Riemannův určitý integrál.
|
|
- Marcela Kubíčková
- před 8 lety
- Počet zobrazení:
Transkript
1 Riemnnův určitý integrál. Definice 1. Budiž <. Množinu D čísel x 0, x 1,..., x n, pro něž = x 0 < x 1 <...<x n =, nzveme rozdělením intervlu,. Intervly x 0, x 1, x 1, x 2,..., x n-1, x n udeme nzývt dílčími intervly rozdělení D jejich délky x 1 - x 0, x 2 - x 1,...,x n - x n-1 udeme znčit po řdě x 1, x 2,..., x n Definice 2. Budiž D = { x 0, x 1,..., x n } liovolné rozdělení intervlu,, v němž je definován omezená funkce ƒ. Oznčíme M i = sup ƒ(x) m i = inf ƒ (x) pro i = 1,2,..., n. x x i-1,x i x x i-1,x i Součet S(D) = M 1 x 1 + M 2 x M n x n nzveme horním součtem funkce ƒ příslušným k rozdělení D součet s(d) = m 1 x 1 + m 2 x m n x n nzveme dolním součtem funkce ƒ příslušným k rozdělení D. Vět 1. Pro liovolné rozdělení S intervlu,. je vždy s(d) S(D) tj. dolní součet příslušný liovolnému rozdělení D je vždy menší neo roven hornímu součtu příslušnému témuž rozdělení. Definice 3. Rozdělení D nzveme zjemněním rozdělení D, jestliže D D, tj. jestliže rozdělení D oshuje všechny dělící ody rozdělení D ( popř. i dlší dělicí ody) Vět 2. Nechť rozdělení D intervlu, je zjemněním rozdělení D. Pk pro příslušné horní dolní součty funkce ƒ, omezené v intervlu,, pltí s(d ) s(d), S(D ) S(D). Vět 3. Budiž ƒ funkce omezená v intervlu,. Oznčme m = inf ƒ(x), M = sup ƒ(x) (pro x, ). Buďtež D 1 D 2 zcel liovolná rozdělení intervlu,. Pk pltí: m( - ) s(d 1 ) S(D 1 ) M( - ) (1), s(d 1 ) S(D 2 ) (2). Definice 4. ) Supremum množiny M d všech dolních součtů funkce ƒ v intervlu, nzýváme dolní integrál funkce ƒ od do. Znčíme sup M d ( x) dx. ) Infimum množiny M h všech horních součtů funkce ƒ v intervlu, nzýváme horní integrál funkce ƒ od do. Znčíme inf M = &&& = h ( x) dx 1
2 Definice 5. Jestliže dolní integrál funkce ƒ od do je roven integrálu hornímu, pk toto číslo nzýváme určitý (Riemnnův) integrál funkce f od do znčíme je ƒ( x) dx. Číslo nzýváme dolní mez, číslo horní mez uvedených integrálů, funkce ƒ je integrovná funkce neoli integrnd, x je integrční proměnná. O funkci, která má určitý integrál od do, říkáme, že je integrce schopná v intervlu, neo že je integrovtelná. Vět 4. Je-li funkce f(x) spojitá v intervlu,, pk existuje určitý integrál ƒ (x)dx Vět 5. Je-li funkce ƒ omezená v intervlu,, je ƒ ( x) dx ƒ ( x) dx Vět 6. Jestliže pro všechn x z intervlu, pltí pro dvě integrovtelné funkce nerovnice ( x) g( x) f, pk ƒ( ) dx x g( x) dx &&& Nevlstní integrály (Riemnnův zoecněný integrál). Definice 6. Funkce definovná omezená v <, ) je integrovtelná v <, >, právě když t pro t (, ) existuje vlstní limit lim ƒ (x)dx. Tuto limitu nzveme nevlstním integrálem t funkce ƒ od do udeme ji znčit rovněž ƒ ( x)dx. Definice 6. Funkce definovná omezená v (, > je integrovtelná v <, >, právě když pro t (, ) existuje vlstní limit lim ƒ (x)dx. Tuto limitu nzveme nevlstním t + t integrálem funkce ƒ od do udeme ji znčit rovněž ƒ ( x)dx. Definice 7. U funkce f(x), která není definovná v odě c (, ) existuje zoecněný Riemnnův integrál ƒ přitom pltí ƒ ( x)dx, právě když existují zoecněné integrály ƒ ( x)dx, ƒ ( x)dx c ( x)dx = ƒ ( x)dx + ƒ ( x)dx. c c c 2
3 Definice 8. Nechť je liovolné číslo. Existují-li nevlstní integrály ƒ( x)dx ƒ( x)dx, ( R ),nzýváme jejich součet nevlstní integrál funkce ƒ od méně nekonečn do nekonečn píšeme ƒ ) dx + ƒ( x) dx = ( x ƒ( x) dx. Funkce více proměnných - zákldní pojmy. Úmluv 1: Množinu všech reálných čísel oznčíme E. Množinu všech reálných čísel kldných E +. Krtézský součin ExE oznčíme E 2 ExEx...xE, kde E se vyskytuje n-krát oznčíme E n. Úmluv 2: Pro množinu M v definicích 1. ž 4. pltí M E 2. Definice 1: Reálná funkce f(x,y) dvou reálných proměnných x, y M do množiny E. Funkci oyčejně oznčujeme z = f(x,y). je zorzení z množiny Definice 2: Množinu M z předchozí definice nzýváme definičním oorem funkce oznčujeme čsto D f. Definice 3: Množinu H f E, která je orzem množiny M v zorzení z = f(x,y), nzýváme oorem hodnot funkce f. Definice 4: Grfem funkce z = f(x,y) definovné n množině M je množin všech odů [x,y,z] E 3, kde [x,y] M z = f(x,y). Úmluv 3: Pro množinu M definicích 5. ž 8. pltí M E n. Definice 5: Reálná funkce f(x 1,x 2,...x n ) n reálných proměnných x 1,x 2,...x n je zorzení z množiny M do množiny E. Funkci oznčujeme oyčejně y = f(x 1,x 2,...x n ), přípdně y = f(x), u funkce dvou proměnných z = f(x,y) pod. Definice 6: Množinu M z předchozí definice nzýváme definičním oorem funkce oznčujeme čsto D f. Definice 7: Množinu H f E, která je orzem množiny M v zorzení y = f(x ), nzýváme oorem hodnot funkce f. Definice 8: Grfem funkce y = f(x ) definovné n množině M je množin všech odů [x 1,x 2,...x n,y] E n+1, kde [x 1,x 2,...x n ] M y = f(x ). 3
4 Limit spojitost funkce více proměnných. Definice 9: Funkce z = f(x,y) definovná v M E 2 je spojitá v odě [x 0, y 0 ] M, právě když ke kždému ε E + existuje δ E + tk, že pltí, jestliže x (x 0 - δ, x 0 +δ ) y (y 0 - δ, y 0 +δ ) [x,y] M, pk f(x,y) - f(x 0,y 0 ) < ε. Definice 10: Funkce z = f(x,y) definovná v M E 2 má v odě [x 0, y 0 ] limitu E, právě když ke kždému ε E + existuje δ E + tk, že pltí, jestliže x (x 0 - δ, x 0 +δ ), y (y 0 - δ, y 0 +δ ), [x,y] M [x,y] [x 0, y 0 ], pk f(x,y) - ) < ε. Definice 11: Funkce y = f(x ) definovná v M E n je spojitá v odě C = [ c 1,c 2,...c n ] M, právě když ke kždému ε E + existuje δ E + tk, že pltí, jestliže X - C <δ X M, pk f(x) - f(c ) < ε. ( X - C <δ znčí soustvu x 1 - c 1 <δ, x 2 - c 2 <δ,..., x n -c n <δ ). Definice 12: Funkce y = f(x ) definovná n M E n má v odě C = [ c 1,c 2,...,c n ] limitu E, právě když ke kždému ε E + existuje δ E +, tk že pltí, jestliže 0 < X - C <δ X M, pk f(x) - < ε. Vět 1: Funkce z = f(x,y) má v odě [x 0, y 0 ] E 2 nejvýše jednu limitu. Vět 2: Funkce y = f(x ) má v odě X 0 E n nejvýše jednu limitu. Vět 3: Funkce z = f(x,y) je spojitá v odě [x 0, y 0 ] E 2, právě když se limit v tomto odě rovná funkční hodnotě. Vět 4: Funkce y = f(x ) je spojitá odě X 0 E n, právě když se limit v tomto odě rovná funkční hodnotě. Poznámk 1: Při výpočtech limit můžeme použít vět nlogických jko u funkce jedné proměnné ( pro součet, součin podíl funkcí). Prciální derivce funkce více proměnných. Definice 13: Říkáme, že funkce z = f(x,y) má v odě [x,y] prciální derivci podle x existuje li vlstní limit f ( x+ dx, y) f ( x, y) l i m = f dx x dx 0 Definice 14: Říkáme, že funkce z = f(x,y) má v odě [x,y] prciální derivci podle y existuje li vlstní limit f ( x, y+ dy) f ( x, y) l i m = f dy y dy 0 4
5 Definice 15: Říkáme, že funkce y = f(x) má v odě X = [x 1,x 2,...x n ] prciální derivci podle x i, existuje li vlstní limit l i m f ( x x x dx x f x x x x 1, 2,..., i + i,..., n) ( 1, 2,..., i,..., n) dxi dx i 0 " Vět 5: Jsou-li druhé derivce f xy " f yx spojité v odě [x 0,y 0 ], pk v tomto odě pltí, že " f xy " = f yx 5
6 Doporučené příkldy k propočítání - MANA2. Brožková, A.: Cvičení z mtem. nlýzy Votv, M.: Cvičení z mtem. nlýzy 2. díl: 3. díl: C 1, 7 všechny příkldy Cvičení 6.1 všechny příkldy C 2, 7 všechny příkldy Cvičení 6.2 všechny příkldy C 3, 7 všechny příkldy C 4, 7 všechny příkldy C 5, 7 všechny příkldy C 6, 7 všechny příkldy C 7, 7 všechny příkldy C 8, 7 všechny příkldy C 9, 7 všechny příkldy C 10, 7 všechny příkldy C 11, 7 všechny příkldy C 12, 7 všechny příkldy C 13, 7 - h C 14, 7 - i C 15, 7 - g,k,l,m,n,o C 16, 7 všechny mimo d C 17, 7 - f C 18, 7,, c, e, f,g,i C 20, 7 - e C 21, 7 všechny příkldy C 22, 7 všechny příkldy C 23, 7, C 24, 7 všechny příkldy C 25, 7 - e,h,i C 26, 7, C 28, 7,c,d,f C 30, 7 - f C 32, 7 - e C 36, 7, C 40, 7 - f C 41, 7 - k C 42, 7 - e C 43, 7 - c C 44, 7 -c, f C 2, 8 všechny příkldy C 3, 8 - g,j,k C 4, 8 - d, f - i C 5, 8 - p C 9, 8 - c, e - i C 13, 8, c, d, e, g, h C 14, 8 e, g C 15, 8 Strn 1
7 Poždvky ke zkoušce z mtemtické nlýzy II. Během semestru ude jedn písemná práce v 7. cvičení (mx. 10 odů). Účst n této práci je povinná ve stnoveném termínu. Student, který se do 14 dnů neomluví, neo jeho omluv neude uznán, ude hodnocen 0 ody. Zkoušk ude mít písemnou ústní část, kždá mx. 20 odů. Účst n cvičení je povinná ze 75% (ez omluvy je možno chyět mx. třikrát). Student, který ude mít větší neúčst než 50%, i omluvenou, musí předmět opkovt. Jen studenti, kteří předmět opkují zúčstnili se cvičení již v minulých letech, mjí v tomto roce účst nepovinnou. Podmínky vykonání zkoušky udělení kreditů: 1. Aktivní účst n cvičeních. 2. Dosžení lespoň 25 odů ze součtu: písemná práce ěhem semestru + zkoušková písemná práce + ústní zkoušk. 3. Dosžení lespoň 10 odů ze zkouškové písemné práce. 4. Dosžení lespoň 10 odů z ústní zkoušky. Výsledné hodnocení: odů doře odů velmi doře odů výorně Ústní písemná zkoušk se koná v jednom termínu je možno ji dvkrát opkovt. Opkuje se jen t část, ve které student neuspěl. Litertur: Mtemtická nlýz II. Brožková, A.: Cvičení z mtemtické nlýzy 2. díl, skript OU 1995 Votv,M.: Cvičení z mtemtické nlýzy 3 díl, Skript OU Hruý, D, - Kuát, J.: Mtemtik pro gymnázi - Diferenciální integrální počet, Prometheus 1997 Brtsch,H.J.: Mtemtické vzorce, Prh Dlouhý Z. kol.: Úvod do mtemtické nlýzy, SPN Prh 1965 Zhrdník,J.: Úvod do mtemtické nlýzy, Hrdec Králové 1976 Poždvky ke zkoušce témt: 1. Neurčitý integrál, vlstnosti, zákl. vzorce, sustituční metod, metod per prtes, redukční (rekurentní) vzorce. 2. Integrce rcionálních, ircionálních goniometrických funkcí. 3. Určitý integrál - Riemnnov definice. 4. Vlstnosti určitého integrálu. Metod sustituční per prtes pro určitý integrál. 5. Užití určitého integrálu. 6. Nevlstní integrály.
8 7. Diferenciální rovnice - zákld. pojmy, dif. rov. 1. řádu, rovnice se seprovnými seprovtelnými proměnnými, lineární dif. rovnice. 8. Lineární diferenciální rovnice 2. řádu s konst. koeficienty. 10. Nekonečné číselné řdy zákldní pojmy. 11. Konvergence divergence řd s kldnými liovolnými členy 12. Funkce dvou proměnných.
R n výběr reprezentantů. Řekneme, že funkce f je Riemannovsky integrovatelná na
Mtemtik II. Určitý integrál.1. Pojem Riemnnov určitého integrálu Definice.1.1. Říkáme, že funkce f( x ) je n intervlu integrovtelná (schopná integrce), je-li n něm ohrničená spoň po částech spojitá.
VIII. Primitivní funkce a Riemannův integrál
VIII. Primitivní funkce Riemnnův integrál VIII.2. Riemnnův integrál opkování Vět. Nechť f je spojitá funkce n intervlu, b nechť c, b. Oznčíme-li F (x) = x (, b), pk F (x) = f(x) pro kždé x (, b). VIII.3.
Integrální počet - II. část (určitý integrál a jeho aplikace)
Integrální počet - II. část (určitý integrál jeho plikce) Michl Fusek Ústv mtemtiky FEKT VUT, fusekmi@feec.vutbr.cz 7. přednášk z ESMAT Michl Fusek (fusekmi@feec.vutbr.cz) 1 / 23 Obsh 1 Určitý vlstní (Riemnnův)
Integrální počet - III. část (určitý vlastní integrál)
Integrální počet - III. část (určitý vlstní integrál) Michl Fusek Ústv mtemtiky FEKT VUT, fusekmi@feec.vutbr.cz 8. přednášk z AMA1 Michl Fusek (fusekmi@feec.vutbr.cz) 1 / 18 Obsh 1 Určitý vlstní (Riemnnův)
+ c. n x ( ) ( ) f x dx ln f x c ) a. x x. dx = cotgx + c. A x. A x A arctgx + A x A c
) INTEGRÁLNÍ POČET FUNKCE JEDNÉ PROMĚNNÉ ) Pojem neurčitého integrálu Je dán funkce Pltí všk tké F tk, y pltilo F ( ) f ( ) Zřejmě F ( ), protože pltí, 5,, oecně c, kde c je liovolná kon- stnt f ( ) nším
7. Integrální počet Primitivní funkce, Neurčitý integrál
7. Integrální počet 7.. Primitivní funkce, Neurčitý integrál Definice 7. Říkáme, že F (x) je v intervlu (, b) (přitom může být tké =, b = + ) primitivní funkcí k finkci f(x), jestliže pro všechn x (, b)
6. Určitý integrál a jeho výpočet, aplikace
Aplikovná mtemtik 1, NMAF071 6. Určitý integrál výpočet, plikce T. Slč, MÚ MFF UK ZS 2017/18 ZS 2017/18) Aplikovná mtemtik 1, NMAF071 6. Určitý integrál 1 / 13 6.1 Newtonův integrál Definice 6.1 Řekneme,
10 Určitý integrál Riemannův integrál. Definice. Konečnou posloupnost {x j } n j=0 nazýváme dělením intervalu [a,b], jestliže platí
10 Určitý integrál 10.1 Riemnnův integrál Definice. Konečnou posloupnost {x j } n j=0 nzýváme dělením intervlu [,b], jestliže pltí = x 0 < x 1 < < x n = b. Body x 0,...,x n nzýváme dělícími body. Normou
V předchozích kapitolách byla popsána inverzní operace k derivování. Zatím nebylo jasné, k čemu tento nástroj slouží.
NEWTONŮV INTEGRÁL V předchozích kpitolách byl popsán inverzní operce k derivování Ztím nebylo jsné, k čemu tento nástroj slouží Uvžujme trmvj, která je poháněn elektřinou při brždění vyrábí dynmem elektřinu:
4. přednáška 22. října Úplné metrické prostory. Metrický prostor (M, d) je úplný, když každá cauchyovská posloupnost bodů v M konverguje.
4. přednášk 22. říjn 2007 Úplné metrické prostory. Metrický prostor (M, d) je úplný, když kždá cuchyovská posloupnost bodů v M konverguje. Příkldy. 1. Euklidovský prostor R je úplný, kždá cuchyovská posloupnost
NEWTONŮV INTEGRÁL. V předchozích kapitolách byla popsána inverzní operace k derivování. Zatím nebylo jasné, k čemu tento nástroj slouží.
NEWTONŮV INTEGRÁL V předchozích kpitolách byl popsán inverzní operce k derivování. Ztím nebylo jsné, k čemu tento nástroj slouží. Uvžujme trmvj, která je poháněn elektřinou při brždění vyrábí dynmem elektřinu:
Vzdělávací materiál. vytvořený v projektu OP VK. Název školy: Gymnázium, Zábřeh, náměstí Osvobození 20. Číslo projektu: CZ.1.07/1.5.00/34.
Vzdělávcí mteriál vytvořený v projektu OP VK Název školy: Gymnázium, Zářeh, náměstí Osvoození 20 Číslo projektu: Název projektu: Číslo název klíčové ktivity: CZ.1.07/1.5.00/34.0211 Zlepšení podmínek pro
2. Pokud nedojde k nejasnostem, budeme horní a dolní součty značit pouze
8. Určitý integrál 8.1. Newtonův integrál Definice 8.1 Buďte,b R. Řekneme,žeNewtonůvintegrálzfunkce fnintervlu(,b) existuje(znčímejej(n) f(x)dx),jestliže 1.existuje primitivní funkce F k f n intervlu(,
Integrální počet - IV. část (aplikace na určitý vlastní integrál, nevlastní integrál)
Integrální počet - IV. část (plikce n určitý vlstní integrál, nevlstní integrál) Michl Fusek Ústv mtemtiky FEKT VUT, fusekmi@feec.vutbr.cz 9. přednášk z AMA Michl Fusek (fusekmi@feec.vutbr.cz) / 4 Obsh
METODICKÝ NÁVOD MODULU
Centrum celoživotního vzdělávání METODICKÝ NÁVOD MODULU Název modulu: Zákldy mtemtiky Zkrtk: ZM Počet kreditů: Semestr: Z/L Mentor: Petr Dolnský Tutor: Petr Dolnský I OBSAH BALÍČKU STUDIJNÍCH OPOR: ) Skriptum:
VIII. Primitivní funkce a Riemannův integrál
VIII. Primitivní funkce Riemnnův integrál VIII.2. Primitivní funkce Definice. Nechť funkce f je definován n neprázdném otevřeném intervlu I. Řekneme, že funkce F : I R je primitivní funkce k f n intervlu
Funkce jedné proměnné
Funkce jedné proměnné Lineární funkce f: y = kx + q, D f = R, H f = R, grf je přímk množin odů [x, y], x D f, y = f(x) q úsek n ose y, tj. od [0, q], k směrnice, k = tn φ = 2 2 1 1, A[ 1, 2 ], B[ 1, 2
Diferenciální počet. Spojitost funkce
Dierenciální počet Spojitost unkce Co to znmená, že unkce je spojitá? Jký je mtemtický význm tvrzení, že gr unkce je spojitý? Jké jsou vlstnosti unkce v bodě? Jké jsou vlstnosti unkce v intervlu I? Vlstnosti
26. listopadu a 10.prosince 2016
Integrální počet Přednášk 4 5 26. listopdu 10.prosince 2016 Obsh 1 Neurčitý integrál Tbulkové integrály Substituční metod Metod per-prtes 2 Určitý integrál Geometrické plikce Fyzikální plikce K čemu integrální
Matematika 1A. PetrSalačaJiříHozman Fakulta přírodovědně-humanitní a pedagogická Technická univerzita v Liberci
Mtemtik 1A. PetrSlčJiříHozmn Fkult přírodovědně-humnitní pedgogická Technická univerzit v Liberci petr.slc@tul.cz jiri.hozmn@tul.cz 21.11.2016 Fkult přírodovědně-humnitní pedgogická TUL ZS 2016-2017 1/
Zavedení a vlastnosti reálných čísel PŘIROZENÁ, CELÁ A RACIONÁLNÍ ČÍSLA
Zvedení vlstnosti reálných čísel Reálná čísl jsou zákldním kmenem mtemtické nlýzy. Konstrukce reálných čísel sice není náplní mtemtické nlýzy, le množin reálných čísel R je pro mtemtickou nlýzu zákldním
Petr Hasil. Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF)
Určitý integrál Petr Hsil Přednášk z mtemtiky Podpořeno projektem Průřezová inovce studijních progrmů Lesnické dřevřské fkulty MENDELU v Brně (LDF) s ohledem n discipĺıny společného zákldu (reg. č. CZ.1.07/2.2.00/28.0021)
x + F F x F (x, f(x)).
I. Funkce dvou více reálných proměnných 8. Implicitně dné funkce. Budeme se zbývt úlohou, kdy funkce není zdná přímo předpisem, který vyjdřuje závislost její hodnoty n hodnotách proměnných. Jeden z možných
Integrál a jeho aplikace Tomáš Matoušek
Integrál jeho plikce Tomáš Mtoušek Křivk Definice.(Vektorováfunkce) Funkci ϕ:r R n,kteráreálnémučíslupřiřzuje n-tici reálných čísel(vektor), nzýváme funkcí vektorovou. Lze ji tké popst po složkáchjko ϕ(t)=(ϕ
integrovat. Obecně lze ale říct, že pokud existuje určitý integrál funkce podle různých definic, má pro všechny takové definice stejnou hodnotu.
Přednášk 1 Určitý integrál V této přednášce se budeme zbývt určitým integrálem. Eistuje několik definic určitého integrálu funkce jedné reálné proměnné. Jednotlivé integrály se liší v tom, jké funkce lze
Větu o spojitosti a jejich užití
0..7 Větu o spojitosti jejich užití Předpokldy: 706, 78, 006 Pedgogická poznámk: Při proírání této hodiny je tře mít n pměti, že všechny věty, které studentům sdělujete z jejich pohledu neuvěřitelně složitě
2. Funkční řady Studijní text. V předcházející kapitole jsme uvažovali řady, jejichž členy byla reálná čísla. Nyní se budeme zabývat studiem
2. Funkční řd Studijní text 2. Funkční řd V předcházející kpitole jsme uvžovli řd, jejichž člen bl reálná čísl. Nní se budeme zbývt studiem obecnějšího přípdu, kd člen řd tvoří reálné funkce. Definice
LDF MENDELU. Simona Fišnarová (MENDELU) Určitý integrál ZVMT lesnictví 1 / 26
Určitý integrál Zákldy vyšší mtemtiky LDF MENDELU Podpořeno projektem Průřezová inovce studijních progrmů Lesnické dřevřské fkulty MENDELU v Brně (LDF) s ohledem n discipĺıny společného zákldu http://kdemie.ldf.mendelu.cz/cz
je jedna z orientací určena jeho parametrizací. Je to ta, pro kterou je počátečním bodem bod ϕ(a). Im k.b.(c ) ( C ) (C ) Obr Obr. 3.5.
10. Komplexní funkce reálné proměnné. Křivky. Je-li f : (, b) C, pk lze funkci f povžovt z dvojici (u, v), kde u = Re f v = Im f. Rozdíl proti vektorovému poli je v tom, že jsou pro komplexní čísl definovány
Přehled základních vzorců pro Matematiku 2 1
Přehled zákldních vzorců pro Mtemtiku 1 1. Limity funkcí definice Vlstní it v bodě = : f() = ɛ > 0, δ > 0 tk, že pro : ( δ, δ), pltí f() ( ɛ, ɛ) Vlstní it v bodě = : f() = ɛ > 0, c > 0 tk, že pro : > c,
Integrály definované za těchto předpokladů nazýváme vlastní integrály.
Mtemtik II.5. Nevlstní integrály.5. Nevlstní integrály Cíle V této kpitole poněkud rozšíříme definii Riemnnov určitého integrálu i n přípdy, kdy je integrční oor neohrničený (tj. (, >,
OBECNÝ URČITÝ INTEGRÁL
OBECNÝ URČITÝ INTEGRÁL Zobecnění Newtonov nebo Riemnnov integrálu se definují různým způsobem dostnou se někdy různé, někdy stejné pojmy. V tomto textu bude postup volen jko zobecnění Newtonov integrálu,
ZÁKLADY. y 1 + y 2 dx a. kde y je hledanou funkcí proměnné x.
VARIAČNÍ POČET ZÁKLADY V prxi se čsto hledjí křivky nebo plochy, které minimlizují nebo mximlizují jisté hodnoty. Npř. se hledá nejkrtší spojnice dvou bodů n dné ploše, nebo tvr zvěšeného ln (má minimální
Přednáška 9: Limita a spojitost
4 / XI /, 5: Přednášk 9: Limit spojitost V minulých přednáškách jsme podrobněji prozkoumli důležitý pojem funkce. Při řešení konkrétních problémů se nše znlosti (npř. nměřená dt) zpisují jko funkční hodnoty
Lineární nerovnice a jejich soustavy
teorie řešené úlohy cvičení tipy k mturitě výsledky Lineární nerovnice jejich soustvy Víš, že pojem nerovnice není opkem pojmu rovnice? lineární rovnice má většinou jediné řešení, kdežto lineární nerovnice
2. INTEGRÁLNÍ POČET FUNKCE JEDNÉ PROMĚNNÉ
. INTEGRÁLNÍ POČET FUNKE JEDNÉ PROMĚNNÉ Při řešení technických prolémů, ve fyzice pod. je velmi čsto tře řešit orácenou úlohu k derivování. K zdné funkci f udeme hledt funkci F tkovou, y pltilo F f. Budeme
Definice. Nechť k 0 celé, a < b R. Definujeme. x < 1. ϕ(x) 0 v R. Lemma [Slabá formulace diferenciální rovnice.] x 2 1
9. Vriční počet. Definice. Nechť k 0 celé, < b R. Definujeme C k ([, b]) = { ỹ [,b] : ỹ C k (R) } ; C 0 ([, b]) = { y C ([, b]) : y() = y(b) = 0 }. Důležitá konstrukce. Shlzovcí funkce (molifiér, bump
LINEÁRNÍ DIFERENCIÁLNÍ ROVNICE 2.ŘÁDU
LINEÁRNÍ DIFERENCIÁLNÍ ROVNICE 2.ŘÁDU ZDENĚK ŠIBRAVA 1. Obecné řešení lin. dif. rovnice 2.řádu s konstntními koeficienty 1.1. Vrice konstnt. Příkld 1.1. Njděme obecné řešení diferenciální rovnice (1) y
Limity, derivace a integrály Tomáš Bárta, Radek Erban
Limity, derivce integrály Tomáš Bárt, Rdek Erbn Úvod Definice. Zobrzení(téžfunkce) f M Njemnožinuspořádnýchdvojic(x, y) tková,žekekždému xexistujeprávějedno y,žedvojice(x,y) f.tj.kždývzor xmáprávějedenobrz
f dx S(f, E) M(b a), kde D a E jsou
Přehled probrné látky z MAII, LS 2004/05 1. přednášk 21.2.2005. Opkování látky o primitivních funkcích ze závěru zimního semestru (23.-25. přednášk). Rozkld rcionální funkce n prciální zlomky. Popis hledání
INTEGRACE KOMPLEXNÍ FUNKCE KŘIVKOVÝ INTEGRÁL
INTEGRAE KOMPLEXNÍ FUNKE KŘIVKOVÝ INTEGRÁL N konci kpitoly o derivci je uveden souvislost existence derivce s potenciálním polem. Existuje dlší chrkterizce potenciálného pole, která nebyl v kpitole o derivci
Jak již bylo uvedeno v předcházející kapitole, můžeme při výpočtu určitých integrálů ze složitějších funkcí postupovat v zásadě dvěma způsoby:
.. Substituční metod pro určité integrály.. Substituční metod pro určité integrály Cíle Seznámíte se s použitím substituční metody při výpočtu určitých integrálů. Zákldní typy integrálů, které lze touto
Matematika II: Listy k přednáškám
Mtemtik II: Listy k přednáškám Rdomír Pláček, Petr Schreiberová, Petr Volný Ktedr mtemtiky deskriptivní geometrie VŠB - Technická univerzit Ostrv Kpitol 1 Integrální počet funkcí jedné proměnné 1.Řy 11
Limita posloupnosti, limita funkce, spojitost. May 26, 2018
Limita posloupnosti, limita funkce, spojitost May 26, 2018 Definice (Okolí bodu) Okolím bodu a R (také ε- okolím) rozumíme množinu U(a, ε) = {x R; x a < ε} = (a ε, a + ε), bod a se nazývá střed okolí a
Zvyšování kvality výuky technických oborů
Zvyšování kvlity výuky technických oorů Klíčová ktivit IV Inovce zkvlitnění výuky směřující k rozvoji mtemtické grmotnosti žáků středních škol Tém IV Algerické výrzy, výrzy s mocninmi odmocninmi Kpitol
Obecně: K dané funkci f hledáme funkci ϕ z dané množiny funkcí M, pro kterou v daných bodech x 0 < x 1 <... < x n. (δ ij... Kroneckerovo delta) (4)
KAPITOLA 13: Numerická integrce interpolce [MA1-18:P13.1] 13.1 Interpolce Obecně: K dné funkci f hledáme funkci ϕ z dné množiny funkcí M, pro kterou v dných bodech x 0 < x 1
Obsah rovinného obrazce
Osh rovinného orzce Nejjednodušší plikcí určitého integrálu je výpočet oshu rovinného orzce. Zčneme větou. Vět : Je-li funkce f spojitá nezáporná n n orázku níže roven f ( ) d. ;, je osh rovinného orzce
Matematika II: Listy k přednáškám
Mtemtik II: Listy k přednáškám Rdomír Pláček, Petr Schreiberová, Petr Volný Ktedr mtemtiky deskriptivní geometrie VŠB - Technická univerzit Ostrv Kpitol 1 Integrální počet funkcí jedné proměnné 1.Řy 11
I Diferenciální a integrální počet funkcí jedné proměnné 3
Obsh I Diferenciální integrální počet funkcí jedné proměnné 3 Preklkulus 5. Reálná čísl................................................ 5. Funkce jejich zákldní vlstnosti....................................3
( a) Okolí bodu
0..5 Okolí bodu Předpokldy: 40 Pedgogická poznámk: Hodin zjevně překrčuje možnosti většiny studentů v 45 minutách. Myslím, že nemá cenu přethovt do dlší hodiny, příkldy s redukovnými okolími nejsou nutné,
Matematické metody v kartografii
Mtemtické metody v krtogrfii. Přednášk Referenční elipsoid zákldní vzthy. Poloměry křivosti. Délky poledníkového rovnoběžkového oblouku. 1. Zákldní vzthy n rotčním elipoidu Rotční elipsoid dán následujícími
Seznámíte se s další aplikací určitého integrálu výpočtem objemu rotačního tělesa.
.. Ojem rotčního těles Cíle Seznámíte se s dlší plikcí určitého integrálu výpočtem ojemu rotčního těles. Předpokládné znlosti Předpokládáme, že jste si prostudovli zvedení pojmu určitý integrál (kpitol.).
2.3 Aplikace v geometrii a fyzice Posloupnosti a řady funkcí Posloupnosti funkcí... 17
Obsh Derivce Integrály 6. Neurčité integrály.................. 6. Určité integrály....................3 Aplikce v geometrii fyzice............ 6 3 Posloupnosti řdy funkcí 7 3. Posloupnosti funkcí.................
DERIVACE A INTEGRÁLY VE FYZICE
DOPLŇKOVÉ TEXTY BB0 PAVEL SCHAUER INTERNÍ MATERIÁL FAST VUT V BRNĚ DERIVACE A INTEGRÁLY VE FYZICE Obsh Derivce... Definice derivce... Prciální derivce... Derivce vektorů... Výpočt derivcí... 3 Algebrická
17 Křivky v rovině a prostoru
17 Křivky v rovině prostoru Definice 17.1 (rovinné křivky souvisejících pojmů). 1. Nechť F (t) [ϕ(t), ψ(t)] je 2-funkce spojitá n, b. Rovinnou křivkou nzveme množinu : {F (t) : t, b } R 2. 2-funkce F [ϕ,
Matematická analýza I (pro učitelské obory) Stanislav Trávníček Pavel Calábek Jaroslav Švrček
Mtemtická nlýz I (pro učitelské obory) Stnislv Trávníček Pvel Clábek Jroslv Švrček Mtemtická nlýz I (pro učitelské obory) Stnislv Trávníček Pvel Clábek Jroslv Švrček Obsh Úvod.........................................
Základy teorie matic
Zákldy teorie mtic 1. Pojem mtice nd číselným tělesem In: Otkr Borůvk (uthor): Zákldy teorie mtic. (Czech). Prh: Acdemi, 1971. pp. 9--12. Persistent URL: http://dml.cz/dmlcz/401328 Terms of use: Akdemie
5.5 Elementární funkce
5.5 Elementární funkce Lemm 5.20. Necht x R. Potom existuje kldné C R (závisející n x) tkové, že pro kždé n N h ( 1, 1) pltí (x + h) n x n nhx n 1 h 2 C n. Definice. Exponenciální funkci exp definujme
II. INTEGRÁL V R n. Obr. 9.1 Obr. 9.2 Integrál v R 2. z = f(x, y)
. NTEGRÁL V R n Úvod Určitý integrál v intervlu, b Pro funki f :, b R jsme definovli určitý integrál jko číslo, jehož hodnot je obshem obrze znázorněného n obrázíh. Pro funki f : R n R budeme zvádět integrál
Matice. a B =...,...,...,...,..., prvků z tělesa T (tímto. Definice: Soubor A = ( a. ...,..., ra
Definice: Soubor A ( i j ) Mtice 11 12 1n 21 22 2n m 1 m2 prvků z těles T (tímto tělesem T bude v nší prxi nejčstěji těleso reálných čísel R resp těleso rcionálních čísel Q či těleso komplexních čísel
8. Elementární funkce
Historie přírodních věd potvrzuje, že většinu reálně eistujících dějů lze reprezentovt mtemtickými model, které jsou popsán tzv. elementárními funkcemi. Elementární funkce je kždá funkce, která vznikne
Technická univerzita v Liberci. Pedagogická fakulta. Katedra matematiky a didaktiky matematiky. Matematika I. (Obor: Informatika a logistika)
Technická univerzit v Liberci Pedgogická fkult Ktedr mtemtiky didktiky mtemtiky Mtemtik I (Obor: Informtik logistik) Václv Finěk Kpitol Zákldní pojmy Cílem této kpitoly je vysvětlit význm zákldních pojmů
3 Algebraické výrazy. 3.1 Mnohočleny Mnohočleny jsou zvláštním případem výrazů. Mnohočlen (polynom) proměnné je výraz tvaru
Algerické výrz V knize přírod může číst jen ten, kdo zná jzk, ve kterém je npsán. Jejím jzkem je mtemtik jejím písmem jsou mtemtické vzorce. (Glileo Glilei) Algerickým výrzem rozumíme zápis, ve kterém
Opakovací test. Klíčová slova: výraz, interval, množina, kvadratický trojčlen, mocnina, exponent, výrok, negace
VY_32_INOVACE_MAT_190 Opkovcí test lgebrické výrzy, logik, množiny A, B Mgr. Rdk Mlázovská Období vytvoření: září 2012 Ročník: čtvrtý Temtická oblst: mtemtické vzdělávání Klíčová slov: výrz, intervl, množin,
KŘIVKOVÉ INTEGRÁLY. Křivka v prostoru je popsána spojitými funkcemi ϕ, ψ, τ : [a, b] R jako množina bodů {(ϕ(t), ψ(t), τ(t)); t
KŘIVKOVÉ INTEGRÁLY Má-li se spočítt npř. spotřeb betonu n rovný plot s měnící se výškou, stčí spočítt integrál z této výšky podle zákldny plotu. o když je le zákldnou plotu nikoli rovná úsečk, le křivá
I Diferenciální a integrální počet funkcí jedné proměnné 5
Obsh I Diferenciální integrální počet funkcí jedné proměnné 5 Preklkulus 7. Reálná čísl................................................ 7. Funkce jejich zákldní vlstnosti...................................
Obsah na dnes Derivácia funkcie
Johnnes Kepler Dec 2, 57- Nov 5, 63 Mtemtik I Prednášjúci: prof. RNDr. Igor Podlný, DrSc. http://www.tke.sk/podln/ # Osh n dnes Deriváci fnkcie 74 KAPITOLA 3. FUNKCE JEDNÉ PROMĚNNÉ Určitý integrál 8. Vlstnosti
6.1. Limita funkce. Množina Z má dva hromadné body: ±. Tedy Z ={+, }.
6.1. Limit funkce Číslo R nzveme hromdným bodem množiny A R, pokud v kždém jeho okolí leží nekonečně mnoho bodů z množiny A. Body z A, které neptří mezi hromdné body A, se nzývjí izolovné. Alterntivně
Komplexní čísla tedy násobíme jako dvojčleny s tím, že použijeme vztah i 2 = 1. = (a 1 + ia 2 )(b 1 ib 2 ) b 2 1 + b2 2.
7 Komplexní čísl 71 Komplexní číslo je uspořádná dvojice reálných čísel Komplexní číslo = 1, ) zprvidl zpisujeme v tzv lgebrickém tvru = 1 + i, kde i je imginární jednotk, pro kterou pltí i = 1 Číslo 1
FI: JARO 2017 Verze: 9. února 2017
FI: JARO 7 Verze: 9. únor 7 Přednášky k předmětu MB Autor: Romn Šimon Hilscher Přednášející: Petr Hsil Obsh Přehled přednášek podle strny ukončení iii. Polynomy interpolce.. Interpolce.. Lgrngeův interpolční
1. Těleso komplexních čísel Definice. Množinou komplexních čísel rozumíme množinu R 2.
1. Těleso komplexních čísel Definice. Množinou komplexních čísel rozumíme množinu R 2. Množinu komplexních čísel znčíme C. N množině C definujeme operce sčítání + jko v R 2 násobení. předpisem (x, y).(u,
Matematika II: Pracovní listy Integrální počet funkce jedné reálné proměnné
Mtemtik II: Prcovní listy Integrální počet funkce jedné reálné proměnné Petr Schreiberová, Petr Volný Ktedr mtemtiky deskriptivní geometrie VŠB - Technická univerzit Ostrv Ostrv 8 Obsh Neurčitý integrál.
1.2 Množina komplexních čísel... 10
Obsh Číselné množiny reálné funkce 5. Množin reálných čísel...................................... 5. Množin kompleních čísel.....................................3 Reálné funkce jedné reálné proměnné..............................
13. Exponenciální a logaritmická funkce
@11 1. Eponenciální logritmická funkce Mocninná funkce je pro r libovolné nenulové reálné číslo dán předpisem f: y = r, r R, >0 Eponent r je konstnt je nezávisle proměnná. Definičním oborem jsou pouze
Fakulta aplikovaných věd
Zápdočeská univerzit v Plzni Fkult plikovných věd Diplomová práce Mgr. Ev Kleknerová RŮZNÉ TYPY INTEGRÁLŮ A JEJICH APLIKACE Fkult plikovných věd Vedoucí diplomové práce: RNDr. Petr Tomiczek, CSc. - KMA
je daná funkce. Množinu všech primitivních funkcí k f na I nazveme neurčitým f(x)dx nebo f.
MATEMATICKÁ ANALÝZA INTEGRÁLNÍ POČET PŘEDNÁŠEJÍCÍ ALEŠ NEKVINDA. Přednášk Oznčme R = R {, } jko v minulém semestru. V tomto semestru se budeme zbývt opčným úkonem k derivování. Primitivní funkce. Definice.
POUŽITÍ RIEMANNOVA INTEGRÁLU K VÝPOČTU MATEMATICKO-FYZIKÁLNÍCH ÚLOH
JIHOČESKÁ UNIVERZITA V ČESKÝCH BUDĚJOVICÍCH PEDAGOGICKÁ FAKULTA Ktedr mtemtik POUŽITÍ RIEMANNOVA INTEGRÁLU K VÝPOČTU MATEMATICKO-FYZIKÁLNÍCH ÚLOH Ondřej MAREČEK České Budějovice, duen 8 PROHLÁŠENÍ Prohlšuji,
Převody Regulárních Výrazů. Minimalizace Konečných. Regulární jazyky 2 p.1/35
Převody Regulárních Výrzů Minimlizce Konečných Automtů Regulární jzyky 2 p.1/35 Kleeneho lger Definice 2.1 Kleeneho lger sestává z neprázdné množiny se dvěm význčnými konstntmi 0 1, dvěm inárními opercemi
Text m ºe být postupn upravován a dopl ován. Datum poslední úpravy najdete u odkazu na staºení souboru. Veronika Sobotíková
Tento text není smosttným studijním mteriálem. Jde jen o prezentci promítnou n p edná²kách, kde k ní p idávám slovní komentá. N které d leºité ásti látky pí²u pouze n tbuli nejsou zde obsºeny. Text m ºe
Při výpočtu obsahu takto omezených rovinných oblastí mohou nastat následující základní případy : , osou x a přímkami. spojitá na intervalu
Geometrické plikce určitého integrálu Osh rovinné olsti Je-li ploch ohrničen křivkou f () osou Při výpočtu oshu tkto omezených rovinných olstí mohou nstt následující zákldní přípd : Nechť funkce f () je
Kapitola 1. Taylorův polynom
Kpitol Tylorův polynom Definice. Budeme psát f = o(g) v R, je-li lim x ( f )(x) =, f = O(g) g v R, je-li ( f ) omezená n nějkém U (). g Příkld. lim x (x + x + 3) 5 (x 5 x 3 + 7x 9) = lim x + o(x ) x x
Masarykova univerzita v Brně Ekonomicko správní fakulta. Matematika B. Miloslav Mikuĺık
Msrykov univerzit v Brně Ekonomicko správní fkult Mtemtik B distnční studijní opor Miloslv Mikuĺık Luboš Buer Brno 2005 Tento projekt byl relizován z finnční podpory Evropské unie v rámci progrmu SOCRATES
ZÁKLADNÍ POZNATKY. p, kde ČÍSELNÉ MNOŽINY (OBORY) N... množina všech přirozených čísel: 1, 2, 3,, n,
ZÁKLADNÍ POZNATKY ČÍSELNÉ MNOŽINY (OBORY) N... množin všech přirozených čísel: 1, 2, 3,, n, N0... množin všech celých nezáporných čísel (přirozených čísel s nulou: 0,1, 2, 3,, n, Z... množin všech celých
56. ročník Matematické olympiády. b 1,2 = 27 ± c 2 25
56. ročník Mtemtické olympiády Úlohy domácí části I. kol ktegorie 1. Njděte všechny dvojice (, ) celých čísel, jež vyhovují rovnici + 7 + 6 + 5 + 4 + = 0. Řešení. Rovnici řešíme jko kvdrtickou s neznámou
Matematika II: Testy
Mtemtik II: Testy Petr Schreiberová Ktedr mtemtiky deskriptivní geometrie VŠB - Technická univerzit Ostrv Mtemtik II - testy 69. Řy 9 - Test Ktedr mtemtiky deskriptivní geometrie, VŠB - Technická univerzit
Souhrn základních výpočetních postupů v Excelu probíraných v AVT 04-05 listopad 2004. r r. . b = A
Souhrn zákldních výpočetních postupů v Ecelu probírných v AVT 04-05 listopd 2004. Řešení soustv lineárních rovnic Soustv lineárních rovnic ve tvru r r A. = b tj. npř. pro 3 rovnice o 3 neznámých 2 3 Hodnoty
4. Determinanty. Výpočet: a11. a22. a21. a12. = a 11 a 22 a 33 + a 12 a 23 a 31 + a 13 a 21 a 32 a 13 a 22 a 31. a 11 a 23 a 32 a 12 a 21 a 33
. Determinnty Determinnt, znčíme deta, je číslo přiřzené čtvercové mtici A. Je zveden tk, by pro invertibilní mtici byl nenulový pro neinvertibilní mtici byl roven nule. Výpočet: = + = + + - - - + + +
A DIRACOVA DISTRIBUCE 1. δ(x) dx = 1, δ(x) = 0 pro x 0. (1) Graficky znázorňujeme Diracovu distribuci šipkou jednotkové velikosti (viz obr. 1).
A DIRACOVA DISTRIBUCE A Dircov distribuce A Definice Dircovy distribuce Dircovu distribuci δx) lze zvést třemi ekvivlentními způsoby ) Dirc [] ji zvedl vzthy δx) dx, δx) pro x ) Grficky znázorňujeme Dircovu
Masarykova univerzita
Msrykov univerzit Přírodovědecká fkult Diplomová práce Web k témtu: Integrální počet Bc. Ev Schlesingerová Brno 9 Prohlášení Prohlšuji, že jsem tuto diplomovou práci npsl sm s použitím uvedené litertury.
ANALYTICKÁ GEOMETRIE V PROSTORU
ANALYTICKÁ GEOMETRIE V PROSTORU 3. přednášk Vektorová lger Prvoúhlé souřdnice odu v prostoru Poloh odu v prostoru je vzhledem ke třem osám k soě kolmým určen třemi souřdnicemi, které tvoří uspořádnou trojici
Řešené příklady k MAI III.
Řešené příkldy k MAI III. Jkub Melk 28. říjn 2007 1 Obsh 1 Metrické prostory 2 1.1 Teoretickéotázky.... 2 1.2 Metriky..... 4 1.3 Anlýzmnožin... 4 1.3.1 Uzávěry... 4 1.3.2 Zkoumejtenásledujícímnožiny....
MATEMATIKA I. prof. RNDr. Gejza Dohnal, CSc. IV. Základy integrálního počtu
MATEMATIKA I. prof. RNDr. Gejz Dohnl, CSc. IV. ákldy integrálního počtu 1 Mtemtik I. I. Lineární lgebr II. ákldy mtemtické nlýzy III. Diferenciální počet IV. Integrální počet 2 Mtemtik I. IV. Integrální
Křivkový integrál funkce
Kpitol 6 Křivkový integrál funkce efinice způsob výpočtu Hlvním motivem pro definici určitého integrálu funkce jedné proměnné byl úloh stnovit obsh oblsti omezené grfem dné funkce intervlem n ose x. Řd
Repetitorium z matematiky
Rovnie, nerovnie jejih soustvy (lineární, kvdrtiké, irionální) Reetitorium z mtemtiky Podzim Ivn Vulová A) Rovnie jejih řešení Mnoho fyzikálníh, tehnikýh jinýh úloh lze mtemtiky formulovt jko úlohu tyu:
Zvyšování kvality výuky technických oborů
Zvšování kvlit výuk technických oorů Klíčová ktivit IV. Inovce zkvlitnění výuk směřující k rozvoji mtemtické grmotnosti žáků středních škol Tém IV.. Algerické výrz, výrz s mocninmi odmocninmi Kpitol Člen
Hyperbola, jejíž střed S je totožný s počátkem soustavy souřadnic a jejíž hlavní osa je totožná
Hyperol Hyperol je množin odů, které mjí tu vlstnost, že solutní hodnot rozdílu jejich vzdáleností od dvou dných různých odů E, F je rovn kldné konstntě. Zkráceně: Hyperol = {X ; EX FX = }; kde symolem
Jsou to rovnice, které obsahují neznámou nebo výraz s neznámou jako argument logaritmické funkce.
Logritmické rovnice Jsou to rovnice, které oshují neznámou neo výrz s neznámou jko rgument ritmické funkce. Zákldní rovnice, 0 řešíme pomocí vzthu. Složitější uprvit n f g potom f g (protože ritmická funkce
je parciální derivace funkce f v bodě a podle druhé proměnné (obvykle říkáme proměnné
1. Prciální derivce funkce více proměnných. Prciální derivce funkce dvou proměnných. Je-li funkce f f(, ) definován v množině D f R 2 bod ( 1, 2 ) je vnitřním bodem množin D f, pk funkce g 1 (t) f(t, 2
12.1 Primitivní funkce
Integrání počet. Primitivní funkce Již jsme definovli pojem derivce funkce, k funkci f(x) jsme hledli její derivci f (x). Nyní chceme ukázt opčný postup, tzn. k funkci f (x) njít funkci f(x). Přesněji,
2.2.9 Grafické řešení rovnic a nerovnic
..9 Grfické řešení rovnic nerovnic Předpokldy: 0, 06 Př. : Řeš početně i grficky rovnici x + = x. Početně: Už umíme. x + = x x = x = K = { } Grficky: Kždá ze strn rovnice je výrzem pro lineární funkci