Automatizované řešení úloh s omezeními
|
|
- Emil Pokorný
- před 9 lety
- Počet zobrazení:
Transkript
1 Automatizované řešení úloh s omezeními Martin Kot Katedra informatiky, FEI, Vysoká škola báňská Technická universita Ostrava 17. listopadu 15, Ostrava-Poruba Česká republika 25. října 2012 M. Kot (VŠB-TUO) Automatizované řešení úloh s omezeními 25. října / 17
2 Šíření omezení M. Kot (VŠB-TUO) Automatizované řešení úloh s omezeními 25. října / 17
3 Šíření omezení(constraint propagation) Můžeme dokázat nekonzistentnost sítě Můžeme vyloučit některé kombinace přiřazení hodnot proměnným a tím urychlit výpočet Můžemeinajítřešení-nováomezenízpůsobí,žekaždéřešenísenajde prostým prohledáváním do hloubky, kde nenastane nikdy dead-end Většinou ale řešení problému vyvozováním(inference) je výpočetně náročné, vyžaduje přidání exponenciálního množství nových omezení Obvykle se přidávaji jen nějaká omezení, prohledávání pak může narazit na dead-end, ale končí relativně rychle Algoritmy přidávající omezený počet omezení označujeme vynucení lokální konzistentnosti(local consistency-enforcing), omezené vyvozování konzistence(bounded consistency inference) nebo šíření omezení(constraint propagation) M. Kot (VŠB-TUO) Automatizované řešení úloh s omezeními 25. října / 17
4 Hranová konzistentnost V minimální síti platí, že přiřazení jakékoliv hodnoty z domény proměnné je rozšiřitelné na jakoukoliv další proměnnou Takovou vlastnost nazýváme hranová konzistentnost (arc-consistency) Může být splněna také v neminimálních sítích Může být vynucena na každé síti efektivním výpočtem, často nazývaným propagace(propagation) Definice:Prodanousíť R = {X,D,C}sR ij Cjeproměnnáx i hranověkonzistentní(arc-consistent)vzhledemkx j právětehdy, kdyžprokaždouhodnotua i D i existujehodnotaa j D j tž. (a i,a j ) R ij. Definice:Podsíť(nebohrana)definovaná {x i,x j }jehranově konzistentní,právěkdyžx i jehranověkonzistentnívzhledemkx j ax j jehranověkonzistentnívzhledemkx i Definice: Síť omezení je hranově konzistentní, právě když všechny její hrany(podsítě velikosti 2) jsou hranově konzistentní M. Kot (VŠB-TUO) Automatizované řešení úloh s omezeními 25. října / 17
5 Revidující procedura SlidyR.Dechter,chapter3,slide7 Převádí síť na hranově konzistentní redukcí domén proměnných v rozsahu omezení Aplikovánanax i,x j vracínejvětšídoménud i prokteroux i je hranověkonzistentnívzhledemkx j SložitostvnejhoršímpřípadějeO(k 2 ),kdekjemezvelikostidomén M. Kot (VŠB-TUO) Automatizované řešení úloh s omezeními 25. října / 17
6 Algoritmus ARC-CONSISTENCY-1(AC-1) SlidyR.Dechter,chapter3,slide9 Brute-force algoritmus zajišťující hranovou konzistentnost sítě Aplikuje revidující proceduru na všechny dvojice proměnných, které se vyskytují v omezeních dokud se nějaký doména mění Může zjistit nekonzistentnost sítě SložitostvnejhoršímpřípadějeO(enk 3 ),kdenjepočetproměnných, kjemezvelikostídomén,ejepočetomezení M. Kot (VŠB-TUO) Automatizované řešení úloh s omezeními 25. října / 17
7 Algoritmus ARC-CONSISTENCY-3(AC-3) Slidy R. Dechter, chapter 3, slide 10 Algoritmus AC-1 je možné vylepšit Když se změní jen pár domén, není potřeba procházet všechna omezení znovu Stačí udržovat frontu dvojic proměnných, které ještě zpracovány nebylynebovdoménějednéznichdošlokezměně Algoritmus označujeme ARC-CONSISTENCY-3(AC-3), AC-2 byl mezikrok SložitostjeO(ek 3 ) M. Kot (VŠB-TUO) Automatizované řešení úloh s omezeními 25. října / 17
8 Algoritmus ARC-CONSISTENCY-4(AC-4) Slidy R. Dechter, chapter 3, slide 12 Algoritmus AC-3 stále není optimální(z hlediska časové složitosti) Pouhéověřeníkonzistentnostisítěpotřebujeek 2 operací,zajištění konzistentnosti asi nemůže jít rychleji Algoritmus AC-4 dosahuje tuto mez Nevyužívá revidující proceduru, zkoumá strukturu relace omezení Každéhodnotěa i zdoményx i přiřadípočetkonzistentníchhodnotz x j Hodnotaa i jeodebránazdomény,pokudnemávněkteréze sousedních proměnných odpovídající protějšek SložitostjeO(ek 2 ) M. Kot (VŠB-TUO) Automatizované řešení úloh s omezeními 25. října / 17
9 Složitost Místok 2 vzniklézuniverzálnírelacemůžemeuvažovattpro maximální počet dvojic v relacích Revidující procedura potom má O(t) AC-1: O(nket) AC-3: O(ekt) AC-4: O(et) SložitostvnejlepšímpřípaděproAC-1aAC-3jeek,kdyžužproblém jehranověkonzistentní.proac-4jetoek 2,protožetoliktrváuž inicializace PřislabýchomezeníchvpraxičastoAC-1aAC-3jsourychlejšínež AC-4 M. Kot (VŠB-TUO) Automatizované řešení úloh s omezeními 25. října / 17
10 Konzistentnost cesty Definice:Prodanousíť R = {X,D,C}jemnožinadvouproměnných {x i,x j }konzistentnípocestě(path-consistent)vzhledemkx k právě tehdy,kdyžprokaždépřiřazení ( x i,a i, x j,a j )existujehodnota a k D k tž.přiřazení ( x i,a i, x k,a k )a( x k,a k, x j,a j )jsou konzistentní. Definice(alternativa):Prodanousíť R = {X,D,C}jebinární omezenír ij jekonzistentnícestouvzhledemkx k x j právětehdy,když prokaždýpár (a i,a j ) R ij,kdea i,a j jsouzpříslušnýchdomén, existujehodnotaa k D k tž. (a i,a k ) R ik a (a k,a j ) R kj. Definice:Podsíťnadtřemiproměnnými {x i,x j,x k }jekonzistentnípo cestáchjestližeprokaždoupermutaci (i,j,k)jer ij konzistentnípo cestěvzhledemkx k Definice: Síť omezení je konzistentní po cestách, právě když pro všechnyr ij akaždék i,jjer ij konzistentnípocestěvzhledemkx k M. Kot (VŠB-TUO) Automatizované řešení úloh s omezeními 25. října / 17
11 Revidující procedura REVISE-3 Slidy R. Dechter, chapter 3, slide 17 Beredvojiceproměnných (x,y)ajejichomezenír xy atřetí proměnnouzavracínejslabšíomezenír xysplňujícíkonzistentnostpo cestě TestujesekaždádvojicekonzistentníchhodnotR xy,jestlijemožnéji rozšířit na hodnotu z. Když ne, dvojici smaže. SložitostjeO(k 3 )neboo(tk) M. Kot (VŠB-TUO) Automatizované řešení úloh s omezeními 25. října / 17
12 Algoritmus PATH-CONSISTENCY-1(PC-1) Slidy R. Dechter, chapter 3, slide 18 Vynutí konzistentnost po cestách pro všechny podsítě velikosti 3, výsledkem je síť konzistentní po cestách Je analogií AC-1 SložitostjeO(n 5 k 5 )neboo(n 5 t 2 k) M. Kot (VŠB-TUO) Automatizované řešení úloh s omezeními 25. října / 17
13 Algoritmus PATH-CONSISTENCY-2(PC-2) Slidy R. Dechter, chapter 3, slide 19 Vylepšuje PC-1 udržováním fronty uspořádáných trojic ke zpracování KdyžjeomezeníR i jzměněnovymazánímněkterédvojicehodnot, všechnytrojicezahrnujícíx i ax j asniminějakoutřetíhodnotux k jsou znovu zpracovány Je analogií AC-3 SložitostjeO(n 3 k 5 )neboo(n 3 t 2 k) Také není optimální z hlediska časové složitosti, existuje optimální algoritmuspc-4sesložitostío(n 3 k 3 )neboo(n 3 tk) M. Kot (VŠB-TUO) Automatizované řešení úloh s omezeními 25. října / 17
14 i-konzistentnost Definice:Prosíť R = (X,D,C)jerelaceR S C,kde S =i 1, i-konzistentní(i-consistent) vzhledem k proměnné y / S právě tehdy,kdyžprokaždét R S existujehodnotaa D y tž. (t,a). Definice: Síť je i-konzistentní(i-consistent) když pro jakoukoliv instanciaci i 1 různých proměnných existuje instanciace každé ité proměnné tž. získaných i hodnot dohromady plňuje všechna omezení na těchto proměnných Revidující procedura REVISE-i slidy R. Dechter, chapter 3, slide 23 Algoritmus I-CONSISTENCY slidy R. Dechter, chapter 3, slide 23 Algoritmus je exponenciální vzhledem k i, tedy při zajišťování globální konzistentnosti(i je počet všech proměnných v síti) exponenciální vzhledem k velikosti sítě Zavádídosítěomezenínai 1proměnných,zbinárnísítětakmůže udělat nebinární M. Kot (VŠB-TUO) Automatizované řešení úloh s omezeními 25. října / 17
15 Zobecněná hranová konzistentnost Jedna ze dvou možností rozšíření hranové konzistentnosi na nebinární sítě Definice:Prosíť R = (X,D,C)srelacíR S C,jeproměnnáx hranověkonzistentnívzhledemkr S právětehdy,kdyžprokaždé a D x existujen-ticet R S tž.t[x] =a Definice:OmezeníR S jehranověkonzistentníprávětehdy,kdyžje hranově konzistentní vzhledem ke každé proměnné ve svém rozsahu Zajištění konzistentnosti redukuje doménu proměnné Druhý přístup je relační hranová konzistentnost, zaznamenává odvozené omezení ve formě změnou některé z relací reprezentujících omezení M. Kot (VŠB-TUO) Automatizované řešení úloh s omezeními 25. října / 17
16 Globální omezení Modelování reálných aplikací ve formě problému s omezeními vyžaduje specializované algoritmy šíření omezení pro často využívaná omezení alldifferent Požaduje se, aby všechny proměnné měly přiřazeny vzájemně různé hodnoty Je možné popsat binárními omezeními Aplikování hranové konzistentnosti většinou nic nepřinese, protože síť už je konzistentní(pokud nejsou jednoprvkové domény) Typicky dávají smysl nad libovolným rozsahem Další příklady: omezení součtem(jedna proměnná je součtem jiných), kumulativní omezení(kumulativní spotřeba zdrojů v čase nepřekračuje specifikovanou kapacitu) M. Kot (VŠB-TUO) Automatizované řešení úloh s omezeními 25. října / 17
17 Konzistentnost hranic Na velkých doménách je drahé zajistit hranovou konzistentnost Levnější je zajistit konzistentnost hranic(bounds-consistency) Idea je omezit domény intervalem a zajistit, že krajní body těchto intervalů splňují hranovou konzistentnost Slidy R. Dechter, chapter 3, slide 31 Zajištění konzistentnosti hranic při omezení typu alldifferent je možné včaseo(nlogn) M. Kot (VŠB-TUO) Automatizované řešení úloh s omezeními 25. října / 17
Hranová konzistence. Arc consistency AC. Nejprve se zabýváme binárními CSP. podmínka odpovídá hraně v grafu podmínek
Hranová konzistence Arc consistency AC Nejprve se zabýváme binárními CSP podmínka odpovídá hraně v grafu podmínek Hrana (V i, V j ) je hranově konzistentní, právě když pro každou hodnotu x z aktuální domény
Optimalizace & soft omezení: algoritmy
Optimalizace & soft omezení: algoritmy Soft propagace Klasická propagace: eliminace nekonzistentních hodnot z domén proměnných Soft propagace: propagace preferencí (cen) nad k-ticemi hodnot proměnných
Automatizované řešení úloh s omezeními
Automatizované řešení úloh s omezeními Martin Kot Katedra informatiky, FEI, Vysoká škola báňská Technická universita Ostrava 17. listopadu 15, Ostrava-Poruba 708 33 Česká republika 18. září 2013 M. Kot
Programování. s omezujícími podmínkami. Roman Barták. rová hranová konzistence
Programování s omezujícími podmínkami Roman Barták Katedra teoretické informatiky a matematické logiky roman.bartak@mff.cuni.cz http://ktiml.mff.cuni.cz/~bartak Směrov rová hranová konzistence Definice:
Algoritmizace prostorových úloh
INOVACE BAKALÁŘSKÝCH A MAGISTERSKÝCH STUDIJNÍCH OBORŮ NA HORNICKO-GEOLOGICKÉ FAKULTĚ VYSOKÉ ŠKOLY BÁŇSKÉ - TECHNICKÉ UNIVERZITY OSTRAVA Algoritmizace prostorových úloh Grafové úlohy Daniela Szturcová Tento
Grafové algoritmy. Programovací techniky
Grafové algoritmy Programovací techniky Grafy Úvod - Terminologie Graf je datová struktura, skládá se z množiny vrcholů V a množiny hran mezi vrcholy E Počet vrcholů a hran musí být konečný a nesmí být
Grafové algoritmy. Programovací techniky
Grafové algoritmy Programovací techniky Grafy Úvod - Terminologie Graf je datová struktura, skládá se z množiny vrcholů V a množiny hran mezi vrcholy E Počet vrcholů a hran musí být konečný a nesmí být
Dobývání znalostí. Doc. RNDr. Iveta Mrázová, CSc. Katedra teoretické informatiky Matematicko-fyzikální fakulta Univerzity Karlovy v Praze
Dobývání znalostí Doc. RNDr. Iveta Mrázová, CSc. Katedra teoretické informatiky Matematicko-fyzikální fakulta Univerzity Karlovy v Praze Dobývání znalostí Bayesovské modely Doc. RNDr. Iveta Mrázová, CSc.
Vyhledávání. doc. Mgr. Jiří Dvorský, Ph.D. Katedra informatiky Fakulta elektrotechniky a informatiky VŠB TU Ostrava. Prezentace ke dni 12.
Vyhledávání doc. Mgr. Jiří Dvorský, Ph.D. Katedra informatiky Fakulta elektrotechniky a informatiky VŠB TU Ostrava Prezentace ke dni 12. září 2016 Jiří Dvorský (VŠB TUO) Vyhledávání 201 / 344 Osnova přednášky
Vyhledávání. doc. Mgr. Jiří Dvorský, Ph.D. Katedra informatiky Fakulta elektrotechniky a informatiky VŠB TU Ostrava. Prezentace ke dni 21.
Vyhledávání doc. Mgr. Jiří Dvorský, Ph.D. Katedra informatiky Fakulta elektrotechniky a informatiky VŠB TU Ostrava Prezentace ke dni 21. září 2018 Jiří Dvorský (VŠB TUO) Vyhledávání 242 / 433 Osnova přednášky
Úvod do teorie grafů
Úvod do teorie grafů Neorientovaný graf G = (V,E,I) V množina uzlů (vrcholů) - vertices E množina hran - edges I incidence incidence je zobrazení, buď: funkce: I: E V x V relace: I E V V incidence přiřadí
3. Třídy P a NP. Model výpočtu: Turingův stroj Rozhodovací problémy: třídy P a NP Optimalizační problémy: třídy PO a NPO MI-PAA
Jan Schmidt 2011 Katedra číslicového návrhu Fakulta informačních technologií České vysoké učení technické v Praze Zimní semestr 2011/12 MI-PAA EVROPSKÝ SOCIÁLNÍ FOND PRAHA & EU: INVESTUJENE DO VAŠÍ BUDOUCNOSTI
i=1 Přímka a úsečka. Body, které leží na přímce procházející body a a b můžeme zapsat pomocí parametrické rovnice
I. Funkce dvou a více reálných proměnných 1. Úvod Značení: V textu budeme používat označení: N pro množinu všech přirozených čísel; R pro množinu všech reálných čísel; R n pro množinu všech uspořádaných
Datové struktury 2: Rozptylovací tabulky
Datové struktury 2: Rozptylovací tabulky prof. Ing. Pavel Tvrdík CSc. Katedra počítačových systémů Fakulta informačních technologií České vysoké učení technické v Praze c Pavel Tvrdík, 2010 Efektivní algoritmy
13. Lineární programování
Jan Schmidt 2011 Katedra číslicového návrhu Fakulta informačních technologií České vysoké učení technické v Praze Zimní semestr 2011/12 MI-PAA EVROPSKÝ SOCIÁLNÍ FOND PRAHA & EU: INVESTUJENE DO VAŠÍ BUDOUCNOSTI
5 Orientované grafy, Toky v sítích
Petr Hliněný, FI MU Brno, 205 / 9 FI: IB000: Toky v sítích 5 Orientované grafy, Toky v sítích Nyní se budeme zabývat typem sít ových úloh, ve kterých není podstatná délka hran a spojení, nýbž jejich propustnost
NP-ÚPLNÉ PROBLÉMY. Doc. RNDr. Josef Kolář, CSc. Katedra teoretické informatiky, FIT České vysoké učení technické v Praze
NP-ÚPLNÉ PROBLÉMY Doc. RNDr. Josef Kolář, CSc. Katedra teoretické informatiky, FIT České vysoké učení technické v Praze BI-GRA, LS 2010/2011, Lekce 13 Evropský sociální fond Praha & EU: Investujeme do
Programování. s omezujícími podmínkami. Roman Barták. roman.bartak@mff.cuni.cz http://ktiml.mff.cuni.cz/~bartak
Programování s omezujícími podmínkami Roman Barták Katedra teoretické informatiky a matematické logiky roman.bartak@mff.cuni.cz http://ktiml.mff.cuni.cz/~bartak Konzistenční techniky Dosud jsme podmínky
NPRG030 Programování I, 2018/19 1 / :03:07
NPRG030 Programování I, 2018/19 1 / 20 3. 12. 2018 09:03:07 Vnitřní třídění Zadání: Uspořádejte pole délky N podle hodnot prvků Měřítko efektivity: * počet porovnání * počet přesunů NPRG030 Programování
Moderní systémy pro získávání znalostí z informací a dat
Moderní systémy pro získávání znalostí z informací a dat Jan Žižka IBA Institut biostatistiky a analýz PřF & LF, Masarykova universita Kamenice 126/3, 625 00 Brno Email: zizka@iba.muni.cz Bioinformatika:
Úvod do informatiky. Miroslav Kolařík. Zpracováno dle učebního textu R. Bělohlávka: Úvod do informatiky, KMI UPOL, Olomouc 2008.
Úvod do informatiky přednáška čtvrtá Miroslav Kolařík Zpracováno dle učebního textu R. Bělohlávka: Úvod do informatiky, KMI UPOL, Olomouc 2008. Obsah 1 Pojem relace 2 Vztahy a operace s (binárními) relacemi
Aproximativní algoritmy UIN009 Efektivní algoritmy 1
Aproximativní algoritmy. 14.4.2005 UIN009 Efektivní algoritmy 1 Jak nakládat s NP-těžkými úlohami? Speciální případy Aproximativní algoritmy Pravděpodobnostní algoritmy Exponenciální algoritmy pro data
Řešení: PŘENESVĚŽ (N, A, B, C) = přenes N disků z A na B pomocí C
Hanojské věže - 3 kolíky A, B, C - na A je N disků různé velikosti, seřazené od největšího (dole) k nejmenšímu (nahoře) - kolíky B a C jsou prázdné - úkol: přenést všechny disky z A na B, mohou se odkládat
Učební texty k státní bakalářské zkoušce Matematika Základy lineárního programování. študenti MFF 15. augusta 2008
Učební texty k státní bakalářské zkoušce Matematika Základy lineárního programování študenti MFF 15. augusta 2008 1 15 Základy lineárního programování Požadavky Simplexová metoda Věty o dualitě (bez důkazu)
12. Globální metody MI-PAA
Jan Schmidt 2011 Katedra číslicového návrhu Fakulta informačních technologií České vysoké učení technické v Praze Zimní semestr 2011/12 MI-PAA EVROPSKÝ SOCIÁLNÍ FOND PRAHA & EU: INVESTUJENE DO VAŠÍ BUDOUCNOSTI
Globální matice konstrukce
Globální matice konstrukce Z matic tuhosti a hmotnosti jednotlivých prvků lze sestavit globální matici tuhosti a globální matici hmotnosti konstrukce, které se využijí v řešení základní rovnice MKP: [m]{
ČESKÁ ZEMĚDĚLSKÁ UNIVERZITA V PRAZE. Teze diplomové práce
ČESKÁ ZEMĚDĚLSKÁ UNIVERZITA V PRAZE FAKULTA PROVOZNĚ EKONOMICKÁ KATEDRA SYSTÉMOVÉ A OPERAČNÍ ANALÝZY Obor: Veřejná správa a regionální rozvoj Teze diplomové práce Optimalizace tras pro cestovní kanceláře
Algoritmizace diskrétních. Ing. Michal Dorda, Ph.D.
Algoritmizace diskrétních simulačních modelů Ing. Michal Dorda, Ph.D. 1 Úvodní poznámky Při programování simulačních modelů lze hlavní dílčí problémy shrnout do následujících bodů: 1) Zachycení statických
Interpolace Uvažujme třídu funkcí jedné proměnné ψ(x; a 0,..., a n ), kde a 0,..., a n jsou parametry, které popisují jednotlivé funkce této třídy. Mějme dány body x 0, x 1,..., x n, x i x k, i, k = 0,
Konstrukce relace. Postupně konstruujeme na množině všech stavů Q relace i,
[161014-1204 ] 11 2.1.35 Konstrukce relace. Postupně konstruujeme na množině všech stavů Q relace i, kde i = 0, 1,..., takto: p 0 q právě tehdy, když bud p, q F nebo p, q F. Dokud i+1 i konstruujeme p
1 Úvod do celočíselné lineární optimalizace
Úvod do celočíselné lineární optimalizace Martin Branda, verze 7.. 7. Motivace Reálné (smíšeně-)celočíselné úlohy Optimalizace portfolia celočíselné počty akcií, modelování fixních transakčních nákladů,
Prohledávání do šířky = algoritmus vlny
Prohledávání do šířky = algoritmus vlny - souběžně zkoušet všechny možné varianty pokračování výpočtu, dokud nenajdeme řešení úlohy průchod stromem všech možných cest výpočtu do šířky, po vrstvách (v každé
Obsah prezentace. Základní pojmy v teorii o grafech Úlohy a prohledávání grafů Hledání nejkratších cest
Obsah prezentace Základní pojmy v teorii o grafech Úlohy a prohledávání grafů Hledání nejkratších cest 1 Základní pojmy Vrchol grafu: {množina V} Je to styčná vazba v grafu, nazývá se též uzlem, prvkem
Intervalová data a výpočet některých statistik
Intervalová data a výpočet některých statistik Milan Hladík 1 Michal Černý 2 1 Katedra aplikované matematiky Matematicko-fyzikální fakulta Univerzita Karlova 2 Katedra ekonometrie Fakulta informatiky a
Algoritmizace Dynamické programování. Jiří Vyskočil, Marko Genyg-Berezovskyj 2010
Dynamické programování Jiří Vyskočil, Marko Genyg-Berezovskyj 2010 Rozděl a panuj (divide-and-conquer) Rozděl (Divide): Rozděl problém na několik podproblémů tak, aby tyto podproblémy odpovídaly původnímu
Informační systémy 2008/2009. Radim Farana. Obsah. Nástroje business modelování. Business modelling, základní nástroje a metody business modelování.
3 Vysoká škola báňská Technická univerzita Ostrava Fakulta strojní, Katedra automatizační techniky a řízení 2008/2009 Radim Farana 1 Obsah Business modelling, základní nástroje a metody business modelování.
Třídy složitosti P a NP, NP-úplnost
Třídy složitosti P a NP, NP-úplnost Cíle přednášky: 1. Definovat, za jakých okolností můžeme problém považovat za efektivně algoritmicky řešitelný. 2. Charakterizovat určitou skupinu úloh, pro které není
Metody analýzy dat II
Metody analýzy dat II Detekce komunit MADII 2018/19 1 Zachary s club, Collaboration network in Santa Fe Institute, Lusseau s network of Bottlenose Dolphins 2 Web Pages, Overlaping communities of word associations
autorovu srdci... Petr Hliněný, FI MU Brno 1 FI: MA010: Průnikové grafy
9 Krátké povídání o průnikových grafech Od této lekce teorie grafů se zaměříme lehce na několik vybraných partíı teorie grafů bĺızkých autorovu srdci... Naším prvním výběrem jsou průnikové grafy, což jsou
MĚŘENÍ STATISTICKÝCH ZÁVISLOSTÍ
MĚŘENÍ STATISTICKÝCH ZÁVISLOSTÍ v praxi u jednoho prvku souboru se často zkoumá více veličin, které mohou na sobě různě záviset jednorozměrný výběrový soubor VSS X vícerozměrným výběrovým souborem VSS
Grafy. doc. Mgr. Jiří Dvorský, Ph.D. Katedra informatiky Fakulta elektrotechniky a informatiky VŠB TU Ostrava. Prezentace ke dni 13.
Grafy doc. Mgr. Jiří Dvorský, Ph.D. Katedra informatiky Fakulta elektrotechniky a informatiky VŠB TU Ostrava Prezentace ke dni 13. března 2017 Jiří Dvorský (VŠB TUO) Grafy 104 / 309 Osnova přednášky Grafy
Faculty of Nuclear Sciences and Physical Engineering Czech Technical University in Prague
1 / 40 regula Faculty of Nuclear Sciences and Physical Engineering Czech Technical University in Prague regula 1 2 3 4 5 regula 6 7 8 2 / 40 2 / 40 regula Iterační pro nelineární e Bud f reálná funkce
Dynamické programování
Dynamické programování prof. Ing. Pavel Tvrdík CSc. Katedra počítačových systémů Fakulta informačních technologií České vysoké učení technické v Praze c Pavel Tvrdík, 2010 Efektivní algoritmy (BI-EFA)
Algoritmus pro hledání nejkratší cesty orientovaným grafem
1.1 Úvod Algoritmus pro hledání nejkratší cesty orientovaným grafem Naprogramoval jsem v Matlabu funkci, která dokáže určit nejkratší cestu v orientovaném grafu mezi libovolnými dvěma vrcholy. Nastudoval
ALGORITMY A DATOVÉ STRUKTURY
Název tématického celku: Cíl: ALGORITMY A DATOVÉ STRUKTURY Metodický list č. 1 Časová složitost algoritmů Základním cílem tohoto tematického celku je vysvětlení potřebných pojmů a definic nutných k popisu
Další NP-úplné problémy
Další NP-úplné problémy Známe SAT, CNF, 3CNF, k-klika... a ještě následující easy NP-úplný problém: Existence Certifikátu (CERT ) Instance: M, x, t, kde M je DTS, x je řetězec, t číslo zakódované jako
Základní pojmy teorie množin Vektorové prostory
Základní pojmy teorie množin Přednáška MATEMATIKA č. 1 Katedra ekonometrie FEM UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz 7. 10. 2010 Základní pojmy teorie množin Základní pojmy
u odpovědí typu A, B, C, D, E: Obsah: jako 0) CLP Constraint Logic Programming
Průběžná písemná práce Průběžná písemná práce Obsah: Průběžná písemná práce Aleš Horák E-mail: hales@fi.muni.cz http://nlp.fi.muni.cz/uui/ délka pro vypracování: 25 minut nejsou povoleny žádné materiály
Booleovská algebra. Booleovské binární a unární funkce. Základní zákony.
Booleovská algebra. Booleovské binární a unární funkce. Základní zákony. Tomáš Bayer bayertom@natur.cuni.cz Katedra aplikované geoinformatiky a kartografie, Přírodovědecká fakulta UK. Tomáš Bayer bayertom@natur.cuni.cz
Obor: Informatika Červen 2005 Okruh: Základy matematiky Otázka: 1. Jméno: Bodů:...
Inf-M-1 Obor: Informatika Červen 2005 Okruh: Základy matematiky Otázka: 1. Uvažujte funkci f(x) =ln(x + p x 2 +1): Najděte její definiční obor, vypočtěte jednostranné limity v krajních bodech definičních
Úvod do databázových systémů 1. cvičení
Vysoká škola báňská Technická univerzita Ostrava Fakulta elektrotechniky a informatiky Úvod do databázových systémů 1. cvičení Ing. Petr Lukáš petr.lukas@nativa.cz Ostrava, 2013 Úvod do databázových systémů
Zjednodušení generativního systému redukcí rozlišení
Zjednodušení generativního systému redukcí rozlišení Ze studie zahrnující dotaz na vzdělání. Obor hodnot v i : e základní vzdělání h střední vzdělání c bakalář g magistr Možné redukce rozlišení cg vysoké
Otázky k ústní zkoušce, přehled témat A. Číselné řady
Otázky k ústní zkoušce, přehled témat 2003-2004 A Číselné řady Vysvětlete pojmy částečný součet řady, součet řady, řadonverguje, řada je konvergentní Formulujte nutnou podmínku konvergence řady a odvoďte
Test prvočíselnosti. Úkol: otestovat dané číslo N, zda je prvočíslem
Test prvočíselnosti Úkol: otestovat dané číslo N, zda je prvočíslem 1. zkusit všechny dělitele od 2 do N-1 časová složitost O(N) cca N testů 2. stačí zkoušet všechny dělitele od 2 do N/2 (větší dělitel
označme j = (0, 1) a nazvěme tuto dvojici imaginární jednotkou. Potom libovolnou (x, y) = (x, 0) + (0, y) = (x, 0) + (0, 1)(y, 0) = x + jy,
Komplexní čísla Množinu všech uspořádaných dvojic (x, y) reálných čísel x, y nazýváme množinou komplexních čísel C, jestliže pro každé dvě takové dvojice (x, y ), (x 2, y 2 ) je definována rovnost, sčítání
0.1 Úvod do lineární algebry
Matematika KMI/PMATE 1 01 Úvod do lineární algebry 011 Lineární rovnice o 2 neznámých Definice 011 Lineární rovnice o dvou neznámých x, y je rovnice, která může být vyjádřena ve tvaru ax + by = c, kde
Operační výzkum. Vícekriteriální hodnocení variant. Grafická metoda. Metoda váženého součtu.
Operační výzkum Vícekriteriální hodnocení variant. Grafická metoda. Metoda váženého součtu. Operační program Vzdělávání pro konkurenceschopnost Název projektu: Inovace magisterského studijního programu
Operace s maticemi. 19. února 2018
Operace s maticemi Přednáška druhá 19. února 2018 Obsah 1 Operace s maticemi 2 Hodnost matice (opakování) 3 Regulární matice 4 Inverzní matice 5 Determinant matice Matice Definice (Matice). Reálná matice
Úvod do logiky (presentace 2) Naivní teorie množin, relace a funkce
Úvod do logiky (presentace 2) Naivní teorie množin, relace a funkce Marie Duží marie.duzi@vsb.cz 1 Úvod do teoretické informatiky (logika) Naivní teorie množin Co je to množina? Množina je soubor prvků
4. Trojúhelníkový rozklad p. 1/20
4. Trojúhelníkový rozklad 4. Trojúhelníkový rozklad p. 1/20 4. Trojúhelníkový rozklad p. 2/20 Trojúhelníkový rozklad 1. Permutační matice 2. Trojúhelníkové matice 3. Trojúhelníkový (LU) rozklad 4. Výpočet
Doporučené příklady k Teorii množin, LS 2018/2019
Doporučené příklady k Teorii množin, LS 2018/2019 1. přednáška, 21. 2. 2019 1. Napište množina x je prázdná (přesněji množina x nemá žádné prvky ) formulí základního jazyka teorie množin. 2. Dokažte ((x
VLASTNOSTI GRAFŮ. Doc. RNDr. Josef Kolář, CSc. Katedra teoretické informatiky, FIT České vysoké učení technické v Praze. BI-GRA, LS 2010/2011, Lekce 5
VLASTNOSTI GRAFŮ Doc. RNDr. Josef Kolář, CSc. Katedra teoretické informatiky, FIT České vysoké učení technické v Praze BI-GRA, LS 2010/2011, Lekce 5 Evropský sociální fond Praha & EU: Investujeme do vaší
Dynamické rozvrhování
Dynamické rozvrhování Hana Rudová Fakulta informatiky, Masarykova universita http://www.fi.muni.cz/~hanka Informatické kolokvium, 9.10.2007 Dynamické rozvrhování (Dynamic scheduling) 1 Úvod 2 Popis problému
PA163 Programování s omezujícími podmínkami
Organizace předmětu PA163 Programování s omezujícími podmínkami Základní informace Web předmětu: http://www.fi.muni.cz/~hanka/cp Průsvitky: průběžně aktualizovány na webu předmětu Ukončení předmětu: cca
Binární vyhledávací stromy pokročilé partie
Binární vyhledávací stromy pokročilé partie KMI/ALS lekce Jan Konečný 30.9.204 Literatura Cormen Thomas H., Introduction to Algorithms, 2nd edition MIT Press, 200. ISBN 0-262-5396-8 6, 3, A Knuth Donald
Křivky a plochy technické praxe
Kapitola 7 Křivky a plochy technické praxe V technické praxi se setkáváme s tím, že potřebujeme křivky a plochy, které se dají libovolně upravovat a zároveň je jejich matematické vyjádření jednoduché.
SÍŤOVÁ ANALÝZA. Kristýna Slabá, kslaba@students.zcu.cz. 1. července 2010
SÍŤOVÁ ANALÝZA Kristýna Slabá, kslaba@students.zcu.cz 1. července 2010 Obsah 1 Úvod do síťové analýzy Hlavní metody síťové analýzy a jejich charakteristika Metoda CPM Metoda PERT Nákladová analýza Metoda
4EK201 Matematické modelování. 2. Lineární programování
4EK201 Matematické modelování 2. Lineární programování 2.1 Podstata operačního výzkumu Operační výzkum (výzkum operací) Operational research, operations research, management science Soubor disciplín zaměřených
Umělá inteligence I. Roman Barták, KTIML.
Umělá inteligence I Roman Barták, KTIML roman.bartak@mff.cuni.cz http://ktiml.mff.cuni.cz/~bartak Na úvod Zatím pro nás byl model světa černou skříňkou, ke které přistupujeme pouze přes: funkci následníka
Časová a prostorová složitost algoritmů
.. Časová a prostorová složitost algoritmů Programovací techniky doc. Ing. Jiří Rybička, Dr. ústav informatiky PEF MENDELU v Brně rybicka@mendelu.cz Hodnocení algoritmů Programovací techniky Časová a prostorová
Vzdálenost uzlů v neorientovaném grafu
Vzdálenosti a grafy Vzdálenost uzlů v neorientovaném grafu Je dán neorientovaný neohodnocený graf G = (V,E,I) vzdálenost uzlů u a v v neorientovaném souvislém grafu G je délka nejkratší cesty spojující
CLP(F D) program. Základní struktura CLP programu solve( Variables ) :- 1. definice proměnných a jejich domén declare_variables( Variables),
CLP(F D) program Základní struktura CLP programu solve( Variables ) :- 1. definice proměnných a jejich domén declare_variables( Variables), 2. definice omezení post_constraints( Variables ), 3. hledání
Náplň. v.0.03 16.02.2014. - Jednoduché příklady na práci s poli v C - Vlastnosti třídění - Způsoby (algoritmy) třídění
Náplň v.0.03 16.02.2014 - Jednoduché příklady na práci s poli v C - Vlastnosti třídění - Způsoby (algoritmy) třídění Spojení dvou samostatně setříděných polí void Spoj(double apole1[], int adelka1, double
Dynamické programování
ALG 11 Dynamické programování Úloha batohu neomezená Úloha batohu /1 Úloha batohu / Knapsack problem Máme N předmětů, každý s váhou Vi a cenou Ci (i = 1, 2,..., N) a batoh s kapacitou váhy K. Máme naložit
Jan Pavĺık. FSI VUT v Brně 14.5.2010
Princip výškovnice Jan Pavĺık FSI VUT v Brně 14.5.2010 Osnova přednášky 1 Motivace 2 Obecný princip 3 Příklady Světové rekordy Turnajové uspořádání Skupinové hodnocení Rozhledny 4 Geografická výškovnice
Základy umělé inteligence
Základy umělé inteligence Hraní her (pro 2 hráče) Základy umělé inteligence - hraní her. Vlasta Radová, ZČU, katedra kybernetiky 1 Hraní her (pro dva hráče) Hraní her je přirozeně spjato s metodami prohledávání
Využití ICT techniky především v uměleckém vzdělávání. Akademie - VOŠ, Gymn. a SOŠUP Světlá nad Sázavou
Datum: 1. 12. 2013 Projekt: Registrační číslo: Číslo DUM: Škola: Jméno autora: Název sady: Název práce: Předmět: Ročník: Obor: Časová dotace: Vzdělávací cíl: Pomůcky: Využití ICT techniky především v uměleckém
Automatická detekce anomálií při geofyzikálním průzkumu. Lenka Kosková Třísková NTI TUL Doktorandský seminář, 8. 6. 2011
Automatická detekce anomálií při geofyzikálním průzkumu Lenka Kosková Třísková NTI TUL Doktorandský seminář, 8. 6. 2011 Cíle doktorandské práce Seminář 10. 11. 2010 Najít, implementovat, ověřit a do praxe
Numerická matematika 1
Numerická matematika 1 Obsah 1 Řešení nelineárních rovnic 3 1.1 Metoda půlení intervalu....................... 3 1.2 Metoda jednoduché iterace..................... 4 1.3 Newtonova metoda..........................
V předchozí kapitole jsme podstatným způsobem rozšířili naši představu o tom, co je to číslo. Nadále jsou pro nás důležité především vlastnosti
Kapitola 5 Vektorové prostory V předchozí kapitole jsme podstatným způsobem rozšířili naši představu o tom, co je to číslo. Nadále jsou pro nás důležité především vlastnosti operací sčítání a násobení
Zimní semestr akademického roku 2014/ prosince 2014
Cvičení k předmětu BI-ZMA Tomáš Kalvoda Katedra aplikované matematiky FIT ČVUT Matěj Tušek Katedra matematiky FJFI ČVUT Obsah Cvičení Zimní semestr akademického roku 2014/2015 2. prosince 2014 Předmluva
Hisab al-džebr val-muqabala ( Věda o redukci a vzájemném rušení ) Muhammada ibn Músá al-chvárizmího (790? - 850?, Chiva, Bagdád),
1 LINEÁRNÍ ALGEBRA 1 Lineární algebra Slovo ALGEBRA pochází z arabského al-jabr, což znamená nahrazení. Toto slovo se objevilo v názvu knihy islámského matematika Hisab al-džebr val-muqabala ( Věda o redukci
10. Techniky formální verifikace a validace
Fakulta informačních technologií MI-NFA, zimní semestr 2011/2012 Jan Schmidt EVROPSKÝ SOCIÁLNÍ FOND PRAHA & EU: INVESTUJENE DO VAŠÍ BUDOUCNOSTI 10. Techniky formální verifikace a validace 1 Simulace není
Matematika 1 MA1. 2 Determinant. 3 Adjungovaná matice. 4 Cramerovo pravidlo. 11. přednáška ( ) Matematika 1 1 / 29
Matematika 1 11. přednáška MA1 1 Opakování 2 Determinant 3 Adjungovaná matice 4 Cramerovo pravidlo 5 Vlastní čísla a vlastní vektory matic 6 Zkouška; konzultace; výběrová matematika;... 11. přednáška (15.12.2010
Jazyk matematiky. 2.1. Matematická logika. 2.2. Množinové operace. 2.3. Zobrazení. 2.4. Rozšířená číslená osa
2. Jazyk matematiky 2.1. Matematická logika 2.2. Množinové operace 2.3. Zobrazení 2.4. Rozšířená číslená osa 1 2.1 Matematická logika 2.1.1 Výrokový počet logická operace zapisujeme čteme česky negace
1. Matice a maticové operace. 1. Matice a maticové operace p. 1/35
1. Matice a maticové operace 1. Matice a maticové operace p. 1/35 1. Matice a maticové operace p. 2/35 Matice a maticové operace 1. Aritmetické vektory 2. Operace s aritmetickými vektory 3. Nulový a opačný
PC: Identifikace struktury zobecněného dynamického systému
PC: Identifikace struktury zobecněného dynamického systému Důležitý problém v obecné teorii systémů. 1. Podsystém a nadsystém. 2. Definice dekompozice systému. 3. Problém rekonstrukce systému: a. lokální
Jak funguje asymetrické šifrování?
Jak funguje asymetrické šifrování? Petr Vodstrčil petr.vodstrcil@vsb.cz Katedra aplikované matematiky, Fakulta elektrotechniky a informatiky, Vysoká škola báňská Technická univerzita Ostrava Petr Vodstrčil
Numerické metody a programování. Lekce 8
Numerické metody a programování Lekce 8 Optimalizace hledáme bod x, ve kterém funkce jedné nebo více proměnných f x má minimum (maximum) maximalizace f x je totéž jako minimalizace f x Minimum funkce lokální:
Stromy, haldy, prioritní fronty
Stromy, haldy, prioritní fronty prof. Ing. Pavel Tvrdík CSc. Katedra počítačů FEL České vysoké učení technické DSA, ZS 2008/9, Přednáška 6 http://service.felk.cvut.cz/courses/x36dsa/ prof. Pavel Tvrdík
TEORIE ZPRACOVÁNÍ DAT
Vysoká škola báňská - Technická univerzita Ostrava Fakulta elektrotechniky a informatiky TEORIE ZPRACOVÁNÍ DAT pro kombinované a distanční studium Jana Šarmanová Ostrava 2003 Jana Šarmanová, 2003 Fakulta
Extrémy funkce dvou proměnných
Extrémy funkce dvou proměnných 1. Stanovte rozměry pravoúhlé vodní nádrže o objemu 32 m 3 tak, aby dno a stěny měly nejmenší povrch. Označme rozměry pravoúhlé nádrže x, y, z (viz obr.). ak objem této nádrže
Rekurze. Pavel Töpfer, 2017 Programování 1-8 1
Rekurze V programování ve dvou hladinách: - rekurzivní algoritmus (řešení úlohy je definováno pomocí řešení podúloh stejného charakteru) - rekurzivní volání procedury nebo funkce (volá sama sebe přímo
Marie Duží
Marie Duží marie.duzi@vsb.cz Co je to množina? Množina je soubor prvků a je svými prvky plně určena; množinu s prvky a, b, c značíme: {a, b, c}. Prvkem množiny může být opět množina, množina nemusí mít
Funkce komplexní proměnné a integrální transformace
Funkce komplexní proměnné a integrální transformace Fourierovy řady I. Marek Lampart Text byl vytvořen v rámci realizace projektu Matematika pro inženýry 21. století (reg. č. CZ.1.07/2.2.00/07.0332), na
Obyčejnými diferenciálními rovnicemi (ODR) budeme nazývat rovnice, ve kterých
Obyčejné diferenciální rovnice Obyčejnými diferenciálními rovnicemi (ODR) budeme nazývat rovnice, ve kterých se vyskytují derivace neznámé funkce jedné reálné proměnné. Příklad. Bud dána funkce f : R R.
Lineární algebra : Násobení matic a inverzní matice
Lineární algebra : Násobení matic a inverzní matice (8. přednáška) František Štampach, Karel Klouda frantisek.stampach@fit.cvut.cz, karel.klouda@fit.cvut.cz Katedra aplikované matematiky Fakulta informačních
Algoritmizace prostorových úloh
INOVACE BAKALÁŘSKÝCH A MAGISTERSKÝCH STUDIJNÍCH OBORŮ NA HORNICKO-GEOLOGICKÉ FAKULTĚ VYSOKÉ ŠKOLY BÁŇSKÉ - TECHNICKÉ UNIVERZITY OSTRAVA Algoritmizace prostorových úloh Vývojové diagramy Daniela Szturcová
Projekční algoritmus. Urychlení evolučních algoritmů pomocí regresních stromů a jejich zobecnění. Jan Klíma
Urychlení evolučních algoritmů pomocí regresních stromů a jejich zobecnění Jan Klíma Obsah Motivace & cíle práce Evoluční algoritmy Náhradní modelování Stromové regresní metody Implementace a výsledky
Formální Metody a Specifikace (LS 2011) Formální metody pro kyber-fyzikální systémy
Formální Metody a Specifikace (LS 2011) Přednáška 7: Formální metody pro kyber-fyzikální systémy Stefan Ratschan, Tomáš Dzetkulič Katedra číslicového návrhu Fakulta informačních technologíı České vysoké