Logické uvažování. PaedDr. Mgr. Hana Čechová

Podobné dokumenty
Výroková logika (5) 1. Základní pojmy Ke každé větě dopište do závorky, zda věta je pravda, či nepravda.

nejvyšší a z vývojového hlediska nejmladší poznávací proces Pojem odraz obecných a podstatných vlastností předmětů a jevů ve vědomí člověka

Verbální inteligence Numerická inteligence Figurální inteligence Inteligence (celková úroveň poznávacích schopností) Paměť

a) vnímání = proces, kterým zachycujeme to, co v daném okamžiku působí na naše smysly

Měření výsledků výuky a vzdělávací standardy

Numerické dovednosti. PaedDr. Mgr. Hana Čechová

DÍLČÍ OBLASTI ROZUMOVÝCH SCHOPNOSTÍ A JAK JE ROZVÍJET

SLOHOVÁ VÝCHOVA Mgr. Soňa Bečičková

Matematika a její aplikace Matematika 1. období 3. ročník

Název materiálu: Myšlení a řeč Autor materiálu: Mgr. Veronika Plecerová Datum vytvoření: Zařazení materiálu:

INDIVIDUÁLNÍ PÉČE - M. Charakteristika vzdělávacího oboru

Jejich účelem je uvolnění potenciálu, který v sobě ukrývá spojení racionálního a emocionálního myšlení.

I-S-T 2000 R. Test struktury inteligence IST R. HTS Report. Jan Ukázka ID Datum administrace Standard A 1.

ROZVOJ ROZUMOVÝCH SCHOPNOSTÍ PŘEDŠKOLÁK EDŠKOLÁKŮ FORMOU HER, HLAVOLAMŮ A VHODNÝCH ČINNOSTÍ

Logika a studijní předpoklady

MINISTERSTVO ŠKOLSTVÍ, MLÁDEŽE A TĚLOVÝCHOVY. Učební osnova předmětu MATEMATIKA. pro nástavbové studium. varianta B 6 celkových týd.

UKÁZKA ČINNOSTÍ V ŠACHOVÉ VÝUCE PŘÍNOS PRO ROZVOJ KOGNITIVNÍCH PROCESŮ

MATEMATICKÝ SEMINÁŘ (volitelný a nepovinný předmět)

MANUÁL K DIDAKTICKÉMU TESTU Z MATEMATIKY PŘIJÍMAČKY MSK 2011

SEMINÁRNÍ PRÁCE VÝCHOVA

ZÁKLADNÍ METODOLOGICKÁ PRAVIDLA PŘI ZPRACOVÁNÍ ODBORNÉHO TEXTU. Martina Cirbusová (z prezentace doc. Škopa)

Inteligence, myšlení, kreativita

CHARAKTERISTIKA. VZDĚLÁVACÍ OBLAST VYUČOVACÍ PŘEDMĚT ZODPOVÍDÁ VOLITELNÉ PŘEDMĚTY Seminář z matematiky Mgr. Dana Rauchová

Zapomínáme, zapomínejme aneb. PaedDr. Mgr. Hana Čechová

CHARAKTERISTIKA PŘEDMĚTU MATEMATIKA 1

MATEMATIKA CHARAKTERISTIKA PŘEDMĚTU pro 1. až 5. ročník

Ludwig WITTGENSTEIN: Tractatus Logico-Philosophicus, 1922 Překlad: Jiří Fiala, Praha: Svoboda, 1993

Logika 5. Základní zadání k sérii otázek: V uvedených tezích doplňte z nabízených adekvátní pojem, termín, slovo. Otázka číslo: 1. Logika je věda o...

Reálná čísla a výrazy. Početní operace s reálnými čísly. Složitější úlohy se závorkami. Slovní úlohy. Číselné výrazy. Výrazy a mnohočleny

SEMINÁŘ K VÝUCE MATEMATIKA 1

Úvod do matematiky. Mgr. Radek Horenský, Ph.D. Důkazy

Vyučovací hodiny mohou probíhat v multimediální učebně a odborných učebnách s využitím interaktivní tabule.

SEMINÁŘ K VÝUCE MATEMATIKA

Učební osnovy Vzdělávací oblast: Matematika a její aplikace Vzdělávací obor: Matematický kroužek pro nadané žáky ročník 9.

TEMATICKÝ PLÁN VÝUKY

Matematika. 9. ročník. Číslo a proměnná. peníze, inflace. finanční produkty, úročení. algebraické výrazy, lomené výrazy (využití LEGO EV3)

shine. light of change.

Matematické důkazy Struktura matematiky a typy důkazů

Předpokládané znalosti žáka 1. stupeň:

Bakalářský seminář - 3

Výuka může probíhat v kmenových učebnách, část výuky může být přenesena do multimediálních učeben, k interaktivní tabuli, popřípadě do terénu.

Vyučovací předmět: Matematika Ročník: 7.

Psychologie a sociologie Úvod

Individuální vzdělávací plán

A B C D E F 1 Vzdělávací oblast: Matematika a její aplikace 2 Vzdělávací obor: Matematika 3 Ročník: 8. 4 Klíčové kompetence. Opakování 7.

Cvičení z matematiky - volitelný předmět

Název projektu: Polytechnická výchova zařazování kreativních technických hraček a stavebnic

Mezi... aspekty řadíme obecné pojmy, tvrzení či soudy a tvrzení následně vyvozená.

Definice: Paměť je jedna z nejdůležitějších vlastností člověka, je to soubor procesů, které umožňují osvojení informací, jejich uchování a vybavení.

Ročník IX. Matematika. Období Učivo téma Metody a formy práce- kurzívou. Průřezová témata. Mezipřed. vztahy. Kompetence Očekávané výstupy

METODICKÝ APARÁT LOGISTIKY

MŠ Laudova se speciálními třídami, Laudova 1030/3, Praha 6 Řepy, tel Projekt: Předmatematická gramotnost

SYSTÉMOVÁ METODOLOGIE (VII) Kybernetika. Ak. rok 2011/2012 vbp 1

Vyučovací předmět: CVIČENÍ Z MATEMATIKY. A. Charakteristika vyučovacího předmětu.

Co můžeme? PaedDr. Mgr. Hana Čechová

LOGIKA VÝROKOVÁ LOGIKA

1. Matematická logika

Část 6 Kurikulární rámec pro jednotlivé oblasti vzdělávání Matematické vzdělávání

Učební osnovy pracovní

1. Matematická logika

Charakteristika vzdělávacího oboru Seminář z matematiky

Vzdělávací obsah vyučovacího předmětu

Matematika. ochrana životního prostředí analytická chemie chemická technologie Forma vzdělávání:

MOCNINY A ODMOCNINY. Standardy: M M PYTHAGOROVA VĚTA. Standardy: M M

Elementárních klíčových kompetencí mohou žáci dosahovat pouze za přispění a dopomoci druhé osoby.

Rezervní mozková kapacita. PaedDr. Mgr. Hana Čechová

Cvičení z matematiky - volitelný předmět

OBSAH. 1. ÚVOD il 3. MOZEK JAKO ORGÁNOVÝ ZÁKLAD PSYCHIKY POZORNOST 43

Možnosti aktivizace mentálních funkcí v knihovnách. Mgr. Martina Burianová trenérka paměti III. stupně

Název akce: JAK VYUŽÍVAT KRITICKÉ MYŠLENÍ PŘI PŘÍPRAVĚ LEKCÍ A PRACOVNÍCH LISTŮ

Výukový materiál zpracován v rámci projektu EU peníze školám

Reálná čísla a výrazy. Početní operace s reálnými čísly. Složitější úlohy se závorkami. Slovní úlohy. Číselné výrazy. Výrazy a mnohočleny

Organizace. Zápočet: test týden semestru (pátek) bodů souhrnný test (1 pokus) Zkouška: písemná část ( 50 bodů), ústní část

12. VYTVÁŘENÍ GEOMETRICKÝCH PŘEDSTAV

Pedagogika I Zimní semestr Akademický rok 2014/15

Matematika. poznává jednotlivá čísla do 20 na základě názoru. Přirozená čísla 1-5, 6-10, využívá matematické pomůcky

- vyučuje se: v 6. a 8. ročníku 4 hodiny týdně v 7. a 9. ročníku 5 hodin týdně - je realizována v rámci vzdělávací oblasti Matematika a její aplikace

Inteligence. PaedDr. Mgr. Hana Čechová

CZ.1.07/1.5.00/ Zkvalitnění výuky prostřednictvím ICT. Psychické procesy VY_32_INOVACE_10_02. Luděk Dobeš

Specifické poruchy učení

TEMATICKÝ PLÁN VÝUKY

Přehled výzkumných metod

VÝUKOVÉ METODY A FORMY V ZEMĚPISE

: Paměti-zapomínání, uchování. :Motivační-citové a volné. ð Zahrnují: procesy názorného poznávání, myšlení, řeč

Kognitivní deficit: Od screeningu k podrobnějšímu neuropsychologickému vyšetření. Sabina Goldemundová

Cíle základního vzdělávání

ŠKOLNÍ VZDĚLÁVACÍ PROGRAM

3.2 MATEMATIKA A JEJÍ APLIKACE (M) Charakteristika vzdělávací oblasti

Myšlenkové mapování (heuristické mapování) Metoda nelineárního znázornění informací

Vzdělávací obor matematika

Premisa Premisa Závěr

Tematický plán Obor: Informační technologie. Vyučující: Ing. Joanna Paździorová

Pythagorova věta Pythagorova věta slovní úlohy. Mocniny s přirozeným mocnitelem mocniny s přirozeným mocnitelem operace s mocninami

Vzdělávací obsah předmětu matematika a její aplikace je rozdělen na čtyři tématické okruhy:

Časové a organizační vymezení

Informační brožura FIGURKOVÁ ŠKOLIČKA. Průvodce originální metodikou pro děti a jejich pedagogy

Alternativní způsoby učení dětí s mentálním postižením

Téma číslo 5 Základy zkoumání v pedagogice II (metody) Pavel Doulík, Úvod do pedagogiky

Pojetí vyučovacího předmětu

2. Zařazení a význam učiva. 3. Tvorba obsahu učiva. Podstata fungování tržní ekonomiky

Transkript:

Logické uvažování PaedDr. Mgr. Hana Čechová

Osnova 1. Myšlení 2. Funkce myšlení 3. Druhy myšlení 4. Myšlenkové operace 5. Logické myšlení 6. Můžeme se naučit logicky myslet? 7. Trénuj hlavu, trénuj tělo 8. Hry a aktivity pro rozvoj logického myšlení 9. Otestujte své logické myšlení 14.12.2017 2

1/ Myšlení Uvědomění si vztahů mezi předměty a jevy reálného světa, pro která máme slovní označení. obsahem myšlení = myšlenky výsledkem myšlení = nový poznatek Nejsložitější kognitivní funkce Vnitřní mentální děj Nelze ho přímo pozorovat Úzce souvisí s inteligencí (= poznávací schopnost, která určuje kvalitu myšlení daného jedince) Metoda zkoumání myšlení = introspekce(zkoumaný jedinec myslí nahlas nebo proces myšlení dodatečně popisuje) 14.12.2017 3

2/ Funkce myšlení Formování pojmů Rozpoznávání a nacházení vztahů Vyvozování závěrů z výchozích předpokladů ( = usuzování) Řešení problémů Vytváření něčeho nového 14.12.2017 4

3/ Druhy myšlení Konkrétní - manipulace s vjemy, myšlení situační, názorové, praktické, metoda pokus - omyl (puzzle, vaření atd.) Názorné - operujeme s představami (nejčastěji vizuálními) Abstraktní - operace se znaky (symboly např. matematické, verbální, logické) Pojmové nejběžnější, manipulace s verbálními znaky (pojmy) Propoziční základem jsou výroky, tvrzení (propozice) vyjádřené ve verbálním kódu, s nimiž provádíme mentální manipulace 14.12.2017 5

4/ Myšlenkové operace jsou základní operace, které potřebujeme při určování všech pojmů 14.12.2017 6

myšlenkové operace Analýza - rozklad celku na části - popis dílčích částí, často spojena s kritickým hodnocením celku i částí (př. Jakou barvu má střecha? červená,dřevěná předpoklad: dům má střechu a střecha barvu) Syntéza - sjednocování nebo kombinování částí do určitého celku, výsledek není obsažen ve výchozích údajích výsledkem je něco nového (př. kašel, rýma, teplota = chřipka) Řazení Třídění (klasifikace) seskupování objektů podle podobných vlastností, závisí na úhlu pohledu, na zvyklostech v daném oboru (knihovnictví třídění knih podle názvu), NE na pořadí 14.12.2017 7

myšlenkové operace Srovnávání (komparace) - zjišťování podobností a rozdílů mezi různými jevy, formování pojmů, umožňuje třídění a kategorizaci Abstrakce - vyčleňování podstatných (obecných) vlastností předmětů a jevů,vedlejší necháváme stranou (př. tabule je zelená, obdélníková, dřevěná) Konkretizace vyčleňování konkrétních vlastností, opak abstrakce Zobecňování spojování určitých skupin podle podstatných společných znaků (př. jablko se jí, hruška se jí ovoce se jí) 14.12.2017 8

myšlenkové operace Indukce - vyvozování obecného závěru z jednotlivých faktů, postup od zvláštního k obecnému (př. železo, měď, hliník - vedou el. proud jsou el. vodivé, sníh, led, čokoláda za tepla tají, potkám 3 hnědé medvědy mohu vyvodit, že medvědi jsou hnědí) Dedukce - obecný závěr (pravidlo) aplikujeme na jednotlivé konkrétní příklady pravidlo: kovy vedou el. proud aplikace: tyč je kovová - Fe, Al nemohu se jí dotýkat, pokud je pod proudem el. drátů spadlých na zem se nedotýkám kovovou tyčí mohu jen dřevěnou) Analogie - uvažuje a usuzuje na základě podobnosti s věcmi známými (př. ti psi skákali jako ti páni skákali) 14.12.2017 9

5/ Logické myšlení Za zakladatele považován Aristoteles Myšlenkové operace Řídí se přesnými pravidly, která nesmíme porušit, chceme-li dospět ke správnému závěru (Plháková, 2004, str. 269) Výsledky jsou jen správné X nesprávné, pravdivé X nepravdivé Označovány jako algoritmy Algoritmy (specifický myšlenkový postup vhodný pro řešení určitého typu problému) tvoří je série přesnýchnávodů a postupů, při jejichž dodržení dojdeme ke správnému závěru (př. Pythagorova věta) Uplatnění: především v matematice a formální logice Nevýhoda: velký nárok na čas a myšlenkové úsilí 14.12.2017 10

6/ Můžeme se naučit logicky myslet? Logika sídlí v levé mozkové hemisféře, intuice je doménou pravé mozkové hemisféry Je dokázáno: část populace více využívá LMH (nutné pro vědeckou práci a systematické uspořádání vědomostí), část PMH (umělci ale i dyslektici), u části populace obě hemisféry v rovnováze Otázka 1 Co je lepší? : Správné řešení problému pomocí daných pravidel NEBO pomocí náhlého nápadu, kdy výsledek nemůžeme logicky odůvodnit? Současná věda i školství vyžadují: řešit problémy rychle, přesně, pružně dle daných pravidel a postupů kdo nezvládá problémy při studiu a v mnoha směrech i v praktickém životě logické myšlení je prospěšné rozvíjet Otázka 2 Co dělat, když nám není shůry dáno? 14.12.2017 11

7/ Trénuj hlavu, trénuj tělo Narodí-li se dítě mozek do určité míry již naprogramován (muži X ženy, co se naučíme, geneticky předáváme ) Základem VŠECH dovedností (tedy i logického myšlení) je dostatečné množství neuronů a silná struktura nervových spojů v dané oblasti mozku Optimální počet neuronů i nervových spojů lze ovlivňovat 1/ do 3 let - rozvíjet základ pro logické myšlení (př. napodobování významů slov v říkankách a písničkách pohybem, u dívek důraz na praktické prostorové a matematické činnosti) 2/ do 7 let cílené hry pro rozvoj synapsí 3/ do 13 let nervové spoje lze natrénovat natrvalo 4/ vyšší věk - dílčí funkce důležité pro logické myšlení lze docvičit Nervové spoje se vytvářejí po celý život člověka -při jakékoli činnosti.. 14.12.2017 12

8/ Hry a aktivity pro rozvoj logického myšlení Dáma, šachy, mlýn aj. deskové hry Sudoku, hlavolamy Karetní hry (Poker ) Řazení předmětů podle určitých pravidel a) délka (nejkratší nejdelší nejkratší nejdelší ) b) výška (nízký vysoký vysoký nízký ) Kostky tvorba konstrukcí podle vzorků rozvoj schopnosti analyzovat, kontrolovat vlastní práci, hledat chyby prostorové myšlení, stereometrie Sestav čtverec, obdélník, trojúhelník rozvoj prostorové orientace, zrakové paměti, pozornosti, drobné motoriky, základních početních operací, kombinatorních návyků detaily, představivost, soulad částí, geometrické tvary lze využít různé barvy apod. 14.12.2017 13

9/ Otestujte své logické myšlení AUTOR: psycholog PhDr. Allan Gintel, CSc(24.9.1947) Vytvořil základy pro Prázdninovou školu (SSM -březen 1977-1989) a Prázdninovou školu Lipnice (1991 -dosud). Autor mnoha experimentálních programů, které mají výchovný a vzdělávací charakter. Test by měl ukázat vaši schopnost vyvodit správné řešení, které vyplývá z určitých výroků a zároveň by měl prověřit rychlost vašeho uvažování Následující výroky jsou ve skutečnosti nesmyslné, ale je potřeba vycházet z toho, že první dva výroky z každé úlohy jsou správné. Závěr z nich však může, nebo nemusí být správný. Pokud se vám zdá závěr třetího výroku správný, označte ANO, v opačném případě NE. Na vypracování každé z úloh máte 20 sekund. http://edenik.elka.cz/otestujte-sve-logicke-mysleni/ 14.12.2017 14

Otázky 1. Všechny žáby jsou modré. Tento kůň je modrý. Proto tento kůň je žába. ANO NE 2. Všichni žáci jsou ryby. Někteří žáci jsou mloci. Proto někteří mloci jsou ryby. ANO NE 3. Některé mraky mají černé body. Černé body mají všechny domy. Proto některé mraky jsou domy. ANO NE 4. Všechny myši jsou hranaté. Všechno hranaté je modré. Proto všechny myši jsou modré. ANO NE 5. Všechny ovce jsou sloni. Někteří sloni jsou čápi. Proto všechny ovce jsou čápi. ANO NE 6. Někteří lidé, kteří mají rádi Alici, nemají rádi Roberta. Proto lidé, kteří mají rádi Roberta, nemají rádi Alici. ANO NE 7. Někteří psi rádi recitují básně. Všichni psi jsou laviny. Proto některé laviny rády recitují básně. ANO NE 8. Nikdo s červeným nosem nemůže být premiérem. Všichni muži mají červené nosy. Proto žádný muž nemůže být premiérem. ANO NE 9. Všichni jezevci jsou sběratelé umění. Někteří sběratelé umění žijí v norách. Proto někteří jezevci žijí v norách. ANO NE 10. Nikdo s fialovými vlasy není mladý. Někteří lidé, kteří mají fialové vlasy, pijí mléko. Proto někteří lidé, kteří pijí mléko, nejsou mladí. ANO NE 14.12.2017 15

odpovědi 1. Všechny žáby jsou modré. Tento kůň je modrý. Proto tento kůň je žába. ANO NE 2. Všichni žáci jsou ryby. Někteří žáci jsou mloci. Proto někteří mloci jsou ryby. ANO NE 3. Některé mraky mají černé body. Černé body mají všechny domy. Proto některé mraky jsou domy. ANO NE 4. Všechny myši jsou hranaté. Všechno hranaté je modré. Proto všechny myši jsou modré. ANO NE 5. Všechny ovce jsou sloni. Někteří sloni jsou čápi. Proto všechny ovce jsou čápi. ANO NE 6. Někteří lidé, kteří mají rádi Alici, nemají rádi Roberta. Proto lidé, kteří mají rádi Roberta, nemají rádi Alici. ANO NE 7. Někteří psi rádi recitují básně. Všichni psi jsou laviny. Proto některé laviny rády recitují básně. ANO NE 8. Nikdo s červeným nosem nemůže být premiérem. Všichni muži mají červené nosy. Proto žádný muž nemůže být premiérem. ANO NE 9. Všichni jezevci jsou sběratelé umění. Někteří sběratelé umění žijí v norách. Proto někteří jezevci žijí v norách. ANO NE 10. Nikdo s fialovými vlasy není mladý. Někteří lidé, kteří mají fialové vlasy, pijí mléko. Proto někteří lidé, kteří pijí mléko, nejsou mladí. ANO NE 14.12.2017 16

vyhodnocení Za každou odpověď ANO při otázkách 2, 4, 7, 8, 10 máte 1 bod. Za každou odpověď NE při otázkách 1, 3, 5, 6, 9 si též připočtěte 1 bod. Jak jste na tom? 7-10 bodů: Vynikající. Těžko může být někdo lepší než vy. Vaše logika je přímo železná. 5-6 bodů: Logické uvažování patří k vašim silným stránkám. 3-4 body: Zlatá střední cesta, žádný génius, ale hlupák rovněž ne. 2-0 body: Vaše silné stránky se neprojevují právě v logice. Pokud jste neuspěli, nezoufejte. Manažer banky se zahraniční účastí, jeden fotoreportér a redaktorka získali jen 4 body. Zástupkyně šéfredaktora, ředitel Matematického ústavu SAV a jeho syn dosáhli plného počtu bodů. Mé skóre: Dosáhla 7 bodů. Nedala jsem otázky 1, 3 a 9. 14.12.2017 17

10/ Nezapomínejte na mozek, jinak zapomene on na vás PL 5 + 6 14.12.2017 18