Binární logika Osnova kurzu
|
|
- Vratislav Vaněk
- před 8 lety
- Počet zobrazení:
Transkript
1 Osnova kurzu 1) Základní pojmy; algoritmizace úlohy 2) Teorie logického řízení 3) Fuzzy logika 4) Algebra blokových schémat 5) Vlastnosti členů regulačních obvodů 6) Vlastnosti regulátorů 7) Stabilita regulačního obvodu 8) Kvalita regulačního pochodu 9) Robotika 10. Datová komunikace Automatizace - Ing. J. Šípal, PhD 1
2 Osnova přednášky Výrokový počet Logické funkce Boolova algebra Mapy Číselné soustavy Dvojková soustava Šestnácková soustava Automatizace - Ing. J. Šípal, PhD 2
3 Výrokový počet Výrok tvrzení, kterému lze jednoznačně přiřadit pravdivostní hodnotu Úbytek napětí na prvku je přímo úměrný protékajícímu elektrickému proudu Indukčnost se rovná součinu proudu a napětí Jak je venku? (není výrok) Výrok může nabývat dvou hodnot Pravda (true; 1; +; high; H) Nepravda (false; 0; -; low; L) Automatizace - Ing. J. Šípal, PhD 3
4 Výrokový počet Výrokové operace Výrok X a Y Negace (ne; not; inverze; ) X Logický součin (a; and; konjunkce;.) Logický součet (nebo; or; disjunkce; +) X Y X Y Každou logickou funkci mohu vyjádřit: Boolovskými funkcemi (negace; disjunkce; konjunkce) Pierceovou funkcí NOR (jeden prvek) Shefferovou funkcí NAND (jeden prvek); upřednostńováno používá méně tranzistorů Automatizace - Ing. J. Šípal, PhD 4
5 Výrokový počet y=f x y=f x 1 ;x 2 y=f x 1 ;x 2 ;x 3 Nezávisle proměnná x Nejčastěji logické veličiny dvouhodnotové x = 1 nebo x = 0 Funkce logických proměnných y=f x 1 ;x 2 ;x 3 ;...x n Automatizace - Ing. J. Šípal, PhD 5
6 Logické funkce Jedna proměnná Dvě proměnné X 1 0 X1 X Počet možností nezávisle proměnné x k=2 n Automatizace - Ing. J. Šípal, PhD 6
7 Logické funkce Jedna proměnná X Y1 Y2 Y3 Y Y1 Falsum Y2 - Negace Y3 - Aserce Y4 Verum hodnota y vždy 0 y= x hodnota y opakuje hodnotu x hodnota y vždy 1 Automatizace - Ing. J. Šípal, PhD 7
8 Logické funkce Technická realizace X Y1 Y2 Y3 Y Automatizace - Ing. J. Šípal, PhD 8
9 Logické funkce dvě proměnné X1 X2 Y1 Y2 Y3 Y4 Y5 Y6 Y7 Y8 Y9 Y10 Y11 Y12 Y13 Y14 Y15 Y Y1 - falsum Y2 konjunkce (součin) Y3 - inhibice Y4 aserce X1 Y5 - inhibice Y6 aserce X2 Y7 dilema; XOR Y8 disjunkce (součet) Binární logika Logické funkce Y9 Piercova funkce (negace součtu; NOR) Y10 - ekvivalence Y11 negace X2 Y12 implikace X2 X1 Y13 negace X1 Y14 - implikace X1 X2 Y15 Shefferova fce (negace součinu;nand) Y16 - verum Automatizace - Ing. J. Šípal, PhD 9
10 Logické funkce Logické funkce dvě proměnné X1 X2 Y Y1 - falsum Funkční hodnoty vždy Automatizace - Ing. J. Šípal, PhD 10
11 Logické funkce Logické funkce dvě proměnné X1 X2 Y Y2 konjunkce (součin) Pokud jsou obě nezávisle proměnné 1, pak výsledek je 1 Analogie s násobením Automatizace - Ing. J. Šípal, PhD 11
12 Logické funkce Logické funkce dvě proměnné X1 X2 Y3 Y Y3 inhibice X1 Y5 inhibice X2 Opakuje nezávisle proměnnou hodnotu 1 pokud je druhá opačné hodnoty Automatizace - Ing. J. Šípal, PhD 12
13 Logické funkce Logické funkce dvě proměnné X1 X2 Y4 Y Y4 aserce X1 Y6 aserce X2 Opakuje hodnotu zvolené nezávisle proměnné Automatizace - Ing. J. Šípal, PhD 13
14 Logické funkce Logické funkce dvě proměnné X1 X2 Y Y7 dilema; XOR Taky někdy označovaná jako exlusive OR Výběr pravdivé hodnoty ze dvou různých Automatizace - Ing. J. Šípal, PhD 14
15 Logické funkce Logické funkce dvě proměnné X1 X2 Y8 Y8 disjunkce (součet) Analogie součtu Automatizace - Ing. J. Šípal, PhD 15
16 Logické funkce Logické funkce dvě proměnné X1 X2 Y8 Y Y9 Piercova funkce NOR negace součtu Y8 Kombinací této funkce lze vyjádřit všechny ostatní logické funkce Důležité k zapamatování!!! Automatizace - Ing. J. Šípal, PhD 16
17 Logické funkce Logické funkce dvě proměnné X1 X2 Y Y10 - ekvivalence Porovnání hodnot nezávisle proměnných Automatizace - Ing. J. Šípal, PhD 17
18 Logické funkce Logické funkce dvě proměnné X1 X2 Y11 Y Y11 negace X2 Y13 negace X1 Analogie funkce jedné proměnné Automatizace - Ing. J. Šípal, PhD 18
19 Logické funkce Logické funkce dvě proměnné X1 X2 Y Y12 implikace X2 X1 Hodnota X1 vyplývá z X2 Z nepravdy může vyplynout pravda proto hodnota závisle proměnné je 1 Z pravdy nemůže vyplynout nepravda proto hodnota závisle proměnné je 0 Automatizace - Ing. J. Šípal, PhD 19
20 Logické funkce Logické funkce dvě proměnné X1 X2 Y Y14 - implikace X1 X2 Hodnota X2 vyplývá z X1 Z nepravdy může vyplynout pravda proto hodnota závisle proměnné je 1 Z pravdy nemůže vyplynout nepravda proto hodnota závisle proměnné je 0 Automatizace - Ing. J. Šípal, PhD 20
21 Logické funkce Logické funkce dvě proměnné X1 X2 Y2 Y Y15 Shefferova funkce NAND negace součinu Y2 Kombinací této funkce lze vyjádřit všechny ostatní logické funkce Prvek hradlo NAND obsahuje méně tranzistorů než hradlo NOR, proto se více používá Důležité k zapamatování!!! Automatizace - Ing. J. Šípal, PhD 21
22 Logické funkce Logické funkce dvě proměnné X1 X2 Y Y16 verum Funkční hodnoty vždy Automatizace - Ing. J. Šípal, PhD 22
23 Osnova přednášky Výrokový počet Logické funkce Boolova algebra Mapy Číselné soustavy Dvojková soustava Šestnácková soustava Automatizace - Ing. J. Šípal, PhD 23
24 a b=b a Binární logika Boolova algebra komutativní a b=b a a b c=a b c a b c=a c b c asociativní distributivní a b c=a b c a b c= a c b c a 0=a a 1=1 a a=a a a=1 o neutrálnosti 0 a 1 o agresinosti 0 a 1 o independenci prvků vyloučeného třetího a 1=a a 0=0 a a=a a a=0 Automatizace - Ing. J. Šípal, PhD 24
25 Boolova algebra a=a a b=a b a a b=a b o dvojí negaci De Morganova pravidla o absorbci negace a b=a b a a b=a o absorbci a a b =a Automatizace - Ing. J. Šípal, PhD 25
26 Boolova algebra X1 X2 Ne X1 Ne X2 Y X2 X1 X2 X1 X1 X2 X1 X1 X2 Karnaughova mapa Jiné vyjádření pravdivostní tabulky Zjednodušování logických výrazů Maximálně 4 proměnné X1 X2 00 X1 01 X1 X2 0 X1 0 X2 X1 X2 X1 X2 X X2 0 1 Automatizace - Ing. J. Šípal, PhD 26
27 Boolova algebra X1 X2 X3 Y Karnaughova mapa X X X3 Tělesa X X X3 Analogický výraz Y X1 ;X2 ; X3 =X1 X2 X1 X3 X2 X3 Automatizace - Ing. J. Šípal, PhD 27
28 Boolova algebra Schématické značky logických členů Automatizace - Ing. J. Šípal, PhD 28
29 Osnova přednášky Výrokový počet Logické funkce Boolova algebra Mapy Číselné soustavy Dvojková soustava Šestnácková soustava Automatizace - Ing. J. Šípal, PhD 29
30 Číselné soustavy Adické číselné soustavy Zápis čísla v soustavě o základně z A z =[a n a n 1 a 1 a 0, a 1 a 2 a m ] z n, m N a i - číslice na pozici i 0 a i z i pozice určuje její váhu v i = z i n nejvyšší nenulový řád m nejnižší nenulový řáda=v A n z = m n a i v = i m a i z i Automatizace - Ing. J. Šípal, PhD 30
31 Adické číselné soustavy Definice báze číselné soustavy Dekadická z N z 2 Základ 10 Číslice 0 až 9 z=10 Obecně báze libovolná z Nejčastější soustavy Dvojková z=2 Šestnáctková (hexadecimální) 0;1;2; 3 ;4 ;5;6;7 ;8 ;9 0 ;1 Binární logika Číselné soustavy z=16 0;1; 2; 3; 4 ;5; 6;7 ;8 ;9 ;A ;B ;C; D;E ;F Automatizace - Ing. J. Šípal, PhD 31
32 Číselné soustavy Příklad Adická dvojková soustava v i , , v A = v A = ,25 0,125 0,0625 v A =53,4375 Automatizace - Ing. J. Šípal, PhD 32
33 Číselné soustavy Adická dvojková soustava Převod desítková dvojková Rozdělení čísla celá a desetiná část x 10 = =26 zbytek =13 zbytek =6 zbytek 1 6 2=3 zbytek 0 3 2=1 přenos 1 nedělitený zbytek 1 x 2 = Automatizace - Ing. J. Šípal, PhD 33
34 Číselné soustavy Adická dvojková soustava Převod desítková dvojková Rozdělení čísla celá a desetiná část x 10 =53,4375 x 10 =0,4375 0, , , ,75 1 0,75 2 1,5 1 0, x 2 =0111 x 2 =110101,0111 Automatizace - Ing. J. Šípal, PhD 34
35 Číselné soustavy Adická dvojková soustava N 2 n X N 2 n X N 2 n X , , , , , , , , ,00195 Automatizace - Ing. J. Šípal, PhD 35
36 Číselné soustavy Sčítání Adická dvojková soustava X 10 X Automatizace - Ing. J. Šípal, PhD 36
37 Číselné soustavy Adická dvojková soustava Sčítání v pevné řádové mřížce možný zdroj chyb; přetečení čítačů X 10 X Automatizace - Ing. J. Šípal, PhD 37
38 Číselné soustavy Odečítání Adická dvojková soustava X 10 X Automatizace - Ing. J. Šípal, PhD 38
39 Číselné soustavy Násobení Adická dvojková soustava x x Automatizace - Ing. J. Šípal, PhD 39
40 Číselné soustavy Adická šestnáctková soustava N 16 N 10 N 2 N 16 N 10 N A B C D E F Automatizace - Ing. J. Šípal, PhD 40
41 Opakovací otázky 1. Jaké tvrzení může být výrokem. 2. Jaké znáte výrokové operace. 3. Popište logické funkce jedné proměnné. 4. Jak si lze představit technickou realizaci logických funkcí jedné proměnné. 5. Vysvětlete důležité logické funkce dvou proměnných. 6. Jaké znáte základní zákony Boolovy algebry. 7. Co jsou mapy a k čemu slouží. 8. Nakreslete schématické značky logických členů. 9. Popište nejpoužívanější číselné soustavy. Automatizace - Ing. J. Šípal, PhD 41
Booleovská algebra. Booleovské binární a unární funkce. Základní zákony.
Booleovská algebra. Booleovské binární a unární funkce. Základní zákony. Tomáš Bayer bayertom@natur.cuni.cz Katedra aplikované geoinformatiky a kartografie, Přírodovědecká fakulta UK. Tomáš Bayer bayertom@natur.cuni.cz
VÝUKOVÝ MATERIÁL. Bratislavská 2166, 407 47 Varnsdorf, IČO: 18383874 www.vosassvdf.cz, tel. +420412372632 Číslo projektu
VÝUKOVÝ MATERIÁL Identifikační údaje školy Vyšší odborná škola a Střední škola, Varnsdorf, příspěvková organizace Bratislavská 2166, 407 47 Varnsdorf, IČO: 18383874 www.vosassvdf.cz, tel. +420412372632
Logické řízení. Náplň výuky
Logické řízení Logické řízení Náplň výuky Historie Logické funkce Booleova algebra Vyjádření Booleových funkcí Minimalizace logických funkcí Logické řídicí obvody Blokové schéma Historie Číslicová technika
12. Booleova algebra, logická funkce určitá a neurčitá, realizace logických funkcí, binární kódy pro algebraické operace.
12. Booleova algebra, logická funkce určitá a neurčitá, realizace logických funkcí, binární kódy pro algebraické operace. Logická proměnná - proměnná nesoucí logickou hodnotu Logická funkce - funkce přiřazující
teorie logických spojek chápaných jako pravdivostní funkce
Výroková logika teorie logických spojek chápaných jako pravdivostní funkce zabývá se způsoby tvoření výroků pomocí spojek a vztahy mezi pravdivostí různých výroků používá specifický jazyk složený z výrokových
Booleovská algebra. Pravdivostní tabulka. Karnaughova mapa. Booleovské n-krychle. Základní zákony. Unární a binární funkce. Podmínky.
Booleovská algebra. Pravdivostní tabulka. Karnaughova mapa. Booleovské n-krychle. Základní zákony. Unární a binární funkce. Podmínky. Tomáš Bayer bayertom@natur.cuni.cz Katedra aplikované geoinformatiky
2. LOGICKÉ OBVODY. Kombinační logické obvody
Hardware počítačů Doc.Ing. Vlastimil Jáneš, CSc, K620, FD ČVUT E-mail: janes@fd.cvut.cz Informace a materiály ke stažení na WWW: http://www.fd.cvut.cz/personal/janes/hwpocitacu/hw.html 2. LOGICKÉ OBVODY
Fuzzy logika Osnova kurzu
Osnova kurzu 1) Základní pojmy; algoritmizace úlohy 2) Binární logika 3) 4) Algebra blokových schémat 5) Vlastnosti členů regulačních obvodů 1 Osnova přednášky Základní pojmy Lingvistické proměnné Funkce
Úvod do informačních technologií
Úvod do informačních technologií přednášky Jan Outrata září prosinec 2009 (aktualizace září prosinec 2012) Jan Outrata (KI UP) Úvod do informačních technologií září prosinec 2012 1 / 58 Binární logika
2. ÚVOD DO OVLÁDACÍ TECHNIKY
Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/03.0009 2. ÚVOD DO OVLÁDACÍ TECHNIKY OVLÁDACÍ TECHNIKA A LOGICKÉ ŘÍZENÍ 2.1.5 LOGICKÉ FUNKCE Cíle: Po prostudování
Algebra blokových schémat Osnova kurzu
Osnova kurzu 1) Základní pojmy; algoritmizace úlohy 2) Teorie logického řízení 3) Fuzzy logika 4) Algebra blokových schémat 5) Vlastnosti členů regulačních obvodů Automatizace - Ing. J. Šípal, PhD 1 Osnova
Obsah DÍL 1. Předmluva 11
DÍL 1 Předmluva 11 KAPITOLA 1 1 Minulost a současnost automatizace 13 1.1 Vybrané základní pojmy 14 1.2 Účel a důvody automatizace 21 1.3 Automatizace a kybernetika 23 Kontrolní otázky 25 Literatura 26
Architektura počítačů Logické obvody
Architektura počítačů Logické obvody http://d3s.mff.cuni.cz/teaching/computer_architecture/ Lubomír Bulej bulej@d3s.mff.cuni.cz CHARLES UNIVERSITY IN PRAGUE faculty of mathematics and physics Digitální
Architektura počítačů Logické obvody
Architektura počítačů Logické obvody http://d3s.mff.cuni.cz/teaching/computer_architecture/ Lubomír Bulej bulej@d3s.mff.cuni.cz CHARLES UNIVERSITY IN PRAGUE faculty of mathematics and physics 2/36 Digitální
Logické proměnné a logické funkce
Booleova algebra Logické proměnné a logické funkce Logická proměnná je veličina, která může nabývat pouze dvou hodnot, označených 0 a I (tedy dvojková proměnná) a nemůže se spojitě měnit Logická funkce
Úvod do informačních technologií
Úvod do informačních technologií Jan Outrata KATEDRA INFORMATIKY UNIVERZITA PALACKÉHO V OLOMOUCI přednášky Binární logika Jan Outrata (Univerzita Palackého v Olomouci) Úvod do informačních technologií
Číslicové obvody základní pojmy
Číslicové obvody základní pojmy V číslicové technice se pracuje s fyzikálními veličinami, které lze popsat při určité míře zjednodušení dvěma stavy. Logické stavy binární proměnné nabývají dvou stavů:
Struktura a architektura počítačů (BI-SAP) 5
Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti Struktura a architektura počítačů (BI-SAP) 5 doc. Ing. Hana Kubátová, CSc. Katedra číslicového návrhu Fakulta informačních technologii
Číselné vyjádření hodnoty. Kolik váží hrouda zlata?
Čísla a logika Číselné vyjádření hodnoty Au Kolik váží hrouda zlata? Dekadické vážení Když přidám osmé závaží g, váha se převáží => závaží zase odeberu a začnu přidávat závaží x menší 7 závaží g 2 závaží
VY_32_INOVACE_CTE_2.MA_04_Aritmetické operace v binární soustavě Střední odborná škola a Střední odborné učiliště, Dubno Ing.
Číslo projektu Číslo materiálu Náev škol Autor Tematická oblast Ročník CZ..7/.5./34.58 VY_32_INOVACE_CTE_2.MA_4_Aritmetické operace v binární soustavě Střední odborná škola a Střední odborné učiliště,
Booleova algebra. ZákonyBooleovy algebry Vyjádření logických funkcí
Booleova algebra ZákonyBooleovy algebry Vyjádření logických funkcí pravdivostní tabulka logický výraz seznam indexů vstupních písmen mapa vícerozměrná krychle 30-1-13 O. Novák 1 Booleova algebra Booleova
Výroková logika - opakování
- opakování ormální zavedení Výroková formule: Máme neprázdnou nejvýše spočetnou množinu A výrokových proměnných. 1. Každá proměnná je výroková formule 2. Když α, β jsou formule, potom ( α), (α β), (α
Logika II. RNDr. Kateřina Trlifajová PhD. Katedra teoretické informatiky Fakulta informačních technologíı BI-MLO, ZS 2011/12
Logika II. RNDr. Kateřina Trlifajová PhD. Katedra teoretické informatiky Fakulta informačních technologíı České vysoké učení technické v Praze c Kateřina Trlifajová, 2010 BI-MLO, ZS 2011/12 Evropský sociální
Základy číslicové techniky. 2 + 1 z, zk
Základy číslicové techniky 2 + 1 z, zk Ing. Vít Fábera, K614 e-mail: fabera@fd.cvut.cz K508, 5. patro, laboratoř, 2 2435 9555 Ing. Tomáš Musil, Ph.D., K620 e-mail: musil@asix.cz K508, 5. patro, laboratoř,
DUM 02 téma: Elementární prvky logiky výklad
DUM 02 téma: Elementární prvky logiky výklad ze sady: 01 Logické obvody ze šablony: 01 Automatizační technika I Určeno pro 3. ročník vzdělávací obor: 26-41-M/01 Elektrotechnika ŠVP automatizační technika
LOGICKÉ ŘÍZENÍ. Matematický základ logického řízení
Měřicí a řídicí technika bakalářské studium - přednášky LS 28/9 LOGICKÉ ŘÍZENÍ matematický základ logického řízení kombinační logické řízení sekvenční logické řízení programovatelné logické automaty Matematický
4. Elektronické logické členy. Elektronické obvody pro logické členy
4. Elektronické logické členy Kombinační a sekvenční logické funkce a logické členy Elektronické obvody pro logické členy Polovodičové paměti 1 Kombinační logické obvody Způsoby zápisu logických funkcí:
KOMBINAČNÍ LOGICKÉ OBVODY
KOMBINAČNÍ LOGICKÉ OBVODY Použité zdroje: http://cs.wikipedia.org/wiki/logická_funkce http://www.ibiblio.org http://martin.feld.cvut.cz/~kuenzel/x13ups/log.jpg http://www.mikroelektro.utb.cz http://www.elearn.vsb.cz/archivcd/fs/zaut/skripta_text.pdf
Základní pojmy; algoritmizace úlohy Osnova kurzu
Osnova kurzu 1) 2) Teorie logického řízení 3) Fuzzy logika 4) Algebra blokových schémat 5) Vlastnosti členů regulačních obvodů 6) Vlastnosti regulátorů 7) Stabilita regulačního obvodu 8) Kvalita regulačního
KOMBINAČNÍ LOGICKÉ OBVODY
Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/03.0009 KOMBINAČNÍ LOGICKÉ OBVODY U těchto obvodů je vstup určen jen výhradně kombinací vstupních veličin. Hodnoty
Y36SAP. Osnova. Číselné soustavy a kódy, převody, aritmetické operace Y36SAP Poziční číselné soustavy a převody.
Y36SAP Číselné soustavy a kódy, převody, aritmetické operace Tomáš Brabec, Miroslav Skrbek - X36SKD-cvičení. Úpravy pro SAP Hana Kubátová Osnova Poziční číselné soustavy a převody Dvojková soust., převod
Osnova přednášky. Univerzita Jana Evangelisty Purkyně Základy automatizace Kvalita regulačního pochodu
Osnova přednášky 1) Základní pojmy; algoritmizace úlohy 2) Teorie logického řízení 3) Fuzzy logika 4) Algebra blokových schémat 5) Vlastnosti členů regulačních obvodů 6) Vlastnosti regulátorů 7) Stabilita
Matematika B101MA1, B101MA2
Matematika B101MA1, B101MA2 Zařazení předmětu: povinný předmět 1.ročníku bc studia 2 semestry Rozsah předmětu: prezenční studium 2 + 2 kombinované studium 16 + 0 / semestr Zakončení předmětu: ZS zápočet
DIGITÁLN LNÍ OBVODY A MIKROPROCESORY 1. ZÁKLADNÍ POJMY DIGITÁLNÍ TECHNIKY
DIGITÁLN LNÍ OBVODY A MIKROPROCESORY BDOM Prof. Ing. Radimír Vrba, CSc. Doc. Ing. Pavel Legát, CSc. Ing. Radek Kuchta Ing. Břetislav Mikel Ústav mikroelektroniky FEKT VUT @feec.vutbr.cz
Vlastnosti členů regulačních obvodů Osnova kurzu
Osnova kurzu 1) Základní pojmy; algoritmizace úlohy 2) Teorie logického řízení 3) Fuzzy logika 4) Algebra blokových schémat 5) Statické vlastnosti členů regulačních obvodů 6) Dynamické vlastnosti členů
Formální systém výrokové logiky
Formální systém výrokové logiky 1.Jazyk výrokové logiky Nechť P = {p,q,r, } je neprázdná množina symbolů, které nazýváme prvotní formule. Symboly jazyka L P výrokové logiky jsou : a) prvky množiny P, b)
Spojování výroků (podmínek) logickými spojkami
Spojování výroků (podmínek) logickými spojkami Spojování výroků logickými spojkami a) Konjunkce - spojení A B; Pravdivostní tabulka konjunkce A B A B 0 0 0 0 1 0 1 0 0 1 1 1 AND; A a současně B Konjunkce
0. ÚVOD - matematické symboly, značení,
0. ÚVOD - matematické symboly, značení, číselné množiny Výroky Výrok je každé sdělení, u kterého lze jednoznačně rozhodnout, zda je či není pravdivé. Každému výroku lze proto přiřadit jedinou pravdivostní
Výroková logika. Teoretická informatika Tomáš Foltýnek
Výroková logika Teoretická informatika Tomáš Foltýnek foltynek@pef.mendelu.cz Teoretická informatika strana 2 Opakování z minulé přednášky Co je to formalismus a co je jeho cílem? Formulujte Russelův paradox
Číselné soustavy: Druhy soustav: Počítání ve dvojkové soustavě:
Přednášející : Ing. Petr Haberzettl Zápočet : práce na doma hlavně umět vysvětlit Ze 120 lidí udělá maximálně 25 :D Literatura : Frištacký - Logické systémy Číselné soustavy: Nevyužíváme 10 Druhy soustav:
Číselné soustavy v mikroprocesorové technice Mikroprocesorová technika a embedded systémy
Ústav radioelektroniky Vysoké učení technické v Brně Číselné soustavy v mikroprocesorové technice Mikroprocesorová technika a embedded systémy Přednáška 8 doc. Ing. Tomáš Frýza, Ph.D. listopad 2012 Obsah
Cíle. Teoretický úvod. BDIO - Digitální obvody Ústav mikroelektroniky Základní logická hradla, Booleova algebra, De Morganovy zákony Student
Předmět Ústav Úloha č. DIO - Digitální obvody Ústav mikroelektroniky Základní logická hradla, ooleova algebra, De Morganovy zákony Student Cíle Porozumění základním logickým hradlům NND, NOR a dalším,
Osnova přednášky. Univerzita Jana Evangelisty Purkyně Základy automatizace Vlastnosti regulátorů
Osnova přednášky 1) Základní pojmy; algoritmizace úlohy 2) Teorie logického řízení 3) Fuzzy logika 4) Algebra blokových schémat 5) Vlastnosti členů regulačních obvodů 6) 7) Stabilita regulačního obvodu
PROTOKOL O LABORATORNÍM CVIČENÍ
STŘENÍ PRŮMYSLOVÁ ŠKOL V ČESKÝH UĚJOVIÍH, UKELSKÁ 3 ÚLOH: ekodér binárního kódu na sedmisegmentový displej 0.. Zadání PROTOKOL O LORTORNÍM VIČENÍ Navrhněte a realizujte dekodér z binárního kódu na sedmisegmentovku.
2.7 Binární sčítačka. 2.7.1 Úkol měření:
2.7 Binární sčítačka 2.7.1 Úkol měření: 1. Navrhněte a realizujte 3-bitovou sčítačku. Pro řešení využijte dílčích kroků: pomocí pravdivostní tabulky navrhněte a realizujte polosčítačku pomocí pravdivostní
Matematická logika. Rostislav Horčík. horcik
Matematická logika Rostislav Horčík horcik@math.feld.cvut.cz horcik@cs.cas.cz www.cs.cas.cz/ horcik Rostislav Horčík (ČVUT FEL) Y01MLO Letní semestr 2007/2008 1 / 15 Sémantická věta o dedukci Věta Pro
LOGIKA VÝROKOVÁ LOGIKA
LOGIKA Popisuje pravidla odvozování jedněch tvrzení z druhých. Je to myšlenková cesta ke správným závěrům. Vznikla jako součást filosofie. Zakladatelem byl Aristoteles. VÝROKOVÁ LOGIKA Obsahuje syntaktická,
P4 LOGICKÉ OBVODY. I. Kombinační Logické obvody
P4 LOGICKÉ OBVODY I. Kombinační Logické obvody I. a) Základy logiky Zákony Booleovy algebry 1. Komutativní zákon duální forma a + b = b + a a. b = b. a 2. Asociativní zákon (a + b) + c = a + (b + c) (a.
MODERNIZACE VÝUKY PŘEDMĚTU ELEKTRICKÁ MĚŘENÍ
Projekt: MODERNIZCE VÝUK PŘEDMĚTU ELEKTRICKÁ MĚŘENÍ Úloha: Měření kombinačních logických funkcí kombinační logický obvod XOR neboli EXLUSIV OR Obor: Elektrikář slaboproud Ročník: 3. Zpracoval: Ing. Jiří
Logika. 2. Výroková logika. RNDr. Luděk Cienciala, Ph. D.
Logika 2. Výroková logika RNDr. Luděk Cienciala, Ph. D. Tato inovace předmětu Úvod do logiky je spolufinancována Evropským sociálním fondem a Státním rozpočtem ČR, projekt č. CZ. 1.07/2.2.00/28.0216, Logika:
Minimalizace logické funkce
VYSOKÉ UČENÍ TEHNIKÉ V RNĚ FKULT ELEKTROTEHNIKY KOMUNIKČNÍH TEHNOLOGIÍ Ústav mikroelektroniky LORTORNÍ VIČENÍ Z PŘEDMĚTU Digitální integrované obvody Minimalizace logické funkce Michal Krajíček Martin
1 Výroková logika 1. 2 Predikátová logika 3. 3 Důkazy matematických vět 4. 4 Doporučená literatura 7
1 Výroková logika 1 Výroková logika 1 2 Predikátová logika 3 3 Důkazy matematických vět 4 4 Doporučená literatura 7 Definice 1.1 Výrokem rozumíme každé sdělení, o kterém má smysl uvažovat, zda je, či není
Výroková logika. Sémantika výrokové logiky
Výroková logika Výroková logika se zabývá vztahy mezi dále neanalyzovanými elementárními výroky. Nezabývá se smyslem těchto elementárních výroků, zkoumá pouze vztahy mezi nimi. Elementární výrok je takový
Profilová část maturitní zkoušky 2015/2016
Střední průmyslová škola, Přerov, Havlíčkova 2 751 52 Přerov Profilová část maturitní zkoušky 2015/2016 TEMATICKÉ OKRUHY A HODNOTÍCÍ KRITÉRIA Studijní obor: 26-41-M/01 Elektrotechnika Zaměření: počítačové
mové techniky budov Osnova Základy logického Druhy signálů
Základy Systémov mové techniky budov Základy logického řízení Ing. Jan Vaňuš N 716 tel.: 59 699 1509 email: jan.vanus vanus@vsb.czvsb.cz http://sweb sweb.cz/jan.vanus Druhy signálů, Osnova, základní dělení
Y36SAP Y36SAP-2. Logické obvody kombinační Formy popisu Příklad návrhu Sčítačka Kubátová Y36SAP-Logické obvody 1.
Y36SAP 26.2.27 Y36SAP-2 Logické obvody kombinační Formy popisu Příklad návrhu Sčítačka 27-Kubátová Y36SAP-Logické obvody Logický obvod Vstupy a výstupy nabývají pouze hodnot nebo Kombinační obvod popsán
Úplný systém m logických spojek. 3.přednáška
Úplný sstém m logických spojek 3.přednáška Definice Úplný sstém m logických spojek Řekneme, že množina logických spojek S tvoří úplný sstém logických spojek, jestliže pro každou formuli A eistuje formule
LOGICKÉ ŘÍZENÍ. Matematický základ logického řízení. N Měřicí a řídicí technika 2012/2013. Logické proměnné
N4444 Měřicí a řídicí technika 22/23 LOGICKÉ ŘÍZENÍ matematický základ logického řízení kombinační logické řízení sekvenční logické řízení programovatelné logické automat Matematický základ logického řízení
Sémantika výrokové logiky. Alena Gollová Výroková logika 1/23
Výroková logika Alena Gollová Výroková logika 1/23 Obsah 1 Formule výrokové logiky 2 Alena Gollová Výroková logika 2/23 Formule výrokové logiky Výrok je oznamovací věta, o jejíž pravdivosti lze rozhodnout.
Mikroprocesorová technika (BMPT)
Mikroprocesorová technika (BMPT) Přednáška č. 10 Číselné soustavy v mikroprocesorové technice Ing. Tomáš Frýza, Ph.D. Obsah přednášky Číselné soustavy v mikroprocesorové technice Dekadická, binární, hexadecimální
Digitální obvody. Doc. Ing. Lukáš Fujcik, Ph.D.
Digitální obvody Doc. Ing. Lukáš Fujcik, Ph.D. Základní invertor v technologii CMOS dva tranzistory: T1 vodivostní kanál typ N T2 vodivostní kanál typ P při u VST = H nebo L je klidový proud velmi malý
SČÍTAČKA, LOGICKÉ OBVODY ÚVOD TEORIE
SČÍTAČKA, LOGICKÉ OBVODY ÚVOD Konzultanti: Peter Žilavý, Jindra Vypracovali: Petr Koupý, Martin Pokorný Datum: 12.7.2006 Naším úkolem bylo sestrojit pomocí logických obvodů (tzv. hradel) jednoduchou 4
Způsoby realizace této funkce:
KOMBINAČNÍ LOGICKÉ OBVODY U těchto obvodů je výstup určen jen výhradně kombinací vstupních veličin. Hodnoty výstupních veličin nezávisejí na předcházejícím stavu logického obvodu, což znamená, že kombinační
STRUKTURA POČÍTAČŮ JIŘÍ HRONEK, JIŘÍ MAZURA KATEDRA INFORMATIKY PŘÍRODOVĚDECKÁ FAKULTA UNIVERZITA PALACKÉHO
KATEDRA INFORMATIKY PŘÍRODOVĚDECKÁ FAKULTA UNIVERZITA PALACKÉHO STRUKTURA POČÍTAČŮ JIŘÍ HRONEK, JIŘÍ MAZURA VÝVOJ TOHOTO UČEBNÍHO TEXTU JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM
1. 5. Minimalizace logické funkce a implementace do cílového programovatelného obvodu CPLD
.. Minimalizace logické funkce a implementace do cílového programovatelného obvodu Zadání. Navrhněte obvod realizující neminimalizovanou funkci (úplný term) pomocí hradel AND, OR a invertorů. Zaznamenejte
Matematika pro informatiky KMA/MATA
Matematika pro informatiky KMA/MATA Informace k předmětu Mgr. Přemysl Rosa rosapr00@pf.jcu.cz, J349 Konzultační hodiny v ZS: úterý 10-11, čtvrtek 15-16 nebo individuálně po předchozí domluvě aktivní účast
Zvyšování kvality výuky technických oborů
Zvyšování kvality výuky technických oborů Klíčová aktivita V.2 Inovace a zkvalitnění výuky směřující k rozvoji odborných kompetencí žáků středních škol Téma V.2.1 Logické obvody Kapitola 14 Logická funkce
ČÍSELNÉ SOUSTAVY PŘEVODY
ČÍSELNÉ SOUSTAVY V každodenním životě je soustava desítková (decimální, dekadická) o základu Z=10. Tato soustava používá číslice 0, 1, 2, 3, 4, 5, 6, 7, 8 a 9, není však vhodná pro počítače nebo číslicové
Disjunktivní a konjunktivní lní tvar formule. 2.přednáška
Disjunktivní a konjunktivní normáln lní tvar formule 2.přednáška Disjunktivní normáln lní forma Definice Řekneme, že formule ( A ) je v disjunktivním normálním tvaru (formě), zkráceně v DNF, jestliže je
Sylabus kurzu Elektronika
Sylabus kurzu Elektronika 5. ledna 2004 1 Analogová část Tato část je zaměřena zejména na elektronické prvky a zapojení v analogových obvodech. 1.1 Pasivní elektronické prvky Rezistor, kondenzátor, cívka-
09. seminář logika (úvod, výroková).notebook. November 30, 2011. Logika
Logika 1 Logika Slovo logika se v češtině běžně používá ve smyslu myšlenková cesta, která vedla k daným závěrům. Logika je formální věda, zkoumající právě onen způsob vyvozování závěrů. Za zakladatele
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA STROJNÍHO INŽENÝRSTVÍ ÚSTAV AUTOMATIZACE A INFORMATIKY FACULTY OF MECHANICAL ENGINEERING INSTITUTE OF AUTOMATION AND COMPUTER SCIENCE
Univerzita Jana Evangelisty Purkyně Automatizace Téma: Datová komunikace. Osnova přednášky
Osnova přednášky 1) Základní pojmy; algoritmizace úlohy 2) Teorie logického řízení 3) Fuzzy logika 4) Algebra blokových schémat 5) Vlastnosti členů regulačních obvodů 6) Vlastnosti regulátorů 7) Stabilita
výrok-každésdělení,uněhožmásmyslseptát,zdaječinenípravdivé, aproněžprávějednaztěchtodvoumožnostínastává.
1 Základní pojmy matematické logiky Výrokový počet... syntaktické hledisko Predikátový počet... sémantické hledisko 1.1 VÝROKOVÝ POČET výrok-každésdělení,uněhožmásmyslseptát,zdaječinenípravdivé, aproněžprávějednaztěchtodvoumožnostínastává.
λογος - LOGOS slovo, smysluplná řeč )
MATA P1: Výroky, množiny a operace s nimi Matematická logika (z řeckého slova λογος - LOGOS slovo, smysluplná řeč ) Výrok primitivní pojem matematické logiky. Tvrzení, pro které má smysl otázka o jeho
Základy číslicové techniky z, zk
Základy číslicové techniky 2 + 1 z, zk Doc. Ing. Vlastimil Jáneš, CSc., K620 e-mail: janes@fd.cvut.cz K508, 5. patro, laboratoř, 2 2435 9555 Ing. Vít Fábera, K614 e-mail: fabera@fd.cvut.cz K508, 5. patro,
Matematika I. Přednášky: Mgr. Radek Výrut, Zkouška:
Přednášky: Mgr. Radek Výrut, Matematika I katedra matematiky, UL-605, rvyrut@kma.zcu.cz tel.: 377 63 2658 Zkouška: Písemná část zkoušky - příklady v rozsahu zápočtových prací Ústní část zkoušky - základní
Základy logiky a teorie množin
Pracovní text k přednášce Logika a teorie množin (I/2007) 1 1 Struktura přednášky Matematická logika 2 Výroková logika Základy logiky a teorie množin Petr Pajas pajas@matfyz.cz Predikátová logika 1. řádu
Výrazy a operátory. Operátory Unární - unární a unární + Např.: a +b
Výrazy a operátory i = 2 i = 2; to je výraz to je příkaz 4. Operátory Unární - unární a unární + Např.: +5-5 -8.345 -a +b - unární ++ - inkrement - zvýší hodnotu proměnné o 1 - unární -- - dekrement -
Základní jednotky používané ve výpočetní technice
Základní jednotky používané ve výpočetní technice Nejmenší jednotkou informace je bit [b], který může nabývat pouze dvou hodnot 1/0 (ano/ne, true/false). Tato jednotka není dostatečná pro praktické použití,
MATA Př 3. Číselné soustavy. Desítková soustava (dekadická) základ 10, číslice 0, 1, 2, 3, 4, 5, 6, 7, 8, 9.
MATA Př 3 Číselné soustavy Poziční číselná soustava je dnes převládající způsob písemné reprezentace čísel dokonce pokud se dnes mluví o číselných soustavách, jsou tím obvykle myšleny soustavy poziční.
Matematická analýza 1
Matematická analýza 1 ZS 2019-20 Miroslav Zelený 1. Logika, množiny a základní číselné obory 2. Limita posloupnosti 3. Limita a spojitost funkce 4. Elementární funkce 5. Derivace 6. Taylorův polynom Návod
Vektorový prostor. Př.1. R 2 ; R 3 ; R n Dvě operace v R n : u + v = (u 1 + v 1,...u n + v n ), V (E 3 )...množina vektorů v E 3,
Vektorový prostor Příklady: Př.1. R 2 ; R 3 ; R n...aritmetický n-rozměrný prostor Dvě operace v R n : součet vektorů u = (u 1,...u n ) a v = (v 1,...v n ) je vektor u + v = (u 1 + v 1,...u n + v n ),
Data v počítači. Informační data. Logické hodnoty. Znakové hodnoty
Data v počítači Informační data (elementární datové typy) Logické hodnoty Znaky Čísla v pevné řádové čárce (celá čísla) v pohyblivé (plovoucí) řád. čárce (reálná čísla) Povelová data (instrukce programu)
Výroková a predikátová logika - II
Výroková a predikátová logika - II Petr Gregor KTIML MFF UK ZS 2017/2018 Petr Gregor (KTIML MFF UK) Výroková a predikátová logika - II ZS 2017/2018 1 / 17 Předběžnosti Základní pojmy n-ární relace a funkce
LOGICKÉ OBVODY J I Ř Í K A L O U S E K
LOGICKÉ OBVODY J I Ř Í K A L O U S E K Ostrava 2006 Obsah předmětu 1. ČÍSELNÉ SOUSTAVY... 2 1.1. Číselné soustavy - úvod... 2 1.2. Rozdělení číselných soustav... 2 1.3. Polyadcké číselné soustavy... 2
M - Výroková logika VARIACE
M - Výroková logika Autor: Mgr. Jaromír Juřek Kopírování a další šíření povoleno pouze s uvedením odkazu na www.jarjurek.cz. VARIACE 1 Tento dokument byl kompletně vytvořen, sestaven a vytištěn v programu
Číselné soustavy a převody mezi nimi
Číselné soustavy a převody mezi nimi Základní požadavek na počítač je schopnost zobrazovat a pamatovat si čísla a provádět operace s těmito čísly. Čísla mohou být zobrazena v různých číselných soustavách.
Aut 2- úvod, automatické řízení, ovládací technika a logické řízení
Předmět: Ročník: Vytvořil: Datum: AUTOMATIZACE DRUHÝ ZDENĚK KOVAL Název zpracovaného celku: 30. 10. 2012 Aut 2- úvod, automatické řízení, ovládací technika a logické řízení 1. ÚVOD DO AUTOMATICKÉHO ŘÍZENÍ
Osnova přednášky. Univerzita Jana Evangelisty Purkyně Základy automatizace Stabilita regulačního obvodu
Osnova přednášky 1) Základní pojmy; algoritmizace úlohy 2) Teorie logického řízení 3) Fuzzy logika 4) Algebra blokových schémat 5) Vlastnosti členů regulačních obvodů 6) Vlastnosti regulátorů 7) 8) Kvalita
Algoritmizace a programování
Algoritmizace a programování Výrazy Operátory Výrazy Verze pro akademický rok 2012/2013 1 Operace, operátory Unární jeden operand, operátor se zapisuje ve většině případů před operand, v některých případech
V počítači jsou jen jednotky a nuly
V počítači jsou jen jednotky a nuly Obsah 1. Dvojková číselná soustava 2. Základy práce v dvojkové soustavě 3. Booleova algebra, logické funkce a binární číslice (bity) 4. Základní logické operátory 5.
Zvyšování kvality výuky technických oborů
Zvyšování kvality výuky technických oborů Klíčová aktivita V.2 Inovace a zkvalitnění výuky směřující k rozvoji odborných kompetencí žáků středních škol Téma V.2.1 Logické obvody Kapitola 11 Logická funkce
Žáci mají k dispozici pracovní list. Formou kolektivní diskuze a výkladu si osvojí způsoby algebraické minimalizace a využití Booleovy algebry
Číslo projektu Číslo materiálu Náev školy Autor Náev Téma hodiny Předmět Ročník /y/ CZ..07/.5.00/4.04 VY INOVACE_8_ČT_.08_ algebraická minimaliace Střední odborná škola a Střední odborné učiliště, Hustopeče,
Logické operace. Datový typ bool. Relační operátory. Logické operátory. IAJCE Přednáška č. 3. může nabýt hodnot: o true o false
Logické operace Datový typ bool může nabýt hodnot: o true o false Relační operátory pravda, 1, nepravda, 0, hodnoty všech primitivních datových typů (int, double ) jsou uspořádané lze je porovnávat binární
ČÍSLICOVÁ TECHNIKA UČEBNÍ TEXTY
Číslicová technika- učební texty. (HS určeno pro SPŠ Zlín) Str.: - - ČÍSLIOVÁ TEHNIK UČENÍ TEXTY (Určeno pro vnitřní potřebu SPŠ Zlín) Zpracoval: ing. Kovář Josef, ing. Hanulík Stanislav Číslicová technika-
Každé formuli výrokového počtu přiřadíme hodnotu 0, půjde-li o formuli nepravdivou, a hodnotu 1, půjde-li. α neplatí. β je nutná podmínka pro α
1. JAZYK ATEATIKY 1.1 nožiny nožina je souhrn objektů určitých vlastností, které chápeme jako celek. ZNAČENÍ. x A x A θ A = { { a, b a A = B A B 0, 1 2 a, a,..., a n x patří do množiny A x nepatří do množiny
Výroková a predikátová logika - II
Výroková a predikátová logika - II Petr Gregor KTIML MFF UK ZS 2015/2016 Petr Gregor (KTIML MFF UK) Výroková a predikátová logika - II ZS 2015/2016 1 / 18 Základní syntax Jazyk Výroková logika je logikou
Číslo materiálu. Datum tvorby Srpen 2012
Číslo projektu Číslo materiálu Název školy Autor Tematická oblast Ročník CZ.1.07/1.5.00/34.0581 VY_32_INOVACE_CTE_2.MA_03_Převod čísel mezi jednotlivými číselnými soustavami Střední odborná škola a Střední
Převody mezi číselnými soustavami
Převody mezi číselnými soustavami 1. Převod čísla do dekadické soustavy,kde Z je celé číslo, pro které platí a Řešením je převod pomocí Hornerova schématu Příklad: Převeďte číslo F 3 = 2101 do soustavy