UNIVERZITA KARLOVA V PRAZE. Flexicurita na českém trhu práce: aplikace v evropském kontextu
|
|
- Antonín Rohla
- před 8 lety
- Počet zobrazení:
Transkript
1 UNIVERZITA KARLOVA V PRAZE FAKULTA SOCIÁLNÍCH VĚD Institut ekonomických studií Jindřich Matoušek Flexicurita na českém trhu práce: aplikace v evropském kontextu Přílohy k bakalářské práci Praha 2011
2 8. SEZNAM PŘÍLOH Příloha 1 Kompletní výsledky analýzy modelu (1)... 2 Příloha 2 Kompletní výsledky analýzy modelu (2)... 3 Příloha 3 Kompletní výsledky analýzy modelu (3)... 4 Příloha 4 Data pro analýzu faktorů ovlivňujících nezaměstnanost v ČR... 5 Příloha 5 Tabulka zdrojů dat pro analýzu faktorů ovlivňujících nezaměstnanost v ČR
3 9. PŘÍLOHY Příloha 1 Kompletní výsledky analýzy modelu (1) Model (1): OLS, za použití pozorování (T = 15) Závisle proměnná: u Koeficient Směr. chyba t-podíl p-hodnota const -0, , ,3343 0,74583 almp -0, , ,7666 0,11110 plmp 0, , ,0374 0,97100 epl -0, , ,5902 0,56955 tw 0, , ,5364 0,60472 u_1 0,99435*** 0, ,4184 0,00765 Střední hodnota Součet čtverců reziduí Koeficient 0, Sm. odchylka 0, , Sm. chyba regrese 0, , Adjustovaný koeficient 0, F(5, 9) 8, P-hodnota(F) 0, Logaritmus 52,29701 Akaikovo kritérium -92,59402 věrohodnosti Schwarzovo -88,34572 Hannan-Quinnovo -92,63928 kritérium kritétium rho (koeficient autokorelace) 0, Durbin-Watsonova statistika 1, Test normality reziduí - Nulová hypotéza: chyby jsou normálně rozdělené Testovací statistika: ChĂ -kvadrăˇt(2) = 1,61047 s p-hodnotou = 0, Breusch-Paganův test heteroskedasticity - Nulová hypotéza: není zde heteroskedasticita Testovací statistika: LM = 1,33521 s p-hodnotou = P(Chi-Square(5) > 1,33521) = 0, LM test pro autokorelaci až do řádu 1 - Nulová hypotéza: žádná autokorelace Testovací statistika: LMF = 0, s p-hodnotou = P(F(1,8) > 0,270477) = 0,
4 Příloha 2 Kompletní výsledky analýzy modelu (2) Model (2): OLS, za použití pozorování (T = 15) Závisle proměnná: d_u Koeficient Směr. chyba t-podíl p-hodnota const -0, , ,3614 0,72535 almp -0,028069** 0, ,6136 0,02588 plmp 0, , ,1099 0,91468 epl -0, , ,6243 0,54638 tw 0, , ,5665 0,58355 Střední hodnota Součet čtverců reziduí Koeficient 0, Sm. odchylka 0, , Sm. chyba regrese 0, , Adjustovaný koeficient 0, F(4, 10) 2, P-hodnota(F) 0, Logaritmus 52,29670 Akaikovo kritérium -94,59339 věrohodnosti Schwarzovo -91,05314 Hannan-Quinnovo -94,63110 kritérium kritétium rho (koeficient autokorelace) 0, Durbin-Watsonova statistika 1, Test normality reziduí - Nulová hypotéza: chyby jsou normálně rozdělené Testovací statistika: ChĂ -kvadrăˇt(2) = 1,62637 s p-hodnotou = 0, Breusch-Paganův test heteroskedasticity - Nulová hypotéza: není zde heteroskedasticita Testovací statistika: LM = 0, s p-hodnotou = P(Chi-Square(4) > 0,801589) = 0, LM test pro autokorelaci až do řádu 1 - Nulová hypotéza: žádná autokorelace Testovací statistika: LMF = 0,28343 s p-hodnotou = P(F(1,10) > 0,28343) = 0,
5 Příloha 3 Kompletní výsledky analýzy modelu (3) Model (3): OLS, za použití pozorování (T = 15) Závisle proměnná: d_u Koeficient Směr. chyba t-podíl p-hodnota const 0,015499*** 0, ,0939 0,00855 almp -0, *** 0, ,4049 0,00470 Střední hodnota Součet čtverců reziduí Koeficient 0, Sm. odchylka 0, , Sm. chyba regrese 0, , Adjustovaný koeficient 0, F(1, 13) 11,59357 P-hodnota(F) 0, Logaritmus 51,81303 Akaikovo kritérium -99,62606 věrohodnosti Schwarzovo -98,20996 Hannan-Quinnovo -99,64115 kritérium kritétium rho (koeficient autokorelace) 0, Durbin-Watsonova statistika 1, Test normality reziduí - Nulová hypotéza: chyby jsou normálně rozdělené Testovací statistika: ChĂ -kvadrăˇt(2) = 1,92701 s p-hodnotou = 0, Breusch-Paganův test heteroskedasticity - Nulová hypotéza: není zde heteroskedasticita Testovací statistika: LM = 0, s p-hodnotou = P(Chi-Square(1) > 0,455435) = 0, LM test pro autokorelaci až do řádu 1 - Nulová hypotéza: žádná autokorelace Testovací statistika: LMF = 0, s p-hodnotou = P(F(1,13) > 0,316872) = 0,
6 Příloha 4 Data pro analýzu faktorů ovlivňujících nezaměstnanost v ČR výdaje na APZ výdaje na PPZ počet průměrná ROK u almp plmp epl tw (v Kč) (v Kč) nezaměstnaných mzda ,0432 0,5769 1,0906 1,90 0, , ,0430 0,4637 1,1906 1,90 0, , ,0402 0,3673 1,0310 1,90 0, , ,0389 0,2820 1,0642 1,90 0, , ,0479 0,2058 1,2751 1,90 0, , ,0645 0,2279 1,0585 1,90 0, , ,0870 0,3307 0,9825 1,90 0, , ,0876 0,5513 0,9194 1,90 0, , ,0813 0,6586 0,8476 1,90 0, , ,0728 0,5851 1,0431 1,90 0, , ,0778 0,4852 1,0299 1,90 0, , ,0830 0,5132 0,9158 1,90 0, , ,0793 0,5185 0,9071 2,09 0, , ,0714 0,7082 0,9763 2,09 0, , ,0484 0,9496 1,1743 1,96 0, , ,0439 1,1387 1,3213 1,96 0, ,
7 Příloha 5 Tabulka zdrojů dat pro analýzu faktorů ovlivňujících nezaměstnanost v ČR Zdroj ČSÚ [2], Časová řada základních ukazatelů VŠPS u www stránka datum extrakce Zdroj MPSV [1], Výdaje na spz souhrnný přehled výdaje na APZ www stránka datum extrakce Zdroj MPSV [1], Výdaje na spz souhrnný přehled výdaje na PPZ www stránka datum extrakce Zdroj OECD [1], Strictness of employment protection overall epl www stránka datum extrakce Zdroj OECD, Taxing wages: comparative tables tw www stránka datum extrakce Zdroj ČSÚ [2], Časová řada základních ukazatelů VŠPS počet www stránka nezaměstnaných datum extrakce Zdroj ČSÚ [7], Průměrná hrubá měsíční mzda zaměstnanců v nár. hospodářství (bez podlim. ek. subjektů) podle odvětví průměrná mzda www stránka datum extrakce
18AEK Aplikovaná ekonometrie a teorie časových řad. Řešení domácích úkolů č. 1 a 2 příklad 1
18AEK Aplikovaná ekonometrie a teorie časových řad Řešení domácích úkolů č. 1 a 2 příklad 1 Obecné pravidlo pro všechny testy Je stanovena nulová hypotéza: H 0 Je stanovena alternativní hypotéza: H A Je
4EK211 Základy ekonometrie
4EK Základy ekonometrie Odhad klasického lineárního regresního modelu II Cvičení 3 Zuzana Dlouhá Klasický lineární regresní model - zadání příkladu Soubor: CV3_PR.xls Data: y = maloobchodní obrat potřeb
Přílohy. Spotřeba elektřiny. Model závislosti spotřeby elektřiny
Přílohy Spotřeba elektřiny Model závislosti spotřeby elektřiny Model 24: OLS, za použití pozorování 22-213 (T = 12) Závisle proměnná: C_ele_domkWH koeficient směr. chyba t-podíl p-hodnota ------------------------------------------------------------------
Mendelova univerzita v Brně Provozně ekonomická fakulta. Ekonometrie 2
Mendelova univerzita v Brně Provozně ekonomická fakulta Ekonometrie 2 Odhad regresního modelu výnosnosti akcií společnosti ČEZ, a.s. vícefaktorovým modelem Vypracovali: Bc. Jiří Klement Bc. Václav Klepáč
Ilustrační příklad odhadu LRM v SW Gretl
Ilustrační příklad odhadu LRM v SW Gretl Podkladové údaje Korelační matice Odhad lineárního regresního modelu (LRM) Verifikace modelu PEF ČZU Praha Určeno pro posluchače předmětu Ekonometrie Needitovaná
Komparace vlivu vybraných aspektů na nabídku, poptávku a cenu cukru v rozvojových a rozvinutých zemích, ve světě a v zemích OECD a EU
LISTY CUKROVARNICKÉ a ŘEPAŘSKÉ Komparace vlivu vybraných aspektů na nabídku, poptávku a cenu cukru v rozvojových a rozvinutých zemích, ve světě a v zemích OECD a EU Comparison of Impact of Selected Aspects
4EK211 Základy ekonometrie
4EK211 Základy ekonometrie LS 2014/15 Cvičení 7: Autokorelace LENKA FIŘTOVÁ KATEDRA EKONOMETRIE, FAKULTA INFORMATIKY A STATISTIKY VYSOKÁ ŠKOLA EKONOMICKÁ V PRAZE 1. Autokorelace - teorie Zopakujte si G-M
Regresní analýza. Eva Jarošová
Regresní analýza Eva Jarošová 1 Obsah 1. Regresní přímka 2. Možnosti zlepšení modelu 3. Testy v regresním modelu 4. Regresní diagnostika 5. Speciální využití Lineární model 2 1. Regresní přímka 3 nosnost
PRAVDĚPODOBNOST A STATISTIKA
PRAVDĚPODOBNOST A STATISTIKA Definice lineárního normálního regresního modelu Lineární normální regresní model Y Xβ ε Předpoklady: Matice X X n,k je matice realizací. Předpoklad: n > k, h(x) k - tj. matice
PRAVDĚPODOBNOST A STATISTIKA
PRAVDĚPODOBNOST A STATISTIKA Definice lineárního normálního regresního modelu Lineární normální regresní model Y β ε Matice n,k je matice realizací. Předpoklad: n > k, h() k - tj. matice je plné hodnosti
4EK211 Základy ekonometrie
4EK11 Základy ekonometrie Autokorelace Cvičení 5 Zuzana Dlouhá Gauss-Markovy předpoklady Náhodná složka: Gauss-Markovy předpoklady 1. E(u) = náhodné vlivy se vzájemně vynulují. E(uu T ) = σ I n konečný
Pružnost trhu práce a EU
Pružnost trhu práce a EU Kamil Galuščák (ČNB) Smilovice, 4.6.2003 Připravenost trhu práce na vstup do EU 1. Mzdová diferenciace a pružnost mezd 2. Mobilita pracovních sil 3. Politika zaměstnanosti, sociální
Ilustrační příklad odhadu SM v SW Gretl
Ilustrační příklad odhadu SM v SW Gretl Odhad simultánního modelu (SM) Verifikace modelu PEF ČZU Praha Určeno pro posluchače předmětu Ekonometrie Needitovaná studijní pomůcka MM2011 Úvodní obrazovka Gretlu
Teorie časových řad Test 2 Varianta A HODNOCENÍ (max. 45 bodů z 50 možných)
Teorie časových řad Test 2 Varianta A HODNOCENÍ (max. 45 bodů z 50 možných) 1. SPECIFIKACE (12 bodů): (1) Graf průběhu proměnných (1) Obě řady se chovají stejně, lze předpokládat jejich lineární vztah
6. Lineární regresní modely
6. Lineární regresní modely 6.1 Jednoduchá regrese a validace 6.2 Testy hypotéz v lineární regresi 6.3 Kritika dat v regresním tripletu 6.4 Multikolinearita a polynomy 6.5 Kritika modelu v regresním tripletu
Inovace bakalářského studijního oboru Aplikovaná chemie
http://aplchem.upol.cz CZ.1.07/2.2.00/15.0247 Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky. Regrese Závislostproměnných funkční y= f(x) regresní y= f(x)
AVDAT Geometrie metody nejmenších čtverců
AVDAT Geometrie metody nejmenších čtverců Josef Tvrdík Katedra informatiky Přírodovědecká fakulta Ostravská univerzita Lineární model klasický lineární regresní model odhad parametrů MNČ y = Xβ + ε, ε
AVDAT Klasický lineární model, metoda nejmenších
AVDAT Klasický lineární model, metoda nejmenších čtverců Josef Tvrdík Katedra informatiky Přírodovědecká fakulta Ostravská univerzita Lineární model y i = β 0 + β 1 x i1 + + β k x ik + ε i (1) kde y i
EKONOMETRICKÝ MODEL DETERMINANT CEN NEMOVITOSTÍ V HRADCI KRÁLOVÉ
Masarykova univerzita Přírodovědecká fakulta Studijní obor: Matematika - Ekonomie EKONOMETRICKÝ MODEL DETERMINANT CEN NEMOVITOSTÍ V HRADCI KRÁLOVÉ Econometric Model of Home Prices in Hradec Králové Diplomová
Cvičení 9 dekompozice časových řad a ARMA procesy
Cvičení 9 dekompozice časových řad a ARMA procesy Příklad 1: Dekompozice časové řady Soubor 18AEK-cv09.xls obsahuje dvě časové řady (X a Y) se 72 pozorováními. Použijte časovou řadu Y. a) Pokuste se na
Matematické modelování Náhled do ekonometrie. Lukáš Frýd
Matematické modelování Náhled do ekonometrie Lukáš Frýd Výnos akcie vs. Výnos celého trhu - CAPM model r it = r ft + β 1. (r mt r ft ) r it r ft = α 0 + β 1. (r mt r ft ) + ε it Ekonomický (finanční model)
Masarykova Univerzita
Masarykova Univerzita Přírodovědecká fakulta BAKALÁŘSKÁ PRÁCE Markéta Vaculíková Minimální mzda a nezaměstnanost empirická analýza Vedoucí bakalářské práce: Ing. Daniel Němec, Ph.D Studijní program: Aplikovaná
Úvod do ekonometrie Minitesty
Úvod do ekonometrie Minitesty Poznámka k zadání Použité značení odpovídá přednáškám, v případě nejasností nahlédněte do zveřejněných prezentací. V zadání jsou všude použity desetinné tečky (kvůli souladu
6. Lineární regresní modely
6. Lineární regresní modely 6.1 Jednoduchá regrese a validace 6.2 Testy hypotéz v lineární regresi 6.3 Kritika dat v regresním tripletu 6.4 Multikolinearita a polynomy 6.5 Kritika modelu v regresním tripletu
Cvičící Kuba Kubina Kubinčák Body u závěrečného testu
1. Příklad U 12 studentů jsme sledovali počet dosažených bodů na závěrečném testu (od 0 do 60). Vždy 4 z těchto studentů chodili k jednomu ze 3 cvičících panu Kubovi, panu Kubinovi, nebo panu Kubinčákovi.
Korelační a regresní analýza
Korelační a regresní analýza Analýza závislosti v normálním rozdělení Pearsonův (výběrový) korelační koeficient: r = s XY s X s Y, kde s XY = 1 n (x n 1 i=0 i x )(y i y ), s X (s Y ) je výběrová směrodatná
Přepoklady KLM a Gauss Markov teorém. Blue odhad - GM. KLM Klasický lineární model. 1) Lineární v parametrech. 2) E ε = 0
Heteroskedasticita Přepoklady KLM a Gauss Markov teorém KLM Klasický lineární model 1) Lineární v parametrech ) E ε = 0 Blue odhad - GM Nezkreslený odhad 1) Lineární v parametrech ) E ε = 0 3) E( ȁ ε X)=
Univerzita Pardubice SEMESTRÁLNÍ PRÁCE. Tvorba lineárních regresních modelů. 2015/2016 RNDr. Mgr. Leona Svobodová, Ph.D.
Univerzita Pardubice SEMESTRÁLNÍ PRÁCE Tvorba lineárních regresních modelů 2015/2016 RNDr. Mgr. Leona Svobodová, Ph.D. Úloha 1 Porovnání regresních přímek u jednoduchého lineárního regresního modelu Porovnání
T T. Think Together 2013. Marta Gryčová THINK TOGETHER
Česká zemědělská univerzita v Praze Provozně ekonomická fakulta Doktorská vědecká konference 4. února 2013 T T THINK TOGETHER Think Together 2013 Mzdová disparita v českém agrárním sektoru v období od
Závislost obsahu lipoproteinu v krevním séru na třech faktorech ( Lineární regresní modely )
Úloha M608 Závislost obsahu lipoproteinu v krevním séru na třech faktorech ( Lineární regresní modely ) Zadání : Při kvantitativní analýze lidského krevního séra ovlivňují hodnotu obsahu vysokohustotního
TVORBA LINEÁRNÍCH REGRESNÍCH MODELŮ PŘI ANALÝZE DAT. Semestrální práce UNIVERZITA PARDUBICE. Fakulta chemicko-technologická Katedra analytické chemie
UNIVERZITA PARDUBICE Fakulta chemicko-technologická Katedra analytické chemie TVORBA LINEÁRNÍCH REGRESNÍCH MODELŮ PŘI ANALÝZE DAT Semestrální práce Licenční studium Galileo Interaktivní statistická analýza
Stanovení manganu a míry přesnosti kalibrace ( Lineární kalibrace )
Příklad č. 1 Stanovení manganu a míry přesnosti kalibrace ( Lineární kalibrace ) Zadání : Stanovení manganu ve vodách se provádí oxidací jodistanem v kyselém prostředí až na manganistan. (1) Sestrojte
Lineární regrese. Komentované řešení pomocí MS Excel
Lineární regrese Komentované řešení pomocí MS Excel Vstupní data Tabulka se vstupními daty je umístěna v oblasti A1:B11 (viz. obrázek) na listu cela data Postup Základní výpočty - regrese Výpočet základních
http: //meloun.upce.cz,
Porovnání rozlišovací schopnosti regresní analýzy spekter a spolehlivosti Prof. RNDr. Milan Meloun, DrSc. Katedra analytické chemie, Chemickotechnologická fakulta, Univerzita Pardubice, nám. s. Legií 565,
4EK211 Základy ekonometrie
4EK211 Základy ekonometrie ZS 2015/16 Cvičení 7: Časově řady, autokorelace LENKA FIŘTOVÁ KATEDRA EKONOMETRIE, FAKULTA INFORMATIKY A STATISTIKY VYSOKÁ ŠKOLA EKONOMICKÁ V PRAZE 1. Časové řady Data: HDP.wf1
Statgraphics v. 5.0 STATISTICKÁ INDUKCE PRO JEDNOROZMĚRNÁ DATA. Martina Litschmannová 1. Typ proměnné. Požadovaný typ analýzy
Dichotomická proměnná (0-1) Spojitá proměnná STATISTICKÁ INDUKCE PRO JEDNOROZMĚRNÁ DATA Typ proměnné Požadovaný typ analýzy Ověření variability Předpoklady Testy, resp. intervalové odhad Test o rozptylu
Vztah světového a brazilského trhu s cukrem
LISTY CUKROVARNICKÉ a ŘEPAŘSKÉ Vztah světového a brazilského trhu s cukrem The Relationship between Brazilian and World Sugar Markets Luboš Smutka 1, Lenka Rumánková 1, Josef Pulkrábek 2, Irena Benešová
z dat nasbíraných v letech 1959 1994. Ke zpracování dat byl použit statistický software R. Základní model poptávkové funkce, ze kterého vycházíme,
Úloha 1: V naší studii se zabýváme poptávkovou funkcí životního pojištění, vycházíme z dat nasbíraných v letech 1959 1994. Ke zpracování dat byl použit statistický software R. Základní model poptávkové
Kalibrace a limity její přesnosti
Univerzita Pardubice Fakulta chemicko-technologická Katedra analytické chemie Licenční studium GALILEO a limity její přesnosti Seminární práce Monika Vejpustková leden 2016 OBSAH Úloha 1. Lineární kalibrace...
Ověření platnosti teorie o Phillipsově křivce v ekonomice České republiky
Mendelova univerzita v Brně Provozně ekonomická fakulta Ověření platnosti teorie o Phillipsově křivce v ekonomice České republiky Bakalářská práce Vedoucí práce Mgr. Kateřina Myšková, Ph.D. Milan Lorenz
Plánování experimentu
Fakulta chemicko technologická Katedra analytické chemie licenční studium Management systému jakosti Autor: Ing. Radek Růčka Přednášející: Prof. Ing. Jiří Militký, CSc. 1. LEPTÁNÍ PLAZMOU 1.1 Zadání Proces
Tvorba nelineárních regresních modelů v analýze dat
Univerzita Pardubice Fakulta chemicko-technologická Katedra analytické chemie Tvorba nelineárních regresních modelů v analýze dat Semestrální práce Licenční studium GALILEO Interaktivní statistická analýza
Příloha č.1 Vypočtené hodnoty jednotlivých proměnných indexu OCA pro MUBS za období
Příloha č.1 Vypočtené hodnoty jednotlivých proměnných indexu OCA pro MUBS za období 1971-2012 Rok SD (e ij ) SD (Y i -Y j ) DISSIM ij TRADE ij SIZE ij 1971 0,00000 0,03250 0,0000000254 0,02443 40,64456
Bodové a intervalové odhady parametrů v regresním modelu
Statistika II Katedra ekonometrie FVL UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Lineární regresní model Mějme lineární regresní model (LRM) Y = Xβ + e, kde y 1 e 1 β y 2 Y =., e
Daňové modely MAB/KMA. 25.1.2009 A07136 Jindrich Bek
Daňové modely MAB/KMA 25.1.2009 A07136 Jindrich Bek Obsah Základní souhrn... 4 1. Upřesněné zadání schválené vyučujícím... 5 1.1. Zadání... 5 1.2. Cíle práce... 5 2. Zdroj problému... 5 3. Popis současného
PŘÍLOHA A. METODA NEJMENŠÍCH ČTVERCŮ PRODEJ BYTŮ. Příloha A. Metoda nejmenších čtverců Prodej bytů
PŘÍLOHA A. METODA NEJMENŠÍCH ČTVERCŮ PRODEJ BYTŮ Příloha A Metoda nejmenších čtverců Prodej bytů i PŘÍLOHA A. METODA NEJMENŠÍCH ČTVERCŮ PRODEJ BYTŮ 1 2 3 TOT. 1 7 33 40 2 1 18 125 144 2.5 1 72 73 3.5 1
Masarykova Univerzita
Masarykova Univerzita Přírodovědecká fakulta BAKALÁŘSKÁ PRÁCE Markéta Vaculíková Minimální mzda a nezaměstnanost empirická analýza Vedoucí bakalářské práce: Ing. Daniel Němec, Ph.D Studijní program: Aplikovaná
Statistika II. Jiří Neubauer
Statistika II Katedra ekonometrie FVL UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Časová řada konečná posloupnost reálných hodnot určitého sledovaného ukazatele měřeného v určitých
STATISTIKA I Metodický list č. 1 Název tématického celku:
STATISTIKA I Metodický list č. 1 Analýza závislostí Základním cílem tohoto tématického celku je seznámit se s pokročilejšími metodami zpracování statistických údajů.. 1. kontingenční tabulky 2. regresní
Ekonometrie. Jiří Neubauer
Úvod do analýzy časových řad Ekonometrie Jiří Neubauer Katedra ekonometrie FVL UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Jiří Neubauer (Katedra ekonometrie UO Brno) Úvod do analýzy
4EK211 Základy ekonometrie
4EK211 Základy ekonometrie LS 2014/15 Cvičení 4: Statistické vlastnosti MNČ LENKA FIŘTOVÁ KATEDRA EKONOMETRIE, FAKULTA INFORMATIKY A STATISTIKY VYSOKÁ ŠKOLA EKONOMICKÁ V PRAZE Upřesnění k pojmům a značení
UNIVERZITA PARDUBICE Fakulta chemicko-technologická Katedra analytické chemie. Nám. Čs. Legií 565, Pardubice. Semestrální práce ANOVA 2015
UNIVERZITA PARDUBICE Fakulta chemicko-technologická Katedra analytické chemie Nám. Čs. Legií 565, 532 10 Pardubice 15. licenční studium INTERAKTIVNÍ STATISTICKÁ ANALÝZA DAT Semestrální práce ANOVA 2015
Semestrální práce. 3.3 Tvorba nelineárních regresních modelů v analýze dat
Semestrální práce 1 3.3 Tvorba nelineárních regresních modelů v analýze dat Ing. Ján Lengyel, CSc. Centrální analytická laboratoř Ústav jaderného výzkumu Řež, a. s. Husinec Řež 130 250 68 Řež V Řeži, únor
Úvodem Dříve les než stromy 3 Operace s maticemi
Obsah 1 Úvodem 13 2 Dříve les než stromy 17 2.1 Nejednoznačnost terminologie 17 2.2 Volba metody analýzy dat 23 2.3 Přehled vybraných vícerozměrných metod 25 2.3.1 Metoda hlavních komponent 26 2.3.2 Faktorová
Pravděpodobnost v závislosti na proměnné x je zde modelován pomocí logistického modelu. exp x. x x x. log 1
Logistická regrese Menu: QCExpert Regrese Logistická Modul Logistická regrese umožňuje analýzu dat, kdy odezva je binární, nebo frekvenční veličina vyjádřená hodnotami 0 nebo 1, případně poměry v intervalu
Statistická analýza dat
Statistická analýza dat Jméno: Podpis: Cvičení Zkouška (písemná + ústní) 25 Celkem 50 Známka Pokyny k vypracování: doba řešení je 120min, jasně zodpovězte pokud možno všechny otázky ze zadání, pracujte
4EK211 Základy ekonometrie
4EK211 Základ ekonometrie Odhad klasického lineárního regresního modelu I Cvičení 2 Zuzana Dlouhá Metodologický postup tvor EM 1. Specifikace modelu určení proměnných určení vzájemných vaze mezi proměnnými
Příloha č. 1 Grafy a protokoly výstupy z adstatu
1 Příklad 3. Stanovení Si metodou OES Byly porovnávány naměřené hodnoty Si na automatickém analyzátoru OES s atestovanými hodnotami. Na základě testování statistické významnosti regresních parametrů (úseku
Vliv úrokové sazby na objem poskytnutých hypotečních úvěrů
Mendelova univerzita v Brně Provozně ekonomická fakulta Vliv úrokové sazby na objem poskytnutých hypotečních úvěrů Bakalářská práce Vedoucí práce: Ing. Luboš Střelec Ph.D. Autor práce: Andrea Korbičková
Tvorba lineárních regresních modelů při analýze dat
Fakulta chemicko technologická Katedra analytické chemie licenční studium Management systému jakosti Tvorba lineárních regresních modelů při analýze dat Autor: Přednášející: Prof. RNDr. Milan Meloun, DrS
Modelování objemu hypotečních úvěrů poskytnutých Českou spořitelnou
Mendelova univerzita v Brně Provozně ekonomická fakulta Modelování objemu hypotečních úvěrů poskytnutých Českou spořitelnou Diplomová práce Vedoucí práce: Mgr. David Hampel, Ph.D. Bc. Tereza Jezdinská
DETERMINANTY EKONOMICKÉHO
MASARYKOVA UNIVERZITA EKONOMICKO-SPRÁVNÍ FAKULTA Studijní obor: Matematické a statistické metody v ekonomii DETERMINANTY EKONOMICKÉHO RŮSTU - MEZINÁRODNÍ STUDIE Determinants of Economic Growth - International
Sever Jih Západ Plechovka Točené Sever Jih Západ Součty Plechovka Točené Součty
Neparametrické testy (motto: Hypotézy jsou lešením, které se staví před budovu a pak se strhává, je-li budova postavena. Jsou nutné pro vědeckou práci, avšak skutečný vědec nepokládá hypotézy za předmětnou
SEMESTRÁLNÍ PRÁCE. Leptání plasmou. Ing. Pavel Bouchalík
SEMESTRÁLNÍ PRÁCE Leptání plasmou Ing. Pavel Bouchalík 1. ÚVOD Tato semestrální práce obsahuje písemné vypracování řešení příkladu Leptání plasmou. Jde o praktickou zkoušku znalostí získaných při přednáškách
Semestrální práce. 2. semestr
Licenční studium č. 89002 Semestrální práce 2. semestr Tvorba lineárních regresních modelů při analýze dat Příklad 1 Porovnání dvou regresních přímek u jednoduchého lineárního regresního modelu. Počet
Dynamické metody pro predikci rizika
Dynamické metody pro predikci rizika 1 Úvod do analýzy časových řad Časová řada konečná posloupnost reálných hodnot určitého sledovaného ukazatele měřeného v určitých časových intervalech okamžikové např
4EK211 Základy ekonometrie
4EK211 Základy ekonometrie LS 2014/15 Cvičení 10: Heteroskedasticita LENKA FIŘTOVÁ KATEDRA EKONOMETRIE, FAKULTA INFORMATIKY A STATISTIKY VYSOKÁ ŠKOLA EKONOMICKÁ V PRAZE 1. Heteroskedasticita - teorie Druhý
VÍCEROZMĚRNÝ STATISTICKÝ SOUBOR
KORELACE A REGRESE 1 Vytvořeno s podporou projektu Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem na discipliny společného základu (reg. č. CZ.1.07/..00/8.001)
Fakulta chemicko technologická Katedra analytické chemie licenční studium Management systému jakosti Kalibrace a limity její přesnosti
Fakulta chemicko technologická Katedra analytické chemie licenční studium Management systému jakosti Kalibrace a limity její přesnosti Autor: Přednášející: Prof. RNDr. Milan Meloun, DrS 1. VÝPOČET OBSAHU
LINEÁRNÍ REGRESE. Lineární regresní model
LINEÁRNÍ REGRESE Chemometrie I, David MILDE Lineární regresní model 1 Typy závislosti 2 proměnných FUNKČNÍ VZTAH: 2 závisle proměnné: určité hodnotě x odpovídá jediná hodnota y. KORELACE: 2 náhodné (nezávislé)
Regresní a korelační analýza
Regresní a korelační analýza Mějme dvojici proměnných, které spolu nějak souvisí. x je nezávisle (vysvětlující) proměnná y je závisle (vysvětlovaná) proměnná Chceme zjistit funkční závislost y = f(x).
Tvorba nelineárních regresních modelů v analýze dat
Univerzita Pardubice Fakulta chemicko-technologická, Katedra analytické chemie Licenční studium GALILEO Interaktivní statistická analýza dat Semestrální práce z předmětu Tvorba nelineárních regresních
KGG/STG Statistika pro geografy
KGG/STG Statistika pro geografy 10. Mgr. David Fiedor 27. dubna 2015 Nelineární závislost - korelační poměr užití v případě, kdy regresní čára není přímka, ale je vyjádřena složitější matematickou funkcí
S E M E S T R Á L N Í
Univerzita Pardubice Fakulta chemicko-technologická Katedra analytické chemie S E M E S T R Á L N Í P R Á C E Licenční studium Statistické zpracování dat při managementu jakosti Předmět ANOVA analýza rozptylu
C.3 Trh práce Prameny kapitoly 3: ČSÚ, MPO ČR, MPSV ČR, propočty MF ČR.
Prameny kapitoly : ČSÚ, MPO ČR, MPSV ČR, propočty MF ČR. Tabulka C..: Zaměstnanost roční Výběrové šetření pracovních sil ČSÚ: Odhad Výhled Zaměstnanost ) průměr v tis.osob růst v %,,,,,,,,,, zaměstnanci
4ST201 STATISTIKA CVIČENÍ Č. 10
4ST201 STATISTIKA CVIČENÍ Č. 10 regresní analýza - vícenásobná lineární regrese korelační analýza Př. 10.1 Máte zadaný výstup regresní analýzy závislosti závisle proměnné Y na nezávisle proměnné X. Doplňte
Statistická analýza dat týkajících se nezaměstnanosti
Západočeská univerzita v Plzni Fakulta aplikovaných věd Katedra matematiky BAKALÁŘSKÁ PRÁCE Statistická analýza dat týkajících se nezaměstnanosti Plzeň, 2015 Lenka Malínská Prohlášení Prohlašuji, že jsem
Základy lineární regrese
Základy lineární regrese David Hampel Ústav statistiky a operačního výzkumu, Mendelova univerzita v Brně Kurz pokročilých statistických metod Global Change Research Centre AS CR, 5. 7. 8. 2015 Tato akce
C.3 Trh práce. Tabulka C.3.1: Trh práce roční. Výběrové šetření pracovních sil ČSÚ:
C.3 Trh práce Tabulka C.3.1: Trh práce roční Výběrové šetření pracovních sil ČSÚ: 9 1 11 1 13 1 15 1 17 Výhled Výhled Zaměstnanost prům. v tis.osob 5 93 5 7 9 937 95 973 9 991 růst v % 1, 1, 1,,, 1,,,3,,
Univerzita Pardubice Fakulta chemicko-technologická Katedra analytické chemie ANOVA. Semestrální práce
Univerzita Pardubice Fakulta chemicko-technologická Katedra analytické chemie ANOVA Semestrální práce Licenční studium GALILEO Interaktivní statistická analýza dat Brno, 2015 Doc. Mgr. Jan Muselík, Ph.D.
Ě ť ž Š ú ť Š ť ú ž ž ú ž Ý ž ž ž ú ť Č ň Ú ň ť ť ť ú ť ž ž ť ú ú ť ú ž ž ť ť ť ú ž ž ť ť ž ž ť ž ž ž ú ž Ý ú ú ť ú ú ž ť ž ž ž ž ž ž ú Č ž ú ň ú ú ť ú ú Ý ú ť ú ž Ř ť ú ú ť Š Č Č ň Ú Č Š ú ť Č ť ď ž ň
Testování hypotéz o parametrech regresního modelu
Statistika II Katedra ekonometrie FVL UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Lineární regresní model kde Y = Xβ + e, y 1 e 1 β y 2 Y =., e = e 2 x 11 x 1 1k., X =....... β 2,
Testování hypotéz o parametrech regresního modelu
Testování hypotéz o parametrech regresního modelu Ekonometrie Jiří Neubauer Katedra kvantitativních metod FVL UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Jiří Neubauer (Katedra UO
C.3 Trh práce. Tabulka C.3.1: Trh práce roční. Výběrové šetření pracovních sil ČSÚ:
C.3 Trh práce Tabulka C.3.1: Trh práce roční Výběrové šetření pracovních sil ČSÚ: 9 1 11 1 13 1 15 1 17 Odhad Výhled Výhled Zaměstnanost prům. v tis.osob 5 93 5 7 9 933 9 9 95 9 růst v % 1, 1, 1,,,,9,1,1,,
Regresní a korelační analýza
Regresní a korelační analýza Mějme dvojici proměnných, které spolu nějak souvisí. x je nezávisle (vysvětlující) proměnná y je závisle (vysvětlovaná) proměnná Chceme zjistit funkční závislost y = f(x).
C.3 Trh práce. Tabulka C.3.1: Trh práce roční. Výběrové šetření pracovních sil ČSÚ:
C.3 Trh práce Tabulka C.3.1: Trh práce roční Výběrové šetření pracovních sil ČSÚ: 9 1 11 1 13 1 15 1 17 Výhled Výhled Zaměstnanost prům. v tis.osob 5 93 5 7 9 937 99 957 99 977 růst v % 1, 1, 1,,, 1,,,,,
Licenční studium Galileo: Statistické zpracování dat. Tvorba lineárních regresních modelů při analýze dat. Semestrální práce
Licenční studium Galileo: Statistické zpracování dat Tvorba lineárních regresních modelů při analýze dat Semestrální práce Lenka Husáková Pardubice 2016 Obsah 1 Porovnání dvou regresních přímek u jednoduchého
Tvorba lineárních regresních modelů při analýze dat
Univerzita Pardubice Fakulta chemicko-technologická Katedra analytické chemie Licenční studium GALILEO Tvorba lineárních regresních modelů při analýze dat Seminární práce Monika Vejpustková leden 2016
C.3 Trh práce. Tabulka C.3.1: Zaměstnanost roční. Výběrové šetření pracovních sil ČSÚ:
C.3 Trh práce Prameny: ČSÚ, MPO ČR, MPSV ČR, propočty MF ČR. Tabulka C.3.1: Zaměstnanost roční Výběrové šetření pracovních sil ČSÚ: 7 9 1 11 1 13 1 15 1 Výhled Výhled Zaměstnanost prům. v tis.osob 9 5
PROČ JE NEZAMĚSTNANOST V ČESKU JEDNA Z NEJNIŽŠÍCH. Daniel Münich
PROČ JE NEZAMĚSTNANOST V ČESKU JEDNA Z NEJNIŽŠÍCH Daniel Münich Europeum 24.9. 2014 Míra nezaměstnanos. U r (ILO definice, Eurostat, 2014, sezóně upraveno) 2 Nezaměstnanost Jak jí měříme Různá srovnání
Neparametrické metody
Neparametrické metody Dosud jsme se zabývali statistickými metodami, které zahrnovaly předpoklady o rozdělení dat. Zpravidla jsme předpokládali normální rozdělení. Např. Grubbsův test odlehlých hodnot
JEDNOVÝBĚROVÉ TESTY. Komentované řešení pomocí programu Statistica
JEDNOVÝBĚROVÉ TESTY Komentované řešení pomocí programu Statistica Vstupní data Data umístěná v excelovském souboru překopírujeme do tabulky ve Statistice a pojmenujeme proměnné, viz prezentace k tématu
Mzdová statistika z hlediska genderu
Mzdová statistika z hlediska genderu Mgr. Marek Řezanka, ČSÚ GPG využití a proměny ukazatele Výpočet (100-Mž/Mm*100) Co měří a co ne? Jakých hodnot dosahuje: ČR x Evropa Jakou informaci obsahuje GPG? 1.
KALIBRACE A LIMITY JEJÍ PŘESNOSTI 2015
UNIVERZITA PARDUBICE Fakulta chemicko-technologická Katedra analytické chemie Nám. Čs. Legií 565, 532 10 Pardubice 15. licenční studium INTERAKTIVNÍ STATISTICKÁ ANALÝZA DAT Semestrální práce KALIBRACE
Univerzita Pardubice Fakulta chemicko-technologická Katedra analytické chemie
Univerzita Pardubice Fakulta chemicko-technologická Katedra analytické chemie Semestrální práce Licenční studium Galileo Předmět Nelineární regrese Jiří Danihlík Olomouc, 2016 Obsah... 1 Hledání vhodného
EKONOMETRIE 7. přednáška Fáze ekonometrické analýzy
EKONOMETRIE 7. přednáška Fáze ekonometrické analýzy Ekonometrická analýza proces, skládající se z následujících fází: a) specifikace b) kvantifikace c) verifikace d) aplikace Postupné zpřesňování jednotlivých
Tvorba modelu sorpce a desorpce 85 Sr na krystalických horninách za dynamických podmínek metodou nelineární regrese
Tvorba modelu sorpce a desorpce 85 Sr na krystalických horninách za dynamických podmínek metodou nelineární regrese Závěrečná práce 12. licenčního studia Pythagoras Fakulta chemicko-technologická, katedra