Stabilita atomového jádra. Radioaktivita
|
|
- Nikola Kubíčková
- před 10 lety
- Počet zobrazení:
Transkript
1 Stbilit tomového jádr Rdioktivit Proton Kldný náboj kg Stbilní Atomové jádro Protony & Neutrony Neutron Bez náboje kg Dlouhodobě stbilní jen v jádře
2 Struktur jádr A Z N A nukleonové číslo Z protonové číslo N neutronové číslo A Z X Nuklid tom o určitých číslech Z & N Isotopy nuklidy prvku s různým počtem neutronů Nestbilní isotopy se nzývjí rdioktivní Izotopy Atomy, jejichž jádr mjí stejný počet protonů ( jádr jednoho prvku), odlišují se všk počtem neutronů Velmi podobné fyzikální chemické vlstnosti (kromě rdioktivních), neboť chemické vlstnosti závisejí n struktuře tomového oblu, tj. počtu elektronů, který je roven počtu protonů, tj. totožný pro izotopy Rozdílná hmotnost jádr rozdílná hustot chemických látek s různými izotopy možnost seprce izotopů Rdioktivit odlišných izotopů je výrzně odlišná! Příkldy H H D H T lehký vodík (obyčejný) těžký vodík (deuterium) supertěžký vodík (tritium)- rdioktivní
3 Izobry Atomy, jejichž jádr mjí stejný počet nukleonů, le odlišují se počtem protonů ( jádr odlišných prvků) Přibližně stejná hmotnost jádr Odlišné chemické vlstnosti (jádr odlišných prvků) Přechod mezi sousedními izobry zprostředkovává rozpd β (β -, β ) Příkldy 60 8 Ni 60 7 Co 8 U 8 9 9Np 8 U 8 9 9Pu Izomery Atomy (jádr) o stejném protonovém i neutronovém čísle, které se všk liší energetickým stvem jádr Obdobně jko elektrony tomového oblu mohou obszovt různé energetické hldiny, mohou i protony neutrony obszovt různé jderné energetické hldiny Přechod mezi izomery (z ecitovného stvu do nižšího nebo přímo nejnižšího zákldního stvu) zprostředkovává rozpd γ, tj. vyslání vysokoenergetického fotonu Příkld 99 Tc 99 Tc m ( 99 Tc * ) metstbilní (ecitovné) technecium
4 Jádro: Stbilit vs. poměr N/Z Je známo 000 různých nuklidů, z nichž pouze 66 je stbilních! prvky se Z > 8 nejsou stbilní! Stbilitu vykzuji jádr s N Z, pro vyšší Z pk spíše N > Z. (el.-stt. repulze protonů) Neutronové číslo N Line Linie of stbility Stbility Poslední stble stbilní element prvek Z 8 (Bi) N Z 50 Protonové číslo Z 00 Interkce v jádře Elektrosttická - působí mezi souhlsně nbitými protony odpudivá Silná jderná - působí mezi všemi nukleony, přitžlivá, nejsilnější známá síl - krátký dosh (jen v rámci jádr, tj. c. 0-5 m) - projevují nsycenost (působí jen n určitý počet nukleonů v okolí)
5 Slupkový model Modely jádr podobně jko elektrony obszují energetické hldiny- slupky (orbitly), tk i v jádře eistují energetické hldiny pro protony neutrony. Jádro je stbilní, pokud jsou obszeny nejnižší slupky. Kpkový model Jádro je jko kpk vody. Síly uvnitř kpky musí být v rovnováze s vnějšími silmi. Hmotnost tomu Proton neutron mjí téměř shodnou hmotnost, která je 80 krát větší než hmotnost elektronů Hmotnost jádr je dán počtem nukleonů mtom Zmp Nmn Zme m p, kg mj Zmp Nmn m n, kg ( Z N) m Am m e 9,.0 - kg p p Uvedené vzthy jsou velice přibližné, protože nezohledňuje změnu hmotnosti jádr působením vzebné jderné energie v důsledku silných jderných interkcí- tzv. hmotnostní deficit
6 Hmotnostní deficit (defekt) m Při vytvoření jádr ze Z protonů N neutronů se uvolní vzebná energie E J, tj. sníží se energie vzniklého jádr výsledné jádro je lehčí než součet hmotností nukleonů Snížení je úměrné uvolněné vzebné energii stbilní jádr jsou výrzněji lehčí, než součet hmotností nukleonů m Zm Nm m EJ m c Atomová hmotnostní jednotk definován jko / hmotnosti tomu izotopu C m u, kg J p (m u..n A ) M( C) n Hmotnostní deficit (defekt) m neutron proton deuterium hmotnost hmotnost Při rekci se ztrtil hmot- přeměn n vzebnou energii jádr deuteri. Při rekci se uvolní energie, MeV ve formě záření zvýšené kinetické energie deuteri ( teplo)
7 Hmotnostní deficit (defekt) m Jk velká je jderná vzebná energie v tomu izotopu C? Hmotnost tomu C je podle definice přesně rovn m u m(jádro) m u 6.m e m J Zm m Zm m 6m m 6.,676.0 m,65.0 p p p E mc,86.0,60.0 Nm Nm 6m (m kg, n n n 8 m m 7 J 6me) 6., (.0 ) ev 9,7 MeV u. 8 7., J,86.0 J 7 6.9,09.0 7,7 MeV / nukleon (viz dále) kg Energie, která se uvolní, když protony neutrony vytvoří jádro tomu. Odpovídá hmotnostnímu úbytku jádr E mc vyjdřuje se v jednotkách MeV nebo J/mol Vzebná energie vzebná energie jádr C: E,86.0,86.0 E, ,0.0 8,95.0 ev 9,7 MeV J / mol 8,95TJ / mol
8 Vzebná energie / nukleon ( MeV) A Bi Nukleonové číslo A Vzebná energie n jeden nukleon doshuje mim při A 56. (Fe) nejstbilnější jádro Je možné získt energii: ) srážkou dvou lehkých jder: (termo)jderná fúze b) rozpdem těžkého jádr (A~00) n dvě lehčí jádr (A~60): štěpná rekce Štěpná rekce po nárzu pomlého neutronu (E<0, ev) se tom urnu rozštěpí n dvě menší jádr, uvolní se energie (c. 00 MeV) kromě toho tké ž neutrony. Možná štěpení: 5 9 n U B Kr n B 6 Kr L 5 Br 0 n 0 n 0 Vzniklé neutrony mohou ktivovt dlší jádr urnu dochází k řetězové štěpné rekci (k tomu nutné jisté minimální množství štěpného mterilu (kritická hmotnost)).
9 Štěpná rekce Jderné elektrárny: jderná rekce je řízen pomocí řídících tyčí, které jsou vyrobeny z mteriálu, který dobře bsorbuje neutrony (B, Cd) plný výkon střední výkon zástv rektoru Moderátor slouží ke zpomlování neutronů, používá se lehká (H O) nebo těžká (D O) vod Termojderná fúze eoenergetická jderná syntéz velká el.-stt. repulze mezi jádry nutnost vysoké teploty (min. 0 6 K) hvězdy, vodíková bomb, řízená termojderná fúze pouze ve stdiu eperimentů npř.: H H H p,0mev H H He 0 n 7,6MeV TOKAMAK:
10 Termojderná fúze n hvězdách Mtemtická vložk: eponenciální logritmické funkce
11 Eponenciální funkce - vlstnosti f ( ) f ( ) Logritmická funkce Logritmem o zákldu nzveme funkci inverzní k znčíme ji: f ( ) log y log y f ( ) logritmus čísl o zákldu je tkové číslo y, pro které pltí v : V přírodních vědách mjí význm pouze logritmy se zákldy: 0 (dekdický log) f ( ) log 0 log e (,78) (přirozený logritmus) f ( ) loge ln > 0,
12 Eponenciální logritmická funkce, > y f ( ) Logritmus je inverzní funkce k funkci eponenciální jejich grfy jsou symetrické podle osy.. kvdrntu > : funkce není omezená funkce je rostoucí f ( ) log funkce je prostá nemá lokální etrémy vždy prochází bodem [,0] Pozn.: e > ; 0 > Eponenciální logritmická funkce, < y Logritmus je inverzní funkce k funkci eponenciální jejich grfy jsou symetrické podle osy.. kvdrntu f ( ) < : funkce není omezená ( > 0) funkce je klesjící funkce je prostá nemá lokální etrémy f ( ) log vždy prochází bodem [,0]
13 Vlstnosti eponentů logritmů : ( ) ( b) b b b log log ( ) log log log log log log n r r log log n log b log log b ln ( e ) log0 log e 0 () log( 0 ) 0 Příkldy logritmů: ln ( ) log0 log 0 log(0.0 ) log(0 ) log(0 ) 5 log ln ( ) log0. ( 0,) log( 0 ) ln( ).ln( ) ln log 0
14 Eponenciální logritmické rovnice Vyřešte rovnici Součty nelze zlogritmovt mocniny mjí různé zákldy. Je třeb rovnici nejprve nějk uprvit: log log 0 log 0,7 log 0,75 Logritmická stupnice f ( ) je v nekonečnu
15 Logritmická stupnice Dekdická stupnice T smá dt v dekdické stupnici mlé píky vůbec nejsou vidět! Logritmická stupnice
16 Rychlost rozpdu jder Kromě typu částic, které jsou emitovány při rozpdu jder se tké zjímáme o to jká je rychlost rozpdu dného nuklidu. Nemůžeme předpovědět, kdy se určité jádro rozpdne, le pouze prvděpodobnost jeho rozpdu v určitém čse! Máme-li větší množství rdioktivní látky, po dném čse se rozpdne množství látky, které můžeme předem vypočítt. Některá rdioktivní jádr mjí velice vysokou rychlost rozpdu, ztímco jiná mohou mít velice nízkou rychlost rozpdu. Ke kvntifikci rychlosti rozpdu jder se používjí veličiny: Poločs rozpdu Přeměnová konstnt Střední dob život jádr Poločs rozpdu Poločs rozpdu (T / ) je čs, z který se rozpdne polovin všech jder rdioktivního mteriálu. Příkld: předpokládejme 0,000 tomů rdioktivního látky. Jestliže je poločs rozpdu T / hodin, kolik tomů rdioktivní látky bude zbývt po: Čs hodin ( T / )? počet nerozp. tomů % nerozp. tomů 0,000 (50%) hodin ( T / )? hodin ( T / )? 5,000 (5%),500 (.5%)
17 Zákon rdioktivní přeměny Počet jder N, která se při jderných přeměnách rozpdnou v čse ve velice krátké čse t: N -λ.n. t N N 0.e -λt N 0 počáteční počet částic N počet nerozpdlých částic v čse t λ přeměnová konst. částice (reltivní úbytek částic z s) n(t)/n λt Vzth mezi přeměnovou konstntou λ poločsem rozpdu T / : V čse T / pltí: N N 0 e λ. t e λ. T / - ln - λ.t / λ ln / T / 0,69/T /
18 Aktivit rdioktivního zářiče Aktivit rdioktivního zářiče je dán počtem přeměněných jder z jednotku čsu: A N / t λ.n. t / t λ.n Jednotk ktivity: becquerel (Bq)- odpovídá jedné přeměně z s. Aktivit zářiče se mění s čsem: A A 0.e -λ.t A 0. Aktivit zářiče n počátku Aktivit látky Jká je ktivit g rádi 6 R o poločsu rozpdu 600 roků? ln mn A() t λ n() t A 0 λn0 λ N0 T M rok,6.0 7 s A A 0 ln mn T M,7.0 0 A s 0, ,6.0, g.6,0.0 mol s 6 gmol. Bq Ci
19 Střední dob život τ Střední dob život volného neutronu je.7 minuty {τ (neutron).7 min.} τ /λ.*t / N / N 0 e -t/τ Čs (doby život) 0τ τ τ τ τ 5τ Čs (min) Podíl nerozpdlých neutronů podíl Frction nerozpdlých Survived jder počet středních Lifetimes dob život Po Po uplynutí -5-5 dob život jsou jsou už už téměř všechny částice rozpdlé! Střední dob život Kždá částice má svou chrkteristickou střední dobu život- velké rozdíly: U má střední dobu život si si6 biliónů (60 9 )) let! --některé subtomární částice mjí střední doby život menší než s s!! Mámeli soubor nestbilních částic, nemůžeme říci, která částice se se kdy konkrétně rozpdne Proces rozpdu se se chová sttisticky. Můžeme pouze předpovědět: ) ) střední dobu život rdioktivní látky nebo ) ) prvděpodobnost rozpdu dné konkrétní částice.
20 Typy záření Alf Největší částice Pohlceno kůží, interně smrtelné Dolet ve vzduchu: cm Bet Pohlceno hliníkovou fólií Dolet ve vzduchu: m Gm Pohlceno pouze dosttečně silnou vrstvou olov či betonu Rdioktivní rozpd α Emitování jádr héli z jádr těžkého tomu (A >50) jeho trnsmutce přeměn n jiný prvek A Z X D A Z He 6-88R 86Rn He 08-8Bi 8Tl He Rn 86 6 R 88 Částice α He Dceřinné jádro Vzniklý těžký nion má Z elektronů Z- protonů náboj - Z zákon zchování energie hybnosti je jednoznčně určen energie částice α i dceřinného jádr. Díky vysoké hmotnosti částice α dochází ke zpětnému rázu, jádro získává dosttečnou energii k ionizci
21 Rdioktivní rozpd α Dolet R / / R konst. E k, [ konst.] m MeV Jádro Poločs rozpdu α v s E k v MeV 8 Po, ,776 8 Po R Am 0,5 5,.0 0,8.0 7, 5,68 5,5 Dceřinné jádro má přesně určenou energii! Rdioktivní rozpd β - Podsttou rozpdu β - je přeměn neutronu n proton, elektron elektronové ntineutrino 0 n p 0 e - - ν e Částice β (β - ) Poločs rozpdu volného neutronu je 5 minut Hmotnost neutronu je vyšší než hmotnost protonu elektronu může docházet k smovolnému rozpdu K β - rozpdu dochází při reltivním ndbytku neutronů (vzhledem k počtu protonů) v jádře - e A X A Z X 0 - Z e - ν C e N 0 e ν e (Anti)neutrin jsou téměř nedetekovtelná
22 Rdioktivní rozpd β - Energetické spektrum β elektronů je spojité on nulové hodnoty ž po mimální Tříčásticový rozpd Zákon zchování energie hybnosti Mimální energie vyzářených elektronů: 0,0 MeV u triti H, MeV u boru 5B Nejtěžší izotop podléhjící β - rozpdu α rozpd Es, konkurencí Rdioktivní rozpd β Podsttou rozpdu β je přeměn protonu n neutron, pozitron elektronové neutrino 0 ( p ) ( 0n) e ν e Částice β e Hmotnost protonu je vyšší než hmotnost neutronu nemůže docházet k smovolnému rozpdu volného protonu, le může k této přeměně docházet pouze v jádře tomu K β rozpdu dochází při reltivním ndbytku protonů (vzhledem k počtu neutronů) v jádře Všechny β rdionuklidy jsou umělé (využití: npř. PET) A Z X X e ν C ν A 0 0 Z e 6 5 e B e
23 Částice ntičástice Ke kždé částici eistuje ntičástice (někdy je identická s částicí), která má stejnou hmotnost, le opčné hodnoty elektrického náboje dlších nábojů čísel Proton p, ntiproton p - Elektron e -, pozitron e Elektronové neutrino ν e, elektronové ntineutrinoν e (obojí elektricky neutrální) Při srážce částice s ntičásticí dochází k nihilci, částice ntičástice zniknou uvolněná energie se vyzáří ve formě dvou fotonů γ letících opčnými směry e - e γ m c 0,5 MeV Využito v PET (pozitronová emisní tomogrfie) E γ e Pozitronová emisní tomogrfie (PET) e se prkticky ihned po emisi s jádr srzí s e - nihilce- vznik dvou γ fotonů o přesně stejné energii (5 kev), které se šíří přesně opčným směrem výhod: přesná detekce v klinické pri nejčstěji využívná -fluoro--deoy-dglukóz (8FDG)- znčení pomocí 8 F
24 PET mozková ktivit: při poslechu při čtení Rdioktivní rozpd β - záchyt K Zchycení elektronu z první slupky oblu (slupk K) jádrem následná jderná rekce A Z X 0 - A -e Z X ν e Přeměn tomu, změn protonového čísl jko při rozpdu β Br -e Se ν e
25 Rdioktivní záření γ Vzniká v jádře tomů při změně energetického stvu jádr následek emise či bsorbce částice Nedochází ke změně hmoty jádr Vlnová délk λ < 00 pm Energie 00 kev ž 0 MeV Silně ionizující Fotoelektrický jev (dominntní do 0,5 MeV) Comptonův rozptyl (dominntní 0,5 5 MeV) Tvorb elektron pozitronových párů (e -, e ) Opčný proces k nihilci páru částice ntičástice Pouze u fotonů s energií větší než m e c MeV Pouze z účsti interkce s dlší částicí (tomem) γ e - e Vnitřní konverze záření γ γ foton emitovný jádrem vyrzí elektron z vnitřní vrstvy tomového oblu Těžký tom vysoké protonové číslo velká elektrosttická energie vnitřních elektronů Vyržený elektron s velkou energií je schopen ionizovt prostředí- Augerův elektron Přeskok elektronu z vyšší vrstvy n uvolněné místo vnitřní vrstvy vznik RTG záření γzářič může být zdrojem sekundárního záření β RTG záření
26 Zákony zchování Jderné rekce A A A A Z X Y X Y Z Z Z Počtu nukleonů A A A A Elektrického náboje Z Z Z Z Protonové číslo se nezchovává, pokud dochází k přeměně mezi protonem neutronem, jink no Zchovává se pseudoprotonové číslo, které vychází z náboje elementárních částic zchování náboje Energie 7 He 7N 8O H Hybnosti 7 α 7 N 8O p Momentu hybnosti N( α,p) 7 O 7 8 Přirozená rdioktivit Rdice je všudypřítomná. Mnoho nerostů, zvláště žul, obshuje mlé množství urnu, jehož rozpdem vzniká rdioktivní plyn rdon. Slunce dlší vesmírné objekty jsou zdroji rdice, jež částečně projde tmosférou ž n zemský povrch. Umělá rdioktivit Rdioktivní zdroje se používjí npř. ve zdrvotnictví Jderné zbrně, jderná zřízení
27 Rdionuklidy přírodní rdionuklidy -primární - druhotné - kosmogenní umělé rdionuklidy Primární rdionuklidy (původní, fosilní) vznikly při kosmické nukleogenezi termonukleárními rekcemi v nitrech hvězd, které pk vybuchly obohtily zárodečný oblk, z něhož vzniklo nše Slunce sluneční soustv. Součástí Země se tk stly při formování Sluneční soustvy před cc -5 milirdmi let. Do dnešní doby se ovšem zchovly pouze ty rdionuklidy, které mjí velmi dlouhý poločs rozpdu. Nejrozšířenějším primárním rdionuklidem je drslík 0 K, dlším přírodním primárním rdionuklidem je thorium Th. Nejvýznmnějšími přírodními rdionuklidy tohoto primárního původu v zemské kůře jsou všk urn 8 U urn 5 U
28 Druhotné rdionuklidy - rozpdové produkty primárních rdionuklidů. - přírodní rdionuklidy Th, 8 U 5 U se rozpdjí n jádr, která jsou tké rdioktivní, stejně jko jejich dlší dlší rozpdové produkty. Přírodní rdionuklidy tvoří rozpdové řdy.. neptuniová řd je odvozen uměle od připrveného trnsurnového prvku plutoni): Urnov ová řd: 8 Aktiniová řd : 5 8 9U Pb 5 9U Pb Thoriov ová řd : 90Th 08 8Pb (Neptuniová řd : 9Pu 09 8Pb Pb) 8 U 06 Pb β záření α záření
29 Kosmogenní rdionuklidy - přírodní rdionuklidy, které průběžně vznikjí jdernými rekcemi při průchodu vysokoenergetického kosmického záření zemskou tmosférou. Npř.: uhlík C (rdiokrbonová metod určování stáří rcheologických předmětů) tritium H (vyráběn i uměle pro potřeby lékřství biologie) Některé nuklidy: více možných rdioktivních přeměn 7 Al 0γ 0 7 Al* 6 Mg 5 Mg p 0n p N He
30 Poždvky n vlstnosti rdionuklidů dle využití: Stbilní eterní zářič Poždujeme čsově neproměnnou, konstntní ktivitu (pouze přibližně, s čsem klesá)- npř. Leksselův Gm nůž Látky s dlouhým poločsem rozpdu Interní zářič Použití pro znčení chemických látek pro stopování (trcing), rdioimmunossy (RIA), pozitronovou emisní tomogrfii (PET), jednofotonovou emisní výpočetní tomogrfii (SPECT) Krátký poločs rozpdu (rychlé odbourání) Dosttečná rdioktivit pro dignostiku vs. co nejnižší dávk pro orgnismus Výrob umělých rdionuklidů
31 Využití rdionuklidů Znčení sloučenin- studium jejich biochemických přeměn, distribuce trnsportu v živých orgnismech Zdroje záření - rdioterpie (ozářování nádorů), resturátorství (proti červotočům). 60 Co (T / 5,6 let, zdroj záření β - zejmén γ. Rdiochemická nlýz- bsolutní měření rdioktivity nebo specifické rdioktivity. Npř. určení stáří orgnických mteriálů ( C dtovcí metod). Anlytická (bio)chemie: zřeďovcí, derivční, sturční, ktivční nlýz Rdionuklidy v nlytické biochemii zřeďovcí nlýz: známé množství rdiokt. nlogu sloučeniny, kterou chceme stnovit. Po ustnovení rovnováhy izolci se vypočítá koncentrce n zákldě poklesu rdioktivity derivční nlýz: rekce látky A s přebytkem znčené látky B*. Poté odstrnění přebytku látky B*. Rdioktivit AB* je úměrná množství látky A přítomnému n počátku. Npř.: imunochemie (interkce ntigenu s protilátkou) sturční nlýz: K látce A se přidá její rdioktivní nlog A* mlé množství látky B. Po ustvení rovnováhy se přebytek látky A odstrní změří se rdioktivit. Obě formy látky A soutěží o vzebná míst látky B, tkže poměr AB/ A*B je úměrný stnovovnému množství neznčené látky A Npř.: rdioimunoesej (stnovení hormonů, toinů, pesticidů, vitmínů). ktivční nlýz: Anlyzovný vzorek se v jderném rektoru vyství proudu neutronů, které část tomů přemění n jejich rdioktivní izotopy. Anlýz následného rdiokt. záření
Vlastnosti atomových jader Radioaktivita. Jaderné reakce. Jaderná energetika
Jaderná fyzika Vlastnosti atomových jader Radioaktivita Jaderné reakce Jaderná energetika Vlastnosti atomových jader tomové jádro rozměry jsou řádově 1-15 m - složeno z protonů a neutronů Platí: X - soustředí
RADIOAKTIVITA KAP. 13 RADIOAKTIVITA A JADERNÉ REAKCE. Typy radioaktivního záření
KAP. 3 RADIOAKTIVITA A JADERNÉ REAKCE sklo barvené uranem RADIOAKTIVITA =SCHOPNOST NĚKTERÝCH ATOMOVÝCH JADER VYSÍLAT ZÁŘENÍ přírodní nuklidy STABILNÍ NKLIDY RADIONKLIDY = projevují se PŘIROZENO RADIOAKTIVITO
JADERNÁ FYZIKA. Mgr. Jan Ptáčník - GJVJ - Fyzika - Fyzika mikrosvěta - 3. ročník
JADERNÁ FYZIKA Mgr. Jan Ptáčník - GJVJ - Fyzika - Fyzika mikrosvěta - 3. ročník Základní pojmy Jaderná síla - drží u sebe nukleony, velmi krátký dosah, nasycení Vazebná energie jádra: E V = ( Z m p + N
Chemie. Mgr. Petra Drápelová Mgr. Jaroslava Vrbková. Gymnázium, SOŠ a VOŠ Ledeč nad Sázavou
Chemie Mgr. Petra Drápelová Mgr. Jaroslava Vrbková Gymnázium, SOŠ a VOŠ Ledeč nad Sázavou JÁDRO ATOMU A RADIOAKTIVITA VY_32_INOVACE_03_3_03_CH Gymnázium, SOŠ a VOŠ Ledeč nad Sázavou Atomové jádro je vnitřní
3. Radioaktivita. Při radioaktivní přeměně se uvolňuje energie. X Y + n částic. Základní hmotnostní podmínka radioaktivity: M(X) > M(Y) + M(ČÁSTIC)
3. Radioaktivita >2000 nuklidů; 266 stabilních radioaktivita samovolná přeměna na jiný nuklid (neplatí pro deexcitaci jádra) pro Z 20 N / Z 1, poté postupně až 1,52 pro 209 Bi, přebytek neutronů zmenšuje
Logaritmická funkce teorie
Výukový mteriál pro předmět: MATEMATIKA reg. č. projektu CZ..07/..0/0.0007 Logritmická funkce teorie Eponenciální funkce je funkce prostá, proto k ní eistuje inverzní funkce. Tto inverzní funkce se nzývá
13. Exponenciální a logaritmická funkce
@11 1. Eponenciální logritmická funkce Mocninná funkce je pro r libovolné nenulové reálné číslo dán předpisem f: y = r, r R, >0 Eponent r je konstnt je nezávisle proměnná. Definičním oborem jsou pouze
Hlavní body - magnetismus
Mgnetismus Hlvní body - mgnetismus Projevy mgt. pole Zdroje mgnetického pole Zákldní veličiny popisující mgt. pole Mgnetické pole proudovodiče - Biotův Svrtův zákon Mgnetické vlstnosti látek Projevy mgnetického
Životní prostředí pro přírodní vědy RNDr. Pavel PEŠAT, PhD.
Životní prostředí pro přírodní vědy RNDr. Pavel PEŠAT, PhD. KAP FP TU Liberec pavel.pesat@tul.cz tel. 3293 Radioaktivita. Přímo a nepřímo ionizující záření. Interakce záření s látkou. Detekce záření, Dávka
Zavedení a vlastnosti reálných čísel PŘIROZENÁ, CELÁ A RACIONÁLNÍ ČÍSLA
Zvedení vlstnosti reálných čísel Reálná čísl jsou zákldním kmenem mtemtické nlýzy. Konstrukce reálných čísel sice není náplní mtemtické nlýzy, le množin reálných čísel R je pro mtemtickou nlýzu zákldním
Relativistická dynamika
Relativistická dynamika 1. Jaké napětí urychlí elektron na rychlost světla podle klasické fyziky? Jakou rychlost získá při tomto napětí elektron ve skutečnosti? [256 kv, 2,236.10 8 m.s -1 ] 2. Vypočtěte
ATOMOVÁ FYZIKA JADERNÁ FYZIKA
ATOMOVÁ FYZIKA JADERNÁ FYZIKA 12. JADERNÁ FYZIKA, STAVBA A VLASTNOSTI ATOMOVÉHO JÁDRA Autor: Ing. Eva Jančová DESS SOŠ a SOU spol. s r. o. JADERNÁ FYZIKA zabývá strukturou a přeměnami atomového jádra.
Přednášky z lékařské biofyziky Biofyzikální ústav Lékařské fakulty Masarykovy univerzity, Brno
Přednášky z lékařské biofyziky Biofyzikální ústav Lékařské fakulty Masarykovy univerzity, Brno 1 Přednášky z lékařské biofyziky Biofyzikální ústav Lékařské fakulty Masarykovy univerzity, Brno Struktura
Radioaktivita,radioaktivní rozpad
Radioaktivita,radioaktivní rozpad = samovolná přeměna jader nestabilních nuklidů na jiná jádra, za současného vyzáření neviditelného radioaktivního záření Výskyt v přírodě v přírodě se vyskytuje 264 stabilních
Atomová a jaderná fyzika
Mgr. Jan Ptáčník Atomová a jaderná fyzika Fyzika - kvarta Gymnázium J. V. Jirsíka Atom - historie Starověk - Démokritos 19. století - první důkazy Konec 19. stol. - objev elektronu Vznik modelů atomu Thomsonův
Prvek, nuklid, izotop, izobar
Prvek, nuklid, izotop, izobar A = Nukleonové (hmotnostní) číslo A = počet protonů + počet neutronů A = Z + N Z = Protonové číslo, náboj jádra Frederick Soddy (1877-1956) NP za chemii 1921 Prvek = soubor
Rozměr a složení atomových jader
Rozměr a složení atomových jader Poloměr atomového jádra: R=R 0 A1 /3 R0 = 1,2 x 10 15 m Cesta do hlubin hmoty Složení atomových jader: protony + neutrony = nukleony mp = 1,672622.10 27 kg mn = 1,6749272.10
8.1 Elektronový obal atomu
8.1 Elektronový obal atomu 8.1 Celkový náboj elektronů v elektricky neutrálním atomu je 2,08 10 18 C. Který je to prvek? 8.2 Dánský fyzik N. Bohr vypracoval teorii atomu, podle níž se elektron v atomu
Logaritmické rovnice I
.9.9 Logritmické rovnice I Předpokldy: 95 Pedgogická poznámk: Stejně jko u eponenciálních rovnic rozkldů n součin bereme ritmické rovnice jko nácvik výběru metody. Sestvujeme si rzenál metod n konci máme
2. Atomové jádro a jeho stabilita
2. Atomové jádro a jeho stabilita Atom je nejmenší hmotnou a chemicky nedělitelnou částicí. Je tvořen jádrem, které obsahuje protony a neutrony, a elektronovým obalem. Elementární částice proton neutron
Stavba atomu: Atomové jádro
Stavba atomu: tomové jádo Výzkum stuktuy hmoty: Histoie Jen zdánlivě existuje hořké či sladké, chladné či hoké, ve skutečnosti jsou pouze atomy a pázdno. Démokitos, 46 37 př. n.l. Heni Becqueel 85 98 objev
VYBRANÉ DOSIMETRICKÉ VELIČINY A VZTAHY MEZI NIMI
VYBRANÉ DOSIMETRICKÉ VELIČINY A VZTAHY MEZI NIMI Přehled dosimrických veličin: Daniel KULA (verze 1.0), 1. Aktivita: Definice veličiny: Poč radioaktivních přeměn v radioaktivním materiálu, vztažený na
2. ATOM. Dualismus částic: - elektron se chová jako hmotná částice, ale také jako vlnění
Na www.studijni-svet.cz zaslal(a): Kikusska94 2. ATOM HISTORIE NÁZORŮ NA STAVBU ATOMU - Leukippos (490 420 př. n. l.) - Demokritos (460 340 př. n. l.) - látka je tvořená atomy, které se dále nedělí (atomos
Příklad 22 : Kapacita a rozložení intenzity elektrického pole v deskovém kondenzátoru s jednoduchým dielektrikem
Příkld 22 : Kpcit rozložení intenzity elektrického pole v deskovém kondenzátoru s jednoduchým dielektrikem Předpokládné znlosti: Elektrické pole mezi dvěm nbitými rovinmi Příkld 2 Kpcit kondenzátoru je
6.3.5 Radioaktivita. Předpoklady: Graf závislosti vazebné energie na počtu částic v jádře pro částice z minulé hodiny
6.3.5 Radioaktivita Předpoklady: 6304 Graf závislosti vazebné energie na počtu částic v jádře pro částice z minulé hodiny Vazebná energie na částici [MeV] 10 9 8 Vazebná energie [MeV] 7 6 5 4 3 1 0 0 50
Atomové jádro, elektronový obal
Atomové jádro, elektronový obal 1 / 9 Atomové jádro Atomové jádro je tvořeno protony a neutrony Prvek je látka skládající se z atomů se stejným počtem protonů Nuklid je systém tvořený prvky se stejným
Logaritmická funkce, logaritmus, logaritmická rovnice
Logritmická funkce. 4 Logritmická funkce, ritmus, ritmická rovnice - získá se jko funkce inverzní k funkci eponenciální, má tvr f: = Pltí: > 0!! * * = = musí být > 0, > 0 Rozlišujeme dv zákldní tp: ) >
( ) 2 2 MODUL 5. STAVBA ATOMU SHRNUTÍ
MODUL 5. STAVBA ATOMU SHRNUTÍ Kvantování fyzikálních veličin - vázaným částicím v mikrosvětě náleží diskrétní hodnoty hybnosti, energie i dalších veličin, které nazýváme kvantované fyzikální veličiny -
Atomové jádro Elektronový obal elektron (e) záporně proton (p) kladně neutron (n) elektroneutrální
STAVBA ATOMU Výukový materiál pro základní školy (prezentace). Zpracováno v rámci projektu Snížení rizik ohrožení zdraví člověka a životního prostředí podporou výuky chemie na ZŠ. Číslo projektu: CZ.1.07/1.1.16/02.0018
Jaroslav Reichl. Střední průmyslová škola sdělovací techniky Panská 3 Praha 1 Jaroslav Reichl, 2017
Střední průmyslová škola sdělovací techniky Panská Praha 1 Jaroslav Reichl, 017 určená studentům 4. ročníku technického lycea jako doplněk ke studiu fyziky Jaroslav Reichl Obsah 1. SPECIÁLNÍ TEORIE RELATIVITY....
8. Elementární funkce
Historie přírodních věd potvrzuje, že většinu reálně eistujících dějů lze reprezentovt mtemtickými model, které jsou popsán tzv. elementárními funkcemi. Elementární funkce je kždá funkce, která vznikne
Elektroenergetika 1. Jaderné elektrárny
Jaderné elektrárny Vazební energie jádra Klidová hmotnost jádra všech prvků a izotopů je menší než je součet hmotností všech nukleonů -> hmotnostní defekt m j m j = Nm n + Zm p m j Kde m n je klidová hmotnost
Úvod do moderní fyziky. lekce 4 jaderná fyzika
Úvod do moderní fyziky lekce 4 jaderná fyzika objevení jádra 1911 - z výsledků Geigerova Marsdenova experimentu Rutheford vyvodil, že atom se skládá z malého jádra, jehož rozměr je 10000 krát menší než
8.STAVBA ATOMU ELEKTRONOVÝ OBAL
8.STAVBA ATOMU ELEKTRONOVÝ OBAL 1) Popiš Daltonovu atomovou teorii postuláty. (urči, které platí dodnes) 2) Popiš Rutherfordův planetární model atomu a jeho přínos. 3) Bohrův model atomu vysvětli kvantování
Jaderné reakce a radioaktivita
Střední průmyslová škola Hranice - - Jaderné reakce a radioaktivita Radioaktivita Je vlastností atomových jader, která se samovolně přeměňují na jiná a vyzařují při tom pronikavé neviditelné záření. Jádra
atom Lomonosov Lavoisier Dalton Proutova modely atomů Thomsonův kladným elektronů vysílají elektromagnetické záření nedostatky: počet původ
Modely atomu Pojem atom byl zaveden již antickými filozofy (atomos = nedělitelný), v moderní fyzice vyslovili první teorii o stavbě hmoty Lomonosov, Lavoisier, Dalton (poč. 19 stol.): tomy různých prvků
Elektroenergetika 1. Jaderné elektrárny
Jaderné elektrárny Vazební energie jádra Klidová hmotnost jádra všech prvků a izotopů je menší než je součet hmotností všech nukleonů -> hmotnostní defekt m j m j = Nm n + Zm p m j Kde m n je klidová hmotnost
Aplikace jaderné fyziky (několik příkladů)
Aplikace jaderné fyziky (několik příkladů) Pavel Cejnar Ústav částicové a jaderné fyziky MFF UK pavel.cejnar@mff.cuni.cz Příklad I Datování Galileiho rukopisů Galileo Galilei (1564 1642) Všechny vázané
SBÍRKA ŘEŠENÝCH FYZIKÁLNÍCH ÚLOH
SBÍRKA ŘEŠENÝCH FYZIKÁLNÍCH ÚLOH MECHANIKA MOLEKULOVÁ FYZIKA A TERMIKA ELEKTŘINA A MAGNETISMUS KMITÁNÍ A VLNĚNÍ OPTIKA FYZIKA MIKROSVĚTA ATOM, ELEKTRONOVÝ OBAL 1) Sestavte tabulku: a) Do prvního sloupce
Detekce nabitých částic Jak se ztrácí energie průchodem částice hmotou?
Detekce nabitých částic Jak se ztrácí energie průchodem částice hmotou? 10/20/2004 1 Bethe Blochova formule (1) je maximální možná předaná energie elektronu N r e - vogadrovo čislo - klasický poloměr elektronu
Gymnázium a Střední odborná škola, Rokycany, Mládežníků 1115
Gymnázium a Střední odborná škola, Rokycany, Mládežníků 5 Číslo projektu: CZ..07/.5.00/34.040 Číslo šablony: 7 Název materiálu: Ročník: Identifikace materiálu: Jméno autora: Předmět: Tématický celek: Atom
Atom jeho složení a struktura Tento výukový materiál vznikl za přispění Evropské unie, státního rozpočtu ČR a Středočeského kraje
Atom jeho složení a struktura Tento výukový materiál vznikl za přispění Evropské unie, státního rozpočtu ČR a Středočeského kraje 16.3.2009,vyhotovila Mgr. Alena Jirčáková Atom atom (z řeckého átomos nedělitelný)
212 a. 5. Vyzáří-li radioaktivní nuklid aktinia částici α, přemění se na atom: a) radia b) thoria c) francia d) protaktinia e) zůstane aktinium
Pracovní list - Jaderné reakce 1. Vydává-li radionuklid záření alfa: a) protonové číslo se zmenšuje o 4 a nukleonové číslo se nemění b) nukleonové číslo se změní o 4 a protonové se nemění c) protonové
RADIOAKTIVITA A VLIV IONIZUJÍCÍHO ZÁŘENÍ
INOVACE ODBORNÉHO VZDĚLÁVÁNÍ NA STŘEDNÍCH ŠKOLÁCH ZAMĚŘENÉ NA VYUŽÍVÁNÍ ENERGETICKÝCH ZDROJŮ PRO 21. STOLETÍ A NA JEJICH DOPAD NA ŽIVOTNÍ PROSTŘEDÍ CZ.1.07/1.1.00/08.0010 RADIOAKTIVITA A VLIV IONIZUJÍCÍHO
DERIVACE A INTEGRÁLY VE FYZICE
DOPLŇKOVÉ TEXTY BB0 PAVEL SCHAUER INTERNÍ MATERIÁL FAST VUT V BRNĚ DERIVACE A INTEGRÁLY VE FYZICE Obsh Derivce... Definice derivce... Prciální derivce... Derivce vektorů... Výpočt derivcí... 3 Algebrická
VY_52_INOVACE_VK64. Datum (období), ve kterém byl VM vytvořen červen 2013 Ročník, pro který je VM určen
VY_52_INOVACE_VK64 Jméno autora výukového materiálu Věra Keselicová Datum (období), ve kterém byl VM vytvořen červen 2013 Ročník, pro který je VM určen Vzdělávací oblast, obor, okruh, téma Anotace 8. ročník
Výukový materiál zpracován v rámci projektu EU peníze školám
Výukový materiál zpracován v rámci projektu EU peníze školám Registrační číslo projektu: CZ.1.07/1.5.00/34.0996 Šablona: III/2 č. materiálu: VY_32_INOVACE_FYZ_379 Jméno autora: Mgr. Alena Krejčíková Třída/ročník:
6. Setrvačný kmitový člen 2. řádu
6. Setrvčný kmitový člen. řádu Nejprve uvedeme dynmické vlstnosti kmitvého členu neboli setrvčného členu. řádu. Předstviteli těchto členů jsou obvody nebo technická zřízení, která obshují dvě energetické
Ullmann V.: Jaderná a radiační fyzika
Radionuklidové metody Jsou založeny na studiu přirozené, respektive uměle vzbuzené radioaktivity hornin. Radiometrické metody využívají přirozenou radioaktivitu hornin při vyhledávacím průzkumu a při geologickém
Pozitron teoretická předpověď
Pozitron teoretická předpověď Diracova rovnice: αp c mc x, t snaha popsat relativisticky pohyb elektronu x, t ˆ i t řešení s negativní energií vakuum je Diracovo moře elektronů pozitrony díry ve vaku Paul
Letní škola RADIOAKTIVNÍ LÁTKY a možnosti detoxikace
Letní škola 2008 RADIOAKTIVNÍ LÁTKY a možnosti detoxikace 1 Periodická tabulka prvků 2 Radioaktivita radioaktivita je schopnost některých atomových jader odštěpovat částice, neboli vysílat záření jádro
FYZIKÁLNÍ VELIČINY A JEDNOTKY
FYZIKÁLNÍ VELIČINY A JEDNOTKY 1. Mezinárodní soustv jednotek SI Slovo fyzik je odvozeno z řeckého slov fysis, které znmená přírod. Abychom správně popsli předměty, jevy děje, musíme zvést určité pojmy,
29. Atomové jádro a jaderné reakce
9. tomové jádro a jaderné reakce tomové jádro je složeno z nukleonů, což jsou protony (p + ) a neutrony (n o ). Průměry atomových jader jsou řádově -5 m. Poznámka: Poloměr atomového jádra je dán vztahem:
Úvod do moderní fyziky. lekce 3 stavba a struktura atomu
Úvod do moderní fyziky lekce 3 stavba a struktura atomu Vývoj představ o stavbě atomu 1904 J. J. Thomson pudinkový model atomu 1909 H. Geiger, E. Marsden experiment s ozařováním zlaté fólie alfa částicemi
Látkové množství. 6,022 10 23 atomů C. Přípravný kurz Chemie 07. n = N. Doporučená literatura. Látkové množství n. Avogadrova konstanta N A
Doporučená literatura Přípravný kurz Chemie 2006/07 07 RNDr. Josef Tomandl, Ph.D. Mailto: tomandl@med.muni.cz Předmět: Přípravný kurz chemie J. Vacík a kol.: Přehled středoškolské chemie. SPN, Praha 1990,
Vzorová řešení čtvrté série úloh
FYZIKÁLNÍ SEKCE Přírodovědecká fkult Msrykovy univerzity v Brně KORESPONDENČNÍ SEMINÁŘ Z FYZIKY 8. ročník 001/00 Vzorová řešení čtvrté série úloh (5 bodů) Vzorové řešení úlohy č. 1 (8 bodů) Volný pád Měsíce
ANALYTICKÁ GEOMETRIE V PROSTORU
ANALYTICKÁ GEOMETRIE V PROSTORU 3. přednášk Vektorová lger Prvoúhlé souřdnice odu v prostoru Poloh odu v prostoru je vzhledem ke třem osám k soě kolmým určen třemi souřdnicemi, které tvoří uspořádnou trojici
Inovace studia molekulární a buněčné biologie reg. č. CZ.1.07/2.2.00/
Inovace studia molekulární a buněčné biologie reg. č. CZ.1.07/2.2.00/07.0354 Předmět: LRR/CHPB1/Chemie pro biology 1 Struktura hmoty - atomu Mgr. Karel Doležal Dr. Cíl přednášky: seznámit posluchače se
FYZIKÁLNÍ VELIČINY A JEDNOTKY
I N V E S T I C E D O R O Z V O J E V Z D Ě L Á V Á N Í FYZIKÁLNÍ VELIČINY A JEDNOTKY 1. Mezinárodní soustv jednotek SI Slovo fyzik je odvozeno z řeckého slov fysis, které znmená přírod. Abychom správně
Radioaktivita a radionuklidy - pozitivní i negativní účinky a využití. Jméno: Ondřej Lukas Třída: 9. C
Radioaktivita a radionuklidy - pozitivní i negativní účinky a využití Jméno: Ondřej Lukas Třída: 9. C Co to je Radioaktivita/Co je radionuklid Radioaktivita = Samovolná přeměna atomových jader Objev 1896
Náboj a hmotnost elektronu
1911 určení náboje elektronu q pomocí mlžné komory q = 1.602 177 10 19 C Náboj a hmotnost elektronu Elektrický náboj je kvantován Každý náboj je celistvým násobkem elementárního náboje (elektronu) z hodnoty
Náboj a hmotnost elektronu
1911 změřil náboj elektronu Pomocí mlžné komory q = 1.602 177 10 19 C Náboj a hmotnost elektronu Elektrický náboj je kvantován, Každý náboj je celistvým násobkem elementárního náboje (elektronu) z hodnoty
Částicové složení látek atom,molekula, nuklid a izotop
Částicové složení látek atom,molekula, nuklid a izotop ATOM základní stavební částice všech hmotných těles jádro 100 000x menší než atom působí jaderné síly p + n 0 [1] e - stejný počet protonů a elektronů
Radiační patofyziologie. Zdroje záření. Typy ionizujícího záření: Jednotky pro měření radiace:
Radiační patofyziologie Radiační poškození vzniká účinkem ionizujícího záření. Co se týká jeho původu, ionizující záření vzniká: při radioaktivním rozpadu prvků, přichází z kosmického prostoru, je produkováno
Chemické složení vesmíru
Společně pro výzkum, rozvoj a inovace - CZ/FMP.17A/0436 Chemické složení vesmíru Jak sledujeme chemické složení ve vesmíru? Libor Lenža, Hvězdárna Valašské Meziříčí, p. o. Mendelova univerzita v Brně,
ATOMOVÉ JÁDRO. Nucleus Složení: Proton. Neutron 1 0 n částice bez náboje Proton + neutron = NUKLEON PROTONOVÉ číslo: celkový počet nukleonů v jádře
ATOM 1 ATOM Hmotná částice Dělit lze: Fyzikálně ANO Chemicky Je z nich složena každá látka Složení: Atomové jádro (protony, neutrony) Elektronový obal (elektrony) NE Elektroneutrální částice: počet protonů
Měření absorbce záření gama
Měření absorbce záření gama Úkol : 1. Změřte záření gama přirozeného pozadí. 2. Změřte záření gama vyzářené gamazářičem. 3. Změřte záření gama vyzářené gamazářičem přes absorbátor. 4. Naměřené závislosti
FYZIKA ATOMOVÉHO JÁDRA
FYZIKA ATOMOVÉHO JÁDRA Je to nejstarší obor fyziky Stručně jaderná nebo nukleární fyzika Zabývá se strukturou jader, jadernými ději a jejich využití v praxi JÁDRO ATOMU Tvoří centrální část atomu o poloměru
FYZIKA MIKROSVĚTA. Mgr. Jan Ptáčník - GJVJ - Fyzika - Fyzika mikrosvěta - 3. ročník
FYZIKA MIKROSVĚTA Mgr. Jan Ptáčník - GJVJ - Fyzika - Fyzika mikrosvěta - 3. ročník Mikrosvět Svět o rozměrech 10-9 až 10-18 m. Mikrosvět není zmenšeným makrosvětem! Chování v mikrosvětě popisuje kvantová
2002 Katedra obecné elektrotechniky FEI VŠB-TU Ostrava Ing.Stanislav Kocman
STEJNOSĚRNÉ STROJE 1. Princip činnosti stejnosměrného stroje 2. Rekce kotvy komutce stejnosměrných strojů 3. Rozdělení stejnosměrných strojů 4. Stejnosměrné generátory 5. Stejnosměrné motory 2002 Ktedr
Oxidačně-redukční reakce (Redoxní reakce)
Seminář z nlytické chemie idčně-redukční rekce (Redoxní rekce) RNDr. R. Čbl, Dr. Univerzit Krlov v Prze Přírodovědecká fkult Ktedr nlytické chemie Definice pojmů idce částice (tom, molekul, ion) ztrácí
Složení hvězdy. Hvězda - gravitačně vázaný objekt, složený z vysokoteplotního plazmatu; hmotnost 0,08 M ʘ cca 150 M ʘ, ale R136a1 (LMC) má 265 M ʘ
Hvězdy zblízka Složení hvězdy Hvězda - gravitačně vázaný objekt, složený z vysokoteplotního plazmatu; hmotnost 0,08 M ʘ cca 150 M ʘ, ale R136a1 (LMC) má 265 M ʘ Plazma zcela nebo částečně ionizovaný plyn,
Chemie pro KS Anorganická a analytická část
Chemie pro KS Anorganická a analytická část Ing. Matyáš Orsák, Ph.D. ORSAK@AF.CZU.CZ Program přednášek. přednáška a) atom, jádro, obal, elektron, radioaktivita b) názvosloví anorg. sloučenin včetně koordinačních
( ) ( ) ( ) Exponenciální rovnice. 17.3. Řeš v R rovnici: 3 + 9 + 27 = ŘEŠENÍ: Postup z předešlého výpočtu doplníme využitím dalšího vztahu: ( ) t s t
7. EXPONENCIÁLNÍ ROVNICE 7.. Řeš v R rovnice: ) 5 b) + c) 7 0 d) ( ) 0,5 ) 5 7 5 7 K { } c) 7 0 K d) ( ) b) + 0 + 0 K ( ) 5 0 5, 7 K { 5;7} Strtegie: potřebujeme zíkt tkový tvr rovnice, kd je n obou trnách
Identifikace typu záření
Identifikace typu záření U radioaktivního záření rozeznáváme několik druhů, jejichž vlastnosti se diametrálně liší. Jednotlivé druhy rozeznáváme podle druhu emitovaného záření. Tyto druhy radioaktivity
Chemické repetitorium. Václav Pelouch
ZÁKLADY OBECNÉ A KLINICKÉ BIOCHEMIE 2004 Chemické repetitorium Václav Pelouch kapitola ve skriptech - 1 Anorganická a obecná chemie Stavba atomu Atom je nejmenší částice hmoty, která obsahuje jádro (složené
R10 F Y Z I K A M I K R O S V Ě T A. R10.1 Fotovoltaika
Fyzika pro střední školy II 84 R10 F Y Z I K A M I K R O S V Ě T A R10.1 Fotovoltaika Sluneční záření je spojeno s přenosem značné energie na povrch Země. Její velikost je dána sluneční neboli solární
2.9.11 Logaritmus. Předpoklady: 2909
.9. Logritmus Předpokld: 909 Pedgogická poznámk: Následující příkld vždují tk jeden půl vučovcí hodin. V přípdě potřeb všk stčí dojít k příkldu 6 zbtek jen ukázt, což se dá z jednu hodinu stihnout (nedoporučuji).
Základy spektroskopie a její využití v astronomii
Ing. Libor Lenža, Hvězdárna Valašské Meziříčí, p. o. Základy spektroskopie a její využití v astronomii Hvězdárna Valašské Meziříčí, p. o. Krajská hvezdáreň v Žiline Světlo x záření Jak vypadá spektrum?
Souhrn základních výpočetních postupů v Excelu probíraných v AVT 04-05 listopad 2004. r r. . b = A
Souhrn zákldních výpočetních postupů v Ecelu probírných v AVT 04-05 listopd 2004. Řešení soustv lineárních rovnic Soustv lineárních rovnic ve tvru r r A. = b tj. npř. pro 3 rovnice o 3 neznámých 2 3 Hodnoty
Jaderná fyzika. Zápisy do sešitu
Jaderná fyzika Zápisy do sešitu Vývoj modelů atomu 1/3 Antika intuitivně zavedli pojem atomos nedělitelná část hmoty Pudinkový model J.J.Thomson (1897) znal elektron a velikost atomu 10-10 m v celém atomu
Složení látek a chemická vazba Číslo variace: 1
Složení látek a chemická vazba Číslo variace: 1 Zkoušecí kartičku si PODEPIŠ a zapiš na ni ČÍSLO VARIACE TESTU (číslo v pravém horním rohu). Odpovědi zapiš na zkoušecí kartičku, do testu prosím nepiš.
DUM č. 15 v sadě. 12. Fy-3 Průvodce učitele fyziky pro 4. ročník
projekt GML Brno Docens DUM č. 15 v sadě 12. Fy-3 Průvodce učitele fyziky pro 4. ročník utor: Miroslav Kubera Datum: 27.05.2014 Ročník: 4B notace DUMu: Prezentace je souhrnem probírané tématiky. Ve stručném
Fotoelektrický jev je uvolňování elektronů z látky vlivem dopadu světelného záření.
FYZIKA pracovní sešit pro ekonomické lyceum. 1 Jiří Hlaváček, OA a VOŠ Příbram, 2015 FYZIKA MIKROSVĚTA Kvantové vlastnosti světla (str. 241 257) Fotoelektrický jev je uvolňování elektronů z látky vlivem
Laboratorní práce č. 6 Úloha č. 5. Měření odporu, indukčnosti a vzájemné indukčnosti můstkovými metodami:
Truhlář Michl 3 005 Lbortorní práce č 6 Úloh č 5 p 99,8kP Měření odporu, indukčnosti vzájemné indukčnosti můstkovými metodmi: Úkol: Whetstoneovým mostem změřte hodnoty odporů dvou rezistorů, jejich sériového
Diferenciální počet. Spojitost funkce
Dierenciální počet Spojitost unkce Co to znmená, že unkce je spojitá? Jký je mtemtický význm tvrzení, že gr unkce je spojitý? Jké jsou vlstnosti unkce v bodě? Jké jsou vlstnosti unkce v intervlu I? Vlstnosti
3. ROVNICE A NEROVNICE 85. 3.1. Lineární rovnice 85. 3.2. Kvadratické rovnice 86. 3.3. Rovnice s absolutní hodnotou 88. 3.4. Iracionální rovnice 90
ROVNICE A NEROVNICE 8 Lineární rovnice 8 Kvdrtické rovnice 8 Rovnice s bsolutní hodnotou 88 Ircionální rovnice 90 Eponenciální rovnice 9 Logritmické rovnice 9 7 Goniometrické rovnice 98 8 Nerovnice 0 Úlohy
ŠTĚPNÁ REAKCE (JADERNÁ ENERGIE)
ŠTĚPNÁ REAKCE (JADERNÁ ENERGIE) Tadeáš Simon, Dominik Němec, David Čížek Štěpení jader informace jádro atomu- rozštěpí se, vzniklé části se rozletí velkými rychlostmi ->kinetická energie (energie pohybu)-
+ c. n x ( ) ( ) f x dx ln f x c ) a. x x. dx = cotgx + c. A x. A x A arctgx + A x A c
) INTEGRÁLNÍ POČET FUNKCE JEDNÉ PROMĚNNÉ ) Pojem neurčitého integrálu Je dán funkce Pltí všk tké F tk, y pltilo F ( ) f ( ) Zřejmě F ( ), protože pltí, 5,, oecně c, kde c je liovolná kon- stnt f ( ) nším
Interakce záření s hmotou
Interakce záření s hmotou nabité částice: ionizují atomy neutrální částice: fotony: fotoelektrický jev Comptonův jev tvorba párů e +, e neutrony: pružný a nepružný rozptyl jaderné reakce (radiační záchyt
DUSÍK NITROGENIUM 14,0067 3,1. Doplňte:
Doplňte: Protonové číslo: Relativní atomová hmotnost: Elektronegativita: Značka prvku: Latinský název prvku: Český název prvku: Nukleonové číslo: Prvek je chemická látka tvořena z atomů o stejném... čísle.
Kateřina Fišerová - Seminární práce k předmětu Didaktika fyziky
Kateřina Fišerová - Seminární práce k předmětu Didaktika fyziky Problémová situace První jaderný reaktor spustil 2. prosince 942 na univerzitě v Chicagu italský fyzik Enrico Fermi se svými spolupracovníky.
3 Algebraické výrazy. 3.1 Mnohočleny Mnohočleny jsou zvláštním případem výrazů. Mnohočlen (polynom) proměnné je výraz tvaru
Algerické výrz V knize přírod může číst jen ten, kdo zná jzk, ve kterém je npsán. Jejím jzkem je mtemtik jejím písmem jsou mtemtické vzorce. (Glileo Glilei) Algerickým výrzem rozumíme zápis, ve kterém
Nebezpečí ionizujícího záření
Nebezpečí ionizujícího záření Radioaktivita versus Ionizující záření Radioaktivita je schopnost jader prvků samovolně se rozpadnout na jádra menší stabilnější. Rozeznáváme pak radioaktivitu přírodní (viz.
vysokoteplotního plazmatu na tokamaku GOLEM
Měření základních parametů vysokoteplotního plazmatu na tokamaku GOLEM J. Krbec 1 1 České vysoké učení technické v Praze Fakulta jaderná a fyzikálně inženýrská U3V Fyzika přátelsky / Aplikované přírodní
1. Proveďte energetickou kalibraci gama-spektrometru pomocí alfa-zářiče 241 Am.
1 Pracovní úkoly 1. Proveďte energetickou kalibraci gama-spektrometru pomocí alfa-zářiče 241 Am. 2. Určete materiál několika vzorků. 3. Stanovte závislost účinnosti výtěžku rentgenového záření na atomovém