Generace 2. harmonické
|
|
- Viktor Pospíšil
- před 7 lety
- Počet zobrazení:
Transkript
1 Generace. harmonické ω = + ω ω M M ˆ * A = i σ A A e i M ˆ A = i σ A e i = + ρ ig, + δ, z x k x y v, g, t t walkoff ( anizotropie) difrakce ( fokusace) i kz kz ( disp. pulsy grup. rych.) disperze absorpce Q, ( A, ) + nelin. absorpce σ k k k,,, = d, { 0 (, )} eff ; δ = Im ε ω ; g, = ; n, n, ω ω = ω, v g, = c ω ( n ω), ω = ω, Fázová synchronizace: k = k + k t + k pr + k fcg k = k k - lineární fázový rozdíl. kt z - fázový rozdíl zpsobený termálními efekty závisí na teplotních vlastnostech nelineárního krystalu (eší se rovnice vedení tepla), zdrojem tepla mže být lineární i nelineární absorpce. k pr - fázový rozdíl zpsobený fotorefrakcí (zejména v krystalech typu inbo ) lze vtšinou kompenzovat lineárním fázovým rozdílem, mže ale vést také k zabarvení krystalu a následným termálním efektm. k - fázový rozdíl zpsobený generací volných nosi ve fcg vodivostním pásu zpravidla v dsledku nelineární absorpce vede k další absorpci na obou frekvencích ( termální efekty) a k fázovému rozdílu (zejména v krystalech typu iio ) Efektivní délky (pro << eff lze len zanedbat) [. len] aperturní délka: a = / ρ [4. len] délka kvazistatická interakce: τ ( v v ) [. len] difrakní délka: d 0 dif = kd 0 [5. len] délka disperzního rozšíení: = τ g délka nelineární interakce: (0 N = σa ) ds qs = p g g p 65
2 Generace. harmonické V aproximaci rovinných vln (< N,všechny eff ): (zanedbáváme difrakci, anizotropii, disperzi grupových rychlostí a rozšíení pulz v dsledku disperze, teplotní efekty, lineární i nelineární absorpci) Mžeme-li navíc zanedbat saturaci erpacího svazku ω (aproximace konstantního pole): P Efektivita procesu: η = P π d = ε P eff 0cn nλ A ( k ) ( k ) sin délka krystalu P / A - intenzita erpání k - fázový rozdíl ( phase mismatch ) Maker et al. (96) Natáením krystalu se mní k je pibližn konstantní 66
3 Generace. harmonické Pokud nelze zanedbat saturaci erpacího svazku ω (nelineární režim): P ( ) k = 0 Efektivita procesu: η = = κ sn [ ( κ N ); κ ] tanh ( N ) P (0) κ 0 N 75P (0) 8π k 0 η = tanh ( ) ( k) 8 k 4 N N = + πw n n λ = (charakteristická délka) d eff sn - Jacobiho eliptický sinus N k η velké κ sin κ N a) 4 κ = b) κ = 0 c) κ = 0. 9 d) κ = 0. 67
4 Generace. harmonické Vezmeme-li v úvahu divergenci svazku: ( Ω) P (, φ) Si sin Ω Efektivita procesu: η (, φ) = = P (0) N Ω Ω Ω = γ φ / 4, k ( θ ) x sin y ( θ ) = γ θ pm, Si ( x) = dy (integrální sinus) y 0 pro Ω >> : Si( Ω) π η(, φ) π Ω N intenzita zvyšuje efektivitu fokusace divergence zhoršuje efektivitu kolimace Pro ultrakrátké pulsy: Pokud jsou grupové rychlosti na obou frekvencích zhruba stejné, lze ešit analyticky. Tvar pulsu se zachovává, obecn se mní šíka pulsu: τ = τ v limit malé konverzní úinnosti τ τ v siln nelineárním režimu Pokud rozdíl grupových rychlostí nelze zanedbat (> qs ), mže docházet ke zmnám spektra (zúžení, posun maxima): τ v, ω max = ω k v, ω = π v v = v g v g chirp zhoršuje efektivitu procesu 68
5 Pro pín omezené svazky: Generace. harmonické pro pín úzké svazky hraje znanou roli walk-off, prudce zhoršuje efektivitu pi interakci typu II, ale vadí i v interakci typu I ešení: o nekritický phase-matching ( θ = 90 ) (typ I) o dva krystaly v tandemu se zkíženými opt. osami (typ II) o píné roztažení svazku pro fokusované svazky existuje urité optimum fokusace, silná fokusace znamená velkou divergenci a nebezpeí walk-off efekt, slabá fokusace znamená malý nárust intenzity. asto se používají orientace krystalu, kde v ose svazku k 0 (vektorový phasematching) 69
6 Experimenty Generace. harmonické (SHG) Nejastji Nd:YAG, Nd:YAP, Nd:sklo v anorganických krystalech. Pro velké výkony krystaly velkých rozmr (KDP až desítky cm), malá úinnost ostatních nelineárních jev, konverzní úinnosti až 90%. Pro Q-spínané lasery s velkou energií: o inbo (s pímsí MgO pro snížení fotorefrakce), 0-0 mm, konverzní úinnost okolo 50% o iio, nevýhodou je velký walk-off, kompenzuje se ezy krystal s opanou orientací. Pro velké úinnosti: o KTP (velká teplotní i úhlová pološíka, velká tvrdost a vysoký práh poškození, velmi vysoká nelinearita) 55-60% o BO (velká úhlová pološíka, malý walk-off, mechanická tvrdost) Používaly se také organické krystaly velmi vysoká úinnost pi krátkých interakních délkách, ale asto nevhodné mechanické a chemické vlastnosti. Generace. harmonické v dutin laseru (ICSHG) CW lasery mají malou propustnost výstupního zrcadla výkon v dutin rezonátoru je obvykle daleko vtší než výstupní výkon. je proto výhodné umístit nelineární krystal dovnit rezonátoru tzv. 00% konverzní režim laser se zrcadly nepropustnými pro základní frekvenci dává stejný výkon SHG jako obdobný laser v režimu mimo fázovou synchronizaci s optimální odrazivostí zrcadel na základní frekvenci (to neznamená 00% úinnost nelineárního procesu, ta bývá 5-0% pro cw režim a 0-0% pro pulsní). Tradin Q-spínaný Nd:YAG erpaný výbojkami nebo laserovými diodami s krystaly iio, inbo nebo KTP Novji cw Nd:YVO 4 erpaný laserovými diodami s krystaly BO nebo KTP 70
7 aser Coherent Verdi Jednofrekvenní DPSS laser, 5 nm, -0 W Nd:YVO 4 + BO, erpaný poli laserových diod (808 nm) navázanými do optického vlákna (fiber array package - integrated FAP-I) FAP-I úinnost až 50%, navázání do vláken typicky 90%, -4 nm spektrální šíka Hermeticky uzavená dutina, kruhový laser, jednosmrný, homogenn rozšíený jednofrekvenní provoz, navíc vnucený etalonem erpací diody (5-5 C), vanadát (0 C), BO (48 C) i etalon (5-7 C) jsou termoelektricky stabilizovány V dutin typicky > 00 W BO se teplotn ladí, nekritický phase-matching, typ I Optoelektrická konverzní únnost: (0W opt./700 W el. =,4%) [pro srovnání: kryptonový Coherent Innova 0: W opt./, kw = 0,00%, 500x horší] 7
8 Generátor. harmonické APE Oblast nm Krystal BBO mm (fs-režim) 6 mm (ps-režim) Konverzní úinnosti 5% v ps-režimu až 40% ve fs-režimu 7
9 Typicky konverzní úinnost 8% Generace. harmonické z RegA 7
Laserové technologie v praxi I. Přednáška č.4. Pevnolátkové lasery. Hana Chmelíčková, SLO UP a FZÚ AVČR Olomouc, 2011
Laserové technologie v praxi I. Přednáška č.4 Pevnolátkové lasery Hana Chmelíčková, SLO UP a FZÚ AVČR Olomouc, 2011 Dělení pevnolátkových laserů podle druhu matrice a dopantu Matrice (nosič): Dopant: Alexandrit
Laserová technika 1. Rychlostní rovnice pro Q-spínaný laser. 22. prosince Katedra fyzikální elektroniky.
Laserová technika 1 Aktivní prostředí Rychlostní rovnice pro Q-spínaný laser Jan Šulc Katedra fyzikální elektroniky České vysoké učení technické jan.sulc@fjfi.cvut.cz 22. prosince 2016 Program přednášek
Fyzika laserů. 4. dubna Katedra fyzikální elektroniky.
Fyzika laserů Přitahováni frekvencí. Spektrum laserového záření. Modelocking Jan Šulc Katedra fyzikální elektroniky České vysoké učení technické jan.sulc@fjfi.cvut.cz 4. dubna 2013 Program přednášek 1.
Laserová technika prosince Katedra fyzikální elektroniky.
Laserová technika 1 Aktivní prostředí Šíření optických impulsů v aktivním prostředí Jan Šulc Katedra fyzikální elektroniky České vysoké učení technické jan.sulc@fjfi.cvut.cz. prosince 016 Program přednášek
Vibrace atomů v mřížce, tepelná kapacita pevných látek
Vibrace atomů v mřížce, tepelná kapacita pevných látek Atomy vázané v mřížce nejsou v klidu. Míru jejich pohybu vyjadřuje podobně jako u plynů a kapalin teplota. - Elastické vlny v kontinuu neatomární
1. Pevnolátkový Nd:YAG laser v režimu volné generace a v režimu Q-spínání. 2. Zesilování laserového záření a generace druhé harmonické
Úloha č. 1 pro laserová praktika KFE, FJFI, ČVUT v Praze, verze 2010/1 1. Pevnolátkový Nd:YAG laser v režimu volné generace a v režimu Q-spínání. 2. Zesilování laserového záření a generace druhé harmonické
Světlo jako elektromagnetické záření
Světlo jako elektromagnetické záření Základní pojmy: Homogenní prostředí prostředí, jehož dané vlastnosti jsou ve všech místech v prostředí stejné. Izotropní prostředí prostředí, jehož dané vlastnosti
Laserové technologie v praxi I. Přednáška č.2. Základní konstrukční součásti laserů. Hana Chmelíčková, SLO UP a FZÚ AVČR Olomouc, 2011
Laserové technologie v praxi I. Přednáška č.2 Základní konstrukční součásti laserů Hana Chmelíčková, SLO UP a FZÚ AVČR Olomouc, 2011 Konstrukce laseru 1 - Aktivní prostředí 2 - Čerpací zařízení 3 - Optický
Fyzika laserů. 7. března Katedra fyzikální elektroniky.
Fyzika laserů Poloklasický popis šíření elmg. záření v rezonančním prostředí. Jan Šulc Katedra fyzikální elektroniky České vysoké učení technické jan.sulc@fjfi.cvut.cz 7. března 2013 Program přednášek
= , = (1) (2)
Název a číslo úlohy Nelineární jevy v ultrarychlé optice úloha č. 9 Datum měření 30. 11. 2015 Měření provedli Jan Fait, Marek Vlk Vypracoval Jan Fait Datum 4. 12. 2015 Hodnocení Během úlohy jsme se seznámili
Průmyslové lasery pro svařování
Průmyslové lasery pro svařování (studijní text k předmětu SLO/UMT1) Připravila: Hana Šebestová V současné době se vyrábí řada typů laserů. Liší se svou konstrukcí, poskytovaným výkonem, účinností i charakterem
Metody nelineární optiky v Ramanově spektroskopii
Metody nelineární optiky v Ramanově spektroskopii Využití optických nelinearit umožňuje přejít od tradičního studia rozptylu světla na fluktuacích, teplotních elementárních excitacích, ke studiu rozptylu
CZ.1.07/2.2.00/ AČ (RCPTM) Spektroskopie 1 / 24
MĚŘENÍ SPEKTRA SVĚTLA Antonín Černoch Regionální centrum pokročilých technologií a materiálů CZ.1.07/2.2.00/15.0147 AČ (RCPTM) Spektroskopie 1 / 24 Úvod Obsah 1 Úvod 2 Zobrazovací spektrometry Disperzní
Vlny v plazmatu. Narušení rovnováhy, perturbace se šíří prostorem => vlny Vlna musí být řešením příslušných rovnic plazmatu => módy
Vlny v plazmatu Narušení rovnováhy, perturbace se šíří prostorem => vlny Vlna musí být řešením příslušných rovnic plazmatu => módy Jakákoli perturbace A( x,t může být reprezentována jako kombinace rovinných
frekvence f (Hz) perioda T = 1/f (s)
1.) Periodický pohyb - každý pohyb, který se opakuje v pravidelných intervalech Poet Poet cykl cykl za za sekundu sekundu frekvence f (Hz) perioda T 1/f (s) Doba Doba trvání trvání jednoho jednoho cyklu
Postupné, rovinné, monochromatické vlny v lineárním izotropním nemagnetickém prostředí
Postupné, rovinné, monochromatické vlny v lineárním izotropním nemagnetickém prostředí Rovinné vlny 1 Při diskusi o řadě jevů je výhodné vycházet z rovinných vln. Vlny musí splňovat Maxwellovy rovnice
Úvod do laserové techniky
Úvod do laserové techniky Světlo jako elektromagnetické záření II. část Jan Šulc Katedra fyzikální elektroniky České vysoké učení technické v Praze jan.sulc@fjfi.cvut.cz 6. října 016 Kontakty Ing. Jan
Zdroje optického záření
Metody optické spektroskopie v biofyzice Zdroje optického záření / 1 Zdroje optického záření tepelné výbojky polovodičové lasery synchrotronové záření Obvykle se charakterizují zářivostí (zářivý výkon
1 Zadání. 2 Úvod. Název a číslo úlohy 9 - Nelineární jevy v ultrarychlé optice. Měření provedli Jan Fait, Marek Vlk Vypracoval
Název a číslo úlohy 9 - Nelineární jevy v ultrarychlé optice Datum měření 30.11.2015 Měření provedli Jan Fait, Marek Vlk Vypracoval Marek Vlk Datum 19.12.2015 Hodnocení 1 Zadání 1. Naladění systému; Naved
Úloha 3: Mřížkový spektrometr
Petra Suková, 2.ročník, F-14 1 Úloha 3: Mřížkový spektrometr 1 Zadání 1. Seřiďte spektrometr pro kolmý dopad světla(rovina optické mřížky je kolmá k ose kolimátoru) pomocí bočního osvětlení nitkového kříže.
V mnoha běžných případech v optickém oboru je zanedbáváno silové působení magnetické složky elektromagnetického pole na náboje v látce str. 3 6.
Nekvantový popis interakce světla s pasivní látkou Zcela nekvantová fyzika nemůže interakci elektromagnetického záření s látkou popsat, např. atom jako soustava kladných a záporných nábojů by vůbec nebyl
Fotonické nanostruktury (nanofotonika)
Základy nanotechnologií KEF/ZANAN Fotonické nanostruktury (nanofotonika) Jan Soubusta 4.11. 2015 Obsah 1. ÚVOD 2. POHLED DO MIKROSVĚTA 3. OD ELEKTRONIKY K FOTONICE 4. FYZIKA PRO NANOFOTONIKU 5. PERIODICKÉ
Charakteristiky laseru vytvářejícího světelné impulsy o délce několika pikosekund
Charakteristiky laseru vytvářejícího světelné impulsy o délce několika pikosekund H. Picmausová, J. Povolný, T. Pokorný Gymnázium, Česká Lípa, Žitavská 2969; Gymnázium, Brno, tř. Kpt. Jaroše 14; Gymnázium,
Charakteristiky optického záření
Fyzika III - Optika Charakteristiky optického záření / 1 Charakteristiky optického záření 1. Spektrální charakteristika vychází se z rovinné harmonické vlny jako elementu elektromagnetického pole : primární
Zajímavé vlastnosti sluneční atmosféry: magnetická a rychlostní pole
Zajímavé vlastnosti sluneční atmosféry: magnetická a rychlostní pole Spektroskopie (nejen) ve sluneční fyzice LS 2011/2012 Michal Švanda Astronomický ústav MFF UK Astronomický ústav AV ČR Vliv na tvar
Rovinná monochromatická vlna v homogenním, neabsorbujícím, jednoosém anizotropním prostředí
Rovinná monochromatická vlna v homogenním, neabsorbujícím, jednoosém anizotropním prostředí r r Další předpoklad: nemagnetické prostředí B = µ 0 H izotropně. Veškerá anizotropie pochází od interakce elektrických
Úloha č. 9: Nelineární jevy v ultrarychlé optice
Úloha č. 9: Nelineární jevy v ultrarychlé optice Pokročilé praktikum z optiky 1. října 2014 1 Úvod Ultrarychlá optika pracuje s optickými pulsy délky řádově jednotky až stovky femtosekund; díky tomu lze
Tepelná vodivost pevných látek
Tepelná vodivost pevných látek Přenos tepla vedení mřížková část tepelné vodivosti Dvouatomový lineární řetězec přiblížení např. NaCl (1) u -1 (A) u s-1 (B) u (A) u s (B) u s+1 (B) u +1 (A) Např. = příčné
OBECNÁ FYZIKA III (KMITY, VLNY, OPTIKA), FSI-TF-3
OBECNÁ FYZIKA III (KMITY, VLNY, OPTIKA), FSI-TF-3 GARANT PEDMTU: Prof. RNDr. Jií Petráek, Dr. (ÚFI) VYUUJÍCÍ PEDMTU: Prof. RNDr. Jií Petráek, Dr. (ÚFI), CSc., Mgr. Vlastimil Kápek, Ph.D. (ÚFI) JAZYK VÝUKY:
Laserová technika 1. Laser v aproximaci rychlostních rovnic. 22. prosince Katedra fyzikální elektroniky.
Laserová technika 1 Aktivní prostředí Laser v aproximaci rychlostních rovnic Jan Šulc Katedra fyzikální elektroniky České vysoké učení technické jan.sulc@fjfi.cvut.cz 22. prosince 2016 Program přednášek
MĚŘENÍ ÚHLOVÝCH KMITŮ ZA ROTACE
26. mezinárodní konference DIAGO 27 TECHNICKÁ DIAGNOSTIKA STROJŮ A VÝROBNÍCH ZAŘÍZENÍ MĚŘENÍ ÚHLOVÝCH KMITŮ ZA ROTACE Jiří TŮMA VŠB Technická Univerzita Ostrava Osnova Motivace Kalibrace měření Princip
Základním praktikum z laserové techniky
Úloha: Základním praktikum z laserové techniky FJFI ČVUT v Praze #6 Nelineární transmise saturovatelných absorbérů Jméno: Ondřej Finke Datum měření: 30.3.016 Spolupracoval: Obor / Skupina: 1. Úvod Alexandr
Laserové technologie v praxi II. Cvičeníč.1
Laserové technologie v praxi II. Cvičeníč.1 Měření ztrát na optických prvcích laseru KLS 246-2 Hana Chmelíčková, SLO UP a FZÚ AVČR Olomouc, 2011 1) Měření výkonu a energie laseru Teoretická hodnota v manuálu:
Modulace vlnoplochy. SLM vytváří prostorově modulovaný koherentní optický signál
OPT/OZI L06 Modulace vlnoplochy prostorové modulátory světla (SLM) SLM vytváří prostorově modulovaný koherentní optický signál řízení elektronicky adresovaný SLM opticky adresovaný SLM technologie fotografická
Laserové technologie v praxi I. Přednáška č.1. Fyzikální princip činnosti laserů. Hana Chmelíčková, SLO UP a FZÚ AVČR Olomouc, 2011
Laserové technologie v praxi I. Přednáška č. Fyzikální princip činnosti laserů Hana Chmelíčková, SLO UP a FZÚ AVČR Olomouc, 0 LASER kvantový generátor světla Fyzikální princip činnosti laserů LASER zkratka
ÚVOD DO PROBLEMATIKY LOMOVÉ MECHANIKY KVAZIKŘEHKÝCH MATERIÁLŮ. Zbyněk Keršner Ústav stavební mechaniky FAST VUT v Brně
ÚVOD DO PROBLEMATIKY LOMOVÉ MECHANIKY KVAZIKŘEHKÝCH MATERIÁLŮ Zbyněk Keršner Ústav stavební mechaniky FAST VUT v Brně 1 Motivace: trhliny v betonu mikrostruktura Vyhojování trhlin konstrukce Pražec po
Laserová technika 1. Rychlostní rovnice pro Q-spínaný laser. 16. prosince 2013. Katedra fyzikální elektroniky. jan.sulc@fjfi.cvut.
Laserová technika 1 Aktivní prostředí Rychlostní rovnice pro Q-spínaný laser Jan Šulc Katedra fyzikální elektroniky České vysoké učení technické jan.sulc@fjfi.cvut.cz 16. prosince 2013 Program přednášek
Teoretická elektrotechnika - vybrané statě
Teoretická elektrotechnika - vybrané statě David Pánek EK 613 panek50@kte.zcu.cz Fakulta elektrotechnická Západočeská univerzita v Plzni January 7, 2013 David Pánek EK 613 panek50@kte.zcu.cz Teoretická
Fotonické nanostruktury (alias nanofotonika)
Základy nanotechnologií KEF/ZANAN Fotonické nanostruktury (alias nanofotonika) Jan Soubusta 27.10. 2017 Obsah 1. ÚVOD 2. POHLED DO MIKROSVĚTA 3. OD ELEKTRONIKY K FOTONICE 4. FYZIKA PRO NANOFOTONIKU 5.
FYZIKA II. Marek Procházka 1. Přednáška
FYZIKA II Marek Procházka 1. Přednáška Historie Dělení optiky Základní pojmy Reflexe (odraz) Refrakce (lom) jevy na rozhraní dvou prostředí o různém indexu lomu. Disperze (rozklad) prostorové oddělení
Spektrometrické metody. Luminiscenční spektroskopie
Spektrometrické metody Luminiscenční spektroskopie luminiscence molekul a pevných látek šířka spektrální čar a doba života luminiscence polarizace luminiscence korekce luminiscenčních spekter vliv aparatury
Světlo x elmag. záření. základní principy
Světlo x elmag. záření základní principy Jak vzniká a co je to duha? Spektrum elmag. záření Viditelné 380 760 nm, UV 100 380 nm, IR 760 nm 1mm Spektrum elmag. záření Harmonická vlna Harmonická vlna E =
Elektromagnetické pole je generováno elektrickými náboji a jejich pohybem. Je-li zdroj charakterizován nábojovou hustotou ( r r
Záření Hertzova dipólu, kulové vlny, Rovnice elektromagnetického pole jsou vektorové diferenciální rovnice a podle symetrie bývá vhodné je řešit v křivočarých souřadnicích. Základní diferenciální operátory
Luminiscence. Luminiscence. Fluorescence. emise světla látkou, která je způsobená: světlem (fotoluminiscence) chemicky (chemiluminiscence)
Luminiscence Luminiscence emise světla látkou, která je způsobená: světlem (fotoluminiscence) fluorescence, fosforescence chemicky (chemiluminiscence) teplem (termoluminiscence) zvukem (sonoluminiscence)
E g IZOLANT POLOVODIČ KOV. Zakázaný pás energií
Polovodiče To jestli nazýváme danou látku polovodičem, závisí především na jejích vlastnostech ve zvoleném teplotním oboru. Obecně jsou to látky s 0 ev < Eg < ev. KOV POLOVODIČ E g IZOLANT Zakázaný pás
Spektrometrické metody. Reflexní a fotoakustická spektroskopie
Spektrometrické metody Reflexní a fotoakustická spektroskopie odraz elektromagnetického záření - souvislost absorpce a reflexe Kubelka-Munk funkce fotoakustická spektroskopie Měření odrazivosti elmg záření
TEZE K DISERTAČNÍ PRÁCI ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE. Ing. Ondřej Novák
ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAE Ing. Ondřej Novák Optické parametrické zesilování čerpovaných impulsů v nelineárních krystalech čerpaných jódovým fotodisociačním laserem TEE K DISERTAČNÍ PRÁCI České
Základy Mössbauerovy spektroskopie. Libor Machala
Základy Mössbauerovy spektroskopie Libor Machala Rudolf L. Mössbauer 1958: jev bezodrazové rezonanční absorpce záření gama atomovým jádrem 1961: Nobelova cena Analogie s rezonanční absorpcí akustických
Přehled veličin elektrických obvodů
Přehled veličin elektrických obvodů Ing. Martin Černík, Ph.D Projekt ESF CZ.1.7/2.2./28.5 Modernizace didaktických metod a inovace. Elektrický náboj - základní vlastnost některých elementárních částic
2. Difrakce elektronů na krystalu
2. Difrakce elektronů na krystalu Interpretace pozorování v TEM faktory ovlivňující interakci e - v krystalu 2 způsoby náhledu na interakci e - s krystalem Rozptyl x difrakce částice x vlna Difrakce odchýlení
Přehled posledních experimentů skupiny kvantové a nelineární optiky v Olomouci
Přehled posledních experimentů skupiny kvantové a nelineární optiky v Olomouci Jan Soubusta, Antonín Černoch, Karel Lemr, Karol Bartkiewicz, Radek Machulka, Společná laboratoř optiky Univerzity Palackého
Měření charakteristik pevnolátkového infračerveného Er:Yag laseru
Měření charakteristik pevnolátkového infračerveného Er:Yag laseru Ondřej Ticháček, PORG, ondrejtichacek@gmail.com Abstrakt: Úkolem bylo proměření základních charakteristik záření pevnolátkového infračerveného
2 Nd:YAG laser buzený laserovou diodou
2 Nd:YAG laser buzený laserovou diodou 15. května 2011 Základní praktikum laserové techniky Zpracoval: Vojtěch Horný Datum měření: 12. května 2011 Pracovní skupina: 1 Ročník: 3. Naměřili: Vojtěch Horný,
Jihočeská univerzita v Českých Budějovicích
Jihočeská univerzita v Českých Budějovicích Pedagogická fakulta Katedra fyziky Měření nelineárních optických jevů generovaných femtosekundovými laserovými pulsy Generace superkontinua Bakalářská práce
1 Rezonátorová optika
1 Rezonátorová optika Optické rezonátory jsou zařízení, ve kterých lze akumulovat optickou energii. Mohou také působit jako frekvenční filtr. Obojího se využívá v laseru, kde je aktivní prostředí, které
Nepředstavitelně krátké laserové impulsy
Nepředstavitelně krátké laserové impulsy (pokračování článku z Vesmír 92, 2/80, 2013) Hana Turčičová V tomto dodatečném článku si přiblížíme další fyzikální metody, které postupem let vedly ke zkrácení
Fyzika IV. -ezv -e(z-zv) kov: valenční elektrony vodivostní elektrony. Elektronová struktura pevných látek model volných elektronů
Elektronová struktura pevných látek model volných elektronů 1897: J.J. Thomson - elektron jako částice 1900: P. Drude: kinetická teorie plynů - kov jako plyn elektronů Drudeho model elektrony se mezi srážkami
Pohyby částic ve vnějším poli A) Homogenní pole. qb m. cyklotronová frekvence. dt = = 0. 2 ω PČ 1
Způsob popisu Pohb částic v poli vnějším Pohb částic v selfkonsistentním poli Kinetické rovnice Hdrodnamické rovnice * tekutin * 1 tekutina * magnetohdrodnamika Pohb částic ve vnějším poli A) Homogenní
Využití komplementarity (duality) štěrbiny a páskového dipólu M
Přechodné typy antén a) štěrbinové antény - buzení el. polem napříč štěrbinou (vlnovod) z - galvanicky generátor mezi hranami - zdrojem záření - pole ve štěrbině (plošná a.) nebo magnetický proud (lineární
ρ = 0 (nepřítomnost volných nábojů)
Učební text k přednášce UFY Světlo v izotropním látkovém prostředí Maxwellovy rovnice v izotropním látkovém prostředí: B rot + D rot H ( r, t) div D ρ rt, ( ) div B a materiálové vztahy D ε pro dielektrika
Fyzikální praktikum FJFI ČVUT v Praze
Fyzikální praktikum FJFI ČVUT v Praze Úloha 4: Balrmerova série Datum měření: 13. 5. 016 Doba vypracovávání: 7 hodin Skupina: 1, pátek 7:30 Vypracoval: Tadeáš Kmenta Klasifikace: 1 Zadání 1. DÚ: V přípravě
Identifikátor materiálu: VY_32_INOVACE_348
Identifikátor materiálu: VY_32_INOVACE_348 Anotace Autor Jazyk Očekávaný výstup Výuková prezentace.na jednotlivých snímcích jsou postupně odkrývány informace, které žák zapisuje či zakresluje do sešitu.
OPVK CZ.1.07/2.2.00/
18.2.2013 OPVK CZ.1.07/2.2.00/28.0184 Cvičení z NMR OCH/NMR Mgr. Tomáš Pospíšil, Ph.D. LS 2012/2013 18.2.2013 NMR základní principy NMR Nukleární Magnetická Resonance N - nukleární (studujeme vlastnosti
??): Radiová oblast vlnové délky od kilometrů po 0.1 m, záření se generuje a detekuje pomocí
Měření spektra světla Spektroskopie označuje metody určení frekvence ν resp. vlnové délky λ = c/ν elektromagnetického záření. Celé elektromagnetické spektrum lze rozdělit do podoblastí (viz obr.??): Radiová
SIGNÁLY A SOUSTAVY, SIGNÁLY A SYSTÉMY
SIGNÁLY A SOUSTAVY, SIGNÁLY A SYSTÉMY TEMATICKÉ OKRUHY Signály se spojitým časem Základní signály se spojitým časem (základní spojité signály) Jednotkový skok σ (t), jednotkový impuls (Diracův impuls)
Fyzika laserů. Aproximace rychlostních rovnic. 18. března Katedra fyzikální elektroniky.
Fyzika laserů Aproximace rychlostních rovnic Metody generace nanosekundových impulsů. Q-spínání. Spínání ziskem Jan Šulc Katedra fyzikální elektroniky České vysoké učení technické jan.sulc@fjfi.cvut.cz
Západočeská univerzita v Plzni fakulta Strojní
Západočeská univerzita v Plzni fakulta Strojní 23. dny tepelného zpracování s mezinárodní účastí Návrh technologie laserového povrchového kalení oceli C45 Autor: Klufová Pavla, Ing. Kříž Antonín, Doc.
4. Z modové struktury emisního spektra laseru určete délku aktivní oblasti rezonátoru. Diskutujte,
1 Pracovní úkol 1. Změřte současně světelnou i voltampérovou charakteristiku polovodičového laseru. Naměřené závislosti zpracujte graficky. Stanovte prahový proud i 0. 2. Pomocí Hg výbojky okalibrujte
(metalická vedení a vlastnosti) Robert Bešák
Penosová média (metalická vedení a vlastnosti) Robert Bešák Mezi telekom. zaízeními se signály penášejí elektromag. vlnami Elektromagnetická vlna Kmitoet f Vlnová délka λ závisí na rychlosti šíení vlny
Příloha č. 1. amplitudová charakteristika filtru fázová charakteristika filtru / frekvence / Hz. 1. Určení proudové hustoty
Příloha č. 1 Při hodnocení expozice nízkofrekvenčnímu elektromagnetickému poli (0 Hz 10 MHz) je určující veličinou modifikovaná proudová hustota J mod indukovaná v tělesné tkáni. Jak je uvedeno v nařízení
Optika pro mikroskopii materiálů I
Optika pro mikroskopii materiálů I Jan.Machacek@vscht.cz Ústav skla a keramiky VŠCHT Praha +42-0- 22044-4151 Osnova přednášky Základní pojmy optiky Odraz a lom světla Interference, ohyb a rozlišení optických
Praktikum školních pokusů 2
Praktikum školních pokusů 2 Optika 3A Interference a difrakce světla Jana Jurmanová Přírodovědecká fakulta Masarykovy univerzity, Brno I Interference na dvojštěrbině Odvod te vztah pro polohu interferenčních
Fyzika II. Marek Procházka Vlnová optika II
Fyzika II Marek Procházka Vlnová optika II Základní pojmy Reflexe (odraz) Refrakce (lom) jevy na rozhraní dvou prostředí o různém indexu lomu. Disperze (rozklad) prostorové oddělení složek vlnění s různou
Příloha-výpočet motoru
Příloha-výpočet motoru 1.Zadané parametry motoru: vrtání d : 77mm zdvih z: 87mm kompresní poměr ε : 10.6 atmosférický tlak p 1 : 98000Pa teplota nasávaného vzduchu T 1 : 353.15K adiabatický exponent κ
MODERNÍ METODY CHEMICKÉ FYZIKY I lasery a jejich použití v chemické fyzice Přednáška 5
MODERNÍ METODY CHEMICKÉ FYZIKY I lasery a jejich použití v chemické fyzice Přednáška 5 Ondřej Votava J. Heyrovský Institute of Physical Chemistry AS ČR Opakování z minula Light Amplifier by Stimulated
Obecná vlnová rovnice pro intenzitu elektrického pole Vlnová rovnice mimo oblast zdrojů pro obecný časový průběh veličin Vlnová rovnice mimo oblast
Obecná vlnová rovnice pro intenzitu elektrického pole Vlnová rovnice mimo oblast zdrojů pro obecný časový průběh veličin Vlnová rovnice mimo oblast zdrojů pro harmonický časový průběh veličin Laplaceův
Analýza a ověření metody měření indexu lomu vzduchu pro laserovou interferometrii
Analýza a ověření metody měření indexu lomu vzduchu pro laserovou interferometrii Vedoucí práce: Ing. Zdeněk Buchta, Ph.D. Bc. Tomáš Pikálek 21. června 216 Obsah 1. Cíle práce 2. Motivace 3. Metody měření
Úloha 21: Studium rentgenových spekter
Petra Suková, 3.ročník 1 Úloha 21: Studium rentgenových spekter 1 Zadání 1. S využitím krystalu LiF jako analyzátoru proveďte měření následujících rentgenových spekter: a) Rentgenka s Cu anodou. proměřte
ATOMOVÁ SPEKTROMETRIE
ATOMOVÁ SPEKTROMETRIE Atomová spektrometrie valenčních e - 1. OES (AES). AAS 3. AFS 1 Atomová spektra čárová spektra Tok záření P - množství zářivé energie (Q E ) přenesené od zdroje za jednotku času.
Praktikum III - Optika
Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK Praktikum III - Optika Úloha č. 13 Název: Vlastnosti rentgenového záření Pracoval: Matyáš Řehák stud.sk.: 13 dne: 3. 4. 2008 Odevzdal
1. Kvantové jámy. Tabulka 1: Efektivní hmotnosti nosičů v krystalech GaAs, AlAs, v jednotkách hmotnosti volného elektronu m o.
. Kvantové jámy Pokročilé metody růstu krystalů po jednotlivých vrstvách (jako MBE) dovolují vytvořit si v krystalu libovolný potenciál. Jeden z hojně používaných materiálů je: GaAs, AlAs a jejich ternární
Jméno a příjmení. Ročník. Měřeno dne Příprava Opravy Učitel Hodnocení. Vlnové vlastnosti světla difrakce, laser
FYZIKÁLNÍ PRAKTIKUM Ústav fyziky FEKT VUT BRNO Jméno a příjmení Petr Švaňa Ročník 1 Předmět IFY Kroužek 38 ID 155793 Spolupracoval Měřeno dne Odevzdáno dne Lukáš Teuer 8.4.2013 22.4.2013 Příprava Opravy
ZÁKLADNÍ ČÁSTI SPEKTRÁLNÍCH PŘÍSTROJŮ
ZÁKLADNÍ ČÁSTI SPEKTRÁLNÍCH PŘÍSTROJŮ (c) -2008, ACH/IM BLOKOVÉ SCHÉMA: (a) emisní metody (b) absorpční metody (c) luminiscenční metody U (b) monochromátor často umístěn před kyvetou se vzorkem. Části
DISPERZNÍ KŘIVKY V DESCE S KUBICKOU ANIZOTROPIÍ
DISPERZNÍ KŘIVKY V DESCE S KUBICKOU ANIZOTROPIÍ P. Hora, O. Červená Ústav termomechaniky AV ČR Příspěvek vznikl na základě podpory grantu cíleného vývoje a výzkumu AV ČR č. IBS276356 Ultrazvukové metody
Úloha č.6 Dvouvlnové směšování ve fotorefraktivním materiálu a fázová
Úloha č.6 Dvouvlnové směšování ve fotorefraktivním materiálu a fázová konjugace 1 Teoretický úvod Dvouvlnové směšování neboli dvouvlnová interference ve fotorefraktivním (FRV) materiálu je proces, který
Vold-Kalmanova řádová filtrace. JiříTůma
Vold-Kalmanova řádová filtrace JiříTůma Obsah Základy Kalmanovy filtrace Základy Vold-Kalmanovy filtrace algoritmus Globální řešení Příklady užití Vold-Kalmanovy řádové filtrace Kalmanův filtr ( n ) Process
1 Zadání. 2 Úvod. Název a číslo úlohy 6 - Dvouvlnové směšování ve fotorefraktivním materiálu a fázová konjugace. Měření provedli Marek Vlk Vypracoval
Název a číslo úlohy 6 - Dvouvlnové směšování ve fotorefraktivním materiálu a fázová konjugace Datum měření 7.12.2015 Měření provedli Marek Vlk Vypracoval Marek Vlk Datum 2.1.2016 Hodnocení 1 Zadání 1.
#(, #- #(!!$!#$%!! [2], studiu difraktivních. #!$$&$.( &$/#$$ oblasti holografie a difraktivní!# '!% #!!$#!'0!!*#!(#!! #!!! $ % *! $! (!
. Úvod!"!!!#$%!!!&'!!#$%!!!& # vlnovým!!*!!#$*$! #!!&!!!$%!# #!!$ % '!!&!&!!#$!!!$!!!$ s #!!!*! '! $ #, #- #!!$!#$%!! [], studiu difraktivních #!$$&$. &$/#$$ oblasti holografie a difraktivní!# '!% #!!$#!'0!!*#!#!!
Necht na hmotný bod působí pouze pružinová síla F 1 = ky, k > 0. Podle druhého Newtonova zákona je pohyb bodu popsán diferenciální rovnicí
Počáteční problémy pro ODR2 1 Lineární oscilátor. Počáteční problémy pro ODR2 Uvažujme hmotný bod o hmotnosti m, na který působí síly F 1, F 2, F 3. Síla F 1 je přitom úměrná výchylce y z rovnovážné polohy
Spektrální charakterizace mřížkového spektrografu
Spektrální charakterizace mřížkového spektrografu Vedoucí: prof. RNDr. Petr Němec, Ph.D. (nemec@karlov.mff.cuni.cz), KCHFO MFF UK Analýza spektrálního složení světla je nedílnou součástí života každého
Plazmová depozice tenkých vrstev oxidu zinečnatého
Plazmová depozice tenkých vrstev oxidu zinečnatého Bariérový pochodňový výboj za atmosférického tlaku Štěpán Kment Doc. Dr. Ing. Petr Klusoň Mgr. Zdeněk Hubička Ph.D. Obsah prezentace Úvod do problematiky
ZPOMALENÉ A ZASTAVENÉ SVĚTLO. A. Kalvová, FZÚ AV ČR, Praha a B. Velický, MFF UK a FZÚ AV ČR, Praha
ZPOMALENÉ A ZASTAVENÉ SVĚTLO A. Kalvová, FZÚ AV ČR, Praha a B. Velický, MFF UK a FZÚ AV ČR, Praha ... po pěti letech A. Kalvová, FZÚ AV ČR, Praha a B. Velický, MFF UK a FZÚ AV ČR, Praha historicky první,
Úvod do laserové techniky
Úvod do laserové techniky Světlo jako elektromagnetické záření I. část Michal Němec Katedra fyzikální elektroniky České vysoké učení technické v Praze michal.nemec@fjfi.cvut.cz Kontakty Ing. Michal Němec,
Fabry Perotův interferometr
Fabry Perotův interferometr Princip Dvě zrcadla jsou sestavena tak aby tvořila tzv. Fabry Perotův interferometr, s jehož pomocí je vyšetřován svazek paprsků vycházejících z laseru. Při experimentu se pohybuje
nazvu obecnou PDR pro neznámou funkci
Denice. Bu n N a Ω R d otev ená, d 2. Vztah tvaru F (x, u(x), Du(x),..., D (n 1) u(x), D (n) u(x)) = 0 x Ω (1) nazvu obecnou PDR pro neznámou funkci u : Ω R d R Zde je daná funkce. F : Ω R R d R dn 1 R
Anizotropní interakce v pevných látkách (CSA, DC, MAS, dipolární dekaplink)
() Auhor: jiri brus Anioropní inerakce v pevných lákách (CSA, DC, MAS, dipolární dekaplink) Anioropie chemického posunu a MAR 1958 Lowe, I.J. Free Inducion Decays in Roaing Solids, Phys. Rev. Le. (1959);
Detekce a spektrometrie neutronů
Detekce a spektrometrie neutronů 1. Pomalé neutrony a) aktivní detektory, b) pasivní detektory, c) mechanické monochromátory 2. Rychlé neutrony a) detektory používající zpomalování neutronů b) přímá detekce
Výbojkově čerpaný neodymový laser se zesilovačem
Týden vědy na Jaderce miniprojekt č. 43 Garant úlohy: Ing. Adam Říha Výbojkově čerpaný neodymový laser se zesilovačem 1. Cíle experimentu: 1. Nastavit a proměřit vlastnosti výbojkově čerpaného Nd:YAG laseru
ELEKTŘINA A MAGNETIZMUS kontrolní otázky a odpovědi
ELEKTŘINA A MAGNETIZMUS kontrolní otázky a odpovědi Peter Dourmashkin MIT 26, překlad: Vladimír Scholtz (27) Obsah KONTROLNÍ OTÁZKY A ODPOVĚDI 2 OTÁZKA 61: RL OBVOD 2 OTÁZKA 62: LC OBVOD 2 OTÁZKA 63: LC
Řešení: Nejdříve musíme určit sílu, kterou působí kladka proti směru pohybu padajícího vědra a napíná tak lano. Moment síly otáčení kladky je:
Přijímací zkouška na navazující magisterské studium - 16 Studijní program Fyzika - všechny obory kromě Učitelství fyziky-matematiky pro střední školy, Varianta A Příklad 1 (5 bodů) Jak dlouho bude padat