6 Součinitel konstrukce c s c d

Rozměr: px
Začít zobrazení ze stránky:

Download "6 Součinitel konstrukce c s c d"

Transkript

1 6 Součinitel konstrukce c s c d Součinitel konstrukce c s c d je součin součinitele velikosti konstrukce (c s 1) a dynamickéo součinitele (c d 1). Součinitel velikosti konstrukce vyjadřuje míru korelace náodnéo zatížení větrem na návětrné straně stavby v čase a v prostoru. V daném časovém okamžiku není tlak větru ve všec bodec návětrné plocy stejný a součinitel velikosti konstrukce lze definovat jako poměr mezi skutečným účinkem tlaku větru a účinkem maximálnío tlaku větru na stejnou plocu. Dynamický součinitel vyjadřuje vliv dynamickýc vlastností konstrukce a fluktuační složky zatížení. Podle {NA} se součinitel konstrukce nerozděluje na tyto dílčí součinitele. Součinitel konstrukce c s c d je definován vztaem: cc s d 1+ kp Iv zs B + R = 1+7I z v s (6.1) kde z s je referenční výška pro stanovení součinitele konstrukce; k p součinitel maximální odnoty; I v (z s ) intenzita turbulence; B součinitel odezvy pozadí, kterým se zarnuje do výpočtu vliv skutečné korelace tlaků na povrcu konstrukce; R rezonanční část odezvy, která bere v úvau turbulenci v rezonanci s odpovídajícím (nejčastěji prvním) tvarem kmitání. 6.1 Stanovení součinitele konstrukce c s c d pro obvyklé pozemní stavby Součinitel konstrukce je roven jedné (c s c d = 1) pro: a) pozemní stavby s výškou menší než 15 m; b) fasády a prvky střec se základní vlastní frekvencí větší než 5 Hz; c) pozemní stavby s rámovou konstrukcí a nosnými stěnami, které jsou nižší než 100 m, a jejicž výška je menší než čtyřnásobek délky ve směru větru; d) komíny s kruovým průřezem, jejicž výška je menší než 60 m nebo menší než 6,5násobek průměru. 6. Stanovení součinitele konstrukce c s c d z grafů {D} Pro pozemní a inženýrské stavby obvyklýc vlastností (vícepodlažní ocelové nebo betonové pozemní stavby, ocelové a betonové komíny bez vyzdívky a ocelové komíny s vyzdívkou) do výšky 100 m jsou v příloze {D} uvedeny grafy pro stanovení součinitele konstrukce z vnějšíc rozměrů stavby (výška, šířka nebo průměr). Základní vlastní frekvence a tvary kmitání konstrukcí jsou odvozeny z lineární analýzy nebo odadnuty použitím výrazů uvedenýc v příloze {F}. Lze je použít pro odnoty součinitele konstrukce v pásmu 0,85 c s c d 1,1. 36

2 Nižší odnoty nejsou přípustné. Pokud podle grafů vycázejí vyšší odnoty součinitele konstrukce, doporučuje se provést podrobný výpočet součinitele konstrukce podle kap Na obr. 6.1 a obr. 6. jsou dva z uvedenýc grafů, které jsou vodné pro vícepodlažní pozemní stavby s pravoúlým půdorysem, svislými vnějšími stěnami, s pravidelným rozdělením tuosti a motnosti po výšce v terénu kategorie II. (plné čáry) a III. (tečkované čáry). Hodnoty součinitelů byly vypočteny pro základní ryclost v b = 8 m s -1. Při výpočtu grafů pro ocelové pozemní stavby na obr. 6.1 byl použit logaritmický dekrement konstrukčnío útlumu s = 0,05 a pro betonové pozemní stavby na obr. 6. byl použit s = 0,1. Logaritmický dekrement aerodynamickéo útlumu byl v obou případec a = 0. Grafy přibližně platí i pro ostatní běžné parametry s tím, že přesné odnoty c s c d lze určit podle kap. 6.3 V příloze {D} jsou uvedeny další podobné grafy pro standardním způsobem navržené ocelové komíny s vyzdívkou nebo bez vyzdívky a betonové komíny. 1,05 1,00 0,95 0,90 výška [m] 0,85 šířka [m] Obr. 6.1 Součinitel konstrukce c s c d pro vícepodlažní ocelové pozemní stavby {obr. D.1} 37

3 0,95 0,90 0,85 výška [m] šířka [m] Obr. 6. Součinitel konstrukce pro vícepodlažní betonové pozemní stavby {obr. D.} 6.3 Stanovení součinitele konstrukce c s c d podrobným výpočtem {B} V Eurokódu je podrobný postup výpočtu součinitele konstrukce uveden v příloác {B} a {C}. Podle {NA} není v ČR dovoleno použít postup výpočtu podle příloy {C}. Podrobný výpočet součinitele konstrukce podle příloy {B} lze použít za těcto podmínek: a) Tvar konstrukce odpovídá jednomu z obecnýc tvarů, scematicky zakreslenýc na obr Postup je tedy vodný pro vertikálně orientované pozemní stavby (vysoké budovy, komíny apod.), orizontálně orientované konstrukce (nosníky, mosty, potrubí apod.) nebo stavby zatížené v jednom bodě (vodojemy, informační tabule apod.). Na obr. 6.3 je pro tyto případy definovaná referenční výška z s odlišně od ustanovení v kap. 7. b) Pro odezvu konstrukce je významné pouze kmitání v základním tvaru ve směru větru a odpovídající výcylky při tomto tvaru kmitání musí mít konstantní znaménko. 38

4 a) Vertikální konstrukce, jako jsou pozemní stavby apod. b b) vodorovné stavební konstrukce, jako jsou nosníky apod. b c) bodově působící objekty, jako jsou informační tabule apod. b z s 1 z s 1 z s d d d = zs = 1 + zmin zs = 1 + zmin zs 0,6 z min Obr. 6.3 Obecné tvary konstrukcí, na které se vztauje postup navrování {obr. 6.1} Turbulence větru Měřítko délky turbulence L(z) představuje průměrnou velikost vírovýc struktur v dané výšce. Pro výšky z nižší než 00 m lze vypočítat měřítko délky turbulence podle výrazu: z L(z) L t z t pro z z min (6.) L(z) = L(z min ) pro z < z min kde z t = 00 m je referenční výška, exponent = 0,67 + 0,05ln(z 0 ), L t = 300 m měřítko délky, z min minimální výška, z 0 parametr drsnosti terénu (z min a z 0 viz tab. 4.5). Závislost energie větru na frekvenci vyjadřuje výkonová spektrální ustota S L (z, n) fluktuační složky ryclosti větru ve výšce z v bezrozměrném tvaru, definovaná rovnicí: S n S (, z n) z, n = = 6,8 f z, n v L L 5 3 v 1+10, fl z, n kde S v (z,n) je jednostranné spektrum rozptylu, f L (z,n) = nl(z)/v m (z) je bezrozměrná frekvence vypočtená pro základní vlastní frek - venci konstrukce n = n 1,x, měřítko délky turbulence L(z) a střední ryclost větru v m (z). (6.3) 39

5 6.3. Součinitel konstrukce Při podrobném výpočtu součinitele konstrukce c s c d je třeba stanovit součinitel odezvy pozadí, rezonanční část odezvy a součinitel maximální odnoty. Součinitel odezvy pozadí B vyjadřuje vliv neúplné korelace tlaků na povrcu konstrukce. Je to širokopásmová část normalizovanéo spektra odezvy a odnota součinitele odezvy pozadí se vypočte podle výrazu: B 1 b 10,9 Lzs 0,63 1 (6.4) kde b, jsou šířka a výška konstrukce; L(z s ) je měřítko délky turbulence v referenční výšce z s. Použití B = 1,0 je na straně bezpečnosti. Součinitel maximální odnoty k p je poměr maximální odnoty fluktuační složky odezvy k její směrodatné odcylce. Stanoví se z výrazu: 0,6 kp ln T nebo k p = 3; použije se větší z obou odnot. (6.5) ln T Ve vztau (6.5) je frekvence přecodů s kladnou směrnicí a T je doba integrace při stanovení střední ryclosti větru (T = 600 s). Frekvence přecodů s kladnou směrnicí se stanoví z výrazu: R n ; 1,x 0,08 Hz (6.6) B R kde n 1,x je základní vlastní frekvence konstrukce. Mezní odnota 0,08 Hz odpovídá součiniteli maximální odnoty k p = 3,0. Část normalizovanéo spektra odezvy v okolí základní vlastní frekvence konstrukce vyjadřuje rezonanční část odezvy R. Její velikost se stanoví ze vztau: R SL zs, n1,xr Rb b kde je celkový logaritmický dekrement útlumu; R, R b jsou aerodynamické admitance; S L je výkonová spektrální ustota v bezrozměrném tvaru. (6.7) Aerodynamické admitance R a R b pro základní tvar kmitu se podle normy aproximují výrazy: R 1e ; R = 1 pro = 0 (6.8) 1 1 R 1 b b b - b e ; R b = 1 pro b = 0 (6.9) 40

6 kde 4, 6 f z, n a L s 1,x L zs 4, 6 b f z, n b L s 1,x L zs Poznámka: Pro tvary kmitání s vnitřními uzly se má použít podrobnější postup výpočtu. 6.4 Počet cyklů zatížení pro dynamickou odezvu Počet zatěžovacíc cyklů N g, při kterýc je dosažena nebo překročena odnota účinku větru S běem období 50 let, ukazuje obr Hodnota S je vyjádřena v procentec odnoty S k, která je účinkem zatížení větrem s dobou návratu 50 let. Vzta mezi S/S k a N g je dán vztaem: S/S k = 0,7 (log (N g )) 17,4 log (N g ) (6.10) 100 S /S k [%] N g Obr. 6.4 Počet cyklů zatížení nárazem větru pro účinek S/S k běem doby návratu 50 let {obr. 6.3} 6.5 Provozní výcylky a zryclení pro posouzení použitelnosti svislýc konstrukcí Maximální výcylka ve směru větru se stanoví z ekvivalentní statické síly větru (viz kap. 5.3). Směrodatná odcylka a,x carakteristickéo zryclení v bodě konstrukce ve výšce z je: c bi z v z RK Φ z (6.11) f v s m s a,x x 1,x m1,x kde c f je součinitel síly; měrná motnost vzducu; 41

7 b je šířka konstrukce; I v (z s ) intenzita turbulence; v m (z s ) střední ryclost větru; z s referenční výška; R odmocnina rezonanční části odezvy; K x bezrozměrný koeficient, definovaný výrazem (6.11); m 1,x ekvivalentní motnost ve směru větru pro základní tvar kmitání; n 1,x základní vlastní frekvence konstrukce ve směru větru; 1,x (z) základní tvar kmitání ve směru větru. Bezrozměrný koeficient K x je definován vztaem: K x m 1,x 0 m s 1,x 0 v z Φ z dz v z Φ z dz kde je výška konstrukce. (6.1) Za předpokladu, že 1,x (z) = (z/) (viz příloa {F}) a c o (z) = 1), může být výraz (6.1) přibližně vyjádřen výrazem: K x s 1 1 ln 0,5 1 z0 z s 1 ln z0 z (6.13) kde z 0 je parametr drsnosti terénu; exponent tvaru kmitání. Carakteristické odnoty maximálníc odnot zryclení se získají vynásobením směrodatné odcylky součinitelem maximální odnoty k p pro = n 1,x. 6.6 Posouzení meznío stavu použitelnosti pro zatížení ve směru větru Pro posouzení meznío stavu použitelnosti se má použít maximální odnota výcylky ve směru větru, stanovená pro ekvivalentní statické zatížení větrem podle kap. 5, a maximální odnota směrodatné odcylky zryclení konstrukce ve směru větru, stanovená pro základní tvar kmitání podle příloy kap Kmitání v úplavu větru Účinek zvýšené turbulence v úplavu za vedlejší konstrukcí se uvažuje u štílýc pozemníc staveb (/d > 4) a komínů (/d > 6,5) v tandemovém nebo skupinovém uspořádání viz obr

8 Účinky kmitání v úplavu lze pokládat za zanedbatelné, pokud je splněna nejméně jedna z následujícíc podmínek: a) vzdálenost mezi dvěma pozemními stavbami nebo komíny je 5krát větší než příčný rozměr návětrné budovy nebo komínu; b) základní vlastní frekvence závětrné pozemní stavby nebo komínu je vyšší než 1 Hz. Tab. 6.1 Příklady Podrobný výpočet součinitele konstrukce c s c d c s c d Vlastnosti konstrukce Součinitel odezvy pozadí B Rezonanční část odezvy R Součinitel maximální odnoty k p Článek normy Vzta, obrázek nebo tabulka Značky Příklad 6.1 Příklad 6. vícepodlažní komín ocelový ocelová s vyzdívkou pozemní stavba konstanta 1 [m] konstanta b [m] 9 konstanta W s /W t 0,5 konstanta konstanta s 0,0 0,05 konstanta a 0 0 {F. (3)} {(F.3)} n 1 [Hz] 0,636 {F ()} {(F.)} n 1 [Hz] 0,383 {4.1 (1)} mapa v 0,b [m s -1 ] 7,5 7,5 {4.3.1 (1)} tab. 4.1, kat. II z 0 [m] 0,05 0,05 {4.3.1 (1)}; {A.3} c o 1 1 {6.3. (1)} obr. 6.3 z s = 0,6 [m] 60 7 {4.3.1 (1)} (4.4) v m (z s ) [m s -1 ] 37,0 38,0 {B.1(1)} konstanta L t [m] {B.1(1)} konstanta z t [m] {B.1(1)} vzorec v textu 0,450 0,450 {B.1(1)} (6.) L(z s ) [m] 174,5 189,4 {B.()} (6.4) B 0,599 0,571 {B.1()} vzorec v textu f L,997 1,911 {B.1()} (6.3) S L (z s,n) 0,065 0,085 {B.(6)} vzorec v textu 7,90 5,569 {B.(6)} vzorec v textu b 0,711 1,01 {B.(6)} (6.8) R 0,119 0,163 {B.(6)} (6.9) R b 0,656 0,56 {B.(5)} (6.7) R 1,40 0,768 {B.(4)} (6.6) 0,53 0,90 {B.(4)} konstanta T [s] {B.(3)} (6.5) k p 3,568 3,399 {4.4 (1)} Poznámka (4.6) I v 0,141 0,138 c s c d {6.3.1 (1)} (6.1) c s c d 1,190 1,061 43

Spolehlivost a bezpečnost staveb zkušební otázky verze 2010

Spolehlivost a bezpečnost staveb zkušební otázky verze 2010 1 Jaká máme zatížení? 2 Co je charakteristická hodnota zatížení? 3 Jaké jsou reprezentativní hodnoty proměnných zatížení? 4 Jak stanovíme návrhové hodnoty zatížení? 5 Jaké jsou základní kombinace zatížení

Více

4 Rychlost větru a dynamický tlak

4 Rychlost větru a dynamický tlak 4 Rychlost větru a dynamický tlak 4.1 Zásady výpočtu Tato kapitola uvádí postupy a podklady pro stanovení střední rychlosti v m (z e ), intenzity turbulence I v (z e ) a maximálního tlaku větru q p (z

Více

8 Zatížení mostů větrem

8 Zatížení mostů větrem 8 Zatížení mostů větrem 8.1 Všeoecně Tento Eurokód je určen pro mosty s konstantní šířkou a s průřezy podle or. 8.1, tvořenými jednou hlavní nosnou konstrukcí o jednom neo více polích. Stanovení zatížení

Více

III. Zatížení větrem 1 VŠEOBECNĚ 2 NÁVRHOVÉ SITUACE 3 MODELOVÁNÍ ZATÍŽENÍ VĚTREM. III. Zatížení větrem

III. Zatížení větrem 1 VŠEOBECNĚ 2 NÁVRHOVÉ SITUACE 3 MODELOVÁNÍ ZATÍŽENÍ VĚTREM. III. Zatížení větrem III. Zatížení větrem 1 VŠEOBECNĚ ČSN EN 1991-1-4 uvádí zatížení větrem a pravidla pro: návrhové situace, rychlost a tlak větru, účinek větru na konstrukci, součinitele tlaků a sil, vlivy prostředí. ČSN

Více

1. Všeobecně 2. Návrhové situace 3. Modely zatížení větrem 4. Rychlost a tlak větru 5. Zatížení větrem 6. Součinitele konstrukce c s c d 7.

1. Všeobecně 2. Návrhové situace 3. Modely zatížení větrem 4. Rychlost a tlak větru 5. Zatížení větrem 6. Součinitele konstrukce c s c d 7. 1. Všeobecně 2. Návrhové situace 3. Modely zatížení větrem 4. Rychlost a tlak větru 5. Zatížení větrem 6. Součinitele konstrukce c s c d 7. Součinitele tlaků a sil 8. Zatížení mostů větrem Informativní

Více

Advance Design 2017 R2 SP1

Advance Design 2017 R2 SP1 Advance Design 2017 R2 SP1 První Service Pack pro Advance Design 2017 R2 přináší řešení pro statické výpočty a posuzování betonových, ocelových a dřevěných konstrukcí v souladu se slovenskými národními

Více

1. Charakteristiky větru 2. Výpočet dynamické odezvy podle EC1

1. Charakteristiky větru 2. Výpočet dynamické odezvy podle EC1 Jiří Máca - katedra mechaniky - B325 - tel. 2 2435 4500 maca@fsv.cvut.cz VI. Zatížení stavebních konstrukcí větrem 2. Výpočet dynamické odezvy podle EC1 Vítr vzniká vyrovnáváním tlaků v atmosféře, která

Více

ČSN EN 1991-1-3 (Eurokód 1): Zatížení konstrukcí Zatížení sněhem. Praha : ČNI, 2003.

ČSN EN 1991-1-3 (Eurokód 1): Zatížení konstrukcí Zatížení sněhem. Praha : ČNI, 2003. ZATÍŽENÍ SNĚHEM ČSN EN 1991-1-3 (Eurokód 1): Zatížení konstrukcí. Praa : ČNI, 2003. OBECNĚ: se považuje za proměnné pevné zatížení a uvažují se trvalé a dočasné návrové situace. Zpravidla se posuzují 2

Více

5 Analýza konstrukce a navrhování pomocí zkoušek

5 Analýza konstrukce a navrhování pomocí zkoušek 5 Analýza konstrukce a navrhování pomocí zkoušek 5.1 Analýza konstrukce 5.1.1 Modelování konstrukce V článku 5.1 jsou uvedeny zásady a aplikační pravidla potřebná pro stanovení výpočetních modelů, které

Více

Řešený příklad: Výpočet součinitele kritického břemene α cr

Řešený příklad: Výpočet součinitele kritického břemene α cr VÝPOČET Dokument SX006a-CZ-EU Strana z 8 Řešený příklad: Výpočet součinitele kritickéo břemene α cr Tento příklad demonstruje, jak se provádí posouzení jednoducé konstrukce s oledem na α cr. Je ukázáno,

Více

Některá klimatická zatížení

Některá klimatická zatížení Některá klimatická zatížení 5. cvičení Klimatické zatížení je nahodilé zatížení vyvolané meteorologickými jevy. Stanoví se podle nejnepříznivějších hodnot mnohaletých měření, odpovídajících určitému zvolenému

Více

1. Charakteristiky větru 2. Ztráta aerodynamické stability 3. Výpočet dynamické odezvy podle norem 4. Prostředky k omezení dynamické odezvy konstr.

1. Charakteristiky větru 2. Ztráta aerodynamické stability 3. Výpočet dynamické odezvy podle norem 4. Prostředky k omezení dynamické odezvy konstr. Jiří Máca - katedra mechaniky - B325 - tel. 2 2435 4500 maca@fsv.cvut.cz VI. Odezva konstrukcí na zatížení větrem 1. Charakteristiky větru 2. Ztráta aerodynamické stability 3. Výpočet dynamické odezvy

Více

ZATÍŽENÍ STAVEBNÍCH KONSTRUKCÍ

ZATÍŽENÍ STAVEBNÍCH KONSTRUKCÍ ZATÍŽENÍ STAVEBNÍCH KONSTRUKCÍ Doporučená literatura: ČSN EN 99 Eurokód: zásady navrhování konstrukcí. ČNI, Březen 24. ČSN EN 99-- Eurokód : Zatížení konstrukcí - Část -: Obecná zatížení - Objemové tíhy,

Více

byly přejaty do soustavy českých technických

byly přejaty do soustavy českých technických Č S N E N 1 9 9 1-1 - 3 E u r o k ó d 1 : Z a t í ž e n í k o n s t r u k c í Č á s t 1-3 : O b e c n á z a t í ž e n í Z a t í ž e n í s n ě e m a Z m ě n a Z 3 Č S N 7 3 0 0 3 5 Z a t í ž e n í s t a

Více

Mapa větrových oblastí pro ČR oblast 1 2 v b,o 24 m/s 26 m/s. Úprava v b,o součinitelem nadmořské výšky c alt (altitude) oblast 1 2 >1300-1,27

Mapa větrových oblastí pro ČR oblast 1 2 v b,o 24 m/s 26 m/s. Úprava v b,o součinitelem nadmořské výšky c alt (altitude) oblast 1 2 >1300-1,27 Zatížení větrem - pravidla pro zatížení větrem pro pozemní stavy výšky 200m, pro mosty o rozpětí 200m - uvádí se pro celou konstrukci neo její části (např. ovod. plášť a jeho kotvení) - klasifikace: zatížení

Více

MECHANIKA KONSTRUKCÍ ZATÍŽENÍ STAVEBNÍCH KONSTRUKCÍ

MECHANIKA KONSTRUKCÍ ZATÍŽENÍ STAVEBNÍCH KONSTRUKCÍ MECHANIKA KONSTRUKCÍ ZATÍŽENÍ STAVEBNÍCH KONSTRUKCÍ Objemové tíhy, vlastní tíha, užitná zatížení pozemních staveb Zatížení sněhem Zatížení větrem Zatížení teplotou 1 ČSN EN 1991-1-1 Eurokód 1: Zatížení

Více

5. Únava Zatížení při únavě, Wöhlerův přístup a lomová mechanika, únosnost, vliv vrubů, kumulace poškození, přístup podle Eurokódu.

5. Únava Zatížení při únavě, Wöhlerův přístup a lomová mechanika, únosnost, vliv vrubů, kumulace poškození, přístup podle Eurokódu. 5. Únava Zatížení při únavě, Wöhlerův přístup a lomová mechanika, únosnost, vliv vrubů, kumulace poškození, přístup podle Eurokódu. K poškození únavou dochází při zatížení výrazně proměnném s časem. spolehlivost

Více

Ocelo-dřevěná rozhledna. Steel-timber tower

Ocelo-dřevěná rozhledna. Steel-timber tower ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE Fakulta stavební Katedra ocelových a dřevěných konstrukcí Ocelo-dřevěná rozhledna Rozhledna Špulka Steel-timber tower Tower Špulka Diplomová práce Studijní program:

Více

SPOLEHLIVOST KONSTRUKCÍ statistické vyhodnocení materiálových zkoušek

SPOLEHLIVOST KONSTRUKCÍ statistické vyhodnocení materiálových zkoušek SPOLEHLIVOST KONSTRUKCÍ statistické vyhodnocení materiálových zkoušek Thákurova 7, 166 29 Praha 6 Dejvice Česká republika Program přednášek a cvičení Výuka: Úterý 12:00-13:40, C -219 Přednášky a cvičení:

Více

CO001 KOVOVÉ KONSTRUKCE II

CO001 KOVOVÉ KONSTRUKCE II CO00 KOVOVÉ KONSTRUKCE II PODKLADY DO CVIČENÍ Tento materiál slouží výhradně jako pomůcka do cvičení a v žádném případě objemem ani typem informací nenahrazuje náplň přednášek. Obsah TRAPÉZOVÉ PLECHY...

Více

Statický návrh a posouzení kotvení hydroizolace střechy

Statický návrh a posouzení kotvení hydroizolace střechy Statický návrh a posouzení kotvení hydroizolace střechy podle ČSN EN 1991-1-4 Stavba: Stavba Obsah: Statické schéma střechy...1 Statický výpočet...3 Střecha +10,000...3 Schéma kotvení střechy...9 Specifikace

Více

KLIMATICKÁ ZATÍŽENI A. ZATÍŽENÍ SNĚHEM

KLIMATICKÁ ZATÍŽENI A. ZATÍŽENÍ SNĚHEM KLIMATICKÁ ZATÍŽENI A. ZATÍŽENÍ SNĚHEM Hodnoty normového zatížení sněhem s n na 1 m 2 půdorysné plochy zastřešení, popř. povrchové plochy budovy se určí podle vzorce: sn s0 s kde s 0 je základní tíha sněhu

Více

Rozlítávací voliéra. Statická část. Technická zpráva + Statický výpočet

Rozlítávací voliéra. Statická část. Technická zpráva + Statický výpočet Stupeň dokumentace: DPS S-KON s.r.o. statika stavebních konstrukcí Ing.Vladimír ČERNOHORSKÝ Podnádražní 12/910 190 00 Praha 9 - Vysočany tel. 236 160 959 akázkové číslo: 12084-01 Datum revize: prosinec

Více

STATICKÝ VÝPOČET a TECHNICKÁ ZPRÁVA OBSAH:

STATICKÝ VÝPOČET a TECHNICKÁ ZPRÁVA OBSAH: STATICKÝ VÝPOČET a TECHNICKÁ ZPRÁVA OBSAH: 1 ZADÁNÍ A ŘEŠENÁ PROBLEMATIKA, GEOMETRIE... 2 2 POLOHA NA MAPĚ A STANOVENÍ KLIMATICKÝCH ZATÍŽENÍ... 2 2.1 SKLADBY STŘECH... 3 2.1.1 R1 Skladba střechy na objektu

Více

ČSN EN 1991-1-4 Zatížení větrem 1. Všeobecně 2. Návrhové situace 3. Modely zatížení větrem 4. Rychlost a tlak větru 5. Zatížení větrem 6.

ČSN EN 1991-1-4 Zatížení větrem 1. Všeobecně 2. Návrhové situace 3. Modely zatížení větrem 4. Rychlost a tlak větru 5. Zatížení větrem 6. ČSN EN 1991-1-4 Zatížení větrem 1. Všeobecně 2. Návrhové situace 3. Modely zatížení větrem 4. Rychlost a tlak větru 5. Zatížení větrem 6. Součinitele konstrukce c s c d 7. Součinitele tlaků a sil 8. Zatížení

Více

PROJEKTOVÁ DOKUMENTACE

PROJEKTOVÁ DOKUMENTACE PROJEKTOVÁ DOKUMENTACE STUPEŇ PROJEKTU DOKUMENTACE PRO VYDÁNÍ STAVEBNÍHO POVOLENÍ (ve smyslu přílohy č. 5 vyhlášky č. 499/2006 Sb. v platném znění, 110 odst. 2 písm. b) stavebního zákona) STAVBA INVESTOR

Více

F 1.2 STATICKÉ POSOUZENÍ

F 1.2 STATICKÉ POSOUZENÍ zak. č.47/4/2012 ZNALECTVÍ, PORADENSTVÍ, PROJEKČNÍ STUDIO F 1.2 STATICKÉ POSOUZENÍ Název stavby: Dům č.p. 72 ulice Jiřího Trnky Výměna oken, zateplení fasády Místo stavby: ulice Jiřího Trnky č.p. 72 738

Více

n =, kde n je počet podlaží. ψ 0 je redukční

n =, kde n je počet podlaží. ψ 0 je redukční Užitné zatížení Činnost lidí Je nahrazeno plošným a bodovým zatížením. Referenční hodnota 1rok s pravděpodobností překročení 0,98 Zatížení stropů Velikost zatížení je dána v závislosti na druhu stavby

Více

Ing. Ondřej Kika, Ph.D. Ing. Radim Matela. Analýza zemětřesení metodou ELF

Ing. Ondřej Kika, Ph.D. Ing. Radim Matela. Analýza zemětřesení metodou ELF Ing. Ondřej Kika, Ph.D. Ing. Radim Matela Analýza zemětřesení metodou ELF Obsah Výpočet vlastních frekvencí Výpočet seizmických účinků na konstrukci Výpočet pomocí metody ekvivalentních příčných sil (ELF

Více

9 OHŘEV NOSNÍKU VYSTAVENÉHO LOKÁLNÍMU POŽÁRU (řešený příklad)

9 OHŘEV NOSNÍKU VYSTAVENÉHO LOKÁLNÍMU POŽÁRU (řešený příklad) 9 OHŘEV NOSNÍKU VYSTAVENÉHO LOKÁLNÍMU POŽÁRU (řešený příklad) Vypočtěte tepelný tok dopadající na strop a nejvyšší teplotu průvlaku z profilu I 3 při lokálním požáru. Výška požárního úseku je 2,8 m, plocha

Více

Řešený příklad: Výpočet zatížení pláště budovy

Řešený příklad: Výpočet zatížení pláště budovy Dokument č. SX016a-CZ-EU Strana 1 8 Eurokód EN 1991-1-3, Připravil Matthias Oppe Datum červen 005 Zkontroloval Christian Müller Datum červen 005 Řešený příklad objasňuje postup výpočtu atížení budovy s

Více

STATICKÝ VÝPOČET D.1.2 STAVEBNĚ KONSTRUKČNÍ ŘEŠENÍ REKONSTRUKCE 2. VÝROBNÍ HALY V AREÁLU SPOL. BRUKOV, SMIŘICE

STATICKÝ VÝPOČET D.1.2 STAVEBNĚ KONSTRUKČNÍ ŘEŠENÍ REKONSTRUKCE 2. VÝROBNÍ HALY V AREÁLU SPOL. BRUKOV, SMIŘICE STATICKÝ VÝPOČET D.1.2 STAVEBNĚ KONSTRUKČNÍ ŘEŠENÍ REKONSTRUKCE 2. VÝROBNÍ HALY V AREÁLU SPOL. BRUKOV, SMIŘICE Datum: 01/2016 Stupeň dokumentace: Dokumentace pro stavební povolení Zpracovatel: Ing. Karel

Více

Příloha D Navrhování pomocí zkoušek

Příloha D Navrhování pomocí zkoušek D.1 Rozsah platnosti a použití Příloha D Navrhování pomocí zkoušek Příloha D uvádí pokyny pro navrhování na základě zkoušek a pro určení charakteristické nebo návrhové hodnoty jedné materiálové vlastnosti

Více

n =, kde n je počet podlaží. ψ 0 je redukční

n =, kde n je počet podlaží. ψ 0 je redukční Užitné zatížení Činnost lidí Je nahrazeno plošným a bodovým zatížením. Referenční hodnota 1 rok s pravděpodobností překročení 0,98 Zatížení stropů Velikost zatížení je dána v závislosti na druhu stavby

Více

MILLAU VIADUCT FOSTER AND PARTNERS Koncepce projektu Vícenásobné zavěšení do 8 polí, 204 m + 6x342 m + 204 m Celková délka mostu 2 460 m Zakřivení v mírném směrovém oblouku poloměru 20 000 m Konstantní

Více

Stěnové nosníky. Obr. 1 Stěnové nosníky - průběh σ x podle teorie lineární pružnosti.

Stěnové nosníky. Obr. 1 Stěnové nosníky - průběh σ x podle teorie lineární pružnosti. Stěnové nosníky Stěnový nosník je plošný rovinný prvek uložený na podporách tak, že prvek je namáhán v jeho rovině. Porovnáme-li chování nosníků o výškách h = 0,25 l a h = l, při uvažování lineárně pružného

Více

Statický výpočet postup ve cvičení. 5. Návrh a posouzení sloupu vzpěrné délky

Statický výpočet postup ve cvičení. 5. Návrh a posouzení sloupu vzpěrné délky 5. Návrh a posouzení sloupu vzpěrné délky 5. Návrh a posouzení sloupu např. válcovaný průřez HEB: 5.1. Výpočet osové síly N Ed zatížení stálá a proměnná působící na sloup v přízemí (tj. stropy všech příslušných

Více

Program dalšího vzdělávání

Program dalšího vzdělávání Program dalšího vzdělávání VZDĚLÁVÁNÍ LEŠENÁŘŮ Učební plán kurzu: Vzdělávání odborně způsobilých osob pro DSK MODUL A2 Projekt: Konkurenceschopnost pro lešenáře Reg. č.: CZ.1.07/3.2.01/01.0024 Tento produkt

Více

Výpočet vodorovné únosnosti osamělé piloty

Výpočet vodorovné únosnosti osamělé piloty Inženýrský manuál č. 16 Aktualizace: 07/2018 Výpočet vodorovné únosnosti osamělé piloty Program: Soubor: Pilota Demo_manual_16.gpi Cílem tooto inženýrskéo manuálu je vysvětlit použití programu GEO 5 PILOTA

Více

Návrh a posouzení plošného základu podle mezního stavu porušení ULS dle ČSN EN 1997-1

Návrh a posouzení plošného základu podle mezního stavu porušení ULS dle ČSN EN 1997-1 Návrh a posouzení plošného základu podle mezního stavu porušení ULS dle ČSN EN 1997-1 1. Návrhové hodnoty účinků zatížení Účinky zatížení v mezním stavu porušení ((STR) a (GEO) jsou dány návrhovou kombinací

Více

NCCI: Koncepce a typické uspořádání jednoduchých prutových konstrukcí

NCCI: Koncepce a typické uspořádání jednoduchých prutových konstrukcí NCCI: Koncepce a typické uspořádání jednoduchých prutových konstrukcí V NCCI je předložena koncepce jednoduchých konstrukcí pro vícepodlažní budovy. Příčná stabilita je zajištěna buď ztužujícími jádry,

Více

ČSN EN 1990/A1 OPRAVA 4

ČSN EN 1990/A1 OPRAVA 4 ČESKÁ TECHNICKÁ NORMA ICS 91.010.30 Leden 2011 Eurokód: Zásady navrhování konstrukcí ČSN EN 1990/A1 OPRAVA 4 73 0002 idt EN 1990:2002/A1:2005/AC:2010-04 Corrigendum Tato oprava ČSN EN 1990:2004/A1:2007

Více

STATICKÝ VÝPOČET. Ing. Jan Blažík

STATICKÝ VÝPOČET. Ing. Jan Blažík STATICKÝ VÝPOČET Zpracovatel : Zodpovědný projektant : Vypracoval : Ing. Pavel Charous Ing. Jan Blažík Stavebník : Místo stavby : Ondřejov u Rýmařova z.č. : Stavba : Datum : 06/2015 Stáj pro býky 21,5

Více

7 NAVRHOVÁNÍ SPOJŮ PODLE ČSN EN :2006

7 NAVRHOVÁNÍ SPOJŮ PODLE ČSN EN :2006 7 NAVRHOVÁNÍ SPOJŮ PODLE ČSN EN 1995-1-2:2006 7.1 Úvod Konverze předběžné evropské normy pro navrhování dřevěných konstrukcí na účinky požáru ENV 1995-1-2, viz [7.1], na evropskou normu stejného označení

Více

Statický výpočet komínové výměny a stropního prostupu (vzorový příklad)

Statický výpočet komínové výměny a stropního prostupu (vzorový příklad) KERAMICKÉ STROPY HELUZ MIAKO Tabulky statických únosností stropy HELUZ MIAKO Obsah tabulka č. 1 tabulka č. 2 tabulka č. 3 tabulka č. 4 tabulka č. 5 tabulka č. 6 tabulka č. 7 tabulka č. 8 tabulka č. 9 tabulka

Více

133PSBZ Požární spolehlivost betonových a zděných konstrukcí. Přednáška B2. ČVUT v Praze, Fakulta stavební katedra betonových a zděných konstrukcí

133PSBZ Požární spolehlivost betonových a zděných konstrukcí. Přednáška B2. ČVUT v Praze, Fakulta stavební katedra betonových a zděných konstrukcí 133PSBZ Požární spolehlivost betonových a zděných konstrukcí Přednáška B2 ČVUT v Praze, Fakulta stavební katedra betonových a zděných konstrukcí Tahové zpevnění spolupůsobení taženého betonu mezi trhlinami

Více

VÝPOČET ZATÍŽENÍ SNĚHEM DLE ČSN EN :2005/Z1:2006

VÝPOČET ZATÍŽENÍ SNĚHEM DLE ČSN EN :2005/Z1:2006 PŘÍSTAVBA SOCIÁLNÍHO ZAŘÍZENÍ HŘIŠTĚ TJ MOŘKOV PŘÍPRAVNÉ VÝPOČTY Výpočet zatížení dle ČSN EN 1991 (730035) ZATÍŽENÍ STÁLÉ Střešní konstrukce Jednoplášťová plochá střecha (bez vl. tíhy nosné konstrukce)

Více

Průvodní zpráva ke statickému výpočtu

Průvodní zpráva ke statickému výpočtu Průvodní zpráva ke statickému výpočtu V následujícím statickém výpočtu jsou navrženy a posouzeny nosné prvky ocelové konstrukce zesílení části stávající stropní konstrukce v 1.a 2. NP objektu ředitelství

Více

Atic, s.r.o. a Ing. arch. Libor Žák

Atic, s.r.o. a Ing. arch. Libor Žák Atic, s.r.o. a Ing. arch. Libor Žák Riegrova, 62 00 Brno Sdružení tel. 2 286, 60 323 6 email: zak.apk@arch.cz Investor : Stavba : Objekt : Jihomoravský kraj Brno, Žerotínovo nám. 3/, PSČ 60 82 KOMPETENČNÍ

Více

Statický výpočet střešního nosníku (oprava špatného návrhu)

Statický výpočet střešního nosníku (oprava špatného návrhu) Statický výpočet střešního nosníku (oprava špatného návrhu) Obsah 1 Obsah statického výpočtu... 3 2 Popis výpočtu... 3 3 Materiály... 3 4 Podklady... 4 5 Výpočet střešního nosníku... 4 5.1 Schéma nosníku

Více

7. přednáška OCELOVÉ KONSTRUKCE VŠB. Technická univerzita Ostrava Fakulta stavební Podéš 1875, éště. Miloš Rieger

7. přednáška OCELOVÉ KONSTRUKCE VŠB. Technická univerzita Ostrava Fakulta stavební Podéš 1875, éště. Miloš Rieger 7. přednáška OCELOVÉ KONSTRUKCE VŠB Technická univerzita Ostrava Fakulta stavební Ludvíka Podéš éště 1875, 708 33 Ostrava - Poruba Miloš Rieger Téma : Spřažené ocelobetonové konstrukce - úvod Spřažené

Více

STATICKÉ TABULKY stěnových kazet

STATICKÉ TABULKY stěnových kazet STATICKÉ TABULKY stěnových kazet OBSAH ÚVOD.................................................................................................. 3 SATCASS 600/100 DX 51D................................................................................

Více

NK 1 Zatížení 2. Klasifikace zatížení

NK 1 Zatížení 2. Klasifikace zatížení NK 1 Zatížení 2 Přednášky: Doc. Ing. Karel Lorenz, CSc., Prof. Ing. Milan Holický, DrSc., Ing. Jana Marková, Ph.D. FA, Ústav nosných konstrukcí, Kloknerův ústav Cvičení: Ing. Naďa Holická, CSc., Fakulta

Více

Lineární činitel prostupu tepla

Lineární činitel prostupu tepla Lineární činitel prostupu tepla Zbyněk Svoboda, FSv ČVUT Původní text ze skript Stavební fyzika 31 z roku 2004. Částečně aktualizováno v roce 2018 především s ohledem na změny v normách. Lineární činitel

Více

NK 1 Zatížení 2. - Zásady navrhování - Zatížení - Uspořádání konstrukce - Zděné konstrukce - Zakládání staveb

NK 1 Zatížení 2. - Zásady navrhování - Zatížení - Uspořádání konstrukce - Zděné konstrukce - Zakládání staveb NK 1 Zatížení 2 Přednášky: Doc. Ing. Karel Lorenz, CSc., Prof. Ing. Milan Holický, DrSc., Ing. Jana Marková, Ph.D. FA, Ústav nosných konstrukcí, Kloknerův ústav Cvičení: Ing. Naďa Holická, CSc., Fakulta

Více

Betonové konstrukce (S) Přednáška 3

Betonové konstrukce (S) Přednáška 3 Betonové konstrukce (S) Přednáška 3 Obsah Účinky předpětí na betonové prvky a konstrukce Silové působení kabelu na beton Ekvivalentní zatížení Staticky neurčité účinky předpětí Konkordantní kabel, Lineární

Více

Téma 10: Spolehlivost a bezpečnost stavebních nosných konstrukcí

Téma 10: Spolehlivost a bezpečnost stavebních nosných konstrukcí Téma 10: Spolehlivost a bezpečnost stavebních nosných konstrukcí Přednáška z předmětu: Pravděpodobnostní posuzování konstrukcí 4. ročník bakalářského studia Katedra stavební mechaniky Fakulta stavební

Více

5 Úvod do zatížení stavebních konstrukcí. terminologie stavebních konstrukcí terminologie a typy zatížení výpočet zatížení od vlastní tíhy konstrukce

5 Úvod do zatížení stavebních konstrukcí. terminologie stavebních konstrukcí terminologie a typy zatížení výpočet zatížení od vlastní tíhy konstrukce 5 Úvod do zatížení stavebních konstrukcí terminologie stavebních konstrukcí terminologie a typy zatížení výpočet zatížení od vlastní tíhy konstrukce 5.1 Terminologie stavebních konstrukcí nosné konstrukce

Více

2. přednáška, Zatížení a spolehlivost. 1) Navrhování podle norem 2) Zatížení podle Eurokódu 3) Zatížení sněhem

2. přednáška, Zatížení a spolehlivost. 1) Navrhování podle norem 2) Zatížení podle Eurokódu 3) Zatížení sněhem 2. přednáška, 25.10.2010 Zatížení a spolehlivost 1) Navrhování podle norem 2) Zatížení podle Eurokódu 3) Zatížení sněhem Navrhování podle norem Navrhování podle norem Historickéa empirickémetody Dovolenénapětí

Více

Návrh dimenzí drátkobetonové podlahy

Návrh dimenzí drátkobetonové podlahy Návr dimenzí drátkobetonové podlay Projekt: 0 Datum: 8.3.01 Zadavatel: Pan Aleš Hustý tel.: 553 654 91 fax.: 553 654 91 GSM: 603 469 666 merkuro@merkuro.cz IČ: 4396447 DIČ: CZ4396447 1 Zatížení: 1) Bodové

Více

SLOUPEK PROTIHLUKOVÝCH STĚN Z UHPC

SLOUPEK PROTIHLUKOVÝCH STĚN Z UHPC WP3 MOSTY - EFEKTIVNĚJŠÍ KONSTRUKCE S VYŠŠÍ SPOLEHLIVOSTÍ A DELŠÍ ŽIVOTNOSTÍ 3.6c Doporučení pro opravy a rekonstrukce mostního vybavení a vývoj detailů SLOUPEK PROTIHLUKOVÝCH STĚN Z UHPC Zpracoval: Ing.

Více

Předmět: SM02 ZATÍŽENÍ STAVEBNÍCH KONSTRUKCÍ UŽITNÁ ZATÍŽENÍ, ZATÍŽENÍ SNĚHEM, ZATÍŽENÍ VĚTREM. prof. Ing. Michal POLÁK, CSc.

Předmět: SM02 ZATÍŽENÍ STAVEBNÍCH KONSTRUKCÍ UŽITNÁ ZATÍŽENÍ, ZATÍŽENÍ SNĚHEM, ZATÍŽENÍ VĚTREM. prof. Ing. Michal POLÁK, CSc. Předmět: SM02 ZATÍŽENÍ STAVEBNÍCH KONSTRUKCÍ UŽITNÁ ZATÍŽENÍ, ZATÍŽENÍ SNĚHEM, ZATÍŽENÍ VĚTREM prof. Ing. Michal POLÁK, CSc. Fakulta stavební, ČVUT v Praze 2013-2014 Pravděpodobnost výskytu PROMĚNNÁ ZATÍŽENÍ

Více

teorie elektronických obvodů Jiří Petržela obvodové funkce

teorie elektronických obvodů Jiří Petržela obvodové funkce Jiří Petržela obvod jako dvojbran dvojbranem rozumíme elektronický obvod mající dvě brány (vstupní a výstupní) dvojbranem může být zesilovač, pasivní i aktivní filtr, tranzistor v některém zapojení, přenosový

Více

KONSTRUKCE POZEMNÍCH STAVEB

KONSTRUKCE POZEMNÍCH STAVEB 6. cvičení KONSTRUKCE POZEMNÍCH STAVEB Klasifikace konstrukčních prvků Uvádíme klasifikaci konstrukčních prvků podle idealizace jejich statického působení. Začneme nejprve obecným rozdělením, a to podle

Více

Stanovení hloubky karbonatace v čase t

Stanovení hloubky karbonatace v čase t 1. Zadání Optimalizace bezpečnosti a životnosti existujících mostů Stanovení hloubky karbonatace v čase t Předložený výpočetní produkt je aplikací teoretických postupů popsané v navrhované certifikované

Více

Kapitola 8. prutu: rovnice paraboly z = k x 2 [m], k = z a x 2 a. [m 1 ], (8.1) = z b x 2 b. rovnice sklonu střednice prutu (tečna ke střednici)

Kapitola 8. prutu: rovnice paraboly z = k x 2 [m], k = z a x 2 a. [m 1 ], (8.1) = z b x 2 b. rovnice sklonu střednice prutu (tečna ke střednici) Kapitola 8 Vnitřní síly rovinně zakřiveného prutu V této kapitole bude na příkladech vysvětleno řešení vnitřních sil rovinně zakřivených nosníků, jejichž střednici tvoří oblouk ve tvaru kvadratické paraboly[1].

Více

Dipl. Ing. Robert Veit-Egerer (PhD Candidate), VCE - Vienna Consulting Engineers Ing. Zdeněk Jeřábek, CSc., INFRAM a.s.

Dipl. Ing. Robert Veit-Egerer (PhD Candidate), VCE - Vienna Consulting Engineers Ing. Zdeněk Jeřábek, CSc., INFRAM a.s. Nové spojení Praha - Železniční estakáda přes Masarykovo nádraží Ověření výchozího stavu měřením dynamického chování metodou BRIMOS v souladu s ČSN 73 6209 Dipl. Ing. Robert Veit-Egerer (PhD Candidate),

Více

Posouzení za požární situace

Posouzení za požární situace ANALÝZA KONSTRUKCE Zdeněk Sokol 1 Posouzení za požární situace Teplotní analýza požárního úseku Přestup tepla do konstrukce Návrhový model ČSN EN 1991-1-2 ČSN EN 199x-1-2 ČSN EN 199x-1-2 2 1 Princip posouzení

Více

Použitelnost. Žádné nesnáze s použitelností u historických staveb

Použitelnost. Žádné nesnáze s použitelností u historických staveb Použitelnost - funkční způsobilost za provozních podmínek - pohodlí uživatelů - vzhled konstrukce Obvyklé mezní stavy použitelnosti betonových konstrukcí: mezní stav napětí z hlediska podmínek použitelnosti,

Více

CL001 Betonové konstrukce (S) Program cvičení, obor S, zaměření KSS

CL001 Betonové konstrukce (S) Program cvičení, obor S, zaměření KSS CL001 Betonové konstrukce (S) Program cvičení, obor S, zaměření KSS Cvičení Program cvičení 1. Výklad: Zadání tématu č. 1, část 1 (dále projektu) Střešní vazník: Návrh účinky a kombinace zatížení, návrh

Více

Klasifikace zatížení

Klasifikace zatížení Klasifikace zatížení Stálá G - Vlastní tíha, pevně zabudované součásti - Předpětí - Zatížení vodou a zeminou - Nepřímá zatížení, např. od sedání základů Proměnná - Užitná zatížení - Sníh - Vítr - Nepřímá

Více

Předpjatý beton Přednáška 4

Předpjatý beton Přednáška 4 Předpjatý beton Přednáška 4 Obsah Účinky předpětí na betonové prvky a konstrukce Staticky neurčité účinky předpětí Konkordantní kabel Lineární transformace kabelu Návrh předpětí metodou vyrovnání zatížení

Více

4 Halové objekty a zastřešení na velká rozpětí

4 Halové objekty a zastřešení na velká rozpětí 4 Halové objekty a zastřešení na velká rozpětí 4.1 Statické systémy Tab. 4.1 Statické systémy podle namáhání Namáhání hlavního nosného systému Prostorové uspořádání Statický systém Schéma Charakteristické

Více

2 ZATÍŽENÍ KONSTRUKCÍ PODLE ČSN EN : 2004

2 ZATÍŽENÍ KONSTRUKCÍ PODLE ČSN EN : 2004 2 ZATÍŽENÍ KONSTRUKCÍ PODLE ČSN EN 1991-1-2: 24 2.1 Obsah normy ČSN EN 1991-1-2:24 Zatížení konstrukcí, Obecná zatížení, Zatížení konstrukcí vystavených účinkům požáru uvádí všechny potřebné požadavky

Více

OTÁZKY K PROCVIČOVÁNÍ PRUŽNOST A PLASTICITA II - DD6

OTÁZKY K PROCVIČOVÁNÍ PRUŽNOST A PLASTICITA II - DD6 OTÁZKY K PROCVIČOVÁNÍ PRUŽNOST A PLASTICITA II - DD6 POSUZOVÁNÍ KONSTRUKCÍ PODLE EUROKÓDŮ 1. Jaké mezní stavy rozlišujeme při posuzování konstrukcí podle EN? 2. Jaké problémy řeší mezní stav únosnosti

Více

OVĚŘOVÁNÍ EXISTUJÍCÍCH MOSTŮ PODLE SOUČASNÝCH PŘEDPISŮ

OVĚŘOVÁNÍ EXISTUJÍCÍCH MOSTŮ PODLE SOUČASNÝCH PŘEDPISŮ OVĚŘOVÁNÍ EXISTUJÍCÍCH MOSTŮ PODLE SOUČASNÝCH PŘEDPISŮ Milan Holický, Karel Jung, Jana Marková a Miroslav Sýkora Abstract Eurocodes are focused mainly on the design of new structures and supplementary

Více

katedra technických zařízení budov, fakulta stavební ČVUT TZ 31: Vzduchotechnika cvičení č.1 Hluk v vzduchotechnice vypracoval: Adamovský Daniel

katedra technických zařízení budov, fakulta stavební ČVUT TZ 31: Vzduchotechnika cvičení č.1 Hluk v vzduchotechnice vypracoval: Adamovský Daniel Úvod Legislativa: Nařízení vlády č. 502/2000 Sb o ochraně zdraví před nepříznivými účinky hluku a vibrací + novelizace nařízením vlády č. 88/2004 Sb. ze dne 21. ledna 2004. a) hlukem je každý zvuk, který

Více

Posouzení trapézového plechu - VUT FAST KDK Ondřej Pešek Draft 2017

Posouzení trapézového plechu - VUT FAST KDK Ondřej Pešek Draft 2017 Posouzení trapézového plechu - UT FAST KDK Ondřej Pešek Draft 017 POSOUENÍ TAPÉOÉHO PLECHU SLOUŽÍCÍHO JAKO TACENÉ BEDNĚNÍ Úkolem je posoudit trapézový plech typu SŽ 11 001 v mezním stavu únosnosti a mezním

Více

Příloha č. 6: P06_Hluková studie

Příloha č. 6: P06_Hluková studie Příloha č. : P0_Hluková studie HLUKOVÁ STUDIE ve smyslu nařízení vlády č. 272/2011 Sb. o ochraně zdraví před nepříznivými účinky hluku a vibrací zpracovaná dle metodického návodu č. j. 2545/2010-OVZ-32.3-1.

Více

MĚŘENÍ AKUSTICKÝCH VELIČIN. Ing. Barbora Hrubá, Ing. Jiří Winkler Kat. 225 Pozemní stavitelství 2014

MĚŘENÍ AKUSTICKÝCH VELIČIN. Ing. Barbora Hrubá, Ing. Jiří Winkler Kat. 225 Pozemní stavitelství 2014 MĚŘENÍ AKUSTICKÝCH VELIČIN Ing. Barbora Hrubá, Ing. Jiří Winkler Kat. 225 Pozemní stavitelství 2014 TERMÍNY A DEFINICE MÍSTO PŘÍJMU Místo ve kterém je hluk posuzován ČASOVÝ INTERVAL MĚŘENÍ Časový interval

Více

IDEA StatiCa novinky. verze 5.4

IDEA StatiCa novinky. verze 5.4 IDEA StatiCa novinky verze 5.4 IDEA StatiCa Prestressing Spřažený spojitý nosník Postupná výstavba spojité konstrukce Hlavním vylepšením ve verzi 5 v části beton a předpjatý beton je modul pro analýzu

Více

3. Kmitočtové charakteristiky

3. Kmitočtové charakteristiky 3. Kmitočtové charakteristiky Po základním seznámení s programem ATP a jeho preprocesorem ATPDraw následuje využití jednotlivých prvků v jednoduchých obvodech. Jednotlivé příklady obvodů jsou uzpůsobeny

Více

Novinky v. Dlubal Software. Od verze 5.04.0058 / 8.04.0058. Nové přídavné moduly. v hlavních programech. v přídavných modulech.

Novinky v. Dlubal Software. Od verze 5.04.0058 / 8.04.0058. Nové přídavné moduly. v hlavních programech. v přídavných modulech. Dlubal Software Obsah Strana 1 Nové přídavné moduly Novinky v hlavních programech 4 Novinky v přídavných modulech 5 3 Novinky v Březen 015 Od verze 5.04.0058 / 8.04.0058 Dlubal Software s.r.o. Anglická

Více

K618 FD ČVUT v Praze (pracovní verze). Tento materiál má pouze pracovní charakter a bude v průběhu semestru

K618 FD ČVUT v Praze (pracovní verze). Tento materiál má pouze pracovní charakter a bude v průběhu semestru Poznámky k semináři z předmětu Pružnost pevnost na K68 D ČVUT v Praze (pracovní verze). Tento materiál má pouze pracovní carakter a bude v průběu semestru postupně doplňován. Autor: Jan Vyčicl E mail:

Více

Témata profilové části ústní maturitní zkoušky z odborných předmětů

Témata profilové části ústní maturitní zkoušky z odborných předmětů Střední průmyslová škola stavební, Liberec 1, Sokolovské náměstí 14, příspěvková organizace Témata profilové části ústní maturitní zkoušky z odborných předmětů STAVEBNÍ KONSTRUKCE Školní rok: 2018 / 2019

Více

Zatížení konstrukcí. Reprezentativní hodnoty zatížení

Zatížení konstrukcí. Reprezentativní hodnoty zatížení Zatížení konstrukcí Základní klasifikace zatížení podle Eurokódu je obdobná jako ve starších ČSN. Používá se jen částečně jiná terminologie a jiné značky. Primárním zůstává klasifikace zatížení podle jejich

Více

Postup zadávání základové desky a její interakce s podložím v programu SCIA

Postup zadávání základové desky a její interakce s podložím v programu SCIA Postup zadávání základové desky a její interakce s podložím v programu SCIA Tloušťka desky h s = 0,4 m. Sloupy 0,6 x 0,6m. Zatížení: rohové sloupy N 1 = 800 kn krajní sloupy N 2 = 1200 kn střední sloupy

Více

Jednotný programový dokument pro cíl 3 regionu (NUTS2) hl. m. Praha (JPD3)

Jednotný programový dokument pro cíl 3 regionu (NUTS2) hl. m. Praha (JPD3) Jednotný programový dokument pro cíl 3 regionu (NUTS2) hl. m. Praha (JPD3) Projekt DALŠÍ VZDĚLÁVÁNÍ PEDAGOGŮ V OBLASTI NAVRHOVÁNÍ STAVEBNÍCH KONSTRUKCÍ PODLE EVROPSKÝCH NOREM Projekt je spolufinancován

Více

Ve výrobě ocelových konstrukcí se uplatňují následující druhy svařování:

Ve výrobě ocelových konstrukcí se uplatňují následující druhy svařování: 5. cvičení Svarové spoje Obecně o svařování Svařování je technologický proces spojování kovů podmíněného vznikem meziatomových vazeb, a to za působení tepla nebo tepla a tlaku s případným použitím přídavného

Více

1 Švédská proužková metoda (Pettersonova / Felleniova metoda; 1927)

1 Švédská proužková metoda (Pettersonova / Felleniova metoda; 1927) Teorie K sesuvu svahu dochází často podél tenké smykové plochy, která odděluje sesouvající se těleso sesuvu nad smykovou plochou od nepohybujícího se podkladu. Obecně lze říct, že v nesoudržných zeminách

Více

Advance Design 2014 / SP1

Advance Design 2014 / SP1 Advance Design 2014 / SP1 První Service Pack pro ADVANCE Design 2014 přináší několik zásadních funkcí a více než 240 oprav a vylepšení. OBECNÉ [Réf.15251] Nová funkce: Možnost zahrnout zatížení do generování

Více

Vybrané okruhy znalostí z předmětů stavební mechanika, pružnost a pevnost důležité i pro studium předmětů KP3C a KP5A - navrhování nosných konstrukcí

Vybrané okruhy znalostí z předmětů stavební mechanika, pružnost a pevnost důležité i pro studium předmětů KP3C a KP5A - navrhování nosných konstrukcí Vybrané okruhy znalostí z předmětů stavební mechanika, pružnost a pevnost důležité i pro studium předmětů KP3C a KP5A - navrhování nosných konstrukcí Skládání a rozklad sil Skládání a rozklad sil v rovině

Více

VZOROVÝ PŘÍKLAD NÁVRHU MOSTU Z PREFABRIKOVANÝCH NOSNÍKŮ

VZOROVÝ PŘÍKLAD NÁVRHU MOSTU Z PREFABRIKOVANÝCH NOSNÍKŮ VZOROVÝ PŘÍKLAD NÁVRHU MOSTU Z PREFABRIKOVANÝCH NOSNÍKŮ ZADÁNÍ Navrhněte most z prefabrikovaných předepnutých nosníků IST. Délka nosné konstrukce mostu je 30m, kategorie komunikace na mostě je S 11,5/90.

Více

Numerická analýza dřevěných lávek pro pěší a cyklisty

Numerická analýza dřevěných lávek pro pěší a cyklisty Ing. Jana Bártová, Helika, a.s. Konference STATIKA 2014, 12. a 13. června Lávky Lávka přes Roklanský potok v Modravě 1 Lávka přes Roklanský potok v Modravě Technické parametry: Lávka převádí běžeckou trať

Více

Kapitola 4. Tato kapitole se zabývá analýzou vnitřních sil na rovinných nosnících. Nejprve je provedena. Každý prut v rovině má 3 volnosti (kap.1).

Kapitola 4. Tato kapitole se zabývá analýzou vnitřních sil na rovinných nosnících. Nejprve je provedena. Každý prut v rovině má 3 volnosti (kap.1). Kapitola 4 Vnitřní síly přímého vodorovného nosníku 4.1 Analýza vnitřních sil na rovinných nosnících Tato kapitole se zabývá analýzou vnitřních sil na rovinných nosnících. Nejprve je provedena rekapitulace

Více

Řešený příklad: Nosník s kopením namáhaný koncovými momenty

Řešený příklad: Nosník s kopením namáhaný koncovými momenty Dokument: SX011a-CZ-EU Strana 1 z 7 Eurokód Vypracoval rnaud Lemaire Datum březen 005 Kontroloval lain Bureau Datum březen 005 Řešený příklad: Nosník s kopením namáhaný koncovými Tento příklad seznamuje

Více

Témata profilové části ústní maturitní zkoušky z odborných předmětů

Témata profilové části ústní maturitní zkoušky z odborných předmětů Střední průmyslová škola stavební, Liberec 1, Sokolovské náměstí 14, příspěvková organizace Témata profilové části ústní maturitní zkoušky z odborných předmětů STAVEBNÍ KONSTRUKCE Školní rok: 2018 / 2019

Více

Ocelová rozhledna. Steel tower

Ocelová rozhledna. Steel tower ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE Fakulta stavební Katedra ocelových a dřevěných konstrukcí Ocelová rozhledna Rozhledna Bernard Steel tower Observation tower Bernard Diplomová práce Studijní program:

Více

4. cvičení- vzorové příklady

4. cvičení- vzorové příklady Příklad 4. cvičení- vzorové příklady ypočítejte kapacitu násosky a posuďte její funkci. Násoska převádí vodu z horní nádrže, která má hladinu na kótě H A = m, přes zvýšené místo a voda vytéká na konci

Více

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE Fakulta stavební. Zastřešení dvojlodního hypermarketu STATICKÝ VÝPOČET. Ondřej Hruška

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE Fakulta stavební. Zastřešení dvojlodního hypermarketu STATICKÝ VÝPOČET. Ondřej Hruška ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE Fakulta stavební Zastřešení dvojlodního hypermarketu STATICKÝ VÝPOČET Ondřej Hruška Praha 2017 Statický výpočet Obsah 1. Zatížení... 2 1.1. Zatížení sněhem. 2 1.2.

Více