je téměř jisté, že na jejím konci pocítíte slastný a omračující zážitek, v němž se vám dostane alespoň letmého záblesku poznání, ale možná i hlubokého pochopení něčeho, co je nejzáhadnějším tajemstvím přírody. 1
9 Mysterium fí zlaté vlákno věčné moudrosti Rozplést historii zlatého řezu není snadné. Přestože byl využíván již ve starověkém Egyptě a znali jej i pythagorejci, jeho první definice pochází od Eukleida ( př. n. l.), který jej definoval jako rozdělení úsečky v krajním a středním poměru. Nejstarším známým pojednáním na toto téma je Divina Proportione (Božská proporce) od Luky Pacioliho ( ), mnicha zpitého krásou; jeho knihu ilustroval Leonardo da Vinci, o němž se říká, že razil termín sectio aurea čili zlatý řez. Poprvé se však toto spojení vyskytlo knižně v díle Martina Ohma Die reine Elementar-Matematik (Čistá elementární matematika) z roku Pro tento záhadný poměr existuje více pojmenování. Porůznu se o něm mluví jako o zlatém nebo božském poměru, průměru, proporci, čísle nebo řezu. V matematickém zápisu se označuje symbolem τ tau, což znamená řez, obvyklejší je však symbol Ф nebo ф fí, podle prvního písmene jména řeckého sochaře Feidia, který zlatý řez využil při stavbě Parthenonu. Jaké tedy tento řez ukrývá tajemství a proč kolem něj vládne takový rozruch? Jednou z věčných otázek filozofů zůstává, jak se z jednoho stává mnohé. Jaká je povaha rozdělování a dělení? Je možné, aby si jednotlivé části nějakým způsobem zachovaly smysluplný vztah k celku? V alegorické podobě vznesl tyto otázky Platón ( př. n. l.), když v Ústavě čtenáře vyzval, aby udělali čáru a rozdělili ji na dva nestejné díly. Platón byl vázán pythagorejskou přísahou mlčet o tajemstvích mysterií a své otázky kladl v naději, že uslyší bystré odpovědi. Proč tedy volil čáru, nikoli třeba čísla? A proč po nás chtěl, abychom ji rozdělili na nestejné díly? Chceme-li na Platónovu otázku odpovědět, musíme nejprve pochopit pojmy poměr a úměra. 2
10 3
11 Poměr, průměry a úměra spojitá geometrická úměra Poměr (logos) je vztah jednoho čísla k jinému, například 4 : 8 ( 4 ku 8 ). Úměra (analogia), jinak také proporce, je pak řada sobě rovných poměrů, která sestává obvykle ze čtyř členů, například 4 : 8 :: 5 : 10 ( 4 ku 8 se má jako 5 ku 10 ). Pythagorejci tento případ označovali jako čtyřčlennou nespojitou úměru. Základním, invariantním poměrem je zde 1 : 2, který se opakuje jak u 4 : 8, tak u 5 : 10. Převrácený poměr vyměňuje členy, takže 8 : 4 je převráceným poměrem 4 : 8 a invariantní poměr je nyní 2 : 1. Mezi dvoučlenným poměrem a čtyřčlennou úměrou stojí trojčlenný průměr, kde střední člen je ve stejném poměru k prvnímu jako k poslednímu. Geometrický průměr dvou čísel je roven druhé odmocnině jejich součinu. Takže geometrický průměr řekněme 1 a 9 je (1 9) = 3. Vztah geometrického průměru se zapisuje jako 1 : 3 : 9, nebo inverzně 9 : 3 : 1. Dá se rovněž zapsat úplněji jako spojitá geometrická úměra 1 : 3 :: 3 : 9. Číslo 3, které mají oba poměry společné, je zde geometrický průměr nebo také střední geometrická úměrná; ta poutá a proplétá oba poměry dohromady, čímž vzniká to, co pythagorejci nazvali trojčlennou spojitou geometrickou úměrou. Platón pokládal spojitou geometrickou úměru za nejhlubší pouto, které drží vesmír pohromadě. V Timaiovi popisuje, jak světová duše v sobě váže do jedné harmonické rezonance rozumem poznatelný svět forem (včetně čisté matematiky), umístěný nahoře, a spodní, viditelný svět hmotných předmětů, a to prostřednictvím řad 1, 2, 4, 8 a 1, 3, 9, 27. Výsledkem jsou postupné spojité geometrické úměry 1 : 2 :: 2 : 4 :: 4 : 8 a 1 : 3 :: 3 : 9 :: 9 : 27 (viz naproti). 4
12 Poměr: mezi dvěma čísly a a b Poměr mezi a a b Převrácený poměr a : b nebo a/b b : a nebo b/a Průměry: b, mezi a a c Aritmetický průměr b mezi a a c Harmonický průměr b mezi a a c Geometrický průměr b mezi a a c b = a + c 2 b = 2ac a + c b = ac Úměra: mezi dvěma poměry Nespojitá (čtyřčlenná) a : b :: c : d např. 4 : 8 :: 5 : 10 Platónova světová duše: Spojitá (trojčlenná) a : b :: b : c = a : b : c b je geometrický průměr (střední geometrická úměrná) mezi a a c Postupná spojitá geometrická úměra 1 : 2 :: 2 : 4 :: 4 : : 3 :: 3 : 9 :: 9 : 27 invariantní poměr 1 : 2 invariantní poměr 1 : Lambda-diagram
13 Platónova rozdělená úsečka kde přesně ji rozdělit Vraťme se k naší hádance: proč po nás Platón vlastně chce, abychom nestejnoměrně rozdělili úsečku? Stejnoměrné rozdělení by nás dovedlo jenom zpět k celku poměr celku k části by činil 2 : 1 a poměr obou částí 1 : 1. Tyto poměry si nejsou rovny, takže zde nevzniká žádná úměra! Existuje pouze jeden způsob, jak z jednoduchého poměru vytvořit úměru, a tím je zlatý řez. Platón chce, abychom objevili zvláštní poměr, a to takový, že celek k delší části se bude rovnat delší části ke kratší. Dobře ví, že výsledkem bude jeho uctívané přírodní pouto, spojitá geometrická úměra. A platit to bude i převráceně, totiž, že kratší část k delší se bude rovnat delší části k celku. Proč ale úsečka, proč nestačí obyčejná čísla? Platón si uvědomoval, že odpovědí je iracionální číslo, které se dá geometricky odvodit z úsečky, ale nedá se vyjádřit jako jednoduchý zlomek (viz str. 62). Budeme-li řešit celý problém matematicky a vyjdeme od předpokladu, že průměr (ztělesněný delším úsekem) je 1, zjistíme, že větší hodnota zlatého řezu je 1, (pro celek) a menší hodnota je 0, (kratší úsek). Budeme je označovat jako Ф, fí velké a ф, fí malé. Povšimněme si, že jak jejich součin, tak rozdíl je 1. Kromě toho druhá mocnina velkého fí je 2, neboli Ф + 1. Také vidíme, že každé z obou čísel je převrácenou hodnotou druhého, takže ф je 1 / Ф. V naší knížce budeme hovořit o vyšší hodnotě jako o Ф, o průměru jako jednotě (1) a o nižší hodnotě jako o 1 / Ф. Všimněme si (dole), že jednota může fungovat jako vyšší hodnota (celek), průměr (delší úsek) i jako nižší hodnota (kratší úsek). 6
14 7
15 Fí v rovině pentagramy a zlaté obdélníky Přesuneme-li se od jednorozměrné úsečky k dvourozměrné rovině, nebude pro nás nijak složité objevit zlatý řez i zde. Východiskem nám bude čtverec; obloukem kružnice se středem uprostřed jedné ze stran a stáčeným z horního rohu snadno vyznačíme bod potřebný k sestrojení velkého zlatého obdélníku (dole vlevo). Důležité je, že malý obdélník, kterým jsme čtverec rozšířili na zlatý obdélník, je rovněž zlatý obdélník. Když budeme kružítkem otáčet dále, vznikne dvojice menších zlatých obdélníků (naproti vlevo nahoře). Odkrojíme-li naopak od zlatého obdélníku čtverec, získáme menší zlatý obdélník, a tento postup, budeme-li jej opakovat donekonečna, vytvoří zlatou spirálu (naproti vpravo níže). Zlatý řez, který, jak jsme zjistili, dokáže jako žádný jiný poměr sjednocovat části s celkem, je důvěrně svázán s přirozenou geometrií pentagramu (naproti vlevo dole), samotného symbolu života. Každý průsečík diagonál v něm vytváří délky, jež jsou navzájem ve zlatém poměru. Rameno pentagramu pak skrývá klíč k další zlaté spirále, vytvořené pomocí postupné řady zvětšujících se nebo zmenšujících zlatých trojúhelníků (naproti vpravo nahoře). Zlatý řez úsečky získáme, když nad ní sestrojíme dvojitý čtverec a pak pokračujeme podle obrázku (vpravo dole). 8
16 Malé a velké fí odvozené od čtverce Základní výskyty zlatého řezu v rovině; vidíme zde prvky zlatých obdélníků, zlatých trojúhelníků a poměr Φ : 1 mezi úhlopříčkou pentagramu a stranou jemu opsaného pětiúhelníku. Zkuste se zamyslet nad tím, jaké hodnoty se na dolním obrázku skrývají pod délkami označenými otazníky. zlatý trojúhelník oddělování čtverců?? různým oddělováním čtverců vytvoříme mřížku zlatý řez v pentagramu a najdeme magický střed 9
ISBN
Scott Olsen Záhadný zlatý řez Největší tajemství přírody Wooden Books Limited 2013 Published by Arrangement with Alexian Limited. Translation Petr Holčák, 2009 Designed and typeset by Wooden Books Ltd,
Uzly se dají vázat pouze v trojrozměrném prostoru. V méně než třech dimenzích nelze uzel zavázat, ve vícedimenzionálním prostoru se naopak každý uzel
Uzly se dají vázat pouze v trojrozměrném prostoru. V méně než třech dimenzích nelze uzel zavázat, ve vícedimenzionálním prostoru se naopak každý uzel rozváže. Matthew Watkins NEPOSTRADATELNÉ MATEMATICKÉ
Daud Sutton. Geniální geometrie
Daud Sutton Islámský desing Geniální geometrie Wooden Books Limited 2013 Published by Arrangement with Alexian Limited. Translation Petra Pachlová, 2013 Designed and typeset by Wooden Books Ltd, Glastonbury,
Uzly se dají vázat pouze v trojrozměrném prostoru. V méně než třech dimenzích nelze uzel zavázat, ve vícedimenzionálním prostoru se naopak každý uzel
Uzly se dají vázat pouze v trojrozměrném prostoru. V méně než třech dimenzích nelze uzel zavázat, ve vícedimenzionálním prostoru se naopak každý uzel rozváže. Matthew Watkins NEPOSTRADATELNÉ MATEMATICKÉ
ISBN
Miranda Lundyová Posvátná geometrie Wooden Books Limited 2013 Published by Arrangement with Alexian Limited. Translation Jiří Pilucha, 2008 Designed and typeset by Wooden Books Ltd, Glastonbury, UK. Všechna
ISBN
John Martineau Malá kniha velkých náhod Copyright 2001 by John Martineau Wooden Books Limited, 2010 Published by Arrangement with Alexian Limited. Translation Petr Holčák, 2015 Designed and typeset by
M - Pythagorova věta, Eukleidovy věty
M - Pythagorova věta, Eukleidovy věty Určeno jako učební text pro studenty dálkového studia. VARIACE 1 Tento dokument byl kompletně vytvořen, sestaven a vytištěn v programu dosystem - EduBase. Více informací
Uzly se dají vázat pouze v trojrozměrném prostoru. V méně než třech dimenzích nelze uzel zavázat, ve vícedimenzionálním prostoru se naopak každý uzel
Uzly se dají vázat pouze v trojrozměrném prostoru. V méně než třech dimenzích nelze uzel zavázat, ve vícedimenzionálním prostoru se naopak každý uzel rozváže. Matthew Watkins NEPOSTRADATELNÉ MATEMATICKÉ
MATEMATIKA 5. TŘÍDA. C) Tabulky, grafy, diagramy 1 - Tabulky, doplnění řady čísel podle závislosti 2 - Grafy, jízní řády 3 - Magické čtverce
MATEMATIKA 5. TŘÍDA 1 - Přirozená čísla a číslo nula a číselná osa, porovnávání b zaokrouhlování c zápis čísla v desítkové soustavě d součet, rozdíl e násobek, činitel, součin f dělení, dělení se zbytkem
Prima (1:1): (nahoře) spirála; (uprostřed) spirála kreslená přes první spirálu souběžně; (dole) spirála kreslená přes spirálu protiběžně.
Prima (1:1): (nahoře) spirála; (uprostřed) spirála kreslená přes první spirálu souběžně; (dole) spirála kreslená přes spirálu protiběžně. Anthony Ashton Harmonograf Vizuální průvodce matematikou hudby
Fakulta informačních technologií
České vysoké učení technické v Praze Fakulta informačních technologií Historie matematiky a informatiky Zlatý řez Jaroslav Hrách Obsah 1 Úvod 1 2 Historie 2 3 Zlatý řez v matematice 4 3.1 Výpočet zlatého
1, φ = 1+ 5 ZLATÉ ČÍSLO
φ = + 5,68 034 ZLATÉ ČÍSLO Staří Řekové znali toto číslo vzhledem k jeho spojitosti s pravidelnými pětiúhelníky a dvanáctistěny studovanými eukleidovskou geometrií. Je úzce spojené s řadou Fibonacciho
Jihočeská univerzita v Českých Budějovicích Fakulta Pedagogická Katedra Matematiky. Bakalářská práce. Zlatý řez okolo nás
Jihočeská univerzita v Českých Budějovicích Fakulta Pedagogická Katedra Matematiky Bakalářská práce Zlatý řez okolo nás Vypracoval: Čadková Andrea Vedoucí práce: Prof. RNDr. Pavel Pech, CSc. České Budějovice
2.8.6 Čísla iracionální, čísla reálná
.8.6 Čísla iracionální, čísla reálná Předpoklady: 0080 Př. : Doplň tabulku (všechny sloupce je možné vypočítat bez kalkulačky). 00 x 0 0,0004 00 900,69 6 8 x 0,09 0, x 0 0,0004 00 x 0 0,0 0 6 6 900 0 00
ZŠ ÚnO, Bratří Čapků 1332
Úvodní obrazovka Menu (vlevo nahoře) Návrat na hlavní stránku Obsah Výsledky Poznámky Záložky edunet Konec Matematika 2 (pro 12-16 let) LangMaster Obsah (střední část) výběr tématu - dvojklikem v seznamu
Pythagorova věta a pythagorejské trojúhelníky-ondřej Zeman Asi 600 př.n.l
Pythagorova věta a pythagorejské trojúhelníky-ondřej Zeman Asi 600 př.n.l Baudhayana (kolem 800 př.n.l) Pythagoras ze Sámu (asi 580 př.n.l asi 500 př.n.l) Motivace: Tato věta mě zaujala, protože se o ní
ZŠ ÚnO, Bratří Čapků 1332
Úvodní obrazovka Menu (vlevo nahoře) Návrat na hlavní stránku Obsah Výsledky Poznámky Záložky edunet Konec Matematika 1 (pro 12-16 let) LangMaster Obsah (střední část) výběr tématu - dvojklikem v seznamu
bývalý Sovětský svaz Švédsko Finsko Norsko Grónsko Island Velká Británie Dánsko Irsko Polsko Niz. Německo Belgie Maďarsko Rakousko Rumunsko
Grónsko Island Velká Británie Irsko Dánsko Niz. Norsko Švédsko Finsko Polsko bývalý Sovětský svaz Belgie bývalé Československo Portugalsko Španělsko Francie Německo Švýcarsko Sardinie Rakousko Itálie Maďarsko
ISBN
Adam Tetlow Keltské vzory Vizuální rytmy dávnověku Copyright 2003 by Adam Tetlow Wooden Books Limited, 2003 Published by Arrangement with Alexian Limited. Translation Petr Holčák, 2015 Designed and typeset
obsah trojúhelníku = obsah obdélníku = 1/2 základna výška
obsah trojúhelníku = obsah obdélníku = 1/2 základna výška Burkard Polster Q. E. D. Krása matematického důkazu Wooden Books Limited 2004 Published by Arrangement with Alexian Limited. Translation Luboš
Geometrie a zlatý řez
Geometrie a zlatý řez Pythagorova věta Podívejme se na několik geometrických důkazů Pythagorovy věty využívajících různých druhů myšlení. Úvaha o začátku vyučování, je nutná a prospěšná rytmická část na
South Bohemia Mathematical Letters Volume 23, (2015), No. 1, DĚLENÍ KRUHU NA OBLASTI ÚVOD
South Bohemia Mathematical Letters Volume 23, (2015), No. 1, 113-122. DĚLENÍ KRUHU NA OBLASTI MAREK VEJSADA ABSTRAKT. V textu se zabývám řešením následujícího problému: Zvolíme na kružnici určitý počet
n =5, potom hledejte obecný vztah. 4.5 Mnohoúhelníky PŘÍKLAD 4.2. Kolik úhlopříček má n úhelník? Vyřešte nejprve pro Obrázek 28: Tangram
4.5 Mnohoúhelníky Obrázek 28: Tangram Mnohoúhelník můžeme charakterizovat jako část roviny ohraničenou uzavřenou lomenou čarou (tj. čarou, která se skládá z na sebe navazujících úseček). Již víme, že rozlišujeme
Magické čtverce. Tomáš Roskovec. Úvod
Magické čtverce Tomáš Roskovec Úvod Magické čtverce patří k dávným matematickým hrátkám, které i přes dvoutisíciletou historii dodnes nejsou zcela prozkoumány. Během přednášky se budeme zabývat nejprve
Miranda Lundyová Posvátná čísla Tajné kvality kvantit
Miranda Lundyová Posvátná čísla Tajné kvality kvantit Copyright 2005, 2006 by Miranda Lundy Wooden Books Limited, 2006 Published by Arrangement with Alexian Limited. Translation Stanislav Pavlíček, 2011,
Svobodná chebská škola, základní škola a gymnázium s.r.o. pochopení roviny, jejích částí a vztahů mezi nimi. Úhel ostrý a tupý
METODICKÝ LIST DA49 Název tématu: Autor: Předmět: Ročník: Metody výuky: Formy výuky: Cíl výuky: Získané dovednosti: Stručný obsah: Úhly I. typy úhlů Astaloš Dušan Matematika šestý fixační, frontální, individuální
Trojúhelník a čtyřúhelník výpočet jejich obsahu, konstrukční úlohy
5 Trojúhelník a čtyřúhelník výpočet jejich obsahu, konstrukční úlohy Trojúhelník: Trojúhelník je definován jako průnik tří polorovin. Pojmy: ABC - vrcholy trojúhelníku abc - strany trojúhelníku ( a+b>c,
v z t sin ψ = Po úpravě dostaneme: sin ψ = v z v p v p v p 0 sin ϕ 1, 0 < v z sin ϕ < 1.
Řešení S-I-4-1 Hledáme vlastně místo, kde se setkají. A to tak, aby nemusel pes na zajíce čekat nebo ho dohánět. X...místo setkání P...místo, kde vybíhá pes Z...místo, kde vybíhá zajíc ZX = v z t P X =
CVIČNÝ TEST 41. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 7 III. Klíč 15 IV. Záznamový list 17
CVIČNÝ TEST 41 Mgr. Tomáš Kotler OBSAH I. Cvičný test 2 II. Autorské řešení 7 III. Klíč 15 IV. Záznamový list 17 I. CVIČNÝ TEST VÝCHOZÍ TEXT A OBRÁZEK K ÚLOZE 1 Je dán magický čtverec, pro nějž platí,
7.2.1 Vektory. Předpoklady: 7104
7..1 Vektory Předpoklady: 7104 Některé fyzikální veličiny (například rychlost, síla) mají dvě charakteristiky: velikost, směr. Jak je znázornit? Jedno číslo (jako například pro hmotnost m = 55kg ) nestačí.
CVIČNÝ TEST 35. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17
CVIČNÝ TEST 35 Mgr. Tomáš Kotler OBSAH I. Cvičný test II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17 I. CVIČNÝ TEST 1 Vypočtěte [( 3 3 ) ( 1 4 5 3 0,5 ) ] : 1 6 1. 1 bod VÝCHOZÍ TEXT K ÚLOZE
Gergelitsová, Holan: Zlatý řez pravítkem a kružítkem
Šárka Gergelitsová, Tomáš Holan Zlatý øez kružítkem a pravítkem Praha 2015 Šárka Gergelitsová, Tomáš Holan Zlatý øez kružítkem a pravítkem Bez pøedchozího písemného svolení nakladatelství nesmí být kterákoli
Svobodná chebská škola, základní škola a gymnázium s.r.o. Trojúhelník III. konstrukce trojúhelníku. Astaloš Dušan. frontální, fixační
METODICKÝ LIST DA35 Název tématu: Autor: Předmět: Ročník: Metody výuky: Formy výuky: Cíl výuky: Získané dovednosti: Stručný obsah: Trojúhelník III. konstrukce trojúhelníku Astaloš Dušan Matematika šestý
Robin Heath Slunce, Měsíc a Země
Robin Heath Slunce, Měsíc a Země Copyright 1999, 2006 by Robin Heath Wooden Books Limited 2006 Published by Arrangement with Alexian Limited. Translation Jan Švábenický, 2015 Designed and typeset by Wooden
MATEMATIKA. Problémy a úlohy, v nichž podrobujeme geometrický objekt nějaké transformaci
MATEMATIKA Úloha o čtverci a přímkách ŠÁRKA GERGELITSOVÁ TOMÁŠ HOLAN Matematicko-fyzikální fakulta UK, Praha Problémy a úlohy, v nichž podrobujeme geometrický objekt nějaké transformaci (například podobnosti)
Vlasta Moravcová. Matematicko-fyzikální fakulta & Nad Ohradou 23 Univerzita Karlova v Praze Praha 3. Letní škola geometrie 2018,
KONSTRUKČNÍ ÚLOHY Katedra didaktiky matematiky Gymnázium Na Pražačce Matematicko-fyzikální fakulta & Nad Ohradou 23 Univerzita Karlova v Praze Praha 3 Letní škola geometrie 2018, 4. července 2018, Česká
Programování v jazyku LOGO - úvod
Programování v jazyku LOGO - úvod Programovací jazyk LOGO je určen pro výuku algoritmizace především pro děti školou povinné. Programovací jazyk pracuje v grafickém prostředí, přičemž jednou z jeho podstatných
Mgr. Tomáš Kotler. I. Cvičný test 2 II. Autorské řešení 7 III. Klíč 15 IV. Záznamový list 17
Mgr. Tomáš Kotler I. Cvičný test 2 II. Autorské řešení 7 III. Klíč 15 IV. Záznamový list 17 VÝCHOZÍ TEXT A OBRÁZEK K ÚLOZE 1 Je dán rovinný obrazec, v obrázku vyznačený barevnou výplní, který představuje
Použité zdroje a odkazy: Nápověda Corel Draw X6, J. Švercl: Technické kreslení a deskriptivní geometrie pro školu a praxi
Označení materiálu: Autor: Mgr. Ludmila Krčmářová VY_32_INOVACE_PoGra1709 Tematický celek: Corel DrawX6 Učivo (téma): Kótování v Corel Draw Stručná Charakteristika: Využití nástrojů CD vhodných na kótování
CVIČNÝ TEST 36. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17
CVIČNÝ TEST 36 Mgr. Tomáš Kotler OBSAH I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17 I. CVIČNÝ TEST 1 Určete iracionální číslo, které je vyjádřeno číselným výrazem (6 2 π 4
MATEMATIKA - 4. ROČNÍK
VZDĚLÁVACÍ OBLAST: VZDĚLÁVACÍ OBOR: PŘEDMĚT: MATEMATIKA A JEJÍ APLIKACE MATEMATIKA MATEMATIKA - 4. ROČNÍK Téma, učivo Rozvíjené kompetence, očekávané výstupy Mezipředmětové vztahy Poznámky Opakování ze
CVIČNÝ TEST 37. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 5 III. Klíč 13 IV. Záznamový list 15
CVIČNÝ TEST 37 Mgr. Tomáš Kotler OBSAH I. Cvičný test 2 II. Autorské řešení 5 III. Klíč 13 IV. Záznamový list 15 I. CVIČNÝ TEST VÝCHOZÍ TEXT A OBRÁZEK K ÚLOZE 1 Na staré hliněné desce je namalován čtverec
Maturitní otázky z předmětu MATEMATIKA
Wichterlovo gymnázium, Ostrava-Poruba, příspěvková organizace Maturitní otázky z předmětu MATEMATIKA 1. Výrazy a jejich úpravy vzorce (a+b)2,(a+b)3,a2-b2,a3+b3, dělení mnohočlenů, mocniny, odmocniny, vlastnosti
Trojúhelníky. a jejich různé středy. Součet vnitřních úhlů trojúhelníku = 180 neboli π radiánů.
Úvod V této knize předkládáme čtenáři základní matematické a fyzikální vzorce v přívětivé a snadno použitelné podobě. Využití čísel a symbolů k modelování, předpovídání a ovládání reality je mocnou zbraní
Zlatý řez nejen v matematice
Zlatý řez nejen v matematice Zlaté číslo a jeho vlastnosti In: Vlasta Chmelíková author): Zlatý řez nejen v matematice Czech) Praha: Katedra didaktiky matematiky MFF UK, 009 pp 7 Persistent URL: http://dmlcz/dmlcz/40079
ROČNÍKOVÁ PRÁCE PRAVIDELNÝ DVACETISTĚN
Gymnázium Christiana Dopplera, Zborovská 45, Praha 5 ROČNÍKOVÁ PRÁCE PRAVIDELNÝ DVACETISTĚN Vypracovala: Zuzana Dykastová Třída: 4. C Školní rok: 2013/2014 Seminář: Deskriptivní geometrie Prohlašuji, že
ICT podporuje moderní způsoby výuky CZ.1.07/1.5.00/ Matematika planimetrie. Mgr. Tomáš Novotný
Název projektu ICT podporuje moderní způsoby výuky Číslo projektu CZ.1.07/1.5.00/34.0717 Název školy Gymnázium, Turnov, Jana Palacha 804, přísp. organizace Číslo a název šablony klíčové aktivity IV/2 Inovace
ZŠ ÚnO, Bratří Čapků 1332
Úvodní obrazovka Menu Návrat na hlavní stránku Obsah Výsledky Poznámky Záložky edunet Konec Matematika 1 (pro 9-12 let) LangMaster Obsah (střední část) výběr tématu - dvojklikem v seznamu témat (horní
Nápovědy k numerickému myšlení TSP MU
Nápovědy k numerickému myšlení TSP MU Numerické myšlení 2011/var. 01 26. Ciferné součty čísel v každém z kruhů mají tutéž hodnotu. Pozor, hledáme číslo, které se nehodí na místo otazníku. Jedná se o dvě
P L A N I M E T R I E
M T E M T I K P L N I M E T R I E rovinná geometrie Základní planimetrické pojmy od - značí se velkými tiskacími písmeny, např.,,. P, Q. Přímka - značí se malými písmeny, např. a, b, p, q nebo pomocí bodů
PLANIMETRIE 2 mnohoúhelníky, kružnice a kruh
PLANIMETRIE 2 mnohoúhelníky, kružnice a kruh Lomená čára A 0 A 1 A 2 A 3..., A n (n 2) se skládá z úseček A 0 A 1, A 1 A 2, A 2 A 3,..., A n 1 A n, z nichž každé dvě sousední mají společný jeden krajní
Gymnázium Jiřího Ortena, Kutná Hora
Předmět: Cvičení z matematiky Náplň: Systematizace a prohloubení učiva matematiky Třída: 4. ročník Počet hodin: 2 Pomůcky: Učebna s dataprojektorem, PC, grafický program, tabulkový procesor Číselné obory
Každá kružnice má střed, označuje se S. Všechny body kružnice mají od středu S stejnou vzdálenost, říká se jí poloměr kružnice a označujeme ho r.
Každá kružnice má střed, označuje se S. Všechny body kružnice mají od středu S stejnou vzdálenost, říká se jí poloměr kružnice a označujeme ho r. Kružnice k je množina všech bodů v rovině, které mají od
Systematizace a prohloubení učiva matematiky. Učebna s dataprojektorem, PC, grafický program, tabulkový procesor. Gymnázium Jiřího Ortena, Kutná Hora
Předmět: Náplň: Třída: Počet hodin: Pomůcky: Cvičení z matematiky Systematizace a prohloubení učiva matematiky 4. ročník 2 hodiny Učebna s dataprojektorem, PC, grafický program, tabulkový procesor Číselné
Téma 5: PLANIMETRIE (úhly, vlastnosti rovinných útvarů, obsahy a obvody rovinných útvarů) Úhly 1) Jaká je velikost úhlu? a) 60 b) 80 c) 40 d) 30
Téma 5: PLANIMETRIE (úhly, vlastnosti rovinných útvarů, obsahy a obvody rovinných útvarů) Úhly 1) Jaká je velikost úhlu? a) 60 b) 80 c) 40 d) 30 2) Vypočtěte velikost úhlu : a) 150 10 b) 149 22 c) 151
SOUBOR OTÁZEK. 5. ročník
SOUBOR OTÁZEK 5. ročník 2016 Mezinárodní matematická soutěž Pangea v Evropě Název země Počet registrovaných účastníků Název země Počet registrovaných účastníků 1 Německo 147 000 10 Dánsko 5 068 2 Polsko
ZŠ ÚnO, Bratří Čapků 1332
Úvodní obrazovka Menu Návrat na hlavní stránku Obsah Výsledky Poznámky Záložky edunet Konec Matematika 2 (pro 9-12 let) LangMaster Obsah (střední část) výběr tématu - dvojklikem v seznamu témat (horní
Copyright 2013 Martin Kaňka; http://dalest.kenynet.cz
Copyright 2013 Martin Kaňka; http://dalest.kenynet.cz Popis aplikace Tato aplikace je koncipována jako hra, může být použita k demonstraci důkazu. Může žáky učit, jak manipulovat s dynamickými objekty,
Témata absolventského klání z matematiky :
Témata absolventského klání z matematiky : 1.Dělitelnost přirozených čísel - násobek a dělitel - společný násobek - nejmenší společný násobek (n) - znaky dělitelnosti 2, 3, 4, 5, 6, 8, 9,10 - společný
Přednáška č. 2 Morfologická krystalografie. Krystalové osy a osní kříže, Millerovy symboly, stereografická projekce, Hermann-Mauguinovy symboly
Přednáška č. 2 Morfologická krystalografie Krystalové osy a osní kříže, Millerovy symboly, stereografická projekce, Hermann-Mauguinovy symboly Morfologická krystalografie Krystalové soustavy Krystalové
Odvození středové rovnice kružnice se středem S [m; n] a o poloměru r. Bod X ležící na kružnici má souřadnice [x; y].
Konzultace č. 6: Rovnice kružnice, poloha přímky a kružnice Literatura: Matematika pro gymnázia: Analytická geometrie, kap. 5.1 a 5. Sbírka úloh z matematiky pro SOŠ a studijní obory SOU. část, kap. 6.1
Těleso racionálních funkcí
Těleso racionálních funkcí Poznámka. V minulém semestru jsme libovolnému oboru integrity sestrojili podílové těleso. Pro libovolné těleso R je okruh polynomů R[x] oborem integrity, máme tedy podílové těleso
Matematika. 8. ročník. Číslo a proměnná druhá mocnina a odmocnina (využití LEGO EV3) mocniny s přirozeným mocnitelem. výrazy s proměnnou
list 1 / 7 M časová dotace: 4 hod / týden Matematika 8. ročník M 9 1 01 provádí početní operace v oboru celých a racionálních čísel; užívá ve výpočtech druhou mocninu a odmocninu Číslo a proměnná druhá
Omezíme se jen na lomené čáry, jejichž nesousední strany nemají společný bod. Jestliže A 0 = A n (pro n 2), nazývá se lomená čára uzavřená.
MNOHOÚHELNÍKY Vlastnosti mnohoúhelníků Lomená čára C 0 C C C 3 C 4 protíná samu sebe. Lomená čára A 0 A A... A n- A n (n ) se skládá z úseček A 0 A, A A,..., A n- A n, z nichž každé dvě sousední mají společný
Matice v matice a Fibonacciova posloupnost
Letní škola matematiky a fyziky 18 1 Matice v matice a Fibonacciova posloupnost Hana Turčinová 1 Matice bez šroubů Slovo matice je v českém jazyce takzvané homonymum - má různé významy Běžný smrtelník
Úlohy krajského kola kategorie A
64. ročník matematické olympiády Úlohy krajského kola kategorie A 1. Je dán trojúhelník ABC s tupým úhlem při vrcholu C. Osa o 1 úsečky AC protíná stranu AB v bodě K, osa o 2 úsečky BC protíná stranu AB
Magická krása pravidelného pětiúhelníka
MUNDUS SYMBOLICUS 25 (2017) Magická krása pravidelného pětiúhelníka J. Nečas Abstract. The article presents various interesting relations in a regular pentagon and then expresses the values of goniometric
2.1 Pokyny k otevřeným úlohám. Výsledky pište čitelně do vyznačených bílých polí. 2.2 Pokyny k uzavřeným úlohám
MATEMATIKA+ DIDAKTICKÝ TEST Maximální bodové hodnocení: 50 bodů Hranice úspěšnosti: 33 % 1 Základní informace k zadání zkoušky Didaktický test obsahuje 23 úloh. Časový limit pro řešení didaktického testu
Křivky kolem nás. Webinář. 20. dubna 2016
Křivky kolem nás Webinář 20. dubna 2016 Přístup k funkcím Funkce (zobrazení) Předpis, který přiřazuje jedné hodnotě x hodnotu y = f (x). Je to množina F uspořádaných dvojic (x, y) takových, že pokud (x,
64. ročník matematické olympiády Řešení úloh krajského kola kategorie A
64. ročník matematické olympiády Řešení úloh krajského kola kategorie A 1. Středy stran AC, BC označme postupně, N. Střed kružnice vepsané trojúhelníku KLC označme I. Úvodem poznamenejme, že body K, L
Seriál II.II Vektory. Výfučtení: Vektory
Výfučtení: Vektory Abychom zcela vyjádřili veličiny jako hmotnost, teplo či náboj, stačí nám k tomu jediné číslo (s příslušnou jednotkou). Říkáme jim skalární veličiny. Běžně se však setkáváme i s veličinami,
Extremální úlohy v geometrii
Extremální úlohy v geometrii Petr Vodstrčil petr.vodstrcil@vsb.cz Katedra aplikované matematiky, Fakulta elektrotechniky a informatiky, Vysoká škola báňská Technická univerzita Ostrava 30.4. 2013 Petr
Matematický KLOKAN kategorie Junior
Matematický KLOKN 2008 kategorie Junior Úlohy za 3 body 1. Vkrabicích byly uloženy některé z karet označených,, I, O, U, jak ukazuje obrázek. Petr odebíral z každé krabice karty tak, aby na konci zbyla
Metodika. doc. RNDr. Oldřich Odvárko, DrSc. -
Pořadové číslo III-2-M-III- 1-8.r. III-2-M-III- 2-8.r. Název materiálu ČTYŘÚHELNÍKY A JEJICH VLASTNOSTI ROVNOBĚŽNÍKY Autor Použitá literatura a zdroje 2003. ISBN 80-7196-129-9. ISBN 978-80-7358-083-4.
POSLOUPNOSTI A ŘADY INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ. Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky
POSLOUPNOSTI A ŘADY Gymnázium Jiřího Wolkera v Prostějově Výukové materiály z matematiky pro vyšší gymnázia Autoři projektu Student na prahu 21. století - využití ICT ve vyučování matematiky na gymnáziu
DĚJINY MATEMATIKY tematické okruhy ke zkoušce
DĚJINY MATEMATIKY tematické okruhy ke zkoušce ZIMNÍ SEMESTR Pythagorejská matematika: Pýthagorova věta. Formulace. Školský důkaz, Eukleidův důkaz. Pýthagorejské trojice. Definice, popis všech pýthagorejských
Svobodná chebská škola, základní škola a gymnázium s.r.o. pochopení konstrukce kvádr a jejích součástí. Konstrukce kvádru
METODICKÝ LIST DA58 Název tématu: Autor: Předmět: Ročník: Metody výuky: Formy výuky: Cíl výuky: Získané dovednosti: Stručný obsah: Prostorová tělesa II. - kvádr Astaloš Dušan Matematika šestý frontální,
1.1 Základní pojmy prostorové geometrie. Předmětem studia prostorové geometrie je prostor, jehož prvky jsou body. Další
Kapitola 1 Planimetrie a stereometrie Doplňky ke středoškolské látce 1.1 Základní pojmy prostorové geometrie 1.1.1 Axiomy Předmětem studia prostorové geometrie je prostor, jehož prvky jsou body. Další
Maticí typu (m, n), kde m, n jsou přirozená čísla, se rozumí soubor mn veličin a jk zapsaných do m řádků a n sloupců tvaru:
3 Maticový počet 3.1 Zavedení pojmu matice Maticí typu (m, n, kde m, n jsou přirozená čísla, se rozumí soubor mn veličin a jk zapsaných do m řádků a n sloupců tvaru: a 11 a 12... a 1k... a 1n a 21 a 22...
POSLOUPNOSTI A ŘADY INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ
POSLOUPNOSTI A ŘADY Gymnázium Jiřího Wolkera v Prostějově Výukové materiály z matematiky pro vyšší gymnázia Autoři projektu Student na prahu 21. století - využití ICT ve vyučování matematiky na gymnáziu
Maturitní témata od 2013
1 Maturitní témata od 2013 1. Úvod do matematické logiky 2. Množiny a operace s nimi, číselné obory 3. Algebraické výrazy, výrazy s mocninami a odmocninami 4. Lineární rovnice a nerovnice a jejich soustavy
Mgr. Ladislav Zemánek Maturitní okruhy Matematika 2013-2014. 1. Obor reálných čísel
Mgr. Ladislav Zemánek Maturitní okruhy Matematika 2013-2014 1. Obor reálných čísel - obor přirozených, celých, racionálních a reálných čísel - vlastnosti operací (sčítání, odčítání, násobení, dělení) -
GYMNÁZIUM CHEB SEMINÁRNÍ PRÁCE
GYMNÁZIUM CHEB SEMINÁRNÍ PRÁCE Pravidelná tělesa Cheb, 2006 Lukáš Louda,7.B 0 Prohlášení Prohlašuji, že jsem seminární práci na téma: Pravidelná tělesa vypracoval zcela sám za použití pramenů uvedených
4.2.4 Orientovaný úhel I
44 Orientovaný úhel I Předpoklady: 3508 Definice úhlu ze základní školy: Úhel je část roviny ohraničená dvojicí polopřímek se společným počátečním bodem (konvexní a nekonvexní úhel) Nevýhody této definice:
Obsahy. Trojúhelník = + + 2
Obsahy Obsah nám říká, jak velkou plochu daný útvar zaujímá. Třeba jak velký máme byt nebo pozemek kolik metrů čtverečných (m 2 ), hektarů (ha), centimetrů čtverečných (cm 2 ), Základní jednotkou obsahu
3 Geometrie ve škole. krychle a její obrázek, koule a její stín, průměty trojrozměrného útvaru do roviny
3 Geometrie ve škole Geometrie by měla být od samého začátku orientována na poznávání prostoru, v němž žák žije, a na rozvíjení představivosti. Základem zde mohou být zkušenosti s dělením prostoru, s vyplňováním
Úlohy domácí části I. kola kategorie C
6. ročník Matematické olympiády Úlohy domácí části I. kola kategorie C 1. Určete všechny dvojice (x, y) reálných čísel, která vyhovují soustavě rovnic (x + )2 = y, (y )2 = x + 8. Řešení. Vzhledem k tomu,
Předpokládané znalosti žáka 1. stupeň:
Předpokládané znalosti žáka 1. stupeň: ČÍSLO A POČETNÍ OPERACE používá přirozená čísla k modelování reálných situací, počítá předměty v daném souboru, vytváří soubory s daným počtem prvků čte, zapisuje
Mgr. Tomáš Kotler. I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17
Mgr. Tomáš Kotler I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17 VÝCHOZÍ TEXT A OBRÁZEK K ÚLOZE 1 Na bájný zikkurat tvaru komolého kolmého jehlanu s větší podstavou u země vede
Eukleidés. Leonardo Pisánský
Dělení obrazců Eukleidés Leonardo Pisánský 3. stol. př. n. l. Eukleidés: O dělení obrazců 1220 Leonardo Pisánský Fibonacci: Practica geometriae (část čtvrtá) 3. století př. n. l. Eukleidés: O dělení obrazců
Projekt OPVK - CZ.1.07/1.1.00/ Matematika pro všechny. Univerzita Palackého v Olomouci
Projekt OPVK - CZ.1.07/1.1.00/26.0047 Matematika pro všechny Univerzita Palackého v Olomouci Tematický okruh: Geometrie Různé metody řešení Téma: Analytická geometrie v prostoru, vektory, přímky Autor:
s dosud sestrojenými přímkami a kružnicemi. Abychom obrázky nezaplnili
Dělení úsečky ŠÁRKA GRGLITSOVÁ TOMÁŠ HOLAN Matematicko-fyzikální fakulta UK, Praha V tomto článku se budeme zabývat sadou geometrických úloh, které jsou tematicky podobné. Liší se jen hodnotou jednoho
volitelný předmět ročník zodpovídá PŘÍPRAVA NA PŘIJÍMACÍ ZKOUŠKY Z MATEMATIKY 9. MACASOVÁ
Výstupy žáka ZŠ Chrudim, U Stadionu Učivo obsah Mezipředmětové vztahy Metody + formy práce, projekty, pomůcky a učební materiály ad. Poznámky provádí operace s celými čísly (sčítání, odčítání, násobení
Pravidelný dvanáctistěn
Gymnázium Christiana Dopplera, Zborovská 45, Praha 5 ROČNÍKOVÁ PRÁCE Pravidelný dvanáctistěn Vypracoval: Miroslav Reinhold Třída: 4. C Školní rok: 2011/2012 Seminář: Deskriptivní geometrie Prohlašuji,
M - 2. stupeň. Matematika a její aplikace Školní výstupy Žák by měl
6. ročník číst, zapisovat, porovnávat, zaokrouhlovat, rozkládat přirozená čísla do 10 000 provádět odhady výpočtů celá čísla - obor přirozených čísel do 10 000 numerace do 10 000 čtení, zápis, porovnávání,
Přijímací zkouška na MFF UK v Praze
Přijímací zkouška na MFF UK v Praze pro bakalářské studijní programy fyzika, informatika a matematika 2016, varianta A U každé z deseti úloh je nabízeno pět odpovědí: a, b, c, d, e. Vaším úkolem je u každé
ROČNÍK 1. ročník Vzdělávací oblast Matematika a její aplikace Vzdělávací obor Matematika a její aplikace Název předmětu Matematika Očekávané výstupy
ROČNÍK 1. ročník Vzdělávací oblast Vzdělávací obor Název předmětu Matematika ČÍSLO A POČETNÍ OPERACE čte a zapisuje, znázorňuje na číselné ose, obor přirozených čísel do 20 OSV1 porovnává, užívá vztah
Maturitní témata z matematiky
Maturitní témata z matematiky G y m n á z i u m J i h l a v a Výroky, množiny jednoduché výroky, pravdivostní hodnoty výroků, negace operace s výroky, složené výroky, tabulky pravdivostních hodnot důkazy
Ludolfovo číslo přepočítá z diskrétního do Euklidova prostoru - 1
Ludolfovo číslo přepočítá z diskrétního do Euklidova prostoru - 1 Bohumír Tichánek 7 Práce zdůvodňuje způsob využití Ludolfova čísla při převodu bodu, a to z diskrétního do Euklidova prostoru. Tím se bod