Matematika 1 MA1. 2 Determinant. 3 Adjungovaná matice. 4 Cramerovo pravidlo. 11. přednáška ( ) Matematika 1 1 / 29
|
|
- Radka Vítková
- před 7 lety
- Počet zobrazení:
Transkript
1 Matematika přednáška MA1 1 Opakování 2 Determinant 3 Adjungovaná matice 4 Cramerovo pravidlo 5 Vlastní čísla a vlastní vektory matic 6 Zkouška; konzultace; výběrová matematika; přednáška ( Matematika 1 1 / 29
2 AMOS - přihlašování na zkoušky předtermín se nekoná strany skript přednáška ( Matematika 1 2 / 29
3 1 Opakování 2 Determinant 3 Adjungovaná matice 4 Cramerovo pravidlo 5 Vlastní čísla a vlastní vektory matic 6 Zkouška; konzultace; výběrová matematika; přednáška ( Matematika 1 3 / 29
4 Opakování Operace s maticemi... Součet matic ( a b c d + skalární násobek matice (ev. vytýkání ( a b 15 c d ( ( a + 1 b 1 = c d + 3 ( 15 a 15 b = 15 c 15 d,, transpozice matice Součin matic (nekomutativní!!! ( a b c d ( a b c d T ( a c = b d ( = Nulová matice a jednotková matice ( , ( přednáška ( Matematika 1 4 / 29
5 Opakování Operace s maticemi... Součet matic ( a b c d + skalární násobek matice (ev. vytýkání ( a b 15 c d ( ( a + 1 b 1 = c d + 3 ( 15 a 15 b = 15 c 15 d,, transpozice matice ( a b c d T ( a c = b d. Součin matic (nekomutativní!!! ( a b c d ( ( a a + 3b = c c + 3d. Nulová matice a jednotková matice ( , ( přednáška ( Matematika 1 4 / 29
6 Opakování Inverzní matice. (A E (E A 1, ( ( ( AX = E. ( Maticové rovnice. XA + 7X = B XB XA + 7X + XB = B X(A + 7E + B = B a buď a řešit soustavu X(A + 7E + B = B (neboli (A + 7E + B T X T = B T, nebo b vypočítat X = B(A + 7E + B 1, jestliže je matice A + 7E + B regulární. 11. přednáška ( Matematika 1 5 / 29
7 1 Opakování 2 Determinant 3 Adjungovaná matice 4 Cramerovo pravidlo 5 Vlastní čísla a vlastní vektory matic 6 Zkouška; konzultace; výběrová matematika; přednáška ( Matematika 1 6 / 29
8 Permutace uspořádané n-tice prvků 1, 2, 3,..., n. Inverze je dvojice čísel v permutaci, pro kterou platí, že hodnoty jsou v opačné relaci než pozice. Počet inverzí v permutaci (s 1, s 2,..., s n označíme P(s 1, s 2,..., s n. Např. (1, 3, 2, 4 má jen jednu inverzi (3, 2, tedy P(1, 3, 2, 4 = 1. Např. P(2, 3, 1, 4, 5, 6, 7 = 2. Znamení permutace je ( 1 P(s 1,s 2,...,s n. Např. ( 1 P(2,1,3 = 1, ( 1 P(1,2,3 = 1,.... Definice Je-li A čtvercová matice typu n n, je její determinant det A = ( 1 P(s 1,s 2...,s n a 1,s1 a 2,s2... a n,sn, (s 1,s 2...,s n kde sčítáme přes všechny permutace (s 1, s 2..., s n čísel (1, 2..., n (počet sčítanců ve vzorci je tedy n!. Číslo P(s 1, s 2..., s n je počet inverzí v permutaci (s 1, s 2..., s n. 11. přednáška ( Matematika 1 7 / 29
9 Determinant matice typu 1 1 je hodnota jediného prvku matice. Determinant matice typu 2 2 je Determinant matice typu 3 3 je det A = a 11 a 22 a 12 a 21. det A = a 11 a 22 a 33 + a 13 a 21 a 32 + a 12 a 23 a 31 a 13 a 22 a 31 a 12 a 21 a 33 a 11 a 23 a 32. Pro snadné zapamatování dvou posledních vzorců, můžeme použít následující schemata ( (.. det A =,.. det A = přednáška ( Matematika 1 8 / 29
10 (. det A =. (.., det A = Například pro je ( 7 2 A = 3 1, B = det A = 7 1 ( 3 2 = 13, det B = ( 3 3 ( ( 1 2 ( = přednáška ( Matematika 1 9 / 29
11 Věta Absolutní hodnota determinantu matice typu 2 2 je rovna obsahu rovnoběžníka určeného vektory, které jsou řádky (nebo sloupce matice. Absolutní hodnota determinantu matice typu 3 3 je rovna objemu rovnoběžnostěnu určeného vektory, které jsou řádky (nebo sloupce matice. ( 1 3 det 5 1, det [1,3] [5,1] [0,0,0] [5, 1,1] [1,3,7] [ 2,8,2] přednáška ( Matematika 1 10 / 29
12 Věta Pro determinanty matic platí následující a det AB = det A det B; b det A = det A T ; c je-li A regulární, je det A 1 = 1 det A ; d A je regulární, právě když det A 0; e jestliže B vznikne z A prohozením dvou různých řádků nebo sloupců, je det B = det A; f jestliže B vznikne z A vynásobením řádku nebo sloupce číslem s, je det B = s det A; g jestliže B vznikne z A přičtením libovolného násobku řádku (sloupce k jinému řádku (sloupci, je det B = det A. Např. ( 1 1 det 0 3 ( 0 3 = det 1 1,... 3 = ( 3, ( 1 1 det 0 3 ( 1 1 = det 5 8,... 3 = 3. Jak pomocí výpočtu detereminantu poznáme, že sada 2 resp. 3 vektorů z R 2 resp. R 3 je bazí? 11. přednáška ( Matematika 1 11 / 29
13 Budeme používat následující označení. A ki je matice (submatice matice A, která vznikne z A vynecháním k-tého řádku a i-tého sloupce. Matice A ki je také čtvercová (ale menší než A, a tedy můžeme počítat její determinant. Např. pro je A = ( 0 2 det A 12 = det = 0 7 ( 1 2 = 2, ( 1 1 det A 33 = det 0 3 = = 3 Platí det A = a 11 det A 11 a 12 det A 12 + a 13 det A přednáška ( Matematika 1 12 / 29
14 Pro výpočet determinantu matice A můžeme použít následující pravidlo. Věta Nechť A je matice typu n n a 1 k n. Potom n det A = ( 1 k+i a ki det A ki. i=1 Uvedený vzorec pro výpočet determinantu se nazývá rozvoj determinantu podle k-tého řádku. Obdobně lze toto pravidlo formulovat pro sloupce (rozvoj determinantu podle k-tého sloupce. Např. spočtěme úsporně determinant matice A, A = Ve druhém řádku je hodně nulových prvků, použijeme tedy rozvoj determinantu podle druhého řádku, det A = ( ( 3 det A 21 = 3 (2 5 3 ( 1 = přednáška ( Matematika 1 13 / 29
15 1 Opakování 2 Determinant 3 Adjungovaná matice 4 Cramerovo pravidlo 5 Vlastní čísla a vlastní vektory matic 6 Zkouška; konzultace; výběrová matematika; přednáška ( Matematika 1 14 / 29
16 Označme Adj A matici složenou z determinantů výše uvedených submatic A ij Adj A = čili na pozici (i, j je číslo det A 11 det A ( 1 n+1 det A n1 det A 12 det A ( 1 n+2 det A n ( 1 1+n det A 1n ( 1 2+n det A 2n... det A nn ( 1 i+j det A ji. Matici Adj A nazýváme maticí adjungovanou k matici A. Například pro matice jsou matice adjungované ( 7 2 A = 5 1 ( 1 2 Adj A = 5 7, B = , Adj B = , 11. přednáška ( Matematika 1 15 / 29
17 Věta Pro čtvercovou matici A platí A AdjA = AdjA A = det A E. Důkaz. Pro součin B = A Adj A platí, že b ii = det A a b ij pro i j je roven determinantu matice, která má dva stejné řádky, tedy nule. Věta Je-li A regulární, platí A 1 = 1 Adj A. det A Tedy například ( = 1 ( přednáška ( Matematika 1 16 / 29
18 1 Opakování 2 Determinant 3 Adjungovaná matice 4 Cramerovo pravidlo 5 Vlastní čísla a vlastní vektory matic 6 Zkouška; konzultace; výběrová matematika; přednáška ( Matematika 1 17 / 29
19 Adjungované matice lze využít také k vyjádření řešení soustavy lineárních rovnic. Věta (Cramerovo pravidlo Mějme soustavu rovnic s regulární maticí A. Potom Ax = b x i = 1 det A det B i, kde B i je matice A, ve které byl i-tý sloupec vyměněn za vektor pravé strany b. Důkaz. Jestliže Ax = b, potom speciálně i-tá složka řešení je x = A 1 b = 1 (AdjA b, det A x i = 1 det A ((AdjA i1b 1 + (AdjA i2 b (AdjA in b n = = 1 det A (( 1i+1 b 1 deta 1i + ( 1 i+2 b 2 deta 2i + + ( 1 i+n b ndeta ni = 1 det A det B i, kde B i je matice A, ve které byl i-tý sloupec vyměněn za vektor pravé strany b. Použili jsme rozvoj determinantu podle i-tého sloupce. 11. přednáška ( Matematika 1 18 / 29
20 Příklad. Pomocí Cramerova pravidla určeme například poslední složku řešení v rovnici x 1 x 2 = x 3 3 Determinant matice soustavy je det A = = 1. Determinant matice soustavy, kde je poslední sloupec vyměněn za vektor pravé strany je det B 3 = = 3. Řešení x 3 je tedy x 3 = det B 3 det A = 3 1 = přednáška ( Matematika 1 19 / 29
21 Výpočet inverzní matice pomocí matice adjungované i řešení soustavy rovnic pomocí Cramerova pravidla jsou pro rozsáhlejší úlohy nepoužitelné! 11. přednáška ( Matematika 1 20 / 29
22 1 Opakování 2 Determinant 3 Adjungovaná matice 4 Cramerovo pravidlo 5 Vlastní čísla a vlastní vektory matic 6 Zkouška; konzultace; výběrová matematika; přednáška ( Matematika 1 21 / 29
23 V mnoha inženýrských výpočtech se objevuje potřeba počítat ještě další charakteristiky matic nízkých i vysokých řádů. Definice Nechť A je čtvercová matice. Číslo λ, pro které má rovnice Ax = λx aspoň jedno nenulové řešení x (tedy x (0, 0,..., 0, se nazývá vlastní číslo matice A. Vektor x, který je tím nenulovým řešením je vlastní vektor matice A. Např. ( ( 3 5 ( 3 = 7 5. Hledání vlastních čísel a vlastních vektorů určování hlavních směrů napětí, vlastních frekvencí nebo mezních zatížení systémů. Rozložení vlastních čísel matic má vliv na rychlost řešení a přesnost výsledku při řešení velkých soustav lineárních rovnic na počítači. 11. přednáška ( Matematika 1 22 / 29
24 Odvodíme praktický výpočet vlastního čísla matice A typu n n. Věta Číslo λ je vlastním číslem matice A, právě když je λ kořenem polynomu det(a λe. Důkaz. Platí Ax = λx, neboli (A λex = 0 a přitom x (0, 0,..., 0 T, právě když matice A λe je singulární, a tedy det(a λe = 0. Číslo λ tedy spočteme tak, že vyřešíme rovnici det(a λe = 0 vzhledem k λ. Rovnice se nazývá charakteristická rovnice matice A. Výraz p(λ = det(a λe je polynomem n-tého stupně v proměnné λ a nazývá se chrakteristický polynom matice A. Má nejvýše n různých kořenů, a tedy je nejvýše n vlastních čísel, obecně komplexních. 11. přednáška ( Matematika 1 23 / 29
25 Vypočtěme vlastní čísla a příslušné vlastní vektory matice ( 2 3 A =. 1 0 Charakteristický polynom matice A je determinant matice ( 2 λ 3 A λe = 1 λ p(λ = det(a λe = (2 λ( λ 3 = λ 2 2λ 3 = (λ 3(λ + 1, tedy vlastní čísla matice A jsou λ 1 = 1, λ 2 = 3. Určíme také vlastní vektory. Dosadíme λ 1 = 1 do matice A λi a řešíme ( ( ( 3 3 v1 0 (A λ 1 E = =. 1 1 v 2 0 Dostaneme v = (1, 1 T (a všechny jeho nenulové násobky. Podobně pro λ 2 = 3 zjistíme řešení ( ( ( 1 3 u1 0 (A λ 2 Eu = =. 1 3 u 2 0 Zjistíme, že u = (3, 1 T (a všechny jeho nenulové násobky., 11. přednáška ( Matematika 1 24 / 29
26 Pro vlastní čísla matic platí mnoho zajímavých tvrzení. Věta Determinant matice je součinem jejích vlastních čísel. (Tedy jestliže je jedno z nich nula, je nulový i determinant. Věta Cayleyova-Hamiltonova věta. Dosadíme-li do charakterisktického polynomu matice A matici A za proměnnou λ, dostaneme nulovou matici. Věta Součet diagonálních prvků matice (tzv. stopa matice je roven součtu vlastních čísel matice. 11. přednáška ( Matematika 1 25 / 29
27 Příklady. 1. Jaký determinant má jednotková matice? 2. Jaký je determinant diagonální matice? 3. Jaký je determinant horní trojúhelníkové matice? 4. Jaká je obecně inverzní matice k regulární matici ( a b A = c d? 5. Jaká vlastní čísla má matice ( 7 31 A = 0 5? 11. přednáška ( Matematika 1 26 / 29
28 1 Opakování 2 Determinant 3 Adjungovaná matice 4 Cramerovo pravidlo 5 Vlastní čísla a vlastní vektory matic 6 Zkouška; konzultace; výběrová matematika; přednáška ( Matematika 1 27 / 29
29 Zkouška: 120 minut, sešité papíry,... Odpovědi na otázky - větami. Následující den: náhledy, zkoušení na A, zápis známky do indexu. Výběrová Matematika 2... web Katedry matematiky Vyčichlova soutěž v matematice, aplikované matematice a geometrii, květen Rektorysova soutěž v aplikované matematice, listopad Kapitoly ze současné matematiky XKSM, seminář... web Katedry matematiky 11. přednáška ( Matematika 1 28 / 29
30 Zkouška: 120 minut, sešité papíry,... Odpovědi na otázky - větami. Následující den: náhledy, zkoušení na A, zápis známky do indexu. Výběrová Matematika 2... web Katedry matematiky Vyčichlova soutěž v matematice, aplikované matematice a geometrii, květen Rektorysova soutěž v aplikované matematice, listopad Kapitoly ze současné matematiky XKSM, seminář... web Katedry matematiky 11. přednáška ( Matematika 1 28 / 29
31 Zkouška: 120 minut, sešité papíry,... Odpovědi na otázky - větami. Následující den: náhledy, zkoušení na A, zápis známky do indexu. Výběrová Matematika 2... web Katedry matematiky Vyčichlova soutěž v matematice, aplikované matematice a geometrii, květen Rektorysova soutěž v aplikované matematice, listopad Kapitoly ze současné matematiky XKSM, seminář... web Katedry matematiky 11. přednáška ( Matematika 1 28 / 29
32 Katedra matematiky předmět YZAI (Základy informatiky MATLAB SCILAB - volně 11. přednáška ( Matematika 1 29 / 29
DEFINICE Z LINEÁRNÍ ALGEBRY
DEFINICE Z LINEÁRNÍ ALGEBRY Skripta Matematické metody pro statistiku a operační výzkum (Nešetřilová, H., Šařecová, P., 2009). 1. definice Vektorovým prostorem rozumíme neprázdnou množinu prvků V, na které
Více2.6. Vlastní čísla a vlastní vektory matice
26 Cíle V této části se budeme zabývat hledáním čísla λ které je řešením rovnice A x = λ x (1) kde A je matice řádu n Znalost řešení takové rovnice má řadu aplikací nejen v matematice Definice 261 Nechť
Více(Cramerovo pravidlo, determinanty, inverzní matice)
KMA/MAT1 Přednáška a cvičení, Lineární algebra 2 Řešení soustav lineárních rovnic se čtvercovou maticí soustavy (Cramerovo pravidlo, determinanty, inverzní matice) 16 a 21 října 2014 V dnešní přednášce
VíceDeterminanty. Obsah. Aplikovaná matematika I. Pierre Simon de Laplace. Definice determinantu. Laplaceův rozvoj Vlastnosti determinantu.
Determinanty Aplikovaná matematika I Dana Říhová Mendelu Brno Obsah 1 Determinanty Definice determinantu Sarrusovo a křížové pravidlo Laplaceův rozvoj Vlastnosti determinantu Výpočet determinantů 2 Inverzní
VíceMaticí typu (m, n), kde m, n jsou přirozená čísla, se rozumí soubor mn veličin a jk zapsaných do m řádků a n sloupců tvaru:
3 Maticový počet 3.1 Zavedení pojmu matice Maticí typu (m, n, kde m, n jsou přirozená čísla, se rozumí soubor mn veličin a jk zapsaných do m řádků a n sloupců tvaru: a 11 a 12... a 1k... a 1n a 21 a 22...
VíceMatematika 2 pro PEF PaE
Determinanty / 8 Matematika 2 pro PEF PaE 3 Determinanty Přemysl Jedlička Katedra matematiky, TF ČZU Permutace Determinanty Výpočet determinantu z definice 2 / 8 Permutací množiny {,, n} rozumíme prosté
VíceOperace s maticemi. 19. února 2018
Operace s maticemi Přednáška druhá 19. února 2018 Obsah 1 Operace s maticemi 2 Hodnost matice (opakování) 3 Regulární matice 4 Inverzní matice 5 Determinant matice Matice Definice (Matice). Reálná matice
VíceKapitola 11: Vektory a matice:
Kapitola 11: Vektory a matice: Prostor R n R n = {(x 1,, x n ) x i R, i = 1,, n}, n N x = (x 1,, x n ) R n se nazývá vektor x i je i-tá souřadnice vektoru x rovnost vektorů: x = y i = 1,, n : x i = y i
VíceZáklady maticového počtu Matice, determinant, definitnost
Základy maticového počtu Matice, determinant, definitnost Petr Liška Masarykova univerzita 18.9.2014 Matice a vektory Matice Matice typu m n je pravoúhlé (nebo obdélníkové) schéma, které má m řádků a n
VíceMatematika 1 MA1. 1 Analytická geometrie v prostoru - základní pojmy. 4 Vzdálenosti. 12. přednáška ( ) Matematika 1 1 / 32
Matematika 1 12. přednáška MA1 1 Analytická geometrie v prostoru - základní pojmy 2 Skalární, vektorový a smíšený součin, projekce vektoru 3 Přímky a roviny 4 Vzdálenosti 5 Příčky mimoběžek 6 Zkouška;
Více12. Determinanty. 12. Determinanty p. 1/25
12. Determinanty 12. Determinanty p. 1/25 12. Determinanty p. 2/25 Determinanty 1. Induktivní definice determinantu 2. Determinant a antisymetrické formy 3. Výpočet hodnoty determinantu 4. Determinant
VíceSOUČIN MATIC A m n B n p = C m p, přičemž: a i1 b 1j +a i2 b 2j + +a in b nj = c ij, i=1 m, j=1 p. Např: (-2) = -3
SOUČIN MATIC A m n B n p = C m p, přičemž: a i1 b 1j +a i2 b 2j + +a in b nj = c ij, i=1 m, j=1 p Např: 2 2 + (-2) 4 + 0 0 + 1 1 = -3 INVERZNÍ MATICE Pro čtvercovou matici B může (ale nemusí) existovat
VíceMatematika B101MA1, B101MA2
Matematika B101MA1, B101MA2 Zařazení předmětu: povinný předmět 1.ročníku bc studia 2 semestry Rozsah předmětu: prezenční studium 2 + 2 kombinované studium 16 + 0 / semestr Zakončení předmětu: ZS zápočet
Více2.6. VLASTNÍ ČÍSLA A VEKTORY MATIC
.6. VLASTNÍ ČÍSLA A VEKTORY MATIC V této kapitole se dozvíte: jak jsou definována vlastní (charakteristická) čísla a vektory čtvercové matice; co je to charakteristická matice a charakteristický polynom
Více1 Linearní prostory nad komplexními čísly
1 Linearní prostory nad komplexními čísly V této přednášce budeme hledat kořeny polynomů, které se dále budou moci vyskytovat jako složky vektorů nebo matic Vzhledem k tomu, že kořeny polynomu (i reálného)
VíceKapitola 11: Vektory a matice 1/19
Kapitola 11: Vektory a matice 1/19 2/19 Prostor R n R n = {(x 1,..., x n ) x i R, i = 1,..., n}, n N x = (x 1,..., x n ) R n se nazývá vektor x i je i-tá souřadnice vektoru x rovnost vektorů: x = y i =
VíceSoustavy lineárních rovnic
Přednáška MATEMATIKA č 4 Katedra ekonometrie FEM UO Brno kancelář 69a, tel 973 442029 email:jirineubauer@unobcz 27 10 2010 Soustava lineárních rovnic Definice Soustava rovnic a 11 x 1 + a 12 x 2 + + a
Více1 Vektorové prostory.
1 Vektorové prostory DefiniceMnožinu V, jejíž prvky budeme označovat a, b, c, z, budeme nazývat vektorovým prostorem právě tehdy, když budou splněny následující podmínky: 1 Je dáno zobrazení V V V, které
VíceUčební texty k státní bakalářské zkoušce Matematika Vlastní čísla a vlastní hodnoty. študenti MFF 15. augusta 2008
Učební texty k státní bakalářské zkoušce Matematika Vlastní čísla a vlastní hodnoty študenti MFF 15. augusta 2008 1 14 Vlastní čísla a vlastní hodnoty Požadavky Vlastní čísla a vlastní hodnoty lineárního
VíceLineární algebra. Matice, operace s maticemi
Lineární algebra Matice, operace s maticemi Operační program Vzdělávání pro konkurenceschopnost Název projektu: Inovace magisterského studijního programu Fakulty ekonomiky a managementu Registrační číslo
VíceSoustavy lineárních rovnic a determinanty
Soustavy lineárních rovnic a determinanty Petr Hasil Přednáška z matematiky Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem na discipĺıny
VíceSoustavy. Terminologie. Dva pohledy na soustavu lin. rovnic. Definice: Necht A = (a i,j ) R m,n je matice, b R m,1 je jednosloupcová.
[1] Terminologie [2] Soustavy lineárních rovnic vlastnosti množin řešení metody hledání řešení nejednoznačnost zápisu řešení Definice: Necht A = (a i,j ) R m,n je matice, b R m,1 je jednosloupcová matice.
VíceSoustava m lineárních rovnic o n neznámých je systém
1 1.2. Soustavy lineárních rovnic Soustava lineárních rovnic Soustava m lineárních rovnic o n neznámých je systém a 11 x 1 + a 12 x 2 +... + a 1n x n = b 1 a 21 x 1 + a 22 x 2 +... + a 2n x n = b 2...
Více0.1 Úvod do lineární algebry
Matematika KMI/PMATE 1 01 Úvod do lineární algebry 011 Vektory Definice 011 Vektorem aritmetického prostorur n budeme rozumět uspořádanou n-tici reálných čísel x 1, x 2,, x n Definice 012 Definice sčítání
VíceVektory a matice. Obsah. Aplikovaná matematika I. Carl Friedrich Gauss. Základní pojmy a operace
Vektory a matice Aplikovaná matematika I Dana Říhová Mendelu Brno Obsah 1 Vektory Základní pojmy a operace Lineární závislost a nezávislost vektorů 2 Matice Základní pojmy, druhy matic Operace s maticemi
VíceVI. Maticový počet. VI.1. Základní operace s maticemi. Definice. Tabulku
VI Maticový počet VI1 Základní operace s maticemi Definice Tabulku a 11 a 12 a 1n a 21 a 22 a 2n, a m1 a m2 a mn kde a ij R, i = 1,, m, j = 1,, n, nazýváme maticí typu m n Zkráceně zapisujeme (a ij i=1m
Více8 Matice a determinanty
M Rokyta, MFF UK: Aplikovaná matematika II kap 8: Matice a determinanty 1 8 Matice a determinanty 81 Matice - definice a základní vlastnosti Definice Reálnou resp komplexní maticí A typu m n nazveme obdélníkovou
VíceČTVERCOVÉ MATICE. Čtvercová matice je taková matice, kde počet řádků je roven počtu jejích sloupců. det(a) značíme determinant čtvercové matice A
ČTVERCOVÉ MTICE Čtvercová matice je taková matice, kde počet řádků je roven počtu jejích sloupců. det() značíme determinant čtvercové matice Regulární matice hodnost je rovna jejímu řádu determinant je
Více0.1 Úvod do lineární algebry
Matematika KMI/PMATE 1 01 Úvod do lineární algebry 011 Lineární rovnice o 2 neznámých Definice 011 Lineární rovnice o dvou neznámých x, y je rovnice, která může být vyjádřena ve tvaru ax + by = c, kde
VíceP 1 = P 1 1 = P 1, P 1 2 =
1 Výpočet inverzní matice Věta 1 Necht P U elementární matice vzniklá el úpravou U Pak je P U regulární Důkaz: Protože elementární úprava U je invertovatelná, existuje el úprava U, která vrací změny U
Více[1] Determinant. det A = 0 pro singulární matici, det A 0 pro regulární matici
[1] Determinant je číslo jistým způsobem charakterizující čtvercovou matici det A = 0 pro singulární matici, det A 0 pro regulární matici používá se při řešení lineárních soustav... a v mnoha dalších aplikacích
VíceOperace s maticemi
Operace s maticemi Seminář druhý 17.10. 2018 Obsah 1 Operace s maticemi 2 Hodnost matice 3 Regulární matice 4 Inverzní matice Matice Definice (Matice). Reálná matice typu m n je obdélníkové schema A =
VíceMATICE. a 11 a 12 a 1n a 21 a 22 a 2n A = = [a ij]
MATICE Matice typu m/n nad tělesem T je soubor m n prvků z tělesa T uspořádaných do m řádků a n sloupců: a 11 a 12 a 1n a 21 a 22 a 2n A = = [a ij] a m1 a m2 a mn Prvek a i,j je prvek matice A na místě
VíceDeterminanty. Determinanty. Přednáška MATEMATIKA č. 3. Jiří Neubauer
Přednáška MATEMATIKA č. 3 Katedra ekonometrie FEM UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz 21. 10. 2010 Uvažujme neprázdnou množinu přirozených čísel M = {1, 2,..., n}. Z kombinatoriky
Více10. DETERMINANTY " # $!
10. DETERMINANTY $ V této kapitole zavedeme determinanty čtvercových matic libovolného rozměru nad pevným tělesem, řekneme si jejich základní vlastnosti a naučíme se je vypočítat včetně příkladů jejich
VíceMatematika (CŽV Kadaň) aneb Úvod do lineární algebry Matice a soustavy rovnic
Přednáška třetí (a pravděpodobně i čtvrtá) aneb Úvod do lineární algebry Matice a soustavy rovnic Lineární rovnice o 2 neznámých Lineární rovnice o 2 neznámých Lineární rovnice o dvou neznámých x, y je
VíceZáklady matematiky pro FEK
Základy matematiky pro FEK 2. přednáška Blanka Šedivá KMA zimní semestr 2016/2017 Blanka Šedivá (KMA) Základy matematiky pro FEK zimní semestr 2016/2017 1 / 20 Co nás dneska čeká... Závislé a nezávislé
Více[1] Motivace. p = {t u ; t R}, A(p) = {A(t u ); t R} = {t A( u ); t R}
Vlastní číslo, vektor motivace: směr přímky, kterou lin. transformace nezmění invariantní podprostory charakteristický polynom báze, vzhledem ke které je matice transformace nejjednodušší podobnost s diagonální
VíceSoustavy lineárních rovnic
Soustavy lineárních rovnic Základy vyšší matematiky LDF MENDELU Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem na discipĺıny společného
Více1 Determinanty a inverzní matice
Determinanty a inverzní matice Definice Necht A = (a ij ) je matice typu (n, n), n 2 Subdeterminantem A ij matice A příslušným pozici (i, j) nazýváme determinant matice, která vznikne z A vypuštěním i-tého
VíceSoustavy linea rnı ch rovnic
[1] Soustavy lineárních rovnic vlastnosti množin řešení metody hledání řešení nejednoznačnost zápisu řešení a) soustavy, 10, b) P. Olšák, FEL ČVUT, c) P. Olšák 2010, d) BI-LIN, e) L, f) 2009/2010, g)l.
Vícematiceteorie 1. Matice A je typu 2 4, matice B je typu 4 3. Jakých rozměrů musí být matice X, aby se dala provést
Úlohy k zamyšlení 1. Zdůvodněte, proč třetí řádek Hornerova schématu pro vyhodnocení polynomu p v bodě c obsahuje koeficienty polynomu r, pro který platí p(x) = (x c) r(x) + p(c). 2. Dokažte, že pokud
VíceVlastní číslo, vektor
[1] Vlastní číslo, vektor motivace: směr přímky, kterou lin. transformace nezmění invariantní podprostory charakteristický polynom báze, vzhledem ke které je matice transformace nejjednodušší podobnost
VíceVĚTY Z LINEÁRNÍ ALGEBRY
VĚTY Z LINEÁRNÍ ALGEBRY Skripta Matematické metody pro statistiku a operační výzkum (Nešetřilová, H., Šařecová, P., 2009). 1. věta Nechť M = {x 1, x 2,..., x k } je množina vektorů z vektorového prostoru
VíceLineární algebra Operace s vektory a maticemi
Lineární algebra Operace s vektory a maticemi Robert Mařík 26. září 2008 Obsah Operace s řádkovými vektory..................... 3 Operace se sloupcovými vektory................... 12 Matice..................................
VíceÚvod do lineární algebry
Úvod do lineární algebry 1 Aritmetické vektory Definice 11 Mějme n N a utvořme kartézský součin R n R R R Každou uspořádanou n tici x 1 x 2 x, x n budeme nazývat n rozměrným aritmetickým vektorem Prvky
VíceAplikovaná numerická matematika - ANM
Aplikovaná numerická matematika - ANM 3 Řešení soustav lineárních rovnic iterační metody doc Ing Róbert Lórencz, CSc České vysoké učení technické v Praze Fakulta informačních technologií Katedra počítačových
VíceHODNOST A DETERMINANT MATICE, INVERZNÍ MATICE
MENDELOVA UNIVERZITA V BRNĚ LDF MT MATEMATIKA HODNOST A DETERMINANT MATICE, INVERZNÍ MATICE Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s
VíceLineární algebra. Soustavy lineárních rovnic
Lineární algebra Operační program Vzdělávání pro konkurenceschopnost Název projektu: Inovace magisterského studijního programu Fakulty ekonomiky a managementu Registrační číslo projektu: CZ.1.07/2.2.00/28.0326
VíceMatice. Modifikace matic eliminační metodou. α A = α a 2,1, α a 2,2,..., α a 2,n α a m,1, α a m,2,..., α a m,n
[1] Základní pojmy [2] Matice mezi sebou sčítáme a násobíme konstantou (lineární prostor) měníme je na jiné matice eliminační metodou násobíme je mezi sebou... Matice je tabulka čísel s konečným počtem
VíceVybrané kapitoly z matematiky
Vybrané kapitoly z matematiky VŠB-TU Ostrava 2017-2018 Vybrané kapitoly z matematiky 2017-2018 1 / 19 Základní informace předmět: 714-0513, 5 kreditů přednáší: Radek Kučera kontakt: radek.kucera@vsb.cz,
Více10. Soustavy lineárních rovnic, determinanty, Cramerovo pravidlo
0. Soustavy lineárních rovnic, determinanty, Cramerovo pravidlo (PEF PaA) Petr Gurka aktualizováno 9. prosince 202 Obsah Základní pojmy. Motivace.................................2 Aritmetický vektorový
VíceVektorový prostor. Př.1. R 2 ; R 3 ; R n Dvě operace v R n : u + v = (u 1 + v 1,...u n + v n ), V (E 3 )...množina vektorů v E 3,
Vektorový prostor Příklady: Př.1. R 2 ; R 3 ; R n...aritmetický n-rozměrný prostor Dvě operace v R n : součet vektorů u = (u 1,...u n ) a v = (v 1,...v n ) je vektor u + v = (u 1 + v 1,...u n + v n ),
VíceČtvercové matice. Čtvercová matice je taková matice, jejíž počet řádků je roven počtu jejích sloupců
Determinant matice Čtvercové matice Čtvercová matice je taková matice, jejíž počet řádků je roven počtu jejích sloupců Determinant je zobrazení, které přiřadí každé čtvercové matici A skalár (reálné číslo).
Více4. Trojúhelníkový rozklad p. 1/20
4. Trojúhelníkový rozklad 4. Trojúhelníkový rozklad p. 1/20 4. Trojúhelníkový rozklad p. 2/20 Trojúhelníkový rozklad 1. Permutační matice 2. Trojúhelníkové matice 3. Trojúhelníkový (LU) rozklad 4. Výpočet
VíceJedná se o soustavy ve tvaru A X = B, kde A je daná matice typu m n,
Soutavy lineárních algebraických rovnic Jedná se o soustavy ve tvaru A X = B, kde A je daná matice typu m n, X R n je sloupcový vektor n neznámých x 1,..., x n, B R m je daný sloupcový vektor pravých stran
VíceHODNOST A DETERMINANT MATICE, INVERZNÍ MATICE
MENDELOVA UNIVERZITA V BRNĚ LDF MT MATEMATIKA HODNOST A DETERMINANT MATICE, INVERZNÍ MATICE Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s
VícePřipomenutí co je to soustava lineárních rovnic
Připomenutí co je to soustava lineárních rovnic Příklad 2x 3y + z = 5 3x + 5y + 2z = 4 x + 2y z = 1 Soustava lineárních rovnic obecně Maticový tvar: a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21 x 1 + a
VíceAVDAT Vektory a matice
AVDAT Vektory a matice Josef Tvrdík Katedra informatiky Přírodovědecká fakulta Ostravská univerzita Vektory x = x 1 x 2. x p y = y 1 y 2. y p Řádkový vektor dostaneme transpozicí sloupcového vektoru x
VíceVlastní čísla a vlastní vektory
Kapitola 11 Vlastní čísla a vlastní vektory Základní motivace pro studium vlastních čísel a vektorů pochází z teorie řešení diferenciálních rovnic Tato teorie říká, že obecné řešení lineární diferenciální
VíceMatice. Předpokládejme, že A = (a ij ) je matice typu m n: diagonálou jsou rovny nule.
Matice Definice. Maticí typu m n nazýváme obdélníkové pole, tvořené z m n reálných čísel (tzv. prvků matice), zapsaných v m řádcích a n sloupcích. Značíme např. A = (a ij ), kde i = 1,..., m, j = 1,...,
Více7. Lineární vektorové prostory
7. Lineární vektorové prostory Tomáš Salač MÚ UK, MFF UK LS 2017/18 Tomáš Salač ( MÚ UK, MFF UK ) 7. Lineární vektorové prostory LS 2017/18 1 / 62 7.1 Definice a příklady Definice 7.1 Množina G s binární
Více[1] LU rozklad A = L U
[1] LU rozklad A = L U někdy je třeba prohodit sloupce/řádky a) lurozklad, 8, b) P. Olšák, FEL ČVUT, c) P. Olšák 2010, d) BI-LIN, e) L, f) 2009/2010, g)l. Viz p. d. 4/2010 Terminologie BI-LIN, lurozklad,
VícePodobnost matic. Definice 8.6. Dány matice A, B M n (C). Jestliže existuje regulární matice P M n (C) tak,
Podobnost matic Definice 84 Dány matice A, B M n (C) Jestliže existuje regulární matice P M n (C) tak, že B = P 1 AP, pak říkáme, že matice B je podobná matici A a píšeme A B Takto zavedená binární relace
Více3. Matice a determinanty
. Matice a determinanty Teorie matic a determinantů představuje úvod do lineární algebry. Nejrozsáhlejší aplikace mají matice a determinanty při řešení systémů lineárních rovnic. Pojem determinantu zavedl
VíceVlastní čísla a vlastní vektory
Vlastní čísla a vlastní vektory 1 Motivace Uvažujme lineární prostor všech vázaných vektorů v rovině, které procházejí počátkem, a lineární zobrazení tohoto prostoru do sebe(lineární transformaci, endomorfismus)
VíceVšechno, co jste kdy chtěli vědět o maticích, ale báli jste se zeptat
Všechno, co jste kdy chtěli vědět o maticích, ale báli jste se zeptat Čtvercová matice n n, např. může reprezentovat: A = A A 2 A 3 A 2 A 22 A 23 A 3 A 32 A 33 matici koeficientů soustavy n lineárních
VíceNALG 001 Lineární algebra a geometrie 1, zimní semestr MFF UK Doba řešení: 3 hodiny
NALG 001 Lineární algebra a geometrie 1, zimní semestr MFF UK Závěrečná zkouška verze cvičná 9.1.2013 Doba řešení: 3 hodiny Přednášející: L. Barto, J. Tůma Křestní jméno: Příjmení: Instrukce Neotvírejte
VíceNecht tedy máme přirozená čísla n, k pod pojmem systém lineárních rovnic rozumíme rovnice ve tvaru
2. Systémy lineárních rovnic V této kapitole se budeme zabývat soustavami lineárních rovnic s koeficienty z pole reálných případně komplexních čísel. Uvádíme podmínku pro existenci řešení systému lineárních
Vícea + b + c = 2 b + c = 1 a b = a 1 2a 1 + a a 3 + a 5 + 2a 2 + a 2 + a
Zadání A. 1. Polynom P (x) má v uspořádané bázi (x 2 + x 1, 2x 2 x 1, x 2 + x + 2) souřadnice (1, 1, 1). Najděte jeho souřadnice vzhledem k uspořádané bázi (x 2 1, x 2 + x 1, x 2 + x). Nejprve si spočítáme
VíceUspořádanou n-tici reálných čísel nazveme aritmetický vektor (vektor), ā = (a 1, a 2,..., a n ). Čísla a 1, a 2,..., a n se nazývají složky vektoru
1 1. Lineární algebra 1.1. Lineární závislost a nezávislost vektorů. Hodnost matice Aritmetické vektory Uspořádanou n-tici reálných čísel nazveme aritmetický vektor (vektor), ā = (a 1, a 2,..., a n ).
VíceVYBRANÉ PARTIE Z NUMERICKÉ MATEMATIKY
VYBRANÉ PARTIE Z NUMERICKÉ MATEMATIKY Jan Krejčí 31. srpna 2006 jkrejci@physics.ujep.cz http://physics.ujep.cz/~jkrejci Obsah 1 Přímé metody řešení soustav lineárních rovnic 3 1.1 Gaussova eliminace...............................
VíceČíselné vektory, matice, determinanty
Číselné vektory, matice, determinanty Základy vyšší matematiky LDF MENDELU Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem na discipĺıny
Více5. Maticová algebra, typy matic, inverzní matice, determinant.
5. Maticová algebra, typy matic, inverzní matice, determinant. Matice Matice typu m,n je matice složená z n*m (m >= 1, n >= 1) reálných (komplexních) čísel uspořádaných do m řádků a n sloupců: R m,n (resp.
Vícep, q dvě permutace na množině X, pak složené zobrazení, tj. permutaci, q p : X X nazýváme složení permutací p a q (v tomto pořadí).
Kapitola 10 Determinanty Začneme pomocnou definicí Definice 101 Vzájemně jednoznačné zobrazení p : X X nazýváme permutace na množině X Je-li p permutace na množině X, pak inverzní zobrazení p 1 : X X nazýváme
VíceCo je obsahem numerických metod?
Numerické metody Úvod Úvod Co je obsahem numerických metod? Numerické metody slouží k přibližnému výpočtu věcí, které se přesně vypočítat bud nedají vůbec, nebo by byl výpočet neúměrně pracný. Obsahem
VíceLineární algebra : Násobení matic a inverzní matice
Lineární algebra : Násobení matic a inverzní matice (8. přednáška) František Štampach, Karel Klouda frantisek.stampach@fit.cvut.cz, karel.klouda@fit.cvut.cz Katedra aplikované matematiky Fakulta informačních
Více1 Řešení soustav lineárních rovnic
1 Řešení soustav lineárních rovnic 1.1 Lineární rovnice Lineární rovnicí o n neznámých x 1,x 2,..., x n s reálnými koeficienty rozumíme rovnici ve tvaru a 1 x 1 + a 2 x 2 +... + a n x n = b, (1) kde koeficienty
Více2. Schurova věta. Petr Tichý. 3. října 2012
2. Schurova věta Petr Tichý 3. října 2012 1 Podobnostní transformace a výpočet vlastních čísel Obecný princip: Úloha: Řešíme-li matematickou úlohu, je často velmi vhodné hledat její ekvivalentní formulaci
VíceDeterminant matice řádu 5 budeme počítat opakovaným použitím rozvoje determinantu podle vybraného řádku nebo sloupce. Aby byl náš výpočet
Řešené příklady z lineární algebry - část 2 Příklad 2.: Určete determinant matice A: A = 4 4. Řešení: Determinant matice řádu budeme počítat opakovaným použitím rozvoje determinantu podle vybraného řádku
VíceÚlohy k přednášce NMAG 101 a 120: Lineární algebra a geometrie 1 a 2,
Úlohy k přednášce NMAG a : Lineární algebra a geometrie a Verze ze dne. května Toto je seznam přímočarých příkladů k přednášce. Úlohy z tohoto seznamu je nezbytně nutné umět řešit. Podobné typy úloh se
VíceIB112 Základy matematiky
IB112 Základy matematiky Řešení soustavy lineárních rovnic, matice, vektory Jan Strejček IB112 Základy matematiky: Řešení soustavy lineárních rovnic, matice, vektory 2/53 Obsah Soustava lineárních rovnic
Vícez = a bi. z + v = (a + bi) + (c + di) = (a + c) + (b + d)i. z v = (a + bi) (c + di) = (a c) + (b d)i. z v = (a + bi) (c + di) = (ac bd) + (bc + ad)i.
KOMLEXNÍ ČÍSLA C = {a + bi; a, b R}, kde i 2 = 1 Číslo komplexně sdružené k z = a + bi je číslo z = a bi. Operace s komplexními čísly: z = a + bi, kde a, b R v = c + di, kde c, d R Sčítání Odčítání Násobení
VíceVlastní čísla a vlastní vektory
Kapitola 15 Vlastní čísla a vlastní vektory V této a následujících kapitolách budeme zkoumat jeden z nejdůležitějších pojmů tohoto kurzu. Definice15.1 Buď A:V Vlineárnízobrazení,Vvektorovýprostornad tělesem
VíceZáklady matematiky pro FEK
Základy matematiky pro FEK 3. přednáška Blanka Šedivá KMA zimní semestr 2016/2017 Blanka Šedivá (KMA) Základy matematiky pro FEK zimní semestr 2016/2017 1 / 21 Co nás dneska čeká... Co je to soustava lineárních
Více2. Lineární algebra 2A. Matice a maticové operace. 2. Lineární algebra
2 Lineární algebra 2A Matice a maticové operace 2 Lineární algebra Verze října 201 Teorie matic a determinantů představuje úvod do lineární algebry Nejrozsáhlejší aplikace mají matice a determinanty při
VíceZdrojem většiny příkladů je sbírka úloh 1. cvičení ( ) 2. cvičení ( )
Příklady řešené na cvičení LA II - LS 1/13 Zdrojem většiny příkladů je sbírka úloh http://kam.mff.cuni.cz/~sbirka/ 1. cvičení (..13) 1. Rozhodněte, které z následujících operací jsou skalárním součinem
VíceMatematický ústav Slezské univerzity v Opavě Učební texty k přednášce ALGEBRA II, letní semestr 2000/2001 Michal Marvan. 14.
Matematický ústav Slezské univerzity v Opavě Učební texty k přednášce ALGEBRA II, letní semestr 2000/2001 Michal Marvan 14. Vlastní vektory Bud V vektorový prostor nad polem P. Lineární zobrazení f : V
VíceSymetrické a kvadratické formy
Symetrické a kvadratické formy Aplikace: klasifikace kvadrik(r 2 ) a kvadratických ploch(r 3 ), optimalizace(mpi) BI-LIN (Symetrické a kvadratické formy) 1 / 20 V celé přednášce uvažujeme číselné těleso
Více1 Zobrazení 1 ZOBRAZENÍ 1. Zobrazení a algebraické struktury. (a) Ukažte, že zobrazení f : x
1 ZOBRAZENÍ 1 Zobrazení a algebraické struktury 1 Zobrazení Příklad 1.1. (a) Ukažte, že zobrazení f : x na otevřený interval ( 1, 1). x x +1 je bijekce množiny reálných čísel R (b) Necht a, b R, a < b.
VíceDeterminant. Definice determinantu. Permutace. Permutace, vlastnosti. Definice: Necht A = (a i,j ) R n,n je čtvercová matice.
[] Definice determinantu BI-LIN, determinant, 9, P Olšák [2] Determinant je číslo jistým způsobem charakterizující čtvercovou matici det A 0 pro singulární matici, det A 0 pro regulární matici používá
Více1 Analytická geometrie
1 Analytická geometrie 11 Přímky Necht A E 3 a v R 3 je nenulový Pak p = A + v = {X E 3 X = A + tv, t R}, je přímka procházející bodem A se směrovým vektorem v Rovnici X = A + tv, t R, říkáme bodová rovnice
Vícea počtem sloupců druhé matice. Spočítejme součin A.B. Označme matici A.B = M, pro její prvky platí:
Řešené příklady z lineární algebry - část 1 Typové příklady s řešením Příklady jsou určeny především k zopakování látky před zkouškou, jsou proto řešeny se znalostmi učiva celého semestru. Tento fakt se
VíceKATEDRA INFORMATIKY UNIVERZITA PALACKÉHO DAGMAR SKALSKÁ VÝVOJ TOHOTO UČEBNÍHO TEXTU JE SPOLUFINANCOVÁN
KATEDRA INFORMATIKY PŘÍRODOVĚDECKÁ FAKULTA UNIVERZITA PALACKÉHO LINEÁRNÍ ALGEBRA DAGMAR SKALSKÁ VÝVOJ TOHOTO UČEBNÍHO TEXTU JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY
VíceCvičení z Lineární algebry 1
Cvičení z Lineární algebry Michael Krbek podzim 2003 2392003 Hodina Jsou dána komplexní čísla z = +2 i a w = 2 i Vyjádřete c algebraickém tvaru (z + w) 3,, (zw), z w 2 Řešte v komplexním oboru rovnice
VíceTECHNICKÁ UNIVERZITA V LIBERCI
TECHNCKÁ NVEZTA V LBEC Fakulta mechatroniky, informatiky a mezioborových studií Základy spojitého řízení Analýza elektrického obvodu čební text Josef J a n e č e k Liberec 010 Materiál vznikl v rámci projektu
VíceMatice. Přednáška MATEMATIKA č. 2. Jiří Neubauer. Katedra ekonometrie FEM UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.
Přednáška MATEMATIKA č. 2 Katedra ekonometrie FEM UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz 13. 10. 2010 Uspořádané schéma vytvořené z m n reálných čísel, kde m, n N a 11 a 12 a
Víceftp://math.feld.cvut.cz/pub/olsak/linal/
Petr Olšák Výcuc z textu Lineární algebra určeno pro promítání na přednášce Úvod do algebry http://www.olsak.net/linal.html ftp://math.feld.cvut.cz/pub/olsak/linal/ http://math.feld.cvut.cz/skripta/ua/
Více1 0 0 u 22 u 23 l 31. l u11
LU dekompozice Jedná se o rozklad matice A na dvě trojúhelníkové matice L a U, A=LU. Matice L je dolní trojúhelníková s jedničkami na diagonále a matice U je horní trojúhelníková. a a2 a3 a 2 a 22 a 23
Vícez textu Lineární algebra
2 Úvodní poznámky Petr Olšák Výcuc z textu Lineární algebra určeno pro promítání na přednášce Úvod do algebry http://www.olsak.net/linal.html ftp://math.feld.cvut.cz/pub/olsak/linal/ http://math.feld.cvut.cz/skripta/ua/
Více