n =5, potom hledejte obecný vztah. 4.5 Mnohoúhelníky PŘÍKLAD 4.2. Kolik úhlopříček má n úhelník? Vyřešte nejprve pro Obrázek 28: Tangram
|
|
- Daniela Vaňková
- před 6 lety
- Počet zobrazení:
Transkript
1 4.5 Mnohoúhelníky Obrázek 28: Tangram Mnohoúhelník můžeme charakterizovat jako část roviny ohraničenou uzavřenou lomenou čarou (tj. čarou, která se skládá z na sebe navazujících úseček). Již víme, že rozlišujeme konvexní a nekonvexní mnohoúhelníky, viz str. 17. Obrázek 29: Mnohoúhelník, konkrétně konvexní 7-úhelník Mnohoúhelník s n vrcholy nazýváme n úhelník. Rozlišujeme u něj vrcholy (viz Obr. 29, body A, B, C, D, E, F, G), strany (a, b, c, d, e, f, g), vnitřní a vnější body (viz např body H, I, v daném pořadí), úhlopříčky (viz např. h, i, j) avnitřní úhly (viz např. α, β). PŘÍKLAD 4.2. Kolik úhlopříček má n úhelník? Vyřešte nejprve pro n =5, potom hledejte obecný vztah. 22
2 Poznámka. Nezapomínejme na to, že pojmem mnohoúhelník rozumíme rovinný útvar, jehož vrcholy (strany) leží v jedné rovině. To samozřejmě platí i pro speciální mnohoúhelníky, jako je čtverec, obdélník, pravidelný n úhelník apod. Pokud neleží všechny vrcholy n úhelníku v rovině, hovoříme o prostorovém n úhelníku, viz Obr. 30. Obrázek 30: Prostorové čtyřúhelníky tvoří základ systému zastřešení autobusového nádraží v Českých Budějovicích (plochy, které je vyplňují se nazývají hyperbolické paraboloidy). (Fotografie byla pořízena s laskavým svolením Správy Mercury centra) 4.6 Trojúhelník Trojúhelník je mnohoúhelník se třemi vrcholy. Patří do něj i vnitřní body. Definujeme ho tedy jako průnik tří polorovin, na Obr. 31, kde vidíme trojúhelník ABC, se jedná o poloroviny ABC, CAB, BCA. Všimněme si, že u trojúhelníku, ne rozdíl od obecného mnohoúhelníku na Obrázek 31: Trojúhelník ABC a jeho vznik průnikem tří polorovin 23
3 Obr. 29, značíme strany podle protilehlého vrcholu. Pokud není trojúhelník zdegenerován do úsečky, jeho vrcholy neleží v jedné přímce. O takových bodech říkáme, že jsou nekolineární. Naopak, body (nemusí být tři, může jich být více) ležící v jedné přímce nazýváme kolineární body. Obdobně se setkáme s pojmem komplanární, pro body ležící v jedné rovině. Trojúhelník je mezi obecnými mnohoúhelníky unikátní tím, že je jednoznačně určen svými stranami (známe jeho konstrukci podle věty sss 1 ). Pro ostatní mnohoúhelníky, pokud ovšem nepočítáme speciální typy jako je čtverec, obdélník, lichoběžník a pravidelný n-úhelník, toto neplatí, viz Obr. 32. Obrázek 32: Na rozdíl např. od čtyřúhelníku je trojúhelník jednoznačně určen svými stranami Obrázek 33: Součet dvou stran trojúhelníku musí být větší než strana třetí (trojúhelníková nerovnost Aby tři úsečky mohly být stranami trojúhelníku, musí splňovat trojúhelníkovou nerovnost, viz Obr. 33. Tato základní vlastnost trojúhelníku je zmíněna jako věta 10 na str. 9. Podle délek stran trojúhelníku rozlišujeme zvláštní typy trojúhelníků, jako jsou rovnostranné, rovnoramenné nebo pravoúhlé (jestliže délky stran 1 Věta sss patří mezi věty o shodnosti trojúhelníků, říká: Shodují-li se dva trojúhelníky ve všech třech stranách, jsou shodné. Dalšími větami o shodnosti trojúhelníků jsou: sus, usu a Ssu. 24
4 trojúhelníku splňují obrácenou větu k Pythagorově větě, viz věty 7 a 8 na str. 8, je to trojúhelník pravoúhlý). U libovolného trojúhelníku bychom měli umět rozeznat i sestrojit tyto prvky (viz Obr. 34): výšky (v a,v b,v c ), těžnice (t a,t b,t c ), osy stran (o a,o b,o c ), osy úhlů (o α,o β,o γ ), ortocentrum (průsečík výšek) (O), těžiště (T ), kružnice opsaná (k o ), kružnice vepsaná (k v, vnitřní úhly (α, β, γ), vnější úhly (α,β,γ a α,β,γ ). Obrázek 34: Prvky trojúhelníku ABC Součet velikostí vnitřních úhlů trojúhelníku je 180, tj. pro trojúhelník ABC na Obr. 34 platí α + β + γ = 180. Jednoduchý vizuální důkaz tohoto tvrzení, založený na rovnostech dvojice úhlů souhlasných a dvojice úhlů opačných pro rovnoběžné přímky, viz str. 20, je uveden na Obr
5 Obrázek 35: Součet velikostí vnitřních úhlů trojúhelníku je 180 Podle velikostí vnitřních úhlů rozlišujeme trojúhelníky ostroúhlé, pravoúhlé a tupoúhlé, klasifikace úhlů viz str. 18. PŘÍKLAD 4.3. Kolik ostrých, tupých či pravých vnitřních úhlů může mít trojúhelník? PŘÍKLAD 4.4. Jaký je vztah mezi vnějším úhlem trojúhelníku (např. α na Obr. 34) a jemu protilehlými vnitřními úhly (pro vnější úhel α na Obr. 34 to jsou úhly β a γ)? Úsečku, jejíž krajní body jsou středy dvou stran trojúhelníku nazýváme střední příčka. V trojúhelníku lze sestrojit tři střední příčky, viz s a,s b,s c na Obr. 36. Platí pro ně následující věta. Obrázek 36: Střední příčky s a,s b,s c trojúhelníku ABC 26
6 Věta 12 (Střední příčky trojúhelníku). Každá střední příčka trojúhelníku je rovnoběžná s jednou z jeho stran (s níž nemá společný bod) a její délka je rovna polovině délky této strany. PŘÍKLAD 4.5. Střední příčky rozdělují trojúhelník (viz např. ΔABC na Obr. 36) na čtyři menší trojúhelníky. Jaký je vztah těchto trojúhelníků mezi sebou a k ΔABC? Odpověď vám pomohou nalézt známé vztahy mezi úhly souhlasnými, resp. střídavými. Pokuste se zjištěné skutečnosti využít k důkazu věty 12. Eukleidovské konstrukce trojúhelníku Uvažujeme-li tyto prvky trojúhelníku: strany (a, b, c), vnitřní úhly (α, β, γ), výšky (v a,v b,v c ), těžnice (t a,t b,t c ), osy vnitřních úhlů (o α,o β,o γ ), poloměr kružnice opsané (r), poloměr kružnice vepsané (ρ), existuje 150 možností, jak třemi z nich trojúhelník ABC zadat, např. [a, b, c]; [a, α, v a ]; [o α,o β,o γ ]; [α, v b,t c ] apod. Přitom 98 z nich lze sestrojit eukleidovsky (užitím kružítka a pravítka), zbylých 52 nikoliv. Přehled řešení všech 98 úloh najde zájemce v publikaci [11]. Zkuste si některou z nich sestrojit, třeba tu následující, zadanou v příkladu 4.6. PŘÍKLAD 4.6. Sestrojte trojúhelník ABC, jsou-li dány jeho těžnice t a,t b,t c. 4.7 Čtyřúhelníky Čtyřúhelník je mnohoúhelník se čtyřmi vrcholy. Dále se budeme zabývat pouze konvexními čtyřúhelníky, jako je čtyřúhelník ABCD na Obr. 37. Součet velikostí vnitřních úhlů čtyřúhelníku je 360. Tj. pro čtyřúhelník ABCD na Obr. 37 platí α + β + γ + δ = 360. PŘÍKLAD 4.7. Dokažte výše uvedené tvrzení, že součet velikostí vnitřních úhlů čtyřúhelníku je
7 Obrázek 37: Čtyřúhelník konvexní ABCD a nekonvexní KLMN Čtyřúhelníky, kterým lze opsat kružnici nazýváme tětivové čtyřúhelníky, viz Obr. 38. Jejich unikátní vlastností je, že součet protilehlých úhlů je 180. Pokuste se tuto vlastnost dokázat. Obrázek 38: Tětivový čyřúhelník ABCD; α + γ = β + δ = 180 Čtyřúhelník, který je osově souměrný podle jedné z úhlopříček, nazýváme deltoid. Je zřejmé, že má úhlopříčky vzájemně kolmé a jeho strany jsou po dvojicích shodné. Dalšími speciálními typy čtyřúhelníků jsou obdélník (protější strany shodné, sousední strany různé, všechny úhly pravé), čtverec (všechny strany shodné a sousední vždy vzájemně kolmé) a lichoběžník (dvě protilehlé strany rovnoběžné, nazýváme je základny, zbývající dvě strany různoběžné, nazý- 28
8 váme je ramena). Pokud jsou ramena lichoběžníku shodná, nazýváme ho rovnoramenný lichoběžník. Čtyřúhelník, jehož protější strany jsou navzájem rovnoběžné, nazýváme rovnoběžník. Protější strany rovnoběžníku jsou stejně dlouhé. Rovnoběžníky, jejichž sousední strany nejsou k sobě kolmé, můžeme rozdělit na kosodélníky a kosočtverce. Pokud jsou sousední strany rovnoběžníku k sobě kolmé, jedná se o obdélník (sousední strany mají různé délky) nebo čtverec (všechny strany jsou stejně dlouhé). Obrázek 39: Deltoid (vlevo) a rovnoběžník (vpravo) Obrázek 40: Obdélník (vlevo) a kosodélník (vpravo) 29
9 Obrázek 41: Čtverec (vlevo) a kosočtverec (vpravo) Obrázek 42: Lichoběžník (vlevo), rovnoramenný lichoběžník (uprostřed) a pravoúhlý lichoběžník (vpravo) Obrázek 43: Varignonova věta Pro libovolný čtyřúhelník platí následující věta pojmenovaná po francouzském matematikovi Pierru Varignonovi ( ). Věta 13 (Varignonova věta). Středy stran libovolného čtyřúhelníku tvoří rovnoběžník (jehož stranami jsou střední příčky rovnoběžníku), viz Obr. 43. PŘÍKLAD 4.8. Pokuste se větu 13 dokázat. Využijte při tom větu 12 o středních příčkách trojúhelníku. 30
10 4.8 Pravidelné mnohoúhelníky (n úhelníky) Obrázek 44: Jednoduchá dlažba pravidelné šestiúhelníky Pravidelným mnohoúhelníkem (též pravidelným n úhelníkem) rozumíme mnohoúhelník, který má všechny strany a všechny úhly shodné. Pravidelnému mnohoúhelníku lze opsat i vepsat kružnici. Tyto kružnice jsou soustředné a jejich střed nazýváme středem (pravidelného) mnohoúhelníku. PŘÍKLAD 4.9. Pravidelný n úhelník má všechny vnitřní úhly stejně velké. Jak závisí jejich velikost na n, tj. na počtu vrcholů n úhelníku? Odvoďte obecný vztah vyjadřující závislost vnitřního úhlu α na n. Na Obr. 44 vidíme dlažbu z pravidelných šestiúhelníků. Vidíme, že tyto dlaždice lze uspořádat tak, aby souvisle pokryly celou rovinu (Proč?). Nabízí se tak otázka, jakýmipravidelnými n úhelníky jednoho druhu můžeme takto pokrýt rovinu. Odpovědí je, že to jde těmito n úhelníky: rovnostranným trojúhelníkem, čtvercem a pravidelným šestiúhelníkem. Proč to nejde pro jiné pravidelné n úhelníky? Pro pravidelný pětiúhelník vidíme odpověď na Obr. 45. Zlatý řez v pravidelném pětiúhelníku Poměr délky úhlopříčky u a strany a pravidelného pětiúhelníku je roven u a = , viz Obr. 46. Tento poměr, který se tradičně označuje 2 31
11 Obrázek 45: Kombinovaná dlažba pravidelné pětiúhelníky a kosočtverce Obrázek 46: Zlatý řez v pravidelném pětiúhelníku písmenem φ, nazýváme zlatý řez. Pro svoji estetickou působivost je poměr zlatého řezu také označován jako poměr oku lahodící. Pro jeho slovní definici si představme úsečku délky x + y, kterou rozdělíme na dvě nestejné části, větší x amenšíy. Úsečka je jimi rozdělena v poměru zlatého řezu φ, jestliže poměr větší z nich ku menší je roven poměru celé úsečky ku větší části, tj. x y = x + y ( ) 2 x. Po úpravě dostaneme x y x y 1=0,odkud vychází x y =
Obrázek 13: Plán starověké Alexandrie,
4 Geometrické útvary v rovině Obrázek 13: Plán starověké Alexandrie, https://commons.wikimedia.org Jestliže rovinu chápeme jako množinu bodů, potom uvažované geometrické útvary jsou jejími podmnožinami.
5. P L A N I M E T R I E
5. P L A N I M E T R I E 5.1 Z Á K L A D N Í P L A N I M E T R I C K É P O J M Y Bod (definice, značení, znázornění) Přímka (definice, značení, znázornění) Polopřímka (definice, značení, znázornění, počáteční
Omezíme se jen na lomené čáry, jejichž nesousední strany nemají společný bod. Jestliže A 0 = A n (pro n 2), nazývá se lomená čára uzavřená.
MNOHOÚHELNÍKY Vlastnosti mnohoúhelníků Lomená čára C 0 C C C 3 C 4 protíná samu sebe. Lomená čára A 0 A A... A n- A n (n ) se skládá z úseček A 0 A, A A,..., A n- A n, z nichž každé dvě sousední mají společný
PLANIMETRIE 2 mnohoúhelníky, kružnice a kruh
PLANIMETRIE 2 mnohoúhelníky, kružnice a kruh Lomená čára A 0 A 1 A 2 A 3..., A n (n 2) se skládá z úseček A 0 A 1, A 1 A 2, A 2 A 3,..., A n 1 A n, z nichž každé dvě sousední mají společný jeden krajní
TROJÚHELNÍK 180. Definice. C neleží v přímce. Potom trojúhelníkem ABC nazveme průnik polorovin ABC, BCA, Nechť body. Viz příloha: obecny_trojuhelnik
TROJÚHELNÍK Definice Nechť body A, B, C neleží v přímce. Potom trojúhelníkem ABC nazveme průnik polorovin ABC, BCA, CAB. Viz příloha: obecny_trojuhelnik Definice trojúhelníku Uzavřená, jednoduchá (neprotínající
Syntetická geometrie II
Mnohoúhelníky Pedagogická fakulta 2018 www.karlin.mff.cuni.cz/~zamboj/ Čtyřúhelníky Definice (Čtyřúhelník) Jsou dány čtyři body A, B, C, D v rovině, z nichž žádné tři nejsou kolineární. Čtyřúhelník ABCD
Různostranný (obecný) žádné dvě strany nejsou stějně dlouhé. Rovnoramenný dvě strany (ramena) jsou stejně dlouhé, třetí strana je základna
16. Trojúhelník, Mnohoúhelník, Kružnice (typy trojúhelníků a jejich vlastnosti, Pythagorova věta, Euklidovy věty, čtyřúhelníky druhy a jejich vlastnosti, kružnice obvodový a středový, úsekový úhel, vzájemná
Úsečka spojující sousední vrcholy se nazývá strana, spojnice nesousedních vrcholů je úhlopříčka mnohoúhelníku.
Mnohoúhelníky Je dáno n různých bodů A 1, A 2,. A n, z nichž žádné tři neleží na přímce. Geometrický útvar tvořený lomenou čarou a částí roviny touto čarou ohraničenou nazýváme n-úhelníkem A 1 A 2. A n.
Čtyřúhelník. O b s a h : Čtyřúhelník. 1. Jak definovat čtyřúhelník základní vlastnosti. 2. Názvy čtyřúhelníků Deltoid Tětivový čtyřúhelník
Čtyřúhelník : 1. Jak definovat čtyřúhelník základní vlastnosti 2. Názvy čtyřúhelníků 2.1. Deltoid 2.2. Tětivový čtyřúhelník 2.3. Tečnový čtyřúhelník 2.4. Rovnoběžník 2.4.1. Základní vlastnosti 2.4.2. Výšky
Rozpis výstupů zima 2008 Geometrie
Rozpis výstupů zima 2008 Geometrie 20. 10. porovnávání úseček grafický součet úseček grafický rozdíl úseček... porovnávání úhlů grafický součet úhlů grafický rozdíl úhlů... osa úhlu úhly vedlejší a vrcholové...
PLANIMETRIE úvodní pojmy
PLANIMETRIE úvodní pojmy Je část geometrie zabývající se studiem geometrických útvarů v rovině. Základními stavebními kameny v rovině budou bod a přímka. 1) Přímka a její části Dvěma různými body lze vést
Opakování ZŠ - Matematika - část geometrie - konstrukce
Opakování ZŠ - Matematika - část geometrie - konstrukce Základní útvary v rovině Bod je nejzákladnější geometrický pojem. Body zapisujeme písmeny velké abecedy: A, B, N, H, Přímka Přímky zapisujeme písmeny
February 05, Čtyřúhelníky lichoběžníky.notebook. 1. Vzdělávací oblast: Matematika a její aplikace
Registrační číslo projektu: Název projektu: Název a číslo globálního grantu: CZ.1.07/1.1.12/02.0010 Šumavská škola = evropská škola Zvyšování kvality ve vzdělání v Plzeňském kraji CZ.1.07/1.1.12 Název
1. Planimetrie - geometrické útvary v rovině
1. Planimetrie - geometrické útvary v rovině 1. Základní pojmy Body průsečíky čar, značí se velkými tiskacími písmeny A = B bod A je totožný (splývá) s bodem B A B různé body A, B Přímka je dána dvěma
Klíčová slova: Phytagorova věta, obsahy a obvody rovinných útvarů, úhlopříčky a jejich vlastnosti, úhly v rovinných útvarech, převody jednotek
Přípravný kurz - Matematika Téma: Výpočtová geometrie v rovině Klíčová slova: Phytagorova věta, obsahy a obvody rovinných útvarů, úhlopříčky a jejich vlastnosti, úhly v rovinných útvarech, převody jednotek
Klíčová slova: Phytagorova věta, obsahy a obvody rovinných útvarů, úhlopříčky a jejich vlastnosti, úhly v rovinných útvarech, převody jednotek
Přípravný kurz - Matematika Téma: Výpočtová geometrie v rovině Klíčová slova: Phytagorova věta, obsahy a obvody rovinných útvarů, úhlopříčky a jejich vlastnosti, úhly v rovinných útvarech, převody jednotek
Klíčová slova: Phytagorova věta, obsahy a obvody rovinných útvarů, úhlopříčky a jejich vlastnosti, úhly v rovinných útvarech, převody jednotek
Přípravný kurz - Matematika Téma: Výpočtová geometrie v rovině Klíčová slova: Phytagorova věta, obsahy a obvody rovinných útvarů, úhlopříčky a jejich vlastnosti, úhly v rovinných útvarech, převody jednotek
Úvod. Cílová skupina: 2 Planimetrie
PLANIMETRIE, KONSTRUKČNÍ ÚLOHY V ROVINĚ Gymnázium Jiřího Wolkera v Prostějově Výukové materiály z matemati ky pro vyšší gymnázia Autoři projektu Student na prahu 21. století - využití ICT ve vyučování
Trojúhelník a čtyřúhelník výpočet jejich obsahu, konstrukční úlohy
5 Trojúhelník a čtyřúhelník výpočet jejich obsahu, konstrukční úlohy Trojúhelník: Trojúhelník je definován jako průnik tří polorovin. Pojmy: ABC - vrcholy trojúhelníku abc - strany trojúhelníku ( a+b>c,
DIDAKTIKA MATEMATIKY
DIDAKTIKA MATEMATIKY GEOMETRIE PLANIMETRIE Úlohy k rozvoji geometrické představivosti Úlohy početní a důkazové Růžena Blažková, Irena Budínová Brno 2007 1 1. Základní pojmy 1. Zvolte si čtyři různé body
6 Planimetrie. 6.1 Trojúhelník. body A, B, C vrcholy trojúhelníku. vnitřní úhly BAC = α, ABC = β, BCA = γ. konvexní (menší než 180º)
6 Planimetrie Planimetrie = část matematiky, která se zabývá geometrií (původně věda o měřené země) v rovině (obrazce, jejich vlastnosti, shodnost a podobnost, zobrazení). 6.1 Trojúhelník Každé tři body,
PRACOVNÍ SEŠIT PLANIMETRIE. 6. tematický okruh: Připrav se na státní maturitní zkoušku z MATEMATIKY důkladně, z pohodlí domova a online.
Připrav se na státní maturitní zkoušku z MATEMATIKY důkladně, z pohodlí domova a online PRACOVNÍ SEŠIT 6. tematický okruh: PLANIMETRIE vytvořila: RNDr. Věra Effenberger expertka na online přípravu na SMZ
PLANIMETRIE, KONSTRUKČNÍ ÚLOHY V ROVINĚ
PLANIMETRIE, KONSTRUKČNÍ ÚLOHY V ROVINĚ Gymnázium Jiřího Wolkera v Prostějově Výukové materiály z matematiky pro vyšší gymnázia Autoři projektu Student na prahu 21. století - využití ICT ve vyučování matematiky
Konstrukční úlohy. Růžena Blažková, Irena Budínová. Milé studentky, milí studenti,
Konstrukční úlohy Růžena Blažková, Irena Budínová Milé studentky, milí studenti, zadání konstrukčních úloh si vylosujete v semináři nebo na přednášce, u každé konstrukční úlohy proveďte: - rozbor obsahuje
2. Vyšetřete všechny možné případy vzájemné polohy tří různých přímek ležících v jedné rovině.
ZS1BK_PGE1 Geometrie I: Vybrané úlohy z elementární geometrie 1. Které geometrické útvary mohou vzniknout a) jako průnik dvou polopřímek téže přímky, b) jako průnik dvou polorovin téže roviny? V případě
GEOMETRIE PLANIMETRIE Úlohy k rozvoji geometrické představivosti Úlohy početní. Růžena Blažková
GEOMETRIE PLANIMETRIE Úlohy k rozvoji geometrické představivosti Úlohy početní Růžena Blažková 1. Základní pojmy 1. Zvolte si čtyři různé body v rovině. Kolik různých přímek je těmito body určeno? Jak
- shodnost trojúhelníků. Věta SSS: Věta SUS: Věta USU:
1/12 PLANIMETRIE Základní pojmy: Shodnost, podobnost trojúhelníků Středová souměrnost, osová souměrnost, posunutí, otočení shodná zobrazení Středový a obvodový úhel Obsahy a obvody rovinných obrazců 1.
M - Planimetrie pro studijní obory
M - Planimetrie pro studijní obory Autor: Mgr. Jaromír Juřek Kopírování a jakékoliv další využití výukového materiálu je dovoleno pouze s uvedením odkazu na www.jarjurek.cz. VARIACE 1 Tento dokument byl
3 Geometrie ve škole. krychle a její obrázek, koule a její stín, průměty trojrozměrného útvaru do roviny
3 Geometrie ve škole Geometrie by měla být od samého začátku orientována na poznávání prostoru, v němž žák žije, a na rozvíjení představivosti. Základem zde mohou být zkušenosti s dělením prostoru, s vyplňováním
Syntetická geometrie I
Shodnost Pedagogická fakulta 2018 www.karlin.mff.cuni.cz/~zamboj/ Vzdálenost dvou bodů Definice (Vzdálenost) Necht A, B, C ρ. Vzdálenost dvou bodů A, B v rovině je číslo AB a platí AB 0 AB = 0 A = B AB
Planimetrie. Příklad 1. Zapište vztahy mezi body a přímkami, které jsou vyznačeny na obrázku. Příklad 2. Určete body K, L, M pomocí přímek p, r, s.
Planimetrie Část matematiky, zabývající se studiem rovinných geometrických objekt (rovinná geometrie). bstrakcí z hmotných objektů vznikly základní geometrické pojmy bod přímka Bod Body označujeme velkými
Střední průmyslová škola strojnická Olomouc, tř.17. listopadu 49
Střední průmyslová škola strojnická Olomouc, tř.17. listopadu 49 Výukový materiál zpracovaný v rámci projektu Výuka moderně Registrační číslo projektu: CZ.1.07/1.5.00/34.0205 Šablona: III/2 Přírodovědné
Trojúhelník. MATEMATIKA pro 1. ročníky tříletých učebních oborů. Ing. Miroslav Čapek srpen 2011
MATEMATIKA pro 1. ročníky tříletých učebních oborů Trojúhelník Ing. Miroslav Čapek srpen 2011 Projekt Využití e-learningu k rozvoji klíčových kompetencí reg. č.: CZ.1.07/1.1.10/03.0021 je spolufinancován
( ) ( ) 6. Algebraické nerovnice s jednou neznámou ( ) ( ) ( ) ( 2. e) = ( )
6. Algebraické nerovnice s jednou neznámou Další dovednosti: -iracionální nerovnice -lineární nerovnice s parametrem -kvadratické nerovnice s parametrem Možné maturitní otázky: Lineární a kvadratické nerovnice
Obrázek 101: Podobné útvary
14 Podobná zobrazení Obrázek 101: Podobné útvary Definice 10. [Podobné zobrazení] Geometrické zobrazení f se nazývá podobné zobrazení, jestliže existuje kladné reálné číslo k tak, že pro každé dva body
SHODNÁ ZOBRAZENÍ V ROVINĚ GEOMETRICKÁ ZOBRAZENÍ V ROVINĚ SHODNÁ ZOBRAZENÍ
Předmět: Ročník: Vytvořil: Datum: MTEMTIK DRUHÝ Mgr. Tomáš MŇÁK 21. června 2012 Název zpracovaného celku: SHODNÁ ZORZENÍ V ROVINĚ Teoretická část GEOMETRICKÁ ZORZENÍ V ROVINĚ Zobrazení Z v rovině je předpis,
Shodná zobrazení. bodu B ležet na na zobrazené množině b. Proto otočíme kružnici b kolem
Shodná zobrazení Otočení Příklad 1. Jsou dány tři různé soustředné kružnice a, b a c. Sestrojte rovnostranný trojúhelník ABC tak, aby A ležel na a, B ležel na b a C ležel na c. Řešení. Zvolíme vrchol A
Užití stejnolehlosti v konstrukčních úlohách
Užití stejnolehlosti v konstrukčních úlohách Příklad 1: Je dána kružnice k(o,r) a bod M ležící uvnitř kružnice k. Bodem M veďte tětivu AB, jejíž délka je bodem M rozdělena v poměru 2 : 1. Sestrojte obraz
ZÁKLADNÍ PLANIMETRICKÉ POJMY
ZÁKLADNÍ PLANIMETRICKÉ POJMY Základní geometrické pojmy jsou bod, přímka a rovina. Geometrie je chápána jako část matematiky, která se zabývá studiem geometrických útvarů v rovině. Body určujeme jako průsečíky
Trojúhelník - určují tři body které neleţí na jedné přímce. Trojúhelník je rovněţ moţno povaţovat za průnik tří polorovin nebo tří konvexních úhlů.
Trojúhelník Trojúhelník - určují tři body které neleţí na jedné přímce. Trojúhelník je rovněţ moţno povaţovat za průnik tří polorovin nebo tří konvexních úhlů. C Body se nazývají vrcholy trojúhelníku Úsečky
Syntetická geometrie I
Shodnost Pedagogická fakulta 2016 www.karlin.mff.cuni.cz/~zamboj/ Vzdálenost dvou bodů Necht A, B, C ρ. Vzdálenost dvou bodů A, B v rovině je číslo AB a platí AB 0 AB = 0 A = B AB = BA pozitivně definitní
Projekt: ŠKOLA RADOSTI, ŠKOLA KVALITY Registrační číslo projektu: CZ.1.07/1.4.00/ EU PENÍZE ŠKOLÁM
ZÁKLDNÍ ŠKOL OLOMOU příspěvková organizace MOZRTOV 48, 779 00 OLOMOU tel.: 585 427 142, 775 116 442; fax: 585 422 713 email: kundrum@centrum.cz; www.zs-mozartova.cz Projekt: ŠKOL RDOSTI, ŠKOL KVLITY Registrační
Základy geometrie - planimetrie
Základy geometrie - planimetrie Základní pojmy - bod (A, B, X, Y...), přímka ( p, q, a... ), rovina ( α, β, π... ) - nedefinují se Polopřímka: bod dělí přímku na dvě polopřímky opačně orientované značíme
Sčítání a odčítání Jsou-li oba sčítanci kladní, znaménko výsledku je + +421 +23 = + 444
ARITMETIKA CELÁ ČÍSLA Celá čísla jsou. -6, -5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, 6, Celá čísla rozdělujeme na záporná (-1, -2, -3, ) kladná (1, 2, 3,.) nula 0 (není číslo kladné ani záporné) absolutní
Planimetrie úvod, základní pojmy (teorie)
Planimetrie úvod, základní pojmy (teorie) Geometrie (původně zeměměřictví) nyní část matematiky, zabývající se studiem geometrických objektů Planimetrie rovinná geometrie Stereometrie prostorová geometrie
GEODETICKÉ VÝPOČTY I.
SPŠS Č.Budějovice Obor Geodézie a Katastr nemovitostí 2.ročník GEODETICKÉ VÝPOČTY I. TROJÚHELNÍK PYTHAGOROVA VĚTA TROJÚHELNÍK Geodetické výpočty I. trojúhelník je geometrický rovinný útvar určený třemi
Téma 5: PLANIMETRIE (úhly, vlastnosti rovinných útvarů, obsahy a obvody rovinných útvarů) Úhly 1) Jaká je velikost úhlu? a) 60 b) 80 c) 40 d) 30
Téma 5: PLANIMETRIE (úhly, vlastnosti rovinných útvarů, obsahy a obvody rovinných útvarů) Úhly 1) Jaká je velikost úhlu? a) 60 b) 80 c) 40 d) 30 2) Vypočtěte velikost úhlu : a) 150 10 b) 149 22 c) 151
ICT podporuje moderní způsoby výuky CZ.1.07/1.5.00/ Matematika planimetrie. Mgr. Tomáš Novotný
Název projektu ICT podporuje moderní způsoby výuky Číslo projektu CZ.1.07/1.5.00/34.0717 Název školy Gymnázium, Turnov, Jana Palacha 804, přísp. organizace Číslo a název šablony klíčové aktivity IV/2 Inovace
SHODNÁ A PODOBNÁ ZOBRAZENÍ V ROVINĚ
Technická univerzita v Liberci Fakulta přírodovědně-humanitní a pedagogická Katedra matematiky a didaktiky matematiky HODNÁ PODOBNÁ ZOBRZENÍ V ROVINĚ Pomocný učební text Petra Pirklová Liberec, září 2013
Výukový materiál zpracovaný v rámci projektu Výuka moderně Registrační číslo projektu: CZ.1.07/1.5.00/34.0205
Střední průmyslová škola strojnická Olomouc, tř.17. listopadu 49 Výukový materiál zpracovaný v rámci projektu Výuka moderně Registrační číslo projektu: CZ.1.07/1.5.00/34.0205 Šablona: III/2 Přírodovědné
Digitální učební materiál
Digitální učební materiál Číslo projektu CZ.1.07/1.5.00/34.0802 Název projektu Zkvalitnění výuk prostřednictvím ICT Číslo a název šablon klíčové aktivit III/2 Inovace a zkvalitnění výuk prostřednictvím
8 Podobná (ekviformní) zobrazení v rovině
Typeset by LATEX2ε 1 8 Podobná (ekviformní) zobrazení v rovině 8.1 Stejnolehlost (homotetie) v rovině Definice 8.1.1. Nechť jsou dány 3 různé kolineární body A, B, C. Dělicím poměrem λ = (ABC) rozumíme
Máme tři různé body A, B, C. Trojúhelník ABC je průnik polorovin ABC, BCA a CAB.
8. Trojúhelník 6. ročník 8. Trojúhelník 8.1. Základní pojmy 8.1.1. Trojúhelník Máme tři různé body A, B, C. Trojúhelník ABC je průnik polorovin ABC, BCA a CAB. Trojúhelník popisujeme proti chodu hodinových
MASARYKOVA UNIVERZITA. Čtyřúhelníky PEDAGOGICKÁ FAKULTA. Diplomová práce. Katedra matematiky. Brno Vedoucí práce: RNDr. Růžena Blažková, CSc.
MASARYKOVA UNIVERZITA PEDAGOGICKÁ FAKULTA Katedra matematiky Čtyřúhelníky Diplomová práce Brno 2008 Vedoucí práce: RNDr. Růžena Blažková, CSc. Autor práce: Mgr. Marta Mrázová 1 Prohlášení Prohlašuji, že
EU PENÍZE ŠKOLÁM Operační program Vzdělávání pro konkurenceschopnost
ZÁKLADNÍ ŠKOLA OLOMOUC příspěvková organizace MOZARTOVA 48, 779 00 OLOMOUC tel.: 585 427 142, 775 116 442; fax: 585 422 713 e-mail: kundrum@centrum.cz; www.zs-mozartova.cz Projekt: ŠKOLA RADOSTI, ŠKOLA
Svobodná chebská škola, základní škola a gymnázium s.r.o. Astaloš Dušan. frontální, fixační. samostatná práce, skupinová práce
METODICKÝ LIST DA34 Název tématu: Autor: Předmět: Ročník: Metody výuky: Formy výuky: Cíl výuky: Získané dovednosti: Stručný obsah: Trojúhelník I. obecný trojúhelník Astaloš Dušan Matematika šestý frontální,
Planimetrie pro studijní obory
Variace 1 Planimetrie pro studijní obory Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz. 1. Planimetrie Planimetrie
GEOMETRIE. Projekt byl podpořen z Evropského sociálního fondu. Praha & EU: Investujeme do vaší budoucnosti
GEOMETRIE pracovní sešit pro 6. ročník Projekt byl podpořen z Evropského sociálního fondu. Praha & EU: Investujeme do vaší budoucnosti Tato publikace byla vytvořena v souladu s RVP ZV v rámci projektu
Základní geometrické tvary
Základní geometrické tvary č. 37 Matematika 1. Narýsuj bod A. 2. Narýsuj přímku b. 3. Narýsuj přímku, která je dána body AB. AB 4. Narýsuj polopřímku CD. CD 5. Narýsuj úsečku AB. 6. Doplň. Rýsujeme v rovině.
10)(- 5) 2 = 11) 5 12)3,42 2 = 13)380 2 = 14)4, = 15) = 16)0, = 17)48,69 2 = 18) 25, 23 10) 12) ) )
Druhá mocnina z tabulek 1) (- 6) = 10)(- 5) = ) 7 = 4 11) 5 = ) 4,8 = 4) 40 = 5),785 = 6) 65 8 = 7) 0,01485 = 8) 5,7 = 9) = 4 1),4 = 1)80 = 14)4,6787 = 15)467 56 = 16)0,014 = 17)48,69 = 1 18) Druhá odmocnina
Geometrie v rovině 2
OSTRAVSKÁ UNIVERZITA V OSTRAVĚ PEDAGOGICKÁ FAKULTA Geometrie v rovině 2 Distanční text pro učitelství 1. stupně základní školy Renáta Vávrová OSTRAVA 2006 Obsah Úvod 5 1 Trojúhelník, lomená čára, mnohoúhelník
Přípravný kurz - Matematika
Přípravný kurz - Matematika Téma: Konstrukční úlohy Klíčová slova: rozbor, náčrt, popis, diskuse počtu řešení, kružnice opsaná a vepsaná Autor: trojúhelníku Mlynářová 12 19 9:02 Kontrukční úlohy Výsledkem
PRIMA Přirozená čísla Celá čísla Desetinná čísla Číselná osa Pravidla pro násobení a dělení 10, 100, 1000..a 0,1, 0,01, 0,001.. Čísla navzájem opačná
PRIMA Přirozená čísla Celá čísla Desetinná čísla Číselná osa Pravidla pro násobení a dělení 10, 100, 1000..a 0,1, 0,01, 0,001.. Čísla navzájem opačná Racionální čísla Zlomky Rozšiřování a krácení zlomků
Shodná zobrazení v rovině
Shodná zobrazení v rovině Zobrazení Z v rovině je předpis, který každému bodu X roviny přiřazuje právě jeden bod X roviny. Bod X se nazývá vzor, bod X jeho obraz. Zapisujeme Z: X X. Množinu obrazů všech
EU PENÍZE ŠKOLÁM Operační program Vzdělávání pro konkurenceschopnost
ZÁKLADNÍ ŠKOLA OLOMOUC příspěvková organizace MOZARTOVA 48, 779 00 OLOMOUC tel.: 585 427 142, 775 116 442; fax: 585 422 713 e-mail: kundrum@centrum.cz; www.zs-mozartova.cz Projekt: ŠKOLA RADOSTI, ŠKOLA
Syntetická geometrie I
Podobnost Pedagogická fakulta 2016 www.karlin.mff.cuni.cz/~zamboj/ Úhel Zvolíme-li na přímce bod, rozdělí ji na dvě polopřímky. Definice (Úhel) Systém dvou polopřímek ÝÑ VA, ÝÑ VB se společným počátečním
Předmět: Ročník: Vytvořil: Datum: MATEMATIKA DRUHÝ MGR. JÜTTNEROVÁ Název zpracovaného celku: PODOBNOST A STEJNOLEHLOST PODOBNOST
Předmět: Ročník: Vytvořil: Datum: MATEMATIKA DRUHÝ MGR. JÜTTNEROVÁ 7. 5. 0 Název zpracovaného celku: PODOBNOST A STEJNOLEHLOST PODOBNOST Je každé zobrazení v rovině takové, že pro libovolné body roviny
Témata absolventského klání z matematiky :
Témata absolventského klání z matematiky : 1.Dělitelnost přirozených čísel - násobek a dělitel - společný násobek - nejmenší společný násobek (n) - znaky dělitelnosti 2, 3, 4, 5, 6, 8, 9,10 - společný
P L A N I M E T R I E
M T E M T I K P L N I M E T R I E rovinná geometrie Základní planimetrické pojmy od - značí se velkými tiskacími písmeny, např.,,. P, Q. Přímka - značí se malými písmeny, např. a, b, p, q nebo pomocí bodů
UNIVERZITA KARLOVA V PRAZE
UNIVERZITA KARLOVA V PRAZE Pedagogická fakulta Katedra matematiky a didaktiky matematiky Výuka rovinné geometrie na středních školách Plane geometry teaching at secondary schools Autor: Bc. Lucie Machovcová
Projekt OP VK č. CZ.1.07/1.5.00/34.0420. Šablony Mendelova střední škola, Nový Jičín. Rovnoběžníky čtverec, obdélník, kosočtverec, kosodélník
Projekt OP VK č. CZ.1.07/1.5.00/34.0420 Šablony Mendelova střední škola, Nový Jičín NÁZEV MATERIÁLU: Rovnoběžníky čtverec, obdélník, kosočtverec, kosodélník Autor: Mgr. Břetislav Macek Rok vydání: 2014
Shodné zobrazení v rovině
Gymnázium Cheb Shodné zobrazení v rovině seminární práce Cheb, 2007 Lojza Tran Prohlášení Prohlašuji, že jsem seminární práci na téma: Shodné zobrazení v rovině vypracoval zcela sám za použití pramenů
[obr. 1] Rozbor S 3 S 2 S 1. o 1. o 2 [obr. 2]
Příklad Do dané kruhové výseče s ostrým středovým úhlem vepište kružnici (obr. ). M k l V N [obr. ] Rozbor Oblouk l a hledaná kružnice k se dotýkají v bodě T, mají proto v tomto bodě společnou tečnu t.
PLANIMETRIE. Mgr. Zora Hauptová TROJÚHELNÍK VY_32_INOVACE_MA_1_04
PLANIMETRIE Mgr. Zora Hauptová TROJÚHELNÍK VY_32_INOVACE_MA_1_04 OPVK 1.5 EU peníze středním školám CZ.1.07/1.500/34.0116 Modernizace výuky na učilišti Název školy Název šablony Předmět Tematický celek
6. Čtyřúhelníky, mnohoúhelníky, hranoly
6. Čtyřúhelníky, mnohoúhelníky, hranoly 7. ročník - 6. Čtyřúhelníky, mnohoúhelníky, hranoly 6.1. Základní pojmy 6.1.1. n úhelník n - úhelník pro n > 2 je geometrický obrazec, který má n vrcholů ( stran,
A STEJNOLEHLOST,, EUKLIDOVYE VĚTY 2.
PODOBNOST A STEJNOLEHLOST,, EUKLIDOVYE VĚTY 2. ČÁST MAT. OT 2. OT. Č.. 15: SHODNÁS HODNÁ ZOBRAZENÍ V ROVINĚ, PODOBNOST A STEJNOLEHLOST,, EUKLIDOVYE VĚTY PODOBNOST KDE LÁTKU NAJDETE Kapitola Základy planimetrie
Pracovní listy MONGEOVO PROMÍTÁNÍ
Technická univerzita v Liberci Fakulta přírodovědně-humanitní a pedagogická Katedra matematiky a didaktiky matematiky MONGEOVO PROMÍTÁNÍ Petra Pirklová Liberec, únor 07 . Zobrazte tyto body a určete jejich
Syntetická geometrie I
Podobnost Pedagogická fakulta 2017 www.karlin.mff.cuni.cz/~zamboj/ Úhel Zvolíme-li na přímce bod, rozdělí ji na dvě polopřímky. Definice (Úhel) Systém dvou polopřímek ÝÑ VA, ÝÑ VB se společným počátečním
Úlohy krajského kola kategorie A
64. ročník matematické olympiády Úlohy krajského kola kategorie A 1. Je dán trojúhelník ABC s tupým úhlem při vrcholu C. Osa o 1 úsečky AC protíná stranu AB v bodě K, osa o 2 úsečky BC protíná stranu AB
3. Racionální čísla = celá čísla + zlomky + desetinná čísla 4. Iracionální čísla = čísla, která nelze zapsat konečným desetinným rozvojem
Číselné obory 1. Přirozená čísla vyjadřují počet. 1,2,3, 2. Celá čísla Kladná: nula Záporná: Kladná + nula = nezáporná čísla Celá čísla = přirozená + nula + záporná celá 3. Racionální čísla = celá čísla
ZŠ ÚnO, Bratří Čapků 1332
Úvodní obrazovka Menu Návrat na hlavní stránku Obsah Výsledky Poznámky Záložky edunet Konec Matematika 2 (pro 9-12 let) LangMaster Obsah (střední část) výběr tématu - dvojklikem v seznamu témat (horní
MATEMATIKA 5. TŘÍDA. C) Tabulky, grafy, diagramy 1 - Tabulky, doplnění řady čísel podle závislosti 2 - Grafy, jízní řády 3 - Magické čtverce
MATEMATIKA 5. TŘÍDA 1 - Přirozená čísla a číslo nula a číselná osa, porovnávání b zaokrouhlování c zápis čísla v desítkové soustavě d součet, rozdíl e násobek, činitel, součin f dělení, dělení se zbytkem
Úlohy domácí části I. kola kategorie C
68. ročník Matematické olympiády Úlohy domácí části I. kola kategorie C 1. Neznámé číslo je dělitelné právě čtyřmi čísly z množiny {6, 15, 20, 21, 70}. Určete, kterými. (Michal Rolínek) Řešení. Pokud by
Gymnázium Jiřího Ortena, Kutná Hora
Předmět: Náplň: Cvičení z matematiky geometrie (CZMg) Systematizace a prohloubení učiva matematiky Planimetrie, Stereometrie, Analytická geometrie, Kombinatorika, Pravděpodobnost a statistika Třída: 4.
Gymnázium Jiřího Ortena, Kutná Hora
Předmět: Náplň: Třída: Počet hodin: Pomůcky: Matematika Základní poznatky, Rovnice a nerovnice, Planimetrie 1. část 1. ročník a kvinta 4 hodiny týdně PC a dataprojektor, učebnice Základní poznatky Číselné
16. žákcharakterizujeatřídízákladnírovinnéútvary
OČEKÁVANÝ VÝSTUP PODLE RVP ZV 1. žákcharakterizujeatřídízákladnírovinnéútvary Úloha 1 Rovinné útvary v obrázku jsou označeny symboly A L. A B C D E F G H I J K L V tabulce je uveden název obrazce a odpovídající
Univerzita Karlova v Praze Pedagogická fakulta
Univerzita Karlova v Praze Pedagogická fakulta SEMINÁRNÍ PRÁCE Z METOD ŘEŠENÍ 1 PLANIMETRIE 000/001 Cifrik, M-ZT První příklad ze zadávacích listů 1 Zadání: Sestrojte trojúhelník ABC, pokud je dáno: ρ
64. ročník matematické olympiády Řešení úloh krajského kola kategorie A
64. ročník matematické olympiády Řešení úloh krajského kola kategorie A 1. Středy stran AC, BC označme postupně, N. Střed kružnice vepsané trojúhelníku KLC označme I. Úvodem poznamenejme, že body K, L
Střední průmyslová škola strojnická Olomouc, tř.17. listopadu 49
Střední průmyslová škola strojnická Olomouc, tř.17. listopadu 49 Výukový materiál zpracovaný v rámci projektu Výuka moderně Registrační číslo projektu: CZ.1.07/1.5.00/34.0205 Šablona: III/2 Přírodovědné
Trojúhelník. Jan Kábrt
Trojúhelník Jan Kábrt Co se učívá ve školách Výšky, jejich průsečík ortocentrum O Těžnice, jejich průsečík těžiště T Osy stran, střed kružnice opsané S o Osy úhlů, střed kružnice vepsané S v Někdy ještě
STEREOMETRIE 9*. 10*. 11*. 12*. 13*
STEREOMETRIE Bod, přímka, rovina, polorovina, poloprostor, základní symboly označující přímku, bod, polorovinu, patří, nepatří, leží, neleží, vzájemná poloha dvou přímek v prostoru, vzájemná poloha dvou
Výuka geometrie na 2. stupni ZŠ
Výuka geometrie na 2. stupni ZŠ Úspěšnost žáků v geometrii, vytváření vědomostí, zdokonalování dovedností žáků i rozvíjení jejich schopností úzce souvisí s vytvářením postojů žáků k vyučování geometrii,
Přírodovědecká fakulta Masarykovy univerzity. na trigonometrii pravoúhlého a obecného trojúhelníku
Přírodovědecká fakulta Masarykovy univerzity Řešení složitějších úloh na trigonometrii pravoúhlého a obecného trojúhelníku Bakalářská práce BRNO. května 006 Barbora Kamencová Prohlašuji, že jsem svou bakalářskou
ZÁKLADY GEOMETRIE - KMA/ZGEOP
ZÁKLADY GEOMETRIE - KMA/ZGEOP Roman HAŠEK 10. prosince 2018 Obsah 1 Počátky geometrie 4 2 Řecká geometrie 9 3 Geometrie ve škole 17 4 Geometrické útvary v rovině 18 4.1 Body, přímky, polopřímky, poloroviny...................
Test Zkušební přijímací zkoušky
Test Zkušební přijímací zkoušky 1. Vypočtěte: ( 10 1.5) ( 4 ).( 15). ( 5 6). Doplňte číslo do rámečku, aby platila rovnost:.1. 4 11 10. 8 16 6.. 49 7 1.. + 1. Proveďte početní operace:.1. 6x 4x ( 4x x)
Tento materiál byl vytvořen v rámci projektu Operačního programu Vzdělávání pro konkurenceschopnost.
Tento materiál byl vytvořen v rámci projektu Operačního programu Vzdělávání pro konkurenceschopnost. Projekt MŠMT ČR Číslo projektu Název projektu školy Klíčová aktivita III/2 EU PENÍZE ŠKOLÁM CZ.1.07/1.4.00/21.2146
( ) Příklady na středovou souměrnost. Předpoklady: , bod A ; 2cm. Př. 1: Je dána kružnice k ( S ;3cm)
3.5.5 Příklady na středovou souměrnost Předpoklady: 3504 Př. : Je dána kružnice k ( S ;3cm), bod ; cm S = a přímka p; p = 4cm, která nemá s kružnicí k žádný společný bod. Najdi všechny úsečky KL; K k,
Řešení geometrické úlohy spočívá v nalezení geometrického útvaru (útvarů) daných vlastností.
Řešení geometrické úlohy spočívá v nalezení geometrického útvaru (útvarů) daných vlastností. Metody řešení konstrukčních úloh: množinou bodů zobrazením výpočtem kombinací předchozích způsobů Konstrukční
Analytická geometrie lineárních útvarů
) Na přímce: a) Souřadnice bodu na přímce: Analtická geometrie lineárních útvarů Bod P nazýváme počátek - jeho souřadnice je P [0] Nalevo od počátku leží čísla záporná, napravo čísla kladná. Každý bod