Zavádění inovativních metod a výukových materiálů do přírodovědných předmětů na Gymnáziu v Krnově

Podobné dokumenty
7. Gravitační pole a pohyb těles v něm

[GRAVITAČNÍ POLE] Gravitace Gravitace je všeobecná vlastnost těles.

Digitální učební materiál. III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Příjemce podpory Gymnázium, Jevíčko, A. K.

1.6.9 Keplerovy zákony

GRAVITAČNÍ POLE. Všechna tělesa jsou přitahována k Zemi, příčinou tohoto je jevu je mezi tělesem a Zemí

R2.213 Tíhová síla působící na tělesa je mnohem větší než gravitační síla vzájemného přitahování těles.

1 Newtonův gravitační zákon

Obsah. Obsah. 2.3 Pohyby v radiálním poli Doplňky 16. F g = κ m 1m 2 r 2 Konstantu κ nazýváme gravitační konstantou.

Pohyby HB v některých význačných silových polích

MECHANIKA POHYBY V HOMOGENNÍM A RADIÁLNÍM POLI Implementace ŠVP

Newtonův gravitační zákon Gravitační a tíhové zrychlení při povrchu Země Pohyby těles Gravitační pole Slunce

FYZIKA I. Gravitační pole. Prof. RNDr. Vilém Mádr, CSc. Prof. Ing. Libor Hlaváč, Ph.D. Doc. Ing. Irena Hlaváčová, Ph.D. Mgr. Art.

GRAVITAČNÍ POLE. Mgr. Jan Ptáčník - GJVJ - Fyzika - Mechanika - 1. ročník

Fyzika 1 - rámcové příklady Kinematika a dynamika hmotného bodu, gravitační pole

BIOMECHANIKA KINEMATIKA

Zavádění inovativních metod a výukových materiálů do přírodovědných předmětů na Gymnáziu v Krnově

Dynamika. Dynamis = řecké slovo síla

Popis tíhové síly a gravitace. Očekávaný výstup. Řešení základních příkladů. Datum vytvoření Druh učebního materiálu.

KEPLEROVY ZÁKONY. RNDr. Vladimír Vaščák. Metodický list

VÝUKOVÝ MATERIÁL VÝUKOVÝ MATERIÁL VÝUKOVÝ MATERIÁL

Shrnutí kinematiky. STŘEDNÍ ODBORNÁ ŠKOLA a STŘEDNÍ ODBORNÉ UČILIŠTĚ, Česká Lípa, 28. října 2707, příspěvková organizace

Zavádění inovativních metod a výukových materiálů do přírodovědných předmětů na Gymnáziu v Krnově

Dynamika pro učební obory

R5.1 Vodorovný vrh. y A

Fyzikální vzdělávání. 1. ročník. Učební obor: Kuchař číšník Kadeřník. Implementace ICT do výuky č. CZ.1.07/1.1.02/ GG OP VK

Zavádění inovativních metod a výukových materiálů do přírodovědných předmětů na Gymnáziu v Krnově

I N V E S T I C E D O R O Z V O J E V Z D Ě L Á V Á N Í

Vyřešením pohybových rovnic s těmito počátečními podmínkami dostáváme trajektorii. x = v 0 t cos α (1) y = h + v 0 t sin α 1 2 gt2 (2)

Mechanika - kinematika

KINEMATIKA 13. VOLNÝ PÁD. Mgr. Jana Oslancová VY_32_INOVACE_F1r0213

KINEMATIKA HMOTNÉHO BODU. Mgr. Jan Ptáčník - GJVJ - Fyzika - Mechanika - 1. ročník

Zavádění inovativních metod a výukových materiálů do přírodovědných předmětů na Gymnáziu v Krnově

Zavádění inovativních metod a výukových materiálů do přírodovědných předmětů na Gymnáziu v Krnově 07_10_Zobrazování optickými soustavami 1

Interpretace pozorování planet na obloze a hvězdné obloze

Interpretace pozorování planet na obloze a hvězdné obloze

Úvod do nebeské mechaniky

Interpretace pozorování planet na obloze a hvězdné obloze

Úvod do nebeské mechaniky

Dynamika. Síla a její účinky na těleso Newtonovy pohybové zákony Tíhová síla, tíha tělesa a síly brzdící pohyb Dostředivá a odstředivá síla

Ukázkové řešení úloh ústředního kola kategorie GH A) Příklady

4. Práce, výkon, energie a vrhy

78 Gravitace. Kapitola 6. Cíle. Víte, že Keplerovy zákony pohybu planet

Počty testových úloh

3.1. Newtonovy zákony jsou základní zákony klasické (Newtonovy) mechaniky

Příklad 5.3. v 1. u 1 u 2. v 2

Rychlost, zrychlení, tíhové zrychlení

1. Pro rovnoměrný přímočarý pohyb platí: A) t=s/v B) v=st C) s=v/t D) t=v/s 2. Při pohybu rovnoměrném přímočarém je velikost rychlosti:

DYNAMIKA HMOTNÉHO BODU. Mgr. Jan Ptáčník - GJVJ - Fyzika - 1. ročník - Mechanika

FYZIKA I. Složené pohyby (vrh šikmý)

Základní pojmy Rovnoměrný přímočarý pohyb Rovnoměrně zrychlený přímočarý pohyb Rovnoměrný pohyb po kružnici

Registrační číslo projektu: CZ.1.07/1.4.00/

Fyzika - Kvinta, 1. ročník

BIOMECHANIKA. Studijní program, obor: Tělesná výchovy a sport Vyučující: PhDr. Martin Škopek, Ph.D.

ASTRO Keplerovy zákony pohyb komet

ROVNOMĚRNĚ ZRYCHLENÝ POHYB, ZPOMALENÝ POHYB TEORIE. Zrychlení. Rychlost

Fyzikální učebna vybavená audiovizuální technikou, fyzikální pomůcky

Obr. 4 Změna deklinace a vzdálenosti Země od Slunce v průběhu roku

Země třetí planetou vhodné podmínky pro život kosmického prachu a plynu Měsíc

Soubor úloh k Mechanice (komb. studium)

BIOMECHANIKA DYNAMIKA NEWTONOVY POHYBOVÉ ZÁKONY, VNITŘNÍ A VNĚJŠÍ SÍLY ČASOVÝ A DRÁHOVÝ ÚČINEK SÍLY

Fyzika_6_zápis_8.notebook June 08, 2015

PRÁCE, VÝKON, ENERGIE. Mgr. Jan Ptáčník - GJVJ - Fyzika - 1. ročník - Mechanika

5. Stanovení tíhového zrychlení reverzním kyvadlem a studium gravitačního pole

POHYBY V GRAVITAČNÍM POLI ZEMĚ POHYBY TĚLES V HOMOGENNÍM TÍHOVÉM POLI ZEMĚ

Test obsahuje látku 5. ročníku z učiva o vesmíru. Ověřuje teoretické znalosti žáků. Časově odpovídá jedné vyučovací hodině.

Určení hmotnosti zeměkoule vychází ze základního Newtonova vztahu (1) mezi gravitačním zrychlením a g a hmotností M Z gravitačního centra (Země).

TÍHOVÉ ZRYCHLENÍ TEORETICKÝ ÚVOD. 9, m s.

STANOVENÍ TÍHOVÉHO ZRYCHLENÍ REVERZNÍM KYVADLEM A STUDIUM GRAVITAČNÍHO POLE

UNIVERZITA PARDUBICE FAKULTA CHEMICKO-TECHNOLOGICKÁ. Ústav aplikované fyziky a matematiky ZÁKLADY FYZIKY II

Filip Hroch. Astronomické pozorování. Filip Hroch. Výpočet polohy planety. Drahové elementy. Soustava souřadnic. Pohyb po elipse

ČÁST V F Y Z I K Á L N Í P O L E. 18. Gravitační pole 19. Elektrostatické pole 20. Elektrický proud 21. Magnetické pole 22. Elektromagnetické pole

n je algebraický součet všech složek vnějších sil působící ve směru dráhy včetně

Řešení úloh 1. kola 60. ročníku fyzikální olympiády. Kategorie D Autor úloh: J. Jírů. = 30 s.

03 - síla. Síla. Jak se budou chovat vozíky? Na obrázku jsou síly znázorněny tak, že 10 mm odpovídá 100 N. Určete velikosti těchto sil.

F - Příprava na 2. zápočtový test z fyziky

Měření tíhového zrychlení matematickým a reverzním kyvadlem

9. Astrofyzika. 9.4 Pod jakým úhlem vidí průměr Země pozorovatel na Měsíci? Vzdálenost Měsíce od Země je km.

Hmotný bod - model (modelové těleso), který je na dané rozlišovací úrovni přiřazen reálnému objektu (součástce, části stroje);

KINEMATIKA I FYZIKÁLNÍ VELIČINY A JEDNOTKY

Zavádění inovativních metod a výukových materiálů do přírodovědných předmětů na Gymnáziu v Krnově. 05_1_Fyzikální veličiny a jejich měření

Ukázkové řešení úloh ústředního kola kategorie EF A) Úvodní test

FYZIKA. Kapitola 3.: Kinematika. Mgr. Lenka Hejduková Ph.D.

Kinematika hmotného bodu

Identifikace. Přehledový test (online)

mechanická práce W Studentovo minimum GNB Mechanická práce a energie skalární veličina a) síla rovnoběžná s vektorem posunutí F s

11. Dynamika Úvod do dynamiky

Jméno autora: Mgr. Zdeněk Chalupský Datum vytvoření: Číslo DUM: VY_32_INOVACE_20_FY_B

Účinky síly: Rozdělení dynamiky. klasická v << c, c = 3 * 10 8 m/s relativistická v < c. Důsledky kontrakce délky, diletace času, změna hm.

2. Dynamika hmotného bodu

Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/ TĚŽIŠTĚ

Jednotky zrychlení odvodíme z výše uvedeného vztahu tak, že dosadíme za jednotlivé veličiny.

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ PRŮVODCE GB01-P03 MECHANIKA TUHÝCH TĚLES

Vektory aneb když jedno číslo nestačí

It is time for fun with Physics; play, learn, live

SBÍRKA ŘEŠENÝCH FYZIKÁLNÍCH ÚLOH

1 Tuhé těleso a jeho pohyb

Projekt ŠABLONY NA GVM registrační číslo projektu: CZ.1.07/1.5.00/ III-2 Inovace a zkvalitnění výuky prostřednictvím ICT

Laboratorní úloha č. 5 Faradayovy zákony, tíhové zrychlení

1) Tělesa se skládají z látky nebo menších těles mají tvar, polohu a rozměry všechna tělesa se pohybují! 2) Látky se skládají z atomů a molekul

FYZIKA. Newtonovy zákony. 7. ročník

Transkript:

Zavádění inovativních metod a výukových materiálů do přírodovědných předmětů na Gymnáziu v Krnově 05_5_Gravitační pole Ing. Jakub Ulmann

5 Gravitační pole 5.1 Newtonův gravitační zákon 5. Intenzita gravitačního pole 5.3 Gravitační zrychlení 5.4 Gravitační a tíhová síla 5.5 Pohyby těles v homogenním tíhovém poli Země vrhy 5.5.1 Svislý vrh 5.5. Vodorovný vrh 5.5.3 Šikmý vrh 5.6 Pohyby těles v centrálním gravitačním poli Země 5.7 Pohyby těles v gravitačním poli Slunce

5 Gravitační pole Isaac Newton v 17. století vyslovil revoluční myšlenku (během odpočinku pod jabloní na něj spadlo jablko), že padání předmětů k zemi a obíhání planet kolem Slunce způsobuje stejná síla. Vztah, který poté odvodil, je jeden z nejvýznamnějších zákonů fyziky. 5.1 Newtonův gravitační zákon Každá dvě tělesa se navzájem přitahují stejně velkými gravitačními silami. Velikost gravitační síly, kterou se přitahují dva hmotné body, je přímo úměrná součinu jejich hmotností a nepřímo úměrná druhé mocnině jejich vzdáleností.

F g m 1 r m m 1 F g -F g m r Konstanta úměrnosti se nazývá gravitační konstanta. = 6,67 10-11 N m kg - Platí pro tělesa ve tvaru koule, r je vzdálenost jejich středů. Gravitační konstantu odhadl Newton s 15 % chybou

Př. 1: Počítání s čísly v exponenciálním tvaru. Mocniny deseti používáme k přehlednějšímu zápisu velmi malých nebo velmi velkých čísel: Na kalkulačkách mají exponenciální zápisy i vlastní tlačítko EXP (E nebo 10 x ). Zadávání čísla 1, 10 7 pak provádíme např. takto: 1, EXP 7. Převeď z exponenciálního tvaru. Výsledek ověř zadáním na kalkulačce.

Vypočti na kalkulačce: Nyní můžeme počítat gravitační síly

Př. : Urči velikost gravitační síly, kterou přitahuje Slunce Zemi. m z = 5,98 10 4 kg, m s =1,99 10 30 kg, vzdálenost Země-Slunce 1,5 10 11 m. Př. 3: Urči gravitační sílu, kterou tě přitahuje kamarád. Vzdálenost zvol 1 m. Je takto spočtený výsledek přesný? Př. 4: Urči gravitační sílu, kterou Země přitahuje kosmonauta o hmotnosti 80 kg a) na povrchu Země, b) na kosmické stanici ISS, která létá ve výšce 350 km nad povrchem Země. Poloměr Země je 6 378 km, hmotnost 5,98 10 4 kg. Jak je možné, že se kosmonaut nachází v beztížném stavu?

5. Intenzita gravitačního pole Př. 1: Vypočti gravitační sílu, kterou Země ve vzdálenosti 10 000 km od jejího povrchu přitahuje: a) kosmonauta o hmotnosti 140 kg (se skafandrem), b) vesmírnou loď o hmotnosti 65 tun, c) upuštěný šroubovák o hmotnosti 0,5 kg. M z = 5,98 10 4 kg, R z = 6 378 km M Z Při výpočtu budeme postupovat podobně: M Z m F g r m r

Pro předměty, které se nacházejí ve vzdálenosti 10 000 km od povrchu Země, můžeme určit gravitační sílu, kterou je přitahuje Země, pomocí vzorce F g = 1,48 m Co udává číslo 1,48 pro bod ve vzdálenosti 10 000 km a číslo g = 10 pro povrch Země? Popisují gravitační pole Země (podobně elektrické a magnetické pole). Gravitační pole můžeme tedy popsat bez dalšího tělesa. M Z K = 10 F g -F K = g 1,48 m r

Intenzita gravitačního pole K F g m M r Intenzita gravitačního pole je vektorová veličina, její směr je shodný se směrem gravitační síly a udává velikost gravitační síly, kterou je přitahováno těleso o hmotnosti 1 kg. Př. : Určete jednotku intenzity gravitačního pole.

Př. 3: Zakresli vektory intenzity gravitačního pole v označených bodech. x x x x x x Jedná se o centrální gravitační pole (střed Země). x

Př. 4: Zakresli vektory intenzity gravitačního pole v označených bodech. x x x x x x x x x

5.3 Gravitační zrychlení Z Newtonova gravitačního zákona platí pro gravitační sílu Země: A zároveň z. Newtonova zákona platí obecně: Dostáváme vztah pro gravitační zrychlení: Největší hodnoty dosahuje na povrchu Země: Po dosazení: a g 9,83m s Gravitační zrychlení se počítá stejně jako intenzita gravitačního pole. Liší se významem a jednotkou. F g M Z m r F m g a g a g M Z r M ag R Z Z

Př. 5: Urči velikost gravitačního zrychlení na povrchu Jupiteru m J = 1,9 10 7 kg, R J = 7,1 10 7 m Př. 6: Gravitační zrychlení na povrchu Země, jejíž poloměr je 6 370 km, je přibližně 9,8 m s. Jaké je zrychlení ve výšce 6 370 km nad Zemí.. Jak velké je gravitační zrychlení na povrchu Měsíce, jehož hmotnost je 7,4 10 kg a poloměr 1,7 10 6 m? = 6,67 10-11 N m kg -.3 Gravitační zrychlení na povrchu Země, jejíž poloměr je 6 370 km, je přibližně 9,8 m s. Vypočítejte hmotnost Země.

5.4 Gravitační a tíhová síla V důsledku rotace Země (nacházíme se na neinerciální soustavě) působí na tělesa na povrchu Země setrvačná odstředivá síla. Tíhová síla je výslednice síly gravitační a této síly odstředivé (setrvačné). F G F Působením tíhové síly vzniká tíhové zrychlení. g g F a g a o Svislý směr je směr tíhové síly a směr tíhového zrychlení. o

Př. 1: Přiřaď uvedené hodnoty tíhového zrychlení: 9,83 m s -, 9,78 m s -, 9,81 m s - místům na Zemi (ČR, rovník, pól). Mezinárodní dohodou je stanoveno také normální tíhové zrychlení 9,80655 m s -. Pro většinu technických výpočtů stačí i zaokrouhlená hodnota 10 m s -. Hovoříme také o tíhovém poli. Působení tíhové síly znázorňujeme v těžišti tělesa. Stav beztíže předmět na své okolí nepůsobí tíhou.

Př. : Urči sílu zakreslenou v obrázku. G G m g Př. 3: Zakresli do obrázku tíhu kuličky.

.30 Jak velká tíhová síla působí na těleso o hmotnosti 100 kg a) na zeměpisném pólu, b) na rovníku?.6 až.9

5.5 Pohyby těles v homogenním tíhovém poli Země vrhy 5.5.1 Svislý vrh Nejjednodušší druh vrhu. Hodíme těleso nahoru či dolů. Př. 1: Do obrázku nakresli několik poloh kamene, který volně padá z výšky h. Do každé polohy vyznač působící síly. Popiš pohyb kamene.

Vrhy jsou složené pohyby. Skládají se z volného pádu a pohybu rovnoměrně přímočarého s počáteční rychlostí v 0. Hodíme-li těleso dolů bude se jeho rychlost měnit podle vztahu: a dráha, kterou urazí bude: y h v v 0 gt 1 s v 0 t gt x Pokud umístíme těleso do námi zvoleného souřadného systému, dostaneme: y h v 0 t 1 gt

Př. : Kámen byl vržen do propasti 90 m hluboké počáteční rychlostí 15 m s 1. V jaké výšce bude za s. Jakou bude mít v této době rychlost?

Hodíme-li těleso svisle vzhůru bude se jeho rychlost měnit podle vztahu: a výška, kterou dosáhne za dobu t bude: y v v 0 gt h v 0 t 1 gt Po určité době se těleso zastaví. Poté se začne pohybovat dolů. x Př. 1: Do jaké maximální výšky vystoupá šíp vystřelený kolmo vzhůru rychlostí 45 m s -1? Dosazuj postupně za čas, příp. odvoď vztahy, jak zjistit maximální výšku jednoduše.

V okamžiku max. výšky bude rychlost šípu nulová: v v0 gt 0 To nám umožní spočítat dobu, za kterou vystoupá: v gt 0 v t 0 g Pak po dosazení: h v t h 1 1 gt v 0 g y v v h 1 0 0 0 0 g v g g... x

.31 Chlapec vystřelil prakem svisle vzhůru kámen rychlostí 0 m s 1. Určete a) velikost okamžité rychlosti kamene za dobu 1 s od počátku pohybu, b) okamžitou výšku kamene za dobu 1 s od počátku pohybu, c) do jaké největší výšky od místa vystřelení kámen vystoupí..3 Jak velkou rychlostí tryská voda z trubice vodotrysku, jestliže vystupuje do výšky 5 m?.33 Těleso vržené svisle vzhůru vystoupilo do výšky 0 m. a) Jak velká byla jeho počáteční rychlost? b) Do jaké výšky by těleso vystoupilo na povrchu Měsíce, kde je tíhové zrychlení 6 krát menší než na povrchu Země?

5.5. Vodorovný vrh Př. 1: Dokresli do obrázku trajektorii koule během pádu ze stolu. Které veličiny rozhodují o tom, jak daleko od stolu dopadne koule na zem?

Př. : Dokresli do obrázku několik poloh kuličky a nakresli síly, které na kuličku působí. Odpor vzduchu zanedbej. Jakým druhem pohybu se bude kulička pohybovat?

Budeme sledovat pohyb: ve vodorovném směru (souřadnice x): ve svislém směru (souřadnice y): y v 0 v x v 0 v y gt v x y h 1 gt v y x v0t v x Rychlost v můžeme určit z Pythagorovy věty.

Př. 3: Z ochozu věže, který je postaven ve výšce 30 m nad zemí, vystřelil lukostřelec vodorovně šíp rychlostí 35 m/s. Nakresli obrázek situace s trajektorií letu šípu. Do obrázku zakresli polohy určené v bodech a), b). a) Urči polohu a složky rychlosti šípu po uplynutí 1 s. b) Urči polohu a složky rychlosti šípu po uplynutí s. c) Odhadni, jak daleko od paty věže šíp dopadne. d) Urči výpočtem, jak daleko od paty věže šíp dopadne. e) Pod jakým úhlem se šíp zabodne do Země?

.38 Z věže vysoké 45 m byl vržen vodorovným směrem míč počáteční rychlostí 10 m s 1. Určete souřadnice polohy míče za dobu t 1 = 1 s, t = s, t 3 = 3 s od počátku jeho pohybu. Ve vhodném měřítku pak nakreslete trajektorii míče. Př. 4: Po stole se kutálí kulička. Najdi postup, kterým je možné změřit její rychlost pouze pomocí metru (tedy bez stopek).

5.5.3 Šikmý vrh Hod oštěpem, balistika ve vojenství apod. Úhel α se nazývá elevační úhel. Opět se skládá rovnoměrný přímočarý pohyb ve směru rychlosti v 0 a volný pád. v 0 α Trajektorie je ve tvaru paraboly. U skutečných pohybů (odpor vzduchu) je délka vrhu ve směru osy x menší. Do stejného místa se dostaneme dvěma způsoby.

5.6 Pohyby těles v centrálním gravitačním poli Země Př. 1: Nakresli obrázek se Zemí a družicí obíhající okolo ní po kruhové dráze. Nakresli do obrázku síly, které působí na družici. Odvoď vztah pro výpočet kruhové rychlosti v závislosti na vzdálenosti družice od středu Země. Gravitační síla zakřivuje dráhu, plní funkci dostředivé síly. F g M r Fg F d v F d ma m r Za poloměr dosazujeme poloměr Země R Z plus výšku h nad Zemí. Z m

Pro kruhovou dráhu dostaneme rychlost v k : Pro každou vzdálenost od středu Země existuje jedna hodnota vyhovující kruhové rychlosti, hodnoty kruhové rychlosti se zmenšují se vzdáleností od středu Země. h R v m h R m M Z k Z Z 1 k Z Z v h R M h R M v Z Z k

Př. : Urči kruhovou rychlost pro následující oběžnice Země (Hmotnost Země je 5,98 10 4 kg, poloměr 6 370 km): a) sondu ve vzdálenosti 0 000 km od středu Země, b) kosmickou stanici ISS (obíhá ve vzdálenosti 350 km nad povrchem Země), c) Měsíce (obíhá ve vzdálenosti 384 000 km od Země). Pro Měsíc urči dobu oběhu a porovnej výsledek se skutečností.

Umíme vypočítat hodnotu tzv. kruhové rychlosti v libovolné výšce nad Zemí. Pokud bude rychlost v dané výšce menší, bude se těleso pohybovat po eliptické dráze. Při větší rychlosti, než je první kosmická, také. Applet: Orbit Dosažením tzv. druhé kosmické rychlosti opouští těleso gravitační pole Země a pohybuje se po trajektorii parabolické.

Se vzdáleností kruhová rychlost klesá, existuje tedy vzdálenost, ve které družice oběhne Zemi jednou za 1 den. Taková družice stojí nad jedním konkrétním místem na zemském povrchu a proto se jí říká geostacionární. DÚ: Najdi na internetu význam slov perigeum a apogeum. Nakresli do obrázku Země a sondy s eliptickou oběžnou drahou oba body. Dále najdi význam a hodnotu 3. kosmické rychlosti.

5.7 Pohyby těles v gravitačním poli Slunce Slunce působí na všechna tělesa sluneční soustavy poměrně velkými gravitačními silami. S heliocentrickým názorem vystoupil v 16. století polský hvězdář M. Koperník. Tycho Brahe (dvorní astronom císaře Rudolfa II. v Praze) shromáždil nejlepší data o pozorování oblohy na světě. Po jeho smrti se do Prahy přestěhoval Johannes Kepler (prý kvůli zmiňovaným údajům) a na jejich základě zformuloval tři zákony o pohybu planet. Pohyby planet okolo Slunce se řídí Keplerovými zákony.

První Keplerův zákon Planety se pohybují kolem Slunce po elipsách málo odlišných od kružnic, v jejichž společném ohnisku je Slunce.

Elipsa Je dána poloosami a, b. Kromě středu S má dva další významné body ohniska elipsy E, F. Elipsa je množina bodů, které mají od ohnisek stejný součet vzdáleností. Zahradní konstrukce elipsy využívá právě ohniska, do kterých se připevní provázek a jeho vypínáním se postupně nakreslí elipsa. Další je proužková metoda

Př. 1: Odhadni význam termínů perihélium, afélium. Významné body na oběžné dráze:

Oběžnice se nepohybují celou dobu stejnou rychlostí, tento rozdíl je však dobře pozorovatelný pouze u komet. V okolí perihélia je rychlost oběžnice největší.

Druhý Keplerův zákon Obsahy ploch opsaných průvodičem planety za jednotku času jsou konstantní. Průvodič planety je úsečka spojující střed planety a střed Slunce. Př. : Nakresli obrázek oběžné dráhy komety kolem Slunce a znázorni druhý Keplerův zákon.

Př. 3: Například na severní polokouli Země trvá zimní půlrok (od podzimní rovnodennosti do jarní) 179 dní, zatímco letní půlrok (od jarní rovnodennosti do podzimní) 186 dní. Kdy je Země nejblíže ke Slunci? Znázorněte. Skutečnost, že v létě je na severní polokouli větší teplo, není způsobena menší vzdáleností od Slunce, ale úhlem dopadu slunečních paprsků!

Třetí Keplerův zákon. Poměr druhých mocnin oběžných dob dvou planet se rovná poměru třetích mocnin hlavních poloos jejich trajektorií. Př. 4: Zapiš 3. Keplerův zákon vzorcem. Oběžnou dobu značíme T, hlavní poloosu a. Jednou z planet je Země: T = 1 rok, a = 1 AU (astronomical unit, asi 150 10 6 km) upravíme vzorec do tvaru:

Př. 5: Určete střední vzdálenost planety Uran od Slunce, je-li její oběžná doba 84 let. Př. 6: Střední vzdálenost planety Neptun od Slunce je 30 AU. Jaká je jeho oběžná doba?

Autor prezentace a ilustrací: Ing. Jakub Ulmann Fotografie použité v prezentaci: Na snímku 1: Ing. Jakub Ulmann Použitá literatura a zdroje: [1] RNDr. Milan Bednařík, CSc., doc. RNDr. Miroslava Široká, CSc.: Fyzika pro gymnázia - Mechanika, Prometheus, Praha 007 [] Doc. RNDr. Oldřich Lepil, CSc., RNDr. Milan Bednařík, CSc., doc. RNDr. Miroslava Široká, CSc.: Fyzika Sbírka úloh pro střední školy, Prometheus, Praha 010 [3] Mgr. Jaroslav Reichl: Klíč k fyzice, Albatros, Praha 005 [4] Mgr. Jaroslav Reichl, www.fyzika.jreichl.com [5] Mgr. Martin Krynický, www.realisticky.cz