Kapitola 1. Teorie užitku. 1.1 Vyjádření preferencí



Podobné dokumenty
ANTAGONISTICKE HRY 172

3. ANTAGONISTICKÉ HRY

6 Ordinální informace o kritériích

EKONOMETRIE 4. přednáška Modely chování spotřebitele

SEMINÁRNÍ PRÁCE Z MATEMATIKY

Preference Jan Čadil FNH VŠE 2014

Časová hodnota peněz ( )

Operační výzkum. Teorie her. Hra v normálním tvaru. Optimální strategie. Maticové hry.

Máte 1000 Kč a jdete si koupit svoji oblíbenou knihu?

Mikroekonomie. Opakování příklad 1. Řšení. Příklad 2. Příklad 5. Proč Ing. Jaroslav ŠETEK, Ph.D. Katedra ekonomiky, JČU 16 D

Pojem binární relace patří mezi nejzákladnější matematické pojmy. Binární relace

Náhodná veličina Číselné charakteristiky diskrétních náhodných veličin Spojitá náhodná veličina. Pravděpodobnost

2. Množiny, funkce. Poznámka: Prvky množiny mohou být opět množiny. Takovou množinu, pak nazýváme systém množin, značí se

Pravděpodobnost a statistika

VÍCEKRITERIÁLNÍ ROZHODOVANÍ

0.1 Úvod do matematické analýzy

Matematika (KMI/PMATE)

0.1 Funkce a její vlastnosti

Matematika I (KMI/PMATE)

7. Funkce jedné reálné proměnné, základní pojmy

Přijímací zkouška na navazující magisterské studium 2017

Kapitálový trh (finanční trh)

12 HRY S NEÚPLNOU INFORMACÍ

ÚVOD. Dokonalé informace známe všechny možné stavy světa Nereálné

Přednáška 3: Limita a spojitost

Zadání a řešení testu z matematiky a zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia od podzimu 2014

Úvod do řešení lineárních rovnic a jejich soustav

Rozpočtové omezení, preference a užitek

6. Vektorový počet Studijní text. 6. Vektorový počet

Diskrétní náhodná veličina

PŘEDNÁŠKA 2 POSLOUPNOSTI

5. Trh analýza. Poptávka, nabídka, elasticity, užitková a produkční funkce.

10. cvičení z PST. 5. prosince T = (n 1) S2 X. (n 1) s2 x σ 2 q χ 2 (n 1) (1 α 2 ). q χ 2 (n 1) 2. 2 x. (n 1) s. x = 1 6. x i = 457.

Množiny, relace, zobrazení

Křivka investičních příležitostí (CIO)

Jednokriteriální rozhodování za rizika a nejistoty

zejména Dijkstrův algoritmus pro hledání minimální cesty a hladový algoritmus pro hledání minimální kostry.

Teorie množin Pavel Podbrdský

Teorie her a ekonomické rozhodování. 11. Aukce

Kombinatorika. Michael Krbek. 1. Základní pojmy. Kombinatorika pracuje se spočitatelnými (tedy obvykle

Náhodné jevy. Teorie pravděpodobnosti. Náhodné jevy. Operace s náhodnými jevy

Náhodný vektor a jeho charakteristiky

5. Náhodná veličina. 2. Házíme hrací kostkou dokud nepadne šestka. Náhodná veličina nabývá hodnot z posloupnosti {1, 2, 3,...}.

Poznámka. Je-li f zobrazení, ve kterém potřebujeme zdůraznit proměnnou, píšeme f(x) (resp. f(y), resp. f(t)) je zobrazení místo f je zobrazení.

Množiny, základní číselné množiny, množinové operace

NÁHODNÁ VELIČINA. Podle typu výběrového prostoru rozlišujeme dva základní druhy NV Diskrétní (nespojitou) náhodnou veličinu Spojitou náhodnou veličinu

Test obecné finanční gramotnosti

Moderní technologie ve studiu aplikované fyziky CZ.1.07/2.2.00/ Množiny, funkce

Zadání a řešení testu z matematiky a zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia od jara 2017

Matematická analýza pro informatiky I.

B) EX = 0,5, C) EX = 1, F) nemáme dostatek informací.

1 Lineární prostory a podprostory

KOOPERATIVNI HRY DVOU HRA CˇU

1. Několik základních pojmů ze středoškolské matematiky. Na začátku si připomeneme následující pojmy:

Teorie pravěpodobnosti 1

PR5 Poptávka na trhu výrobků a služeb

ÚVOD DO ROZHODOVÁNÍ PŘEDNÁŠKA. OPTIMALIZACE A ROZHODOVÁNÍ V DOPRAVĚ Přednáška 1. Zuzana Bělinová

B i n á r n í r e l a c e. Patrik Kavecký, Radomír Hamřík

Jiří Neubauer. Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel

Základy matematiky pro FEK

Statistická teorie učení

Mikroekonomie. Opakování - příklad. Řešení. Příklad - opakování. Příklad. Řešení Ing. Jaroslav ŠETEK, Ph.D. Katedra ekonomiky, JČU

Intuitivní pojem pravděpodobnosti

Pravděpodobnost a statistika (BI-PST) Cvičení č. 1

Náhodný vektor. Náhodný vektor. Hustota náhodného vektoru. Hustota náhodného vektoru. Náhodný vektor je dvojice náhodných veličin (X, Y ) T = ( X

letní semestr Katedra pravděpodobnosti a matematické statistiky Matematicko-fyzikální fakulta Univerzity Karlovy Matematická statistika vektory

8.3). S ohledem na jednoduchost a názornost je výhodné seznámit se s touto Základní pojmy a vztahy. Definice

Přednáška 9, 28. listopadu 2014 Část 4: limita funkce v bodě a spojitost funkce

Užitek a užitkové funkce Jan Čadil FNH VŠE

Teoretická informatika Tomáš Foltýnek Teorie čísel Nekonečno

Základy matematiky pro FEK

Teorie her a ekonomické rozhodování. 9. Modely nedokonalých trhů

Reálná čísla. Sjednocením množiny racionálních a iracionálních čísel vzniká množina

Tomáš Karel LS 2012/2013

Pavlína Matysová. 5. listopadu 2018

3 Bodové odhady a jejich vlastnosti

Funkce. Definiční obor a obor hodnot

2 Reálné funkce jedné reálné proměnné

( ) ( ) Nezávislé jevy I. Předpoklady: 9204

STATISTICKÉ ODHADY Odhady populačních charakteristik

2 Zpracování naměřených dat. 2.1 Gaussův zákon chyb. 2.2 Náhodná veličina a její rozdělení

Všeobecná rovnováha 1 Statistický pohled

CVIČNÝ TEST 36. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17

Připomeňme, že naším cílem je tvorba nástroj, pro zjištění stavu světa případně

Matematika III. Miroslava Dubcová, Daniel Turzík, Drahoslava Janovská. Ústav matematiky

RELACE, OPERACE. Relace

Matematická analýza III.

Matematická analýza pro informatiky I. Limita funkce

Zadání a řešení testu z matematiky a zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia od jara 2014

1 Linearní prostory nad komplexními čísly

Náhodná veličina a její charakteristiky. Před provedením pokusu jeho výsledek a tedy ani sledovanou hodnotu neznáte. Proto je proměnná, která

Funkce, elementární funkce.

Náhodné (statistické) chyby přímých měření

naopak více variant odpovědí, bude otázka hodnocena jako nesprávně zodpovězená.

V předchozí kapitole jsme podstatným způsobem rozšířili naši představu o tom, co je to číslo. Nadále jsou pro nás důležité především vlastnosti

Matematika III. 4. října Vysoká škola báňská - Technická univerzita Ostrava. Matematika III

CVIČNÝ TEST 42. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 6 III. Klíč 13 IV. Záznamový list 15

INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ. Modernizace studijního programu Matematika na PřF Univerzity Palackého v Olomouci CZ.1.07/2.2.00/28.

1 Báze a dimenze vektorového prostoru 1

Transkript:

Kapitola 1 Teorie užitku V této kapitole se budeme věnovat problémům rozhodování v situacích, kdy se rozhodujeme jen na základě jednoho kritéria. Obecně můžeme tyto problémy popsat následovně: rozhodovatel (jednotlivec, instituce) vybírá z určité množiny variant (to mohou být výrobní či investiční plány, projekty, strategie rozvoje, nákupu,... ), které se od sebe liší v jednom kritériu. Jednotlivé varianty musí rozhodovatel ohodnotit, označit, jakým jsou pro něho přínosem (zadá preference) a úkolem analytika je rozhodnout, jaká varianta je pro něho nejlepší. Nejprve se zamysleme nad následujícími otázkami: 1. Jaké vlastnosti musí mít zadávané preference, aby úloha měla smysl? 2. Jak reprezentovat preference číselně? (Jinak problém nedokážeme sepsat.) 1.1 Vyjádření preferencí Předpokládejme množinu objektů, mezi nimiž se rozhodujeme. Tuto množinu označme A. Jednotlivé prvky této množiny značme malými písmeny, tj. a, b, c A. A zaveďme následující vztah mezi objekty a, b A: a b, který bude vyjadřovat (ostře) preferuji variantu a před variantou b. Poněvadž se může stát, že rozhodovatel se nedokáže mezi dvěma objekty rozhodnout, který preferuje, jsou pro něho tyto objekty tzv. indiferentní. Musíme zavést značení i pro takovouto situaci. Jsou-li tedy dvě varianty pro rozhodovatele indiferentní, značíme: a b, tj. rozhodovatel nedává žádné z těchto variant přednost. Matematici takováto uspořádání (ostré preference, indiference) nazývají obecně relace. Relací na množině A rozumí každou množinu uspořádaných dvojic prvků této množiny. Uveďme si příklad, jak lze pomocí relace zapsat preference příloh k obědu slečny Hladové. Řešený příklad 1. Slečna Hladová mívá k obědu nejčastěji následující přílohy: rýži, brambory, těstoviny a knedlíky. Byla požádána, aby uvedla svou preferenční relaci k těmto přílohám. Slečna tedy uvedla následující relaci jako svou relaci preferuji. R P = {[rýže, brambory], [těstoviny, brambory], [brambory, knedlíky], [těstoviny, knedlíky], [rýže, knedlíky]}. Řešení. Nejprve poznamenejme, že množina A, množina objektů mezi nimiž se rozhoduje, je v našem případě následující A = {rýže, brambory, těstoviny, knedlíky}. Dále se vraťme k uvedené relaci. Z této relace lze vyčíst, že slečna preferuje rýži před brambory, těstoviny před brambory a brambory před knedlíky. Na základě takto zadané relace nelze rozhodnout, zda slečna preferuje rýži či těstoviny. 1

KAPITOLA 1. TEORIE UŽITKU 2 Řešený příklad 2. Požádali jsme naši slečnu, aby ještě navíc uvažovala přílohy čočka a fazole a uvedla svou indiferenční relaci. Slečna uvedla následující relaci R I = {[čočka, fazole], [rýže, těstoviny]}. Řešení. A získali jsme dodatečnou informaci, že slečně je jedno, zda bude jako příloha čočka či fazole, a také se neumí rozhodnout, zda má raději těstoviny či rýži. Ovšem nevíme, zda má slečna raději čočku a fazole nebo rýži či brambory. My tedy budeme používat relaci lepší (nebo preferuji), kterou budeme značit a relaci nerozlišuji (jsou mi indiferentní), značíme. Máme-li tedy soubor prvků, můžeme někoho požádat (rozhodovatele), aby nám určil relaci preferuji tím, že nám zadá množinu uspořádaných dvojic, kde první prvek preferuje před druhým. Nebo aby nám zadal svou relaci indiference, to znamená uvedl nám množinu uspořádaných dvojic (ve skutečnosti v tomto případě nezávisí na uspořádání), kde budou ve dvojici prvky, které jsou mu indiferentní (mezi nimiž se nemůže rozhodnout). Vraťme se k otázce, kterou jsme již zmínili výše jaké vlastnosti musí mít zadávané preferenční uspořádání, aby úloha měla smysl? Aby preferenční uspořádání bylo racionální, měla by relace preference splňovat následující dvě vlastnosti. Úplnost relace Tato vlastnost relace požaduje, aby rozhodovatel byl schopen porovnat touto relací každé dva objekty. Budeme-li tedy uvažovat například relaci preferuji ( ), potom tato relace bude úplná, pokud pro libovolné dva objekty z množiny A, a, b A, bude platit buď a b a nebo b a. Tranzitivita relace Vlastnost tranzitivita požaduje, aby pro každé tři prvky množiny A, pro které platí, že a je v relaci s b a zároveň b je v relaci s c také platilo, že a je v relaci s c. Konkrétně pro relaci preferuji tedy požadujeme, aby pokud a b a zároveň b c, také platilo a c. Nebo-li, pokud rozhodovatel preferuje variantu a před variantou b a variantu b preferuje před variantou c, pak má také preferovat variantu a před variantou c. V podstatě to znamená, že rozhodovatel má ve svých preferencích jasno. Ačkoliv tento požadavek vypadá naprosto přirozeně, někdy přece jen bývá porušen, a to například v případě, že mezi porovnáváními je delší časový interval nebo rozhodovatel nemá preference příliš vyhraněné (varianty jsou pro rozhodovatele podobné, zaměnitelné) a nebo preference určuje více jedinců. Příkladem porušení tranzitivity mohou být společenské preference, založené na většinovém principu. Nejprve problém s požadavkem na tranzitivitu relace ukažme pro relaci. Řešený příklad 3. Organizace, která má 600 členů, se rozhoduje, který plán (A, B, C) přijmout. Všichni členové mají hlasovací právo a předběžný průzkum ukazuje následující stav: A B C B C A C A B 220 členů, 200 členů, 180 členů. Řešení. Pokud porovnáváme všechny dvojice, zjistíme následující: A B v poměru 400 : 200, B C v poměru 420 : 180, C A v poměru 380 : 220. Tranzitivita relace není splněna, neboť ať je přijat jakýkoliv plán, vždy se najde zhruba dvojnásobná většina, která bude preferovat jiný plán. Požadavek tranzitivnosti je kladen i na relaci indiference. Problém s tranzitivitou u této relace vyplývá z konečné rozlišovací schopnosti rozhodovatele.

KAPITOLA 1. TEORIE UŽITKU 3 Příklad 1. Dostáváte-li k obědu polévku, je vám lhostejné (indiferentní), zda má 50, 000 C nebo 50, 001 C. Budeme-li ovšem takto pokračovat dále, potom dostáváme: 50, 000 C 50, 001 C, 50, 001 C 50, 002 C,... 99.999 C 100, 000 C. A pokud předpokládáme tranzitivitu relace indiference, získáme s čímž už jen tak někdo souhlasit nebude. 50, 000 C 100, 000 C, Proto je mnohdy zapotřebí si upravit zadání, v posledním uvedeném příkladu postačí, budeme-li vědět, že rozhodovatel nejvíce preferuje polévku o 50 C, předpokládat, že má nekonečnou rozlišovací schopnost, a tedy, čím blíže je teplota 50 C, tím větší preference jí přiřadit. Vraťme se zpět k uvažovaným relacím preference a indiference. Poněvadž tyto dvě relace nebývají úplné (často se v množině objektů najdou dva, které jsou rozhodovateli indiferentní, a tedy rozhodovatel nedokáže určit, který z nich preferuje), je vhodné nahradit dvě právě zavedené relace relaci ostré preference a relaci indiference jedinou relací, a to relací tzv. neostré preference. Tuto relaci značíme a b, která vyjadřuje, že buď ostře preferuji objekt a před objektem b nebo jsou mi objekty a a b indiferentní. Pokud byly dvě původní relace tranzitivní, potom také nová relace bude tranzitivní. 1.2 Užitková funkce za jistoty Cílem užitkové funkce je číselně vyjádřit preference. Ty můžeme vyjádřit dvojím způsobem ordinálním nebo kardinálním. Pokud nás zajímá pouze pořadí objektů (z hlediska preferencí), potom sestrojujeme ordinální užitkovou funkci. Druhý typ užitkové funkce kardinální užitková funkce nám dává mnohem více informací, udává nám nejen pořadí objektů vzhledem k preferencím, ale také jak moc preferuji jednu variantu před druhou. Někteří ekonomové zastávají názor, že kardinální užitková funkce neexistuje. Jsou přesvědčeni, že užitek nelze nijak explicitně měřit, že lze pouze rozlišovat, co přináší větší a co menší užitek. Jsou tedy zastánci pouze ordinální užitkové funkce a kardinální užitkovou funkci neuznávají. 1.2.1 Ordinální užitková funkce Definice 1. Zobrazení u : A R nazveme ordinální užitkovou funkcí, jestliže pro libovolné a, b A platí: u(a) u(b) a b. Máme-li tedy nějakou množinu objektů A, pro kterou chceme sestrojit ordinální užitkovou funkci, potom každému objektu přiřadíme nějaké číslo tak, aby čím bude číslo větší, tím více bude objekt preferován. Nebo-li seřadíme jednotlivé varianty dle preferencí, a poté jim přiřadíme jakákoliv čísla od nejmenšího k největšímu.

KAPITOLA 1. TEORIE UŽITKU 4 Řešený příklad 4. Vzpomeňme si na slečnu Hladovou a její relaci preferuji: R P = {[rýže, brambory], [těstoviny, brambory], [brambory, knedlíky], [těstoviny, knedlíky], [rýže, knedlíky]}. A uvažujme následující čtyři funkce. u 1 (rýže) = 12, u 1 (těstoviny) = 80, u 1 (brambory) = 6, u 1 (knedlíky) = 5, u 2 (rýže) = 8, u 2 (těstoviny) = 7, u 2 (brambory) = 6, u 2 (knedlíky) = 5, 9, u 3 (rýže) = 30, u 3 (těstoviny) = 30, u 3 (brambory) = 2, u 3 (knedlíky) = 1, u 4 (rýže) = 4, u 4 (těstoviny) = 3, u 4 (brambory) = 3, 5, u 4 (knedlíky) = 1. Otázkou je, které z těchto čtyř funkcí mohou být a které nemohou být ordinálními užitkovými funkcemi slečny Hladové. Řešení. Jak už jsme zmínili, na základě takto zadané relace nelze rozhodnout, zda slečna preferuje rýži či těstoviny, ale ostatní preference jsou známy, a tedy musí být v ordinální užitkové funkci dodrženy. Z hodnot funkce u 1 můžeme vyčíst, že slečna má nejraději těstoviny, poté následuje rýže, pak brambory a nakonec knedlíky. V tomto případě je dodržena zadaná relace, a tedy tato funkce je ordinální užitkovou funkcí slečny Hladové. Podobné je to u funkce u 2 (s tím rozdílem, že v ní slečna preferuje rýži a až poté těstoviny) a u funkce u 3 (v níž jsou slečně těstoviny a rýže indiferentní). Také obě tyto funkce jsou ordinálními užitkovými funkcemi slečny Hladové. Jinak je tomu u funkce u 4, kde je porušena preference těstovin před brambory, a tedy tato funkce není ordinální užitkovou funkcí slečny Hladové. Přidáme-li ještě k našim znalostem o slečně Hladové také její relaci indiference R I = {[čočka, fazole], [rýže, těstoviny]}, potom jedinou možnou ordinální užitkovou funkcí z předchozích je u 3, v níž jako jediné jsou slečně těstoviny a rýže indiferentní. Všimněte si, že u ordinální užitkové funkce vůbec nezávisí na hodnotách v jednotlivých variantách (jen na pořadí těchto hodnot). Právě proto, že u ordinální užitkové funkce nezávisí na hodnotách funkce, ale pouze na pořadí hodnot, nelze s touto funkcí nikterak dále matematicky počítat. (Tedy nelze počítat nějaké průměry apod.) Na následujícím příkladu budeme ilustrovat, že nelze s ordinální užitkovou funkcí provádět žádné matematické operace. Řešený příklad 5. Škole se podařilo zajistit pro studenty navazujícího magisterského studia týdenní pobyt v zahraničí. Bohužel kapacita této akce je omezená, a tak se musí škola rozhodnout, pro který ze dvou blízkých studijních oborů bude tato akce určena. Vedení se rozhodlo, že vybere obor dle výsledků studentů u bakalářské zkoušky. U bakalářské zkoušky mohli studenti dosáhnout čtyř možných výsledků A výborně, B velmi dobře, C dobře a D nevyhověl. V jednotlivých studijních oborech byly výsledky následující: obor I obor II A 5% 20% B 70% 20% C 20% 50% D 5% 10%. Řešení. O rozhodnutí byly požádány dvě nezávislé osoby. První osoba si položila u(a) = 4, u(b) = 3, u(c) = 2 a u(d) = 1.

KAPITOLA 1. TEORIE UŽITKU 5 A spočítala průměrný prospěch studentů jednotlivých oborů následovně u(obori) = 0, 05 4 + 0, 7 3 + 0, 2 2 + 0, 05 1 = 2, 75, u(oborii) = 0, 2 4 + 0, 2 3 + 0, 5 2 + 0, 1 1 = 2, 41. Doporučila tedy určit akci pro první obor. Druhá osoba určila užitky z jednotlivých známek následovně u(a) = 50, u(b) = 30, u(c) = 25 a u(d) = 10. A spočítala průměrný prospěch studentů jednotlivých oborů následovně u(obori) = 0, 05 50 + 0, 7 30 + 0, 2 25 + 0, 05 10 = 29, u(oborii) = 0, 2 50 + 0, 2 30 + 0, 5 25 + 0, 1 10 = 29, 5. Tentokrát lépe vyšlo hodnocení pro druhý obor. V tomto příkladě jsme tedy demonstrovali, že nelze využívat ordinální užitkovou funkci k výpočtu průměru. Obě osoby použily správné ordinální funkce a přesto dostaly opačné výsledky. Z tohoto zadání nelze určit, které řešení je správné a které nikoliv. K tomu by bylo zapotřebí od zadavatele dostat ještě dodatečné informace, pomocí níž by již bylo možné sestrojit kardinální užitkovou funkci. 1.2.2 Kardinální užitková funkce Při konstrukci této funkce nás kromě pořadí ještě zajímají rozdíly v užitcích jednotlivých variant. Nebo-li předpokládáme, že dokážeme užitek měřit, že dokážeme určit, zda více preferejume variantu a před variantou b nebo více preferujeme variantu c před variantou d. Definice 2. Zobrazení v : A R nazveme kardinální užitkovou funkcí, jestliže pro libovolné a, b, c, d A platí: v(a) v(b) a b v(a) u(b) v(c) u(d) a preferuji před b více než preferujic před d, tj. rozhodovatel preferuje výměnu b za a, více než výměnu d za c. Příklad 2. Na základě zadaných preferencí slečny Hladové, viz řešené příklady 1 a 2, nedokážeme určit její kardinální užitkovou funkci. Nevíme totiž, zda raději zvolí rýži před brambory, či více ocení volbu brambor před knedlíky. Kdyby nám ale slečna Hladová řekla, že nemá ráda knedlíky, a tedy cokoliv upřednostní před knedlíky velmi ráda. Brambory má celkem ráda, ale něco raději má těstoviny či rýži, potom již můžeme sestrojit její kardinální užitkovou funkci například následovně: v(rýže) = 5, v(těstoviny) = 5, v(brambory) = 4, v(knedlíky) = 1 nebo v(rýže) = 50, v(těstoviny) = 50, v(brambory) = 45, v(knedlíky) = 1. I tentokrát je možné sestrojit více kardinálních užitkových funkcí, ale volnost již není taková jako u ordinálních funkcí. V případě, že máme k dispozici informace, ze kterých lze sestrojit kardinální užitkovou funkci, lze z těchto informací sestrojit i ordinální užitkovou funkci, ne však naopak. Řešený příklad 6. Uvažujme řešený příklad 6. Mějme dodatečnou informaci, že rozdíly mezi jednotlivými známkami jsou stejné.

KAPITOLA 1. TEORIE UŽITKU 6 Řešení. V takovém případě je správné řešení první osoby, která uvažovala užitkovou funkci u(a) = 4, u(b) = 3, u(c) = 2 a u(d) = 1. Také by bylo správné napsat si užitkovou funkci například nebo u(a) = 50, u(b) = 40, u(c) = 30 a u(d) = 20, u(a) = 50, u(b) = 48, u(c) = 46 a u(d) = 44. Ve všech těchto případech vyjde, po dopočtení průměrné známky, lépe druhá škola. Ani kardinální funkce není jediná. Každá její lineární funkce s kladným argumentem je také kardinální užitkovou funkcí (pro tytéž preference). Každá kardinální užitková funkce je zároveň ordinální užitkovou funkcí. Opačné tvrzení neplatí. 1.2.3 Mezní užitek V případě, že je užitek dobře měřitelný, a tedy je možné sestrojit kardinální užitkovou funkci, hovoříme o mezním užitku. Mezním užitkem rozumíme změnu užitku při jednotkové změnně vstupu. Matematicky vyjádřeno je mezní užitek derivací celkového užitku, zapisujeme MU(x) = du(x) dx. Pokud předpokládáme, že funkce celkového užitku (ve výše popsaném kardinální užitková funkce) je konkávní, potom předpokládáme, že mezní užitek je klesající (viz Matematika funkce je konkávní, je-li její 2. derivace záporná (a tedy první derivace klesající)). Ekonomové tento předpoklad označují jako zákon klesajícího mezního užitku. Obrázek 1.1: Graf celkového a mezního užitku Příklad 3. Pepa Kulička dostal na konci roku velké prémie, a tak se rozhodl, že jako dárek k Vánocům pořídí pro sebe a pro ženu zájezd do Hurghády na příští léto. Zvažuje, jak dlouhý zájezd má vybrat. Ví, že první den bude nadšen Rudým mořem, které ještě nikdy neviděl. Druhý den bude stále ještě co obdivovat, a tedy užitek z druhého dne sice bude o trochu menší než z prvního, ale stále velký. Třetí den už budou kemp znát, a tak by se mohli vypravit na šnorchlovací výlet, užitek tedy bude

KAPITOLA 1. TEORIE UŽITKU 7 opět o trochu menší než z předchozího dne, ale stále celkem vysoký. Čtvrtý den už budou mít prošlé a probádané všechno v okolí, tak snad si trochu odpočinou. Pátý den bude podobný jako čtvrtý, a tak už ke konci dne to asi nebude příliš bavit. Šestý den už Pepu odpočívání nebude příliš bavit a už asi nebude co nového by poznával, tento den mu asi žádný užitek nepřinese. Sedmý den už se Pepovi začne stýskat po jeho firmě a bude stále přemýšlet, jak mu chybí, také mu začne vadit to věčné vedro. Osmý den, už bude vedro nesnesitelné a pro firmu bude nepostradatelný. Když se pokusíme Pepovy preference vyjádřit číselně, můžeme dostat například následující hodnoty mezní užitek z prvního dne je 10, ze druhého dne 9, z třetího dne 8, ze čtvrtého dne 4, z pátého 2, ze šestého 0. Ze sedmého dne stráveného v Hurghádě by byl jeho mezní užitek 2 a z osmého 5. Pokud tedy Pepovi nezáleží na penězích nebo jsou zájezdy přibližně stejně drahé s různým počtem dnů (což v tomto případě bývá), potom zvolí buď pěti či šesti denní pobyt. Pokud by ceny pobytu byly cenově odstupňovány, musel by svůj mezní užitek z jednotlivých dní vyjádřit peněžně (tedy udat, kolik je ochoten za tento další den zaplatit) a porovnat tento mezní užitek se skutečnými náklady na tento den. 1.3 Užitková funkce za rizika V textu jsme zatím uvažovali užitkovou funkci jen z hlediska kvantity komodity. Někdy ale (např. ve finančnictví) s kvantem komodity roste také riziko s tím spojené. Např. cenné papíry s vyšší střední hodnotou výnosů mají též větší variabilitu výnosu, vklady úročené vyšší úrokovou mírou mají větší riziko nestability (viz kampeličky),.... Chceme-li znázornit užitkovou funkci za rizika, potřebujeme nejprve rozumět pojmu jistotní ekvivalent a pro studium různých typů užitkových funkcí za rizika znát různé postoje rozhodovatele k riziku. Jak již bylo řečeno, v této kapitole se bude pracovat s pojmem rizika. K této práci je zapotřebí znát základní pojmy z teorie pravděpodobnosti. Pro připomenutí viz kapitola??. Jistotní ekvivalent Představme si následující situaci. Vlastníte los, který může vyhrát s pravděpodobností 1 : 100000 částku 10 miliónů Kč. Kamarád chce od vás tento los odkoupit, jaká je minimální cena, za jakou jste ochotni mu tento los přenechat? Do jaké částky raději zkusíte štěstí a od jaké částky už budete preferovat přímou výplatu? Právě tato vámi zvolená zlomová částka je vaším jistotním ekvivalentem. Petrohradský paradox: Představme si následující situaci. Někdo vám nabídne následující hru. Bude házet korunou a počítat, kolikrát za sebou padne panna (do prvního orla). Poté vám vyplatí částku, kterou určí dle vzorce 2 p, kde p je počet panen, který napočítal. Jakou částku jste ochotni zaplatit za tuto hru? Na této hře je zajímavé (proto se také nazývá paradoxem), že střední hodnota výhry je neomezená. Spočítejme si střední hodnotu výhry. Označíme-li X hodnotu výhry (náhodná veličina), potom tato veličina může nabývat hodnot x 0, x 1, x 2,..., kde x i = 2 i (x 0 = 2 0 = 1, x 1 = 2 1 = 2,... ). Každé této hodnoty nabyde náhodná veličina X s pravděpodobností p i = 1/2 i+1. (Pravděpodobnost, že nepadne žádná panna (výplata bude x 0 ) je 1/2, pravděpodobnost, že padne právě jedna panna (výplata x 1 ), je 1/2 1/2 = 1/4,....)) A tedy pro střední hodnotu výhry dostáváme E X = + i=0 x i p i = + i=0 2 i 1 2 = + 1 i+1 2 = +. i=0 Z tohoto výpočtu vyplývá, že člověk neutrální k riziku by měl být ochoten za danou hru zaplatit libovolnou částku. Přesto je málokdo ochoten zaplatit více než 50 Kč.

KAPITOLA 1. TEORIE UŽITKU 8 Definice 3. Uvažujme situaci (hru), ve které můžeme získat množství x 1,..., x k nějaké komodity a každé toto množství s pravděpodobností postupně p 1,..., p k, potom jistotním ekvivalentem k této hře je takové množství dané komodity ˆx, pro které platí, že užitek z něj je stejný jako střední hodnota užitku při hře, nebo-li k u(ˆx) = p i u(x i ). Nebo-li je to minimální částka, za kterou jste ochotni vyměnit hru. i=1 Příklad 4. Podnikatel má možnost realizovat projekt, který mu může přinést zisk 10 milionů Kč s pravděpodobností 0, 6 a s pravděpodobností 0, 4 může mít ztrátu 1 milion Kč. Střední hodnota zisku je 5,6 milionu Kč. Kdyby měl možnost získat 3 miliony bez realizace projektu, byl by spokojený. Jistotní ekvivalent je v tomto případě 3 miliony (rozhodovatel s averzí k riziku). Někdo jiný by požadoval např. 7 milionů jistých, jinak by raději realizoval projekt. Jistotní ekvivalent u tohoto rozhodovatele je 7 milionů Kč a můžeme říci, že tento rozhodovatel má sklon k riziku. Pokud by jistotní ekvivalent byl shodný se střední hodnotou výnosů projektu, pak by se jednalo o rozhodovatele s neutrálním vztahem k riziku. Riziková prémie V případě, že je jistotní ekvivalent rozhodovatele nižší než střední hodnota výnosu rizikového projektu, pak částka, kterou je rozhodovatel ochoten obětovat za jistotu se vypočte podle vztahu P = E(X) ˆx. Příklad 5. K narozeninám jste dostali los, o kterém víte, že na něj můžete vyhrát s pravděpodobností 1/10000 10 miliónů Kč. Kamarád by tento los rád získal a přesvědčuje vás, ať mu ho prodáte, nakonec se dohodnete na ceně 200 Kč. Střední hodnota výnosu losu je 1000 Kč. A tedy riziková prémie je v tomto případě 800 Kč. 1.3.1 Postoj rozhodovatele k riziku Postoj rozhodovatele k riziku hraje významnou roli při výběru varianty určené k realizaci. Rozhodovatel může mít averzi k riziku, neutrální postoj k riziku, sklon k riziku. Rozhodovatel s averzí k riziku dává přednost méně rizikovým variantám, které mu přináší uspokojivé výsledky s vysokou pravděpodobností. Pro rozhodovatel s neutrálním postojem k riziku jsou stejně přitažlivé varianty s vysokým i nízkým rizikem, mají stejnou střední hodnotu užitku. Rozhodovatel se sklonem k riziku realizuje i varianty s vysokým rizikem, které mohou být hodně výnosné, ale mohou být i hodně prodělečné. Jinými slovy, pokud porovnáváme jistotní ekvivalent se střední hodnotou hry, potom rozlišujeme rozhodovatele s averzí k riziku, neutrálního k riziku a rozhodovatele se sklonem k riziku, a to následovně: ˆx < E(X) averze k riziku (rozhodovatel se spokojí s jistou částkou, která je menší než očekávaná hodnota výhry) ˆx = E(X) neutrální vztah k riziku (rozhodovateli je jedno, zda hraje loterii nebo zda dostane částku rovnající se očekávané hodnotě výhry) ˆx > E(X) sklon k riziku (rozhodovatel dá přednost hraní loterie před výplatou očekávané hodnoty výhry, popřípadě by jistá částka musela být vyšší než očekávaná střední hodnota)

KAPITOLA 1. TEORIE UŽITKU 9 Tyto vztahy platí pouze u výnosového typu kritéria, v případě nákladového jsou vztahy opačné. (Jinou možností je uvažovat náklad jako ztrátu, potom nerovnosti zůstanou zachovány.) 1.3.2 Tvar užitkové funkce za rizika Otázkou je, jak se změní užitková funkce, pokud budeme uvažovat, že s rostoucím kvantem komodity také roste riziko s tím spojené. Tvar užitkové funkce se liší podle vztahu rozhodovatele k riziku, viz obr.?? užitková funkce výnosového typu. Příklad 6. Rozhodujeme se mezi dvěma investičními záměry (A a B), přičemž úspěšnost varianty A je odhadována na 60% a úspěšnost varianty B na 80%. V případě úspěchu varianta A přinese zisk 10 milionů Kč, varianta B přinese zisk 7,125 milionů. Neúspěch záměru A přinese ztrátu 1 milion Kč, neúspěch záměru B ztrátu 500 tisíc Kč. V obou případech je střední hodnota očekávaného výnosu stejná, 5,6 milionů Kč. Pokud máme averzi k riziku, zřejmě vybereme variantu B, pokud máme sklon k riziku, vybereme variantu A, jsme-li k riziku neutrální, budou nám obě varianty indiferentní.

KAPITOLA 1. TEORIE UŽITKU 10 1.4 Cvičení Cvičení 1. Sestavte si vlastní relaci ostré preference na množině ovoce (jablka, hrušky, broskve, pomeranče, víno). Pokud s relací ostré preference nevystačíte, zapište i relaci indiference. Cvičení 2. Vyměňte si své relace se spolužákem a napište jeho preferenční uspořádání. Cvičení 3. Určete, zda zapsaná relace je tranzitivní a úplná. Cvičení 4. Je možné na základě zadaných preferencí sestrojit ordinální či kardinální užitkovou funkci? Je-li to možné, udělejte to. Pokud ne, zajistěte si dodatečné informace, a poté funkce sestavte. Cvičení 5. Pro následující výrobky sestavte ordinální i kardinální užitkovou funkci. Výrobky: HIFI věž, CD přehrávač, PC, video, DVD přehrávač, magnetofon, televize. Podívejte se na užitkové funkce spolužáků a porovnejte s kým máte stejné preference. Cvičení 6. Zakreslete funkci vašeho užitku v závislosti na počtu vlastněných svetrů: Prvního svetru si ceníte nejvíce (přináší vám největší užitek). Druhý, třetí a čtvrtý svetr jsou pro vás stejně užitečné (ale méně než první svetr). Pátý svetr je méně užitečný než 2., 3. a 4., šestý méně než 5., sedmý vám nepřinese žádný užitek a osmý svetr nemáte kam dát, překáží vám, jeho užitek je záporný. (Jedná se o mezní užitky). Cvičení 7. Najděte ještě další možné kardinální účelové funkce v řešeném příkladu 6. Cvičení 8. Podnikatel má možnost uložit své peníze v bance a za rok dostat na úrocích 50 tis.kč, nebo investovat do jedné firmy s nadějí, že za rok získá 100 tis.kč, ale s rizikem, že nezíská nic. Jaký má vztah k riziku, jestliže dá přednost investování peněz do uvažované firmy před jejich uložením do banky teprve v případě, že pravděpodobnost úspěchu firmy bude alespoň 0, 8? Cvičení 9. Podnikatel se rozhoduje, zda si má vzít půjčku 100 tis.kč a peníze investovat do nemovitosti, kterou by za rok prodal. S přihlédnutím k nejistému vývoji cen nemovitostí podnikatel odhaduje, že 100 tis.kč investovaných by po odečtení úroku z půjčky mohlo mít na konci roku hodnoty uvedené v tab.9 (v tis.kč). Hodnota na konci roku 125 115 105 85 Pravděpodobnost 0,3 0,4 0,1 0,2 a) Měl by podnikatel investovat, jestliže usiluje o maximální zisk a je neutrální vůči riziku? b) Měl by podnikatel investovat, jestliže usiluje o maximální zisk a má averzi k riziku? c) Měl by podnikatel investovat, jestliže usiluje o maximální zisk a má sklon k riziku? Cvičení 10. Majitel firmy uvažuje o rozšíření svého výrobního programu, a proto si objednal marketingové studie pro zjištění pravděpodobnosti nezměněné, mírně vyšší a značně vyšší poptávky po vyráběných produktech. Současně získal pro uvažované situace na trhu odhady zisku při původním a při rozšířeném rozsahu výroby. Zjištěné údaje jsou uvedeny v tab. 10. Poptávka Zisk (mil.k) Pravděpodobnost Rozšíření výroby Nerozšíření výroby Nezměněná 0,8 1 0,4 Mírně vyšší 1,3 1,4 0,4 Značně vyšší 2,4 1,6 0,2 Ověřte, že rozšíření výroby dává vyšší očekávaný zisk, ale je spojeno s větším rizikem.

KAPITOLA 1. TEORIE UŽITKU 11 1.4.1 Otázky Je každá ordinální užitková funkce zároveň kardinální užitkovou funkcí? Je tomu naopak? Může tomu tak být? Je možné, že vaše ordinální užitková funkce je/není ordinální užitkovou funkcí vašeho kolegy? Znáte-li nějakou (ordinální či kardinální) užitkovou funkci dokážete napsat jinou funkci, která je také (ordinální či kardinální) užitkovou funkcí? Proč se požaduje tranzitivita? Proč se požaduje úplnost relace? Uveďte nějaký jiný příklad relace.