Kódy a kódování dat. Binární (dvojkové) kódy. Kód Aikenův
|
|
- Břetislav Vítek
- před 7 lety
- Počet zobrazení:
Transkript
1 Kódy a kódování dat Kódování je proces, při kterém se každému znaku nebo postupnosti znaků daného souboru znaků jednoznačně přiřadí znak nebo postupnost znaků z jiného souboru znaků. Kódování je tedy transformace určité informace z jedné formy na druhou pomocí určitého algoritmu. Díky počítačům se nejčastěji používá kódování dat a informací do číselné podoby. Používá se také nečíselné kódování. Typickým příkladem nečíselného kódování z praxe je semafor, kde červená = stůj a zelená = jdi. Dalším příkladem je např. Morseova abeceda. Moderní elektronické systémy na zpracování informací používají přednostně Dvojkové (binární) signály. Jsou tvořeny jen dvěma znaky 0 a 1. Pomocí 1 a 0 je možno vytvořit velké množství různých systémů přiřazení. Vznikl tak velký počet různých kódů. Některé jsou vhodné pro výpočty, jiné k přenosu dat nebo k měření. Všechny požadované vlastnosti se nedají splnit jediným univerzálním resp. kompromisním kódem. Kódováním převedeme informaci určenou ke zpracování do tvaru, který je pro technické zpracování nejvýhodnější. Kódované informace můžeme přenášet rychleji a bezpečněji a při vhodném typu kódu jsme schopní dokonce rozpoznat nebo dokonce opravit chybu, která vznikla v průběhu přenosu. Kódování umožňuje také informaci utajit. Můžeme klasifikovat hlavní skupiny kódů, kterými jsou kódy pro aritmetické a logické operace kódy pro přenos a ukládání na média kódy bezpečnostní a opravné. Kódy pro aritmetické a logické operace byly navrženy za účelem využití v matematice a proto aritmetické operace jako je sčítání nebo násobení jsou s těmito kódy celkem snadné. Kódy pro přenos a ukládání na médium byly navrženy pro snadnou komunikaci mezi zařízeními. Na tyto kódy jsou kladeny zvláštní požadavky jako je malá stejnosměrná složka, dostatečné časté změny z logické 0 na logickou 1 a naopak, odolnost proti rušení atd. Do další skupiny patří bezpečnostní a opravné kódy a také kódy pro šifrování zpráv. Binární (dvojkové) kódy Kód je zápis nějakého znaku jiným zápisem. Při kódování znaků představuje kód jednoznačné přiřazení mezi znaky dvou různých abeced nebo znakových sad. Binární kódy: váhové kódy (Aikenův kód, kód BCD, Excess 3) neváhové kódy (Grayův kód, Excess 3) detekční kódy Kód Aikenův
2 Je pojmenovaný podle amerického počítačového odborníka Howarda Aikena a byl určen pro výpočty s dekadickými čísly v počítačích. Aikenův kód má různé váhy: váhu váhu Aikenův kód patří do skupiny BCD kódů. Aikenův kód je uvedený v tabulce: Kód BCD Tab. 1: Aikenův kód Jedná se o dvojkově kódovaný desítkový kód (Binary Coded Decimal). Tento kód se používá pro kódování desítkových číslic 0 až 9. V tomto kódu je každá desítková číslice vyjádřena kódovým slovem se čtyřmi bity ve dvojkové soustavě, jak je znázorněno v tab. 2. Kód má váhy To znamená, že LSB (bit první zprava) má váhu 1, druhý váhu 2, třetí 4 a MSB 8. Výhodou je použití kódu v BCD aritmetice a v čítačích. Nevýhodou je, že obsahuje kombinaci 0000 (kritickou v případě poruchy) a nesymetrie kódu. Kód Excess 3 ( kód BCD+3) U kódu BCD vznikne problém, nechceme-li vyjádřit žádnou informaci. V tomto případě ukazuje systém Abychom tomu předešli, byl navržen kód BCD+3 neboli Excess 3 (Excess = nadbytek). Tento kód byl využíván v některých počítačích pro snazší realizaci dekadických operací. Kód Excess 3 patří do skupiny BCD kódů, není však váhový. Kódy BCD a Excess 3 jsou znázorněny v tab. 2. Z tabulky je patrná symetrie kódu Excess 3. To znamená komplementární vztah mezi čísly 0-9, 1-8, 2-7, 3-6 a 4-5. Kód BCD symetrický není.
3 Tab. 2 Vyjádření kódu BCD a Excess 3. Grayův kód Nevýhodou předešlých kódů bylo, že při přechodu z některých dvojkových hodnot na následující hodnoty se mění víc než jeden bit. Například při přechodu z čísla 7 na 8 se mění současně 4 bity (0111 na 1000). Při zpracování asynchronním čítačem, může tento jev způsobovat chyby.
4 Aby se vyloučil tento druh chyb, používa se Grayův kód. U tohoto kódu se při zmenšení nebo zvětšení o 1, změní jen hodnota jednoho bitu. Tento kód se někdy nazývá také kód s jednou změnou nebo též reflexní kód. Vzhledem k této vlastnosti se Grayův kód používá ke kódování políček Karnaughovy mapy, jak uvidíme v jedné z dalších kapitol. Nevýhodou je nemožnost použití kódu pro aritmetické operace. V tabulce 3 je uveden binární a také Grayův kód. Grayův kód se konstruuje z binárního kódu použitím operací XOR (exclusive OR) podle vztahů: Ochrana při přenosu dat g4 b4 g3 b4 b3 g2 b3 b2 g1 b2 b1 Zakódovaná binární slova často přenášíme na určitou vzdálenost přenosovou cestou. Při číslicovém přenosu se může stát, že se jednotlivé bity přenášené posloupnosti čísel při přenosu zkreslí. Je tedy nutné umět se bránit důsledkům takových chyb v přenosu. Postupujeme přitom tak, že přenesenou informaci zkontrolujeme, zda neobsahuje chyby, a v dalším zpracování budeme pokračovat až poté, kdy zjistíme, že tomu tak není. Ke kontrole přijatých zakódovaných slov používáme různé metody. Obr. 1:Chybný přenos informace Kontrola paritou nám tedy dovolí odhalit chybu. Po přijetí zprávy kontrolujeme, zda má přijaté slovo sudý nebo lichý počet jedniček. Když tomu tak není, víme, že při přenosu došlo k chybě, a můžeme například požadovat opakování přenosu. Místo zabezpečení dat jedním paritním bitem se používá rozšířený samoopravný Hammingův kód, který obsahuje informační a více kontrolních paritních bitů. Kód umožňuje v kódovém slově lokalizovat 1 chybu a detekovat dvojnásobnou chybu. Lokalizovaná chyba je opravena invertováním chybného bitu. Alfanumerické kódy Jsou to kódy, ve kterých se mohou vyskytovat všechna písmena, číslice a jiné znaky. Ve světě se používají různé alfanumerické kódy, ze kterých nejvýznamnější v počítačové technice sa používa 7-bitový kód, známy pod oznacením ASCII (American Standard Code of Information Interchange).
5 Sedmibitový kód ASCII se používá na vyjádření symbolů malé a velké abecedy, číslic, interpunkčních znaků, speciálních znaků a 32 řídicích povelů. Osmý bit se používal na kontrolu správnosti při přenosu pomocí parity. Na obrázku je pro názornost uvedena zjednodušená tabulka ASCII kódu. Z tabulky je patrné, že např. bísmeno B je binárně v sedmi bitech zakódováno jako , což odpovídá hexadecimálnímu vyjádření 42H a dekadicky 66D. Šifrování Kryptografie či šifrovani je nauka o utajeni informace převedenim do podoby nečitelne bez specialni znalosti kliče. Šifrovaci algoritmy v moderni kryptografii všeobecně dělime podle kliče na symetricke a asymetricke. Prvně jmenovane uživaji stejny klič pro šifrovani a dešifrovani, druhé podle určiteho vzorce vytvařeji dvojici veřejneho a soukromeho kliče. Když pošleme někomu šifrovanou správu, potřebuje na její rozšifrování poznat postup, kterým byla zašifrovaná a klíč, který potřebujeme na rozšifrování. Jedním z nejjednodušších způsobů je záměna písmena za jiné. Pro člověka, který nemá k dispozícii tabulku s odpovídajícími dvojicemi písmen a číslic to může byt náročné. Pro počítač je ale tato úloha hračkou. Totéž platí také v případě, že každé písmeno nahradíme číslem alebo znakem. Pomocí uvedené tabulky uvedeme jednoduchý způsob kódování. Zakódujeme slova PRENOS DAT Potom dostaneme KMZIJN YVO. Existují různé postupy šifrování telefonních hovorů. Šifrovací zařízení je zapojováno mezi telefon a linku a provádí kompresi a šifrovani zvuku. Zařizeni umožňuje volbu kliče pro šifrovani, např. otočením spektra řečového signálu nebo pomocí řady dalších algoritmů.
Kódováni dat. Kódy používané pro strojové operace
Kódováni dat Před zpracováním dat například v počítači je třeba znaky převést do tvaru, kterému počítač rozumí, tj. přiřadit jim určité kombinace bitů. Tomuto převodu se říká kódování. Kód je předpis pro
ČÍSELNÉ SOUSTAVY PŘEVODY
ČÍSELNÉ SOUSTAVY V každodenním životě je soustava desítková (decimální, dekadická) o základu Z=10. Tato soustava používá číslice 0, 1, 2, 3, 4, 5, 6, 7, 8 a 9, není však vhodná pro počítače nebo číslicové
Kódování a Šifrování. Iveta Nastoupilová
Kódování a Šifrování Iveta Nastoupilová 12.11.2007 Kódování Přeměna, transformace, šifrování signálů Převádění informace z jednoho systému do jiného systému znaků Kódování Úzce souvisí s procesem komunikace
Kódy pro odstranění redundance, pro zabezpečení proti chybám. Demonstrační cvičení 5 INP
Kódy pro odstranění redundance, pro zabezpečení proti chybám Demonstrační cvičení 5 INP Princip kódování, pojmy Tady potřebujeme informaci zabezpečit, utajit apod. zpráva 000 111 000 0 1 0... kodér dekodér
[1] samoopravné kódy: terminologie, princip
[1] Úvod do kódování samoopravné kódy: terminologie, princip blokové lineární kódy Hammingův kód Samoopravné kódy, k čemu to je [2] Data jsou uložena (nebo posílána do linky) kodérem podle určitého pravidla
Informace, kódování a redundance
Informace, kódování a redundance INFORMACE = fakt nebo poznatek, který snižuje neurčitost našeho poznání (entropii) DATA (jednotné číslo ÚDAJ) = kódovaná zpráva INFORAMCE = DATA + jejich INTERPRETACE (jak
Kódování signálu. Problémy při návrhu linkové úrovně. Úvod do počítačových sítí. Linková úroveň
Kódování signálu Obecné schema Kódování NRZ (bez návratu k nule) NRZ L NRZ S, NRZ - M Kódování RZ (s návratem k nule) Kódování dvojí fází Manchester (přímý, nepřímý) Diferenciální Manchester 25.10.2006
Nejvyšší řád čísla bit č. 7 bit č. 6 bit č.5 bit č. 4 bit č. 3 bit č. 2 bit č. 1 bit č. 0
Číselné soustavy Cílem této kapitoly je sezn{mit se se z{kladními jednotkami používanými ve výpočetní technice. Poznat číselné soustavy, kódy a naučit se převody mezi číselnými soustavami. Klíčové pojmy:
Mikroprocesorová technika (BMPT)
Mikroprocesorová technika (BMPT) Přednáška č. 10 Číselné soustavy v mikroprocesorové technice Ing. Tomáš Frýza, Ph.D. Obsah přednášky Číselné soustavy v mikroprocesorové technice Dekadická, binární, hexadecimální
3 Jednoduché datové typy 2 3.1 Interpretace čísel v paměti počítače... 3. 4 Problémy s matematickými operacemi 5
Obsah Obsah 1 Číselné soustavy 1 2 Paměť počítače 1 2.1 Měření objemu paměti počítače................... 1 3 Jednoduché datové typy 2 3.1 Interpretace čísel v paměti počítače................. 3 4 Problémy
Způsoby realizace této funkce:
KOMBINAČNÍ LOGICKÉ OBVODY U těchto obvodů je výstup určen jen výhradně kombinací vstupních veličin. Hodnoty výstupních veličin nezávisejí na předcházejícím stavu logického obvodu, což znamená, že kombinační
Technická kybernetika. Obsah. Principy zobrazení, sběru a uchování dat. Měřicí řetězec. Principy zobrazení, sběru a uchování dat
Akademický rok 2016/2017 Připravil: Radim Farana Technická kybernetika Principy zobrazení, sběru a uchování dat 2 Obsah Principy zobrazení, sběru a uchování dat strana 3 Snímač Měřicí řetězec Měřicí obvod
Principy počítačů. Prof. RNDr. Peter Mikulecký, PhD.
Principy počítačů Prof. RNDr. Peter Mikulecký, PhD. Číselné soustavy Obsah přednášky: Přednáška 3 Číselné soustavy a převody mezi nimi Kódy, přímý, inverzní a doplňkový kód Znakové sady Úvod Člověk se
Nejvyšší řád čísla bit č. 7 bit č. 6 bit č.5 bit č. 4 bit č. 3 bit č. 2 bit č. 1 bit č. 0
Číselné soustavy Cílem této kapitoly je sezn{mit se se z{kladními jednotkami používanými ve výpočetní technice. Poznat číselné soustavy, umět v nich prov{dět z{kladní aritmetické operace a naučit se převody
Fz =a z + a z +...+a z +a z =
Polyadické číselné soustavy - převody M-místná skupina prvků se z-stavovou abecedou umožňuje zobrazit z m čísel. Zjistíme, že stačí vhodně zvolit číslo m, abychom mohli zobrazit libovolné číslo menší než
Data v počítači. Informační data. Logické hodnoty. Znakové hodnoty
Data v počítači Informační data (elementární datové typy) Logické hodnoty Znaky Čísla v pevné řádové čárce (celá čísla) v pohyblivé (plovoucí) řád. čárce (reálná čísla) Povelová data (instrukce programu)
Zobrazení dat Cíl kapitoly:
Zobrazení dat Cíl kapitoly: Cílem této kapitoly je sezn{mit čten{ře se způsoby z{pisu dat (čísel, znaků, řetězců) v počítači. Proto jsou zde postupně vysvětleny číselné soustavy, způsoby kódov{ní české
Informatika Datové formáty
Informatika Datové formáty Radim Farana Podklady předmětu Informatika pro akademický rok 2007/2008 Obsah Datové formáty (datové typy). Textové formáty, vlastnosti zdroje zpráv. Číselné formáty, číselné
KOMBINAČNÍ LOGICKÉ OBVODY
Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/03.0009 KOMBINAČNÍ LOGICKÉ OBVODY U těchto obvodů je vstup určen jen výhradně kombinací vstupních veličin. Hodnoty
Převod Bin do BCD pomocí Hornerova schématu
Převod Bin do BCD pomocí Hornerova schématu Každé číslo ve dvojkové soustavě můžeme vyjádřit výrazem: N = ((a m *2+a n-1 )*2+a n-2 )*2+...+a 0 Pokud bychom neaplikovali dekadickou korekci, dostali bychom
Struktura a architektura počítačů (BI-SAP) 5
Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti Struktura a architektura počítačů (BI-SAP) 5 doc. Ing. Hana Kubátová, CSc. Katedra číslicového návrhu Fakulta informačních technologii
Číselné soustavy. Ve světě počítačů se využívají tři základní soustavy:
Číselné soustavy Ve světě počítačů se využívají tři základní soustavy: dekadická binární hexadecimální patří mezi soustavy poziční, tj. desítková hodnota každé číslice (znaku) závisí na její pozici vzhledem
DSY-6. Přenosový kanál kódy pro zabezpečení dat Základy šifrování, autentizace Digitální podpis Základy měření kvality přenosu signálu
DSY-6 Přenosový kanál kódy pro zabezpečení dat Základy šifrování, autentizace Digitální podpis Základy měření kvality přenosu signálu Kódové zabezpečení přenosu dat Popis přiřazení kódových slov jednotlivým
Číselné soustavy a převody mezi nimi
Číselné soustavy a převody mezi nimi Základní požadavek na počítač je schopnost zobrazovat a pamatovat si čísla a provádět operace s těmito čísly. Čísla mohou být zobrazena v různých číselných soustavách.
Jak v Javě primitivní datové typy a jejich reprezentace. BD6B36PJV 002 Fakulta elektrotechnická České vysoké učení technické
Jak v Javě primitivní datové typy a jejich reprezentace BD6B36PJV 002 Fakulta elektrotechnická České vysoké učení technické Obsah Celočíselný datový typ Reálný datový typ Logický datový typ, typ Boolean
Algoritmy I. Číselné soustavy přečíst!!! ALGI 2018/19
Algoritmy I Číselné soustavy přečíst!!! Číselné soustavy Každé číslo lze zapsat v poziční číselné soustavě ve tvaru: a n *z n +a n-1 *z n-1 +. +a 1 *z 1 +a 0 *z 0 +a -1 *z n-1 +a -2 *z -2 +.. V dekadické
Matematické základy šifrování a kódování
Matematické základy šifrování a kódování Permutace Pojem permutace patří mezi základní pojmy a nachází uplatnění v mnoha oblastech, např. kombinatorice, algebře apod. Definice Nechť je n-prvková množina.
Kapitola 1. Signály a systémy. 1.1 Klasifikace signálů
Kapitola 1 Signály a systémy 1.1 Klasifikace signálů Signál představuje fyzikální vyjádření informace, obvykle ve formě okamžitých hodnot určité fyzikální veličiny, která je funkcí jedné nebo více nezávisle
Základní jednotky používané ve výpočetní technice
Základní jednotky používané ve výpočetní technice Nejmenší jednotkou informace je bit [b], který může nabývat pouze dvou hodnot 1/0 (ano/ne, true/false). Tato jednotka není dostatečná pro praktické použití,
Reprezentace dat. INP 2008 FIT VUT v Brně
Reprezentace dat INP 2008 FIT VUT v Brně Pojem kód a typy kódů Definice: Kód je vzájemně jednoznačné přiřazení mezi symboly dvou množin. (Tedy tabulka.) Přehled kódů pro reprezentaci dat: Data můžeme rozdělit
Kontrolní test Číslicová technika 1/2. 1.Převeďte číslo 87 z desítkové soustavy z= 10 do soustavy dvojkové z=2
Kontrolní test Číslicová technika 1/2 1.Převeďte číslo 87 z desítkové soustavy z= 10 do soustavy dvojkové z=2 2.převeďte do dvojkové soustavy číslo 0,87 3.Převeďte do osmičkové soustavy z= 8 číslo (92,45)
1 Co jsou lineární kódy
1 Žádný záznam informace a žádný přenos dat není absolutně odolný vůči chybám. Někdy je riziko poškození zanedbatelné, v mnoha případech je však zaznamenaná a přenášená informace jištěna přidáním dat,
Principy počítačů I Reprezentace dat
Principy počítačů I Reprezentace dat snímek 1 Principy počítačů Část III Reprezentace dat VJJ 1 snímek 2 Symbolika musí být srozumitelná pro stroj, snadno reprezentovatelná pomocí fyzikálních veličin vhodně
Hammingův kód. Vladislav Kosejk. České vysoké učení technické v Praze Fakulta jaderná a fyzikálně inženýrská Detašované pracoviště Děčín
Hammingův kód Vladislav Kosejk České vysoké učení technické v Praze Fakulta jaderná a fyzikálně inženýrská Detašované pracoviště Děčín Obsah prezentace Hammingův kód 1 Algoritmus Hammingova kódu 2 Generující
Číselné soustavy v mikroprocesorové technice Mikroprocesorová technika a embedded systémy
Ústav radioelektroniky Vysoké učení technické v Brně Číselné soustavy v mikroprocesorové technice Mikroprocesorová technika a embedded systémy Přednáška 8 doc. Ing. Tomáš Frýza, Ph.D. listopad 2012 Obsah
ASYNCHRONNÍ ČÍTAČE Použité zdroje:
ASYNCHRONNÍ ČÍTAČE Použité zdroje: Antošová, A., Davídek, V.: Číslicová technika, KOPP, České Budějovice 2007 http://www.edunet.souepl.cz www.sse-lipniknb.cz http://www.dmaster.wz.cz www.spszl.cz http://mikroelektro.utb.cz
Gymnázium Vysoké Mýto nám. Vaňorného 163, 566 01 Vysoké Mýto
Gymnázium Vysoké Mýto nám. Vaňorného 163, 566 01 Vysoké Mýto Registrační číslo projektu Šablona Autor Název materiálu CZ.1.07/1.5.00/34.0951 III/2 INOVACE A ZKVALITNĚNÍ VÝUKY PROSTŘEDNICTVÍM ICT Mgr. Jana
Y36SAP. Osnova. Číselné soustavy a kódy, převody, aritmetické operace Y36SAP Poziční číselné soustavy a převody.
Y36SAP Číselné soustavy a kódy, převody, aritmetické operace Tomáš Brabec, Miroslav Skrbek - X36SKD-cvičení. Úpravy pro SAP Hana Kubátová Osnova Poziční číselné soustavy a převody Dvojková soust., převod
Číslo materiálu. Datum tvorby Srpen 2012
Číslo projektu Číslo materiálu Název školy Autor Tematická oblast Ročník CZ.1.07/1.5.00/34.0581 VY_32_INOVACE_CTE_2.MA_03_Převod čísel mezi jednotlivými číselnými soustavami Střední odborná škola a Střední
Téma 2 Principy kryptografie
XXV/1/Téma 2 1 Téma 2 Principy kryptografie Substitučně-permutační sítě a AES V on-line světě každý den odešleme i přijmeme celou řadu šifrovaných zpráv. Obvykle se tak děje bez toho, abychom si to jakkoli
Linkové kódy. Podpora kvality výuky informačních a telekomunikačních technologií ITTEL CZ.2.17/3.1.00/36206 PRAHA & EU INVESTUJEME DO VAŠÍ BUDOUCNOSTI
EVROPSKÝ SOCIÁLNÍ FOND Linkové kódy PRAHA & EU INVESTUJEME DO VAŠÍ BUDOUCNOSTI Podpora kvality výuky informačních a telekomunikačních technologií ITTEL CZ.2.17/3.1.00/36206 Kódy na minulé hodině jsme se
Informace v počítači. Výpočetní technika I. Ing. Pavel Haluza ústav informatiky PEF MENDELU v Brně haluza@mendelu.cz
.. Informace v počítači Ing. Pavel Haluza ústav informatiky PEF MENDELU v Brně haluza@mendelu.cz Osnova přednášky Úvod do teorie informace základní pojmy měření množství informace ve zprávě přenos a kódování
Teorie informace a kódování (KMI/TIK) Reed-Mullerovy kódy
Teorie informace a kódování (KMI/TIK) Reed-Mullerovy kódy Lukáš Havrlant Univerzita Palackého 10. ledna 2014 Primární zdroj Jiří Adámek: Foundations of Coding. Strany 137 160. Na webu ke stažení, heslo:
Digitální obvody. Doc. Ing. Lukáš Fujcik, Ph.D.
Digitální obvody Doc. Ing. Lukáš Fujcik, Ph.D. Základní invertor v technologii CMOS dva tranzistory: T1 vodivostní kanál typ N T2 vodivostní kanál typ P při u VST = H nebo L je klidový proud velmi malý
ČÍSELNÉ SOUSTAVY. Číselnou soustavu, která pro reprezentaci čísel využívá pouze dvou číslic, nazýváme soustavou dvojkovou nebo binární.
Číselné soustavy V běžném životě používáme soustavu desítkovou. Desítková se nazývá proto, že má deset číslic 0 až 9 a v jednom řádu tak dokáže rozlišit deset různých stavů. Mikrokontroléry (a obecně všechny
PSK2-5. Kanálové kódování. Chyby
PSK2-5 Název školy: Autor: Anotace: Vzdělávací oblast: Předmět: Tematická oblast: Výsledky vzdělávání: Klíčová slova: Druh učebního materiálu: Typ vzdělávání: Ověřeno: Zdroj: Vyšší odborná škola a Střední
Aplikovaná informatika. Podklady předmětu Aplikovaná informatika pro akademický rok 2013/2014 Radim Farana. Obsah. Kybernetika
2 Podklady předmětu pro akademický rok 2013/2014 Radim Farana Obsah Základní pojmy z Teorie informace, jednotka informace, informační obsah zprávy, střední délka zprávy, redundance. Přenosový řetězec.
PJC Cvičení #2. Číselné soustavy a binární reprezentace proměnných
PJC Cvičení #2 Číselné soustavy a binární reprezentace proměnných Číselné soustavy Desítková (decimální) kdo nezná, tak...!!! Dvojková (binární) - nejjednodušší Šestnáctková (hexadecimální) - nejpoužívanější
Osnova přednášky. Informace v počítači. Interpretace dat. Údaje, data. Úvod do teorie informace. Výpočetní technika I. Ochrana dat
Osnova přednášky 2/44 Informace v počítači Ing Pavel Haluza ústav informatiky PEF MENDELU v Brně haluza@mendelucz základní pojmy měření množství informace ve zprávě přenos a kódování dat parita kontrolní
[1] samoopravné kódy: terminologie, princip
[1] Úvod do kódování samoopravné kódy: terminologie, princip blokové lineární kódy Hammingův kód cyklické kódy a) kody, 18, b) P. Olšák, FEL ČVUT, c) P. Olšák 2010, d) BI-LIN, e) L, f) 2009/2010, g)l.
Aplikovaná informatika. Podklady předmětu Aplikovaná informatika pro akademický rok 2006/2007 Radim Farana. Obsah. Obsah předmětu
1 Podklady předmětu pro akademický rok 2006/2007 Radim Farana Obsah 2 Obsah předmětu, Požadavky kreditového systému, Datové typy jednoduché, složené, Programové struktury, Předávání dat. Obsah předmětu
Střední škola pedagogická, hotelnictví a služeb, Litoměříce, příspěvková organizace
Střední škola pedagogická, hotelnictví a služeb, Litoměříce, příspěvková organizace Předmět: Počítačové sítě Téma: Počítačové sítě Vyučující: Ing. Milan Káža Třída: EK1 Hodina: 21-22 Číslo: III/2 4. Síťové
1. Základy teorie přenosu informací
1. Základy teorie přenosu informací Úvodem citát o pojmu informace Informace je název pro obsah toho, co se vymění s vnějším světem, když se mu přizpůsobujeme a působíme na něj svým přizpůsobováním. N.
Hammingovy kódy. dekódování H.kódů. konstrukce. šifrování. Fanova rovina charakteristický vektor. princip generující a prověrková matice
Hammingovy kódy konstrukce Fanova rovina charakteristický vektor šifrování princip generující a prověrková matice dekódování H.kódů třída lineárních binárních kódů s A n, 3 n = délka kódu, d = distance
Matematika IV 10. týden Kódování
Matematika IV 10. týden Kódování Jan Slovák Masarykova univerzita Fakulta informatiky 22. 26. 4. 2013 Obsah přednášky 1 (n, k) kódy 2 Polynomiální kódy 3 Lineární kódy Kde je dobré číst? připravovaná učebnice
Identifikátor materiálu: ICT-1-02
Identifikátor materiálu: ICT-1-02 Předmět Informační a komunikační technologie Téma materiálu Data a informace Autor Ing. Bohuslav Nepovím Anotace Student si procvičí / osvojí základní pojmy jako data,
Samoopravné kódy, k čemu to je
Úvod do kódování samoopravné kódy: terminologie, princip blokové lineární kódy Hammingův kód cyklické kódy [1] Samoopravné kódy, k čemu to je BI-LIN, kody, 18, P. Olšák [2] Data jsou uložena (nebo posílána
Kódy pro detekci a opravu chyb. INP 2008 FIT VUT v Brně
Kódy pro detekci a opravu chyb INP 2008 FIT VUT v Brně 1 Princip kódování 0 1 0 vstupní data kodér Tady potřebujeme informaci zabezpečit, utajit apod. Zakódovaná data: 000 111 000 Může dojít k poruše,
Informační a komunikační technologie
Informační a komunikační technologie 2. www.isspolygr.cz Vytvořil: Ing. David Adamovský Strana: 1 Škola Integrovaná střední škola polygrafická Ročník Název projektu 1. ročník SOŠ Interaktivní metody zdokonalující
Informatika Kódování. Obsah. Kód. Radim Farana Podklady předmětu Informatika pro akademický rok 2007/2008
Informatika Kódování Radim Farana Podklady předmětu Informatika pro akademický rok 27/28 Obsah Základy pojmy diskrétních kódů. Druhy kódů. Nejkratší kódy. Detekce chyb, Hammingova vdálenost. Kontrolní
Informatika I - 5. doc. Ing. Jan Skrbek, Dr. KIN. Spojení: Ing. Bc. Marian Lamr INN
Informatika I - 5 Sémiotický model informačních úrovní, signály modulace, přenosový kanál, znaky, datová úroveň informace, syntaxe. Kódy a kódování, číselné a znakové kódy. Přednáší: Konzultace: doc. Ing.
Úvod do teorie informace
PEF MZLU v Brně 24. září 2007 Úvod Výměna informací s okolím nám umožňuje udržovat vlastní existenci. Proces zpracování informací je trvalý, nepřetržitý, ale ovlivnitelný. Zabezpečení informací je spojeno
1. Základní pojmy a číselné soustavy
1. Základní pojmy a číselné soustavy 1.1. Základní pojmy Hardware (technické vybavení počítače) Souhrnný název pro veškerá fyzická zařízení, kterými je počítač vybaven. Software (programové vybavení počítače)
2.8 Kodéry a Rekodéry
2.8 Kodéry a Rekodéry 2.8.1 Úkol měření 1. Navrhněte a realizujte rekodér z kódu BCD na kód 2421 a ověřte jeho funkčnost 2. Navrhněte a realizujte rekodér z kódu 2421 na kód BCD a ověřte jeho funkčnost
Analogově-číslicové převodníky ( A/D )
Analogově-číslicové převodníky ( A/D ) Převodníky analogového signálu v číslicový (zkráceně převodník N/ Č nebo A/D jsou povětšině založeny buď na principu transformace napětí na jinou fyzikální veličinu
Kódování Obsah. Reedovy-Solomonovy kódy. Radim Farana Podklady pro výuku. Cyklické kódy.
.9.4 Kódování Radim Farana Podklady pro výuku Obsah Cyklické kódy. Reedovy-Solomonovy kódy Reedovy-Solomonovy kódy Byly vytvořeny v roce 96 v Lincolnově laboratoři na Massachusetts Institute of echnology.
PODPORA ELEKTRONICKÝCH FOREM VÝUKY
INVE STICE DO ROZV O JE V ZDĚL ÁV Á NÍ PODPORA ELEKTRONICKÝCH FOREM VÝUKY CZ.1.07/1.1.06/01.0043 Tento projekt je financován z prostředků ESF a státního rozpočtu ČR. SOŠ informatiky a spojů a SOU, Jaselská
Číselné soustavy. Binární číselná soustava
12. Číselné soustavy, binární číselná soustava. Kódování informací, binární váhový kód, kódování záporných čísel. Standardní jednoduché datové typy s pevnou a s pohyblivou řádovou tečkou. Základní strukturované
4. Co je to modulace, základní typy modulací, co je to vícestavová fázová modulace, použití. Znázorněte modulaci, která využívá 4 amplitud a 4 fází.
Písemná práce z Úvodu do počítačových sítí 1. Je dán kanál bez šumu s šířkou pásma 10kHz. Pro přenos číslicového signálu lze použít 8 napěťových úrovní. a. Jaká je maximální baudová rychlost? b. Jaká je
Číselné vyjádření hodnoty. Kolik váží hrouda zlata?
Čísla a logika Číselné vyjádření hodnoty Au Kolik váží hrouda zlata? Dekadické vážení Když přidám osmé závaží g, váha se převáží => závaží zase odeberu a začnu přidávat závaží x menší 7 závaží g 2 závaží
Pokud není uvedeno jinak, uvedený materiál je z vlastních zdrojů autora
Číslo projektu Číslo materiálu ázev školy Autor ázev Téma hodiny Předmět Ročník /y/ C.1.07/1.5.00/34.0394 VY_3_IOVACE_1_ČT_1.01_ vyjádření čísel v různých číselných soustavách Střední odborná škola a Střední
cv3.tex. Vzorec pro úplnou pravděpodobnost
3 cvičení - pravděpodobnost 2102018 18cv3tex n i=1 Vzorec pro úplnou pravděpodobnost Systém náhodných jevů nazýváme úplným, jestliže pro něj platí: B i = 1 a pro i k je B i B k = 0 Jestliže je (Ω, A, P
Zpracování informací
Ústav automatizace a informatiky Fakulta strojního inženýrství Vysoké učení technické v Brně Cvičení č. 2 z předmětu Zpracování informací Ing. Radek Poliščuk, Ph.D. 1/9 Téma cvičení Cvičení 2 Přenos dat
Binární logika Osnova kurzu
Osnova kurzu 1) Základní pojmy; algoritmizace úlohy 2) Teorie logického řízení 3) Fuzzy logika 4) Algebra blokových schémat 5) Vlastnosti členů regulačních obvodů 6) Vlastnosti regulátorů 7) Stabilita
Moderní metody substitučního šifrování
PEF MZLU v Brně 11. listopadu 2010 Úvod V současné době se pro bezpečnou komunikaci používají elektronická média. Zprávy se před šifrováním převádí do tvaru zpracovatelného technickým vybavením, do binární
Integrovaný informační systém Státní pokladny (IISSP) Dokumentace API - integrační dokumentace
Česká republika Vlastník: Logica Czech Republic s.r.o. Page 1 of 10 Česká republika Obsah 1. Úvod...3 2. Východiska a postupy...4 2.1 Způsob dešifrování a ověření sady přístupových údajů...4 2.2 Způsob
Návrh asynchronního automatu
Návrh asynchronního automatu Domovská URL dokumentu: http://dce.felk.cvut.cz/lsy/cviceni/pdf/asyn_automat.pdf Obsah DEFINICE AUTOMATU... 2 KROK 1: ZADÁNÍ... 3 KROK 2: ANALÝZA ZADÁNÍ... 3 KROK 3: VYJÁDŘENÍ
Úvod do informačních technologií
Úvod do informačních technologií přednášky Jan Outrata září prosinec 2009 (aktualizace září prosinec 2012) Jan Outrata (KI UP) Úvod do informačních technologií září prosinec 2012 1 / 34 Reprezentace dat
Logické řízení. Náplň výuky
Logické řízení Logické řízení Náplň výuky Historie Logické funkce Booleova algebra Vyjádření Booleových funkcí Minimalizace logických funkcí Logické řídicí obvody Blokové schéma Historie Číslicová technika
8. RSA, kryptografie s veřejným klíčem. doc. Ing. Róbert Lórencz, CSc.
Bezpečnost 8. RSA, kryptografie s veřejným klíčem doc. Ing. Róbert Lórencz, CSc. České vysoké učení technické v Praze Fakulta informačních technologií Katedra počítačových systémů Příprava studijních programů
12. Booleova algebra, logická funkce určitá a neurčitá, realizace logických funkcí, binární kódy pro algebraické operace.
12. Booleova algebra, logická funkce určitá a neurčitá, realizace logických funkcí, binární kódy pro algebraické operace. Logická proměnná - proměnná nesoucí logickou hodnotu Logická funkce - funkce přiřazující
kryptosystémy obecně další zajímavé substituční šifry klíčové hospodářství kryptografická pravidla Hillova šifra Vernamova šifra Knižní šifra
kryptosystémy obecně klíčové hospodářství klíč K, prostor klíčů T K kryptografická pravidla další zajímavé substituční šifry Hillova šifra Vernamova šifra Knižní šifra klíč K různě dlouhá posloupnost znaků
Digitální signály a kódy
EVROPSKÝ SOCIÁLNÍ FOND Digitální signály a kódy PRAHA & EU INVESTUJEME DO VAŠÍ BUDOUCNOSTI Podpora kvality výuky informačních a telekomunikačních technologií ITTEL CZ.2.17/3.1.00/36206 Digitální signál
Úvod do informačních technologií
Úvod do informačních technologií Jan Outrata KATEDRA INFORMATIKY UNIVERZITA PALACKÉHO V OLOMOUCI přednášky Reprezentace dat Jan Outrata (Univerzita Palackého v Olomouci) Úvod do informačních technologií
Technická kybernetika. Obsah. Klopné obvody: Použití klopných obvodů. Sekvenční funkční diagramy. Programovatelné logické automaty.
Akademický rok 2016/2017 Připravil: adim Farana Technická kybernetika Klopné obvody, sekvenční funkční diagramy, programovatelné logické automaty 2 Obsah Klopné obvody:. D. JK. Použití klopných obvodů.
Prvočísla: 2, 3, 5, 7, 11, 13,... Základní věta aritmetiky. Jestliže. kde p 1 < p 2 < < p r, q 1 < q 2 < < q s jsou prvočísla a
Přirozená čísla: 1, 2, 3,... = {1, 2, 3,... } Prvočísla: 2, 3, 5, 7, 11, 13,... Základní věta aritmetiky. Jestliže p α 1 1 pα 2 2 pα r r = q β 1 1 qβ 2 2 qβ s s, kde p 1 < p 2 < < p r, q 1 < q 2 < < q
Asymetrická kryptografie a elektronický podpis. Ing. Dominik Breitenbacher Mgr. Radim Janča
Asymetrická kryptografie a elektronický podpis Ing. Dominik Breitenbacher ibreiten@fit.vutbr.cz Mgr. Radim Janča ijanca@fit.vutbr.cz Obsah cvičení Asymetrická, symetrická a hybridní kryptografie Kryptoanalýza
LEKCE 6. Operátory. V této lekci najdete:
LEKCE 6 Operátory V této lekci najdete: Aritmetické operátory...94 Porovnávací operátory...96 Operátor řetězení...97 Bitové logické operátory...97 Další operátory...101 92 ČÁST I: Programování v jazyce
DIGITÁLN LNÍ OBVODY A MIKROPROCESORY 1. ZÁKLADNÍ POJMY DIGITÁLNÍ TECHNIKY
DIGITÁLN LNÍ OBVODY A MIKROPROCESORY BDOM Prof. Ing. Radimír Vrba, CSc. Doc. Ing. Pavel Legát, CSc. Ing. Radek Kuchta Ing. Břetislav Mikel Ústav mikroelektroniky FEKT VUT @feec.vutbr.cz
Základní principy zobrazení čísla Celá čísla s pevnou řádovou čárkou Zobrazení reálných čísel Aritmetika s binárními čísly
Počítačové systémy Zobrazení čísel v počítači Miroslav Flídr Počítačové systémy LS 2007-1/21- Západočeská univerzita v Plzni Vážený poziční kód Obecný předpis čísla vyjádřeného v pozičním systému: C =
PŘEDNÁŠKA PS 6 Přenos dat v počítačových sítích
PŘEDNÁŠKA PS 6 Přenos dat v počítačových sítích Část 2 Osnova Metody detekce chybovosti Pravděpodobnost chyby ve zprávě Parita Kontrolní blokový součet (pseudosoučet) Redundantní cyklické kódy Jiný způsob
Čísla v plovoucířádovéčárce. INP 2008 FIT VUT v Brně
Čísla v plovoucířádovéčárce INP 2008 FIT VUT v Brně Čísla v pevné vs plovoucí řádové čárce Pevnářádováčárka FX bez desetinné části (8 bitů) Přímý kód: 0 až 255 Doplňkový kód: -128 až 127 aj. s desetinnou
Počet kreditů: 5 Forma studia: kombinovaná. Anotace: Předmět seznamuje se základy dělitelnosti, vybranými partiemi algebry, šifrování a kódování.
Název předmětu: Matematika pro informatiky Zkratka předmětu: MIE Počet kreditů: 5 Forma studia: kombinovaná Forma zkoušky: kombinovaná (písemná a ústní část) Anotace: Předmět seznamuje se základy dělitelnosti,
1 Paměť a číselné soustavy
Úvod 1 Paměť a číselné soustavy Počítač používá různé typy pamětí. Odlišují se svou funkcí, velikostí, rychlostí zápisu a čtení, schopností udržet data v paměti. Úkolem paměti je zpřístupňovat data dle
Pohled do nitra mikroprocesoru Josef Horálek
Pohled do nitra mikroprocesoru Josef Horálek Z čeho vycházíme = Vycházíme z Von Neumannovy architektury = Celý počítač se tak skládá z pěti koncepčních bloků: = Operační paměť = Programový řadič = Aritmeticko-logická
Architektura počítačů
Architektura počítačů Studijní materiál pro předmět Architektury počítačů Ing. Petr Olivka katedra informatiky FEI VŠB-TU Ostrava email: petr.olivka@vsb.cz Ostrava, 2010 1 1 Architektura počítačů Pojem
Vnitřní reprezentace dat
.. Vnitřní reprezentace dat Ing. Pavel Haluza ústav informatiky PEF MENDELU v Brně haluza@mendelu.cz Osnova přednášky Práce s počítačem ergonomie údržba počítače Číselné soustavy poziční a nepoziční soustavy
v aritmetické jednotce počíta
v aritmetické jednotce počíta tače (Opakování) Dvojková, osmičková a šestnáctková soustava () Osmičková nebo šestnáctková soustava se používá ke snadnému zápisu binárních čísel. 2 A 3 Doplněné nuly B Číslo
Faculty of Nuclear Sciences and Physical Engineering Czech Technical University in Prague
Aritmetika v Faculty of Nuclear Sciences and Physical Engineering Czech Technical University in Prague Příklad Napíšeme program pro výpočet 54321-12345 dekadicky: 54321-12345=41976 hexadecimálně: x 0000D431