Funkce. Definiční obor a obor hodnot
|
|
- Naděžda Dana Kučerová
- před 9 lety
- Počet zobrazení:
Transkript
1 Funkce Definiční obor a obor hodnot
2 Opakování definice funkce Funkce je předpis, který každému číslu z definičního oboru, který je podmnožinou množiny všech reálných čísel R, přiřazuje právě jedno reálné číslo. Funkci značíme obvykle písmenkem f, ale nic nebrání tomu, abychom použili i jiná písmenka, např. g, h Obvykle ji zapisujeme ve tvaru: y = f(x), např. y = x 2 nebo ve tvaru: f: y = x 2 kde proměnná x je argument funkce.
3 Funkce definice Funkce je předpis, který každému číslu z definičního oboru, který je podmnožinou množiny všech reálných čísel R, přiřazuje právě jedno reálné číslo. f: y = x 2 kde proměnná x je argument funkce neboli nezávisle proměnná. Nezávislost je dána tím, že její hodnotu můžeme libovolně měnit, ovšem jen v rámci definované množiny, definičního oboru.
4 Opakování definiční obor funkce U každé funkce také musíme určit definiční obor. Je to množina všech přípustných hodnot argumentu x, tedy všechny hodnoty, kterých může proměnná x pro danou funkci nabývat. Značí se: D(f) Za chvíli si typy definičních oborů a možnosti jejich zápisů rozebereme podrobněji. Definiční obor může být dle typu funkce zadán jako množina všech reálných čísel: D(f) = R nebo jinak zapsáno x R, nebo jako část této množiny, tedy její podmnožina: např. D(f) = R + nebo x > 0 nebo x (0; ).
5 Opakování obor hodnot funkce Ke všem přípustným hodnotám argumentu x přísluší právě jedna funkční hodnota. Ty všechny dohromady tvoří obor hodnot (obor funkčních hodnot). Funkční hodnota neboli závisle I obor hodnot, proměnná podobně jako je číslo, definiční obor, může být které funkce přiřadí konkrétnímu argumentu x. množinou všech reálných čísel Jinak řečeno výstupní či hodnota jen její podmnožinou funkce. a platí pro něj stejné možnosti zápisu Obvykle ji značíme y nebo f(x). jako pro obor definiční. Tak se na ně nyní společně podívejme. Obor hodnot je množina všech reálných proměnné je čísel, pro danou které funkci jednoznačně dostaneme jako výstupní hodnoty funkce určena hodnotou f, jestliže za x dosadíme všechny přípustné argumentu hodnoty x z - proto D(f). Značí se: H(f) Hodnota závisle závisle proměnná.
6 Opakování Nejdříve si ale ještě připomeňme, jaké známe číselné obory a co znamenají. Množiny čísel, na kterých definujeme početní operace Množina se dá chápat jako soubor prvků (v našem případě čísel). Každá množina tedy obsahuje určitý počet prvků, který může být konečný i nekonečný. Nemusí také obsahovat žádný prvek, pak mluvíme o prázdné množině N /9 Z Q R -2-2, ,008-1/3 0,01 13 Přirozená čísla: 1; 2; 3; 4; 5 Celá čísla: -3; -2; -1; 0; 1; 2; 3 Racionální čísla: -8; 0; 34; ; 2/9; 0,01; 2,3 Reálná čísla: -8; 0; 34; ; 2/9; 0,01; 2,3; ; 13
7 Funkce zápis definičního oboru Definiční obor udává množinu prvků (čísel), pro které máme funkci řešit (učit funkční hodnoty, obor hodnot, sestrojit graf). Určení definičního oboru bývá obvykle již součástí zadání příkladu. Pokud tomu tak není, předpokládá se, že máme pro všechna funkci zkoumat v množině všech reálných čísel. reálná čísla, V takovém případě si však musíme dát pozor na to, abychom z této množiny vyčlenili prvky (čísla), pro které funkce definována není! f ( x) 1 x Např. tato funkce: je definována nebo není? Např. funkce není definována pro x = 0, protože, vycházíme-li z našich dlouholetých znalostí, nulou nelze dělit.
8 Funkce zápis definičního oboru Definičním oborem je množina všech reálných čísel: D(f) = R nebo x R nebo x ( ; ) Zápis pomocí intervalu Definičním oborem je množina všech kladných reálných čísel: D(f) = R + nebo x > 0 nebo x (0; ) Interval zleva otevřený, což znamená, že funkce není pro nulu definována a první platnou číslicí definičního oboru je číslo 0, a až někde v nekonečnu 1.
9 Funkce zápis definičního oboru Definičním oborem je množina všech nezáporných reálných čísel: D(f) = R 0 + nebo x 0 nebo x 0; ) Čísla kladná plus nula Interval zleva uzavřený, což znamená, že funkce je definována i pro nulu.
10 Funkce zápis definičního oboru Definičním oborem je množina všech záporných reálných čísel: D(f) = R - nebo x < 0 nebo x ( ;0) Interval zprava otevřený, což znamená, že funkce není pro nulu definována a poslední platnou číslicí definičního oboru je číslo -0, a až někde v nekonečnu 1.
11 Funkce zápis definičního oboru Definičním oborem je množina všech nekladných reálných čísel: D(f) = R 0 - nebo x 0 nebo x ( ;0 Čísla záporná plus nula Interval zprava uzavřený, což znamená, že funkce je definována i pro nulu.
12 Funkce zápis definičního oboru Prozatím jsme zkoumali jen obory tvořené podmnožinou reálných čísel omezenou jen z jedné strany. Nyní se tedy zaměříme na zápis podmnožin omezených z obou stran. Čísla, která odpovídají oběma podmínkám současně a jsou prvky Zápis můžeme zadaného rozdělit definičního na dva oboru, tvoří samostatné průnik obou zápisy podmnožin platící a tvoří zároveň. interval 4 < x < 2 x > 4 x < 2 x ( ;2) x ( 4; ) x ( 4;2) Čteme: x je větší než 4 a zároveň x je menší než 2. Otevřený interval: čísla -4 a 2 jsou jeho krajními body, ale do definičního oboru nepatří.
13 Funkce zápis definičního oboru I tentokrát můžeme zápis rozdělit na dva samostatné Čísla, která zápisy odpovídají platící oběma podmínkám zároveň. současně a jsou prvky zadaného definičního oboru, tvoří průnik obou podmnožin a tvoří interval 4 x 2 x 4 x 2 Poznali jste, čím se toto zadání liší od předchozího? x ( ;2 x 4;2 Čteme: x je větší nebo rovno 4 a zároveň x je menší nebo rovno 2. x 4; ) Uzavřený interval: čísla -4 a 2 jsou opět jeho krajními body, v tomto případě však patří i do definičního oboru.
14 Funkce zápis definičního oboru Opět můžeme zápis rozdělit na dva samostatné zápisy Čísla, která odpovídají platící zároveň. oběma podmínkám současně a jsou prvky zadaného definičního oboru, tvoří průnik obou podmnožin a tvoří interval x ( ;2) 4 x < 2 x 4 x < 2 Čteme: x je větší nebo rovno 4 a zároveň x je menší než 2. A do třetice... Poznali jste i tentokrát, čím se toto zadání liší od předchozích? x 4; ) x 4;2) Polouzavřený interval: čísla -4 a 2 jsou opět jeho krajními body, ale do definičního oboru patří jen číslo -4.
15 Funkce zápis definičního oboru Objevit se může i situace, kdy máme funkci vyšetřovat pro definiční obor určený jen výčtem několika konkrétních prvků, čísel. Např. pro čísla 2; 1; 0; 1; 2 a 3. V takovém případě se používá množinový zápis pomocí složených závorek: x { 2; 1;0;1;2;3}
16 Funkce zápis definičního oboru Objevit se samozřejmě může i situace, kdy definičnímu oboru nevyhovuje žádný prvek, žádné číslo: Např. 3 < a 7 a > 3 x ( ; 7 a 7 x (3; ) Množiny nemají společný průnik, neexistuje společná množina. x Prázdná množina. Definiční obor neobsahuje žádné číslo, žádný prvek.
17 Funkce příklady Zapiš definiční obor pomocí intervalu: 5 x 4
18 Funkce příklady Zapiš definiční obor pomocí intervalu: Opět můžeme zápis rozdělit na dva Čísla, samostatné která odpovídají zápisy oběma platící podmínkám zároveň. současně a jsou prvky zadaného definičního oboru, tvoří průnik obou podmnožin a tvoří interval 5 x 4 x 5 x 4 x ( ;4 x 5;4 Čteme: x je větší nebo rovno 5 a zároveň x je menší nebo rovno 4. x 5; ) Uzavřený interval: čísla -5 a 4 jsou jeho krajními body a patří do definičního oboru.
19 Funkce příklady Zapiš definiční obor pomocí intervalu: Opět můžeme zápis rozdělit na dva samostatné zápisy Čísla, platící která zároveň. odpovídají oběma podmínkám současně a jsou prvky zadaného definičního oboru, tvoří opět průnik obou podmnožin a tvoří interval 5 x 4 x 5 x 4 x 5; ) x 4; ) x 4; )
20 Funkce příklady Zapiš definiční obory pomocí intervalu: x 2 0 < x x > 12 x 0
21 Funkce příklady Zapiš definiční obory pomocí intervalu: x 2 x ( ; 2 0 < x x (0; ) x > 12 x 0 x (12; ) x 0; )
22 Funkce příklady Zapiš definiční obory pomocí intervalu: 1 x < 8 7 < x < 0 2 x 15 1 x 1
23 Funkce příklady Zapiš definiční obory pomocí intervalu: 1 x < 8 7 < x < 0 x 1;8) x ( 7;0) 2 x 15 1 x 1 x 2;15 x
VY_32_INOVACE_M-Ar 8.,9.20 Lineární funkce graf, definiční obor a obor hodnot funkce
VY_32_INOVACE_M-Ar 8.,9.20 Lineární funkce graf, definiční obor a obor hodnot funkce Anotace: Prezentace zavádí pojmy lin. funkce, její definiční obor a obor hodnot funkce. Dále vysvětluje typy funkcí
VíceFunkce a lineární funkce pro studijní obory
Variace 1 Funkce a lineární funkce pro studijní obory Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz. 1. Funkce
VíceReálná čísla. Sjednocením množiny racionálních a iracionálních čísel vzniká množina
Reálná čísla Iracionální číslo je číslo vyjádřené ve tvaru nekonečného desetinného rozvoje, ve kterém se nevyskytuje žádná perioda. Při počítání je potřeba iracionální číslo vyjádřit zaokrouhlené na určitý
VíceMnožiny, relace, zobrazení
Množiny, relace, zobrazení Množiny Množinou rozumíme každý soubor určitých objektů shrnutých v jeden celek. Zmíněné objekty pak nazýváme prvky dané množiny. Pojem množina je tedy synonymem pojmů typu soubor,
Více1 LIMITA FUNKCE Definice funkce. Pravidlo f, které každému x z množiny D přiřazuje právě jedno y z množiny H se nazývá funkce proměnné x.
1 LIMITA FUNKCE 1. 1 Definice funkce Pravidlo f, které každému z množiny D přiřazuje právě jedno y z množiny H se nazývá funkce proměnné. Píšeme y f ( ) Někdy používáme i jiná písmena argument (nezávisle
VíceFUNKCE POJEM, VLASTNOSTI, GRAF
FUNKCE POJEM, VLASTNOSTI, GRAF Zavedení pojmu funkce funkce Funkce f na množině D R je předpis, který každému číslu x z množiny D přiřazuje právě jedno reálné číslo y z množiny R. Množina D se nazývá definiční
VíceFunkce - pro třídu 1EB
Variace 1 Funkce - pro třídu 1EB Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv využití výukového materiálu je povoleno pouze s odkazem na www.jarjurek.cz. 1. Funkce Funkce je přiřazení, které každému
VíceZáklady matematiky pro FEK
Základy matematiky pro FEK 4. přednáška Blanka Šedivá KMA zimní semestr 2016/2017 Blanka Šedivá (KMA) Základy matematiky pro FEK zimní semestr 2016/2017 1 / 27 Množiny Zavedení pojmu množina je velice
VíceMatematika (KMI/PMATE)
Úvod do matematické analýzy Funkce a její vlastnosti Funkce a její vlastnosti Veličina Veličina - pojem, který popisuje kvantitativní (číselné) vlastnosti reálných i abstraktních objektů. Funkce a její
VíceLineární funkce, rovnice a nerovnice
Lineární funkce, rovnice a nerovnice 1. Lineární funkce 1.1 Základní pojmy Pojem lineární funkce Funkce je předpis, který každému číslu x z definičního oboru funkce přiřadí právě jedno číslo y Obecně je
Víceanalytické geometrie v prostoru s počátkem 18. stol.
4.. Funkce více proměnných, definice, vlastnosti Funkce více proměnných Funkce více proměnných se v matematice začal používat v rámci rozvoje analtické geometrie v prostoru s počátkem 8. stol. I v sami
VíceFunkce pro studijní obory
Variace 1 Funkce pro studijní obory Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz. 1. Funkce Funkce je přiřazení,
Více0. ÚVOD - matematické symboly, značení,
0. ÚVOD - matematické symboly, značení, číselné množiny Výroky Výrok je každé sdělení, u kterého lze jednoznačně rozhodnout, zda je či není pravdivé. Každému výroku lze proto přiřadit jedinou pravdivostní
Více0.1 Funkce a její vlastnosti
0.1 Funkce a její vlastnosti Veličina - pojem, který popisuje kvantitativní (číselné) vlastnosti reálných i abstraktních objektů. Příklady veličin: hmotnost (m) čas (t) výše úrokové sazby v bance (i) cena
Více0.1 Úvod do matematické analýzy
Matematika I (KMI/PMATE) 1 0.1 Úvod do matematické analýzy 0.1.1 Pojem funkce Veličina - pojem, který popisuje kvantitativní (číselné) vlastnosti reálných i abstraktních objektů. Příklady veličin: hmotnost
VíceMatematika I (KMI/PMATE)
Přednáška první aneb Úvod do matematické analýzy Funkce a její vlastnosti Úvod do matematické analýzy Osnova přednášky pojem funkce definice funkce graf funkce definiční obor funkce obor hodnot funkce
VíceObecnou definici vynecháme. Jednoduše řečeno: složenou funkci dostaneme, když dosadíme za argument funkci g. Potom y f g
Složená funkce Obecnou definici vynecháme Jednoduše řečeno: složenou funkci dostaneme, když do funkce y f dosadíme za argument funkci g Potom y f g Funkce f je vnější složka, funkce g vnitřní složka Pochopitelně
VíceNAIVNÍ TEORIE MNOŽIN, okruh č. 5
NAIVNÍ TEORIE MNOŽIN, okruh č. 5 Definování množiny a jejích prvků Množina je souhrn nějakých věcí. Patří-li věc do množiny X, říkáme, že v ní leží, že je jejím prvkem nebo že množina X tuto věc obsahuje.
VíceMatematika I (KMI/5MAT1)
Přednáška první aneb Úvod do algebry (opakování ze SŠ a možná i ZŠ) Seznámení s předmětem Osnova přednášky seznámení s předmětem množiny pojem množiny operace s množinami číselné obory intervaly mocniny
VíceŽe tuto definici znáte, ale stále přesně nevíte, jak funkci chápat? Ukážeme si konkrétní příklad. 1 2 3 4 5 Definiční obor (množina A)
Funkce úvod Co je funkce Funkce je předpis, který číslu z množiny A přiřazuje právě jedno číslo z množiny B. Množina A je definiční obor funkce a množina B je obor hodnot funkce. Že tuto definici znáte,
VíceFunkce pro učební obory
Variace 1 Funkce pro učební obory Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz. 1. Funkce Funkce je přiřazení,
VíceMnožiny, základní číselné množiny, množinové operace
2 Množiny, základní číselné množiny, množinové operace Pokud kliknete na některý odkaz uvnitř textu kromě prezentace, zobrazí se odpovídající příklad nebo tabulka. Levý Alt+šipka doleva nebo ikona Vás
VíceDodatek 2: Funkce dvou proměnných 1/9
Dodatek 2: Funkce dvou proměnných 1/9 2/9 Funkce dvou proměnných Definice: Reálnou funkcí dvou reálných proměnných, definovanou na množině M R 2, rozumíme předpis f, který každé uspořádané dvojici reálných
VíceDiskrétní náhodná veličina. November 12, 2008
Diskrétní náhodná veličina November 12, 2008 (Náhodná veličina (náhodná proměnná)) Náhodná veličina (nebo též náhodná proměnná) je veličina X, jejíž hodnota je jednoznačně určena výsledkem náhodného pokusu.
VíceMatematická funkce. Kartézský součin. Zobrazení. Uspořádanou dvojici prvků x, y označujeme [x, y] Uspořádané dvojice jsou si rovny, pokud platí:
Matematická funkce Kartézský součin Uspořádanou dvojici prvků x, y označujeme [x, y] Uspořádané dvojice jsou si rovny, pokud platí: [x, y] = [u, v] x = u y = v Pokud K, L jsou libovolné množiny, pak množinu
VíceNerovnice a nerovnice v součinovém nebo v podílovém tvaru
Variace 1 Nerovnice a nerovnice v součinovém nebo v podílovém tvaru Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz
Více1. POJMY 1.1. FORMULE VÝROKOVÉHO POČTU
Obsah 1. Pojmy... 2 1.1. Formule výrokového počtu... 2 1.2. Množina... 3 1.2.1. Operace s množinami... 3 1.2.2. Relace... 3 2. Číselné obory... 5 2.1. Uzavřenost množiny na operaci... 5 2.2. Rozšíření
VíceVypracoval: Mgr. Lukáš Bičík TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY
Vlastnosti funkcí Vypracoval: Mgr. Lukáš Bičík TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY Definiční obor Definiční obor funkce je množina všech čísel,
VíceREÁLNÁ FUNKCE JEDNÉ PROMĚNNÉ
REÁLNÁ FUNKCE JEDNÉ PROMĚNNÉ 5 přednáška S funkcemi se setkáváme na každém kroku ve všech přírodních vědách ale i v každodenním životě Každá situace kdy jsou nějaký jev nebo veličina jednoznačně určeny
Vícep 2 q , tj. 2q 2 = p 2. Tedy p 2 je sudé číslo, což ale znamená, že
KAPITOLA 1: Reálná čísla [MA1-18:P1.1] 1.1. Číselné množiny Přirozená čísla... N = {1,, 3,...} nula... 0, N 0 = {0, 1,, 3,...} = N {0} Celá čísla... Z = {0, 1, 1,,, 3,...} Racionální čísla... { p } Q =
Více1. POJMY 1.1. FORMULE VÝROKOVÉHO POČTU
Obsah 1. Pojmy... 2 1.1. Formule výrokového počtu... 2 1.2. Množina... 3 1.2.1. Operace s množinami... 3 1.2.2. Relace... 3 2. Číselné obory... 5 2.1. Uzavřenost množiny na operaci... 5 2.2. Rozšíření
VíceFunkce, funkční závislosti Lineární funkce
Funkce, funkční závislosti Lineární funkce Obsah: Definice funkce Grafické znázornění funkce Konstantní funkce Lineární funkce Vlastnosti lineárních funkcí Lineární funkce - příklady Zdroje Z Návrat na
VíceDerivace funkce. Přednáška MATEMATIKA č Jiří Neubauer
Přednáška MATEMATIKA č. 9-11 Katedra ekonometrie FEM UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Šotová, J., Doudová, L. Diferenciální počet funkcí jedné proměnné Motivační příklady
Více. je zlomkem. Ten je smysluplný pro jakýkoli jmenovatel různý od nuly. Musí tedy platit = 0
Příklad 1 Určete definiční obor funkce: a) = b) = c) = d) = e) = 9 f) = Řešení 1a Máme určit definiční obor funkce =. Výraz je zlomkem. Ten je smysluplný pro jakýkoli jmenovatel různý od nuly. Musí tedy
VíceFunkce jedné reálné proměnné. lineární kvadratická racionální exponenciální logaritmická s absolutní hodnotou
Funkce jedné reálné proměnné lineární kvadratická racionální exponenciální logaritmická s absolutní hodnotou lineární y = ax + b Průsečíky s osami: Px [-b/a; 0] Py [0; b] grafem je přímka (získá se pomocí
Více2.1.4 Funkce, definiční obor funkce. π 4. Předpoklady: 2103. Pedagogická poznámka: Následující ukázky si studenti do sešitů nepřepisují.
.. Funkce, definiční obor funkce Předpoklady: 03 Pedagogická poznámka: Následující ukázky si studenti do sešitů nepřepisují. Uděláme si na tabuli jenom krátký seznam: S = a, y = x, s = vt, výška lidí v
VíceFunkce, elementární funkce.
Kapitola 2 Funkce, elementární funkce. V této kapitole si se budeme věnovat studiu základních vlastností funkcí jako je definiční obor, obor hodnot. Připomeneme si pojmy sudá, lichá, rostoucí, klesající.
Vícei=1 Přímka a úsečka. Body, které leží na přímce procházející body a a b můžeme zapsat pomocí parametrické rovnice
I. Funkce dvou a více reálných proměnných 1. Úvod Značení: V textu budeme používat označení: N pro množinu všech přirozených čísel; R pro množinu všech reálných čísel; R n pro množinu všech uspořádaných
VíceKapitola Základní množinové pojmy Princip rovnosti. Dvě množiny S a T jsou si rovny (píšeme S = T ) prvek T je také prvkem S.
1 Kapitola 1 Množiny 11 Základní množinové pojmy Pojem množiny nedefinujeme, pouze připomínáme, že množina je souhrn, nebo soubor navzájem rozlišitelných objektů, kterým říkáme prvky 111 Princip rovnosti
VíceFunkce a limita. Petr Hasil. Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF)
Funkce a limita Petr Hasil Přednáška z matematiky Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem na discipĺıny společného základu
VícePŘEDNÁŠKA 2 POSLOUPNOSTI
PŘEDNÁŠKA 2 POSLOUPNOSTI 2.1 Zobrazení 2 Definice 1. Uvažujme libovolné neprázdné množiny A, B. Zobrazení množiny A do množiny B je definováno jako množina F uspořádaných dvojic (x, y A B, kde ke každému
VíceO FUNKCÍCH. Obsah. Petr Šedivý www.e-matematika.cz Šedivá matematika
O FUNKCÍCH Obsah Nezbytně nutná kapitola, kterou musíte znát pro studium limit, derivací a integrálů. Základ, bez kterého se neobejdete. Nejprve se seznámíte se všemi typy funkcí, které budete potřebovat,
VíceCílem kapitoly je opakování a rozšíření středoškolských znalostí v oblasti teorie množin.
1.2. Cíle Cílem kapitoly je opakování a rozšíření středoškolských znalostí v oblasti teorie množin. Průvodce studiem Množina je jedním ze základních pojmů moderní matematiky. Teorii množin je možno budovat
VíceDiskrétní matematika. DiM /01, zimní semestr 2017/2018
Diskrétní matematika Petr Kovář petr.kovar@vsb.cz Vysoká škola báňská Technická univerzita Ostrava DiM 470-2301/01, zimní semestr 2017/2018 O tomto souboru Tento soubor je zamýšlen především jako pomůcka
Více----- Studijní obory. z matematiky. z matematiky. * Aplikovaná matematika * Matematické metody v ekonomice
Minimum Maximum Minimum Maximum Studijní obory z matematiky z matematiky z matematiky z matematiky * Aplikovaná matematika * Matematické metody v ekonomice * Obecná matematika Navazující magisterský studijní
VíceFunkce. Úkol: Uveďte příklady závislosti dvou veličin.
Funkce Pojem funkce Dostupné z Metodického portálu www.rvp.cz, ISSN: 1802-4785, financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze. Funkce vyjadřuje závislost
Více0.1 Úvod do matematické analýzy
Matematika I (KMI/PMATE) 1 0.1 Úvod do matematické analýzy 0.1.1 Limita a spojitost funkce Lineární funkce Lineární funkce je jedna z nejjednodušších a možná i nejpoužívanějších funkcí. f(x) = kx + q D(f)
VíceTeorie množin. Čekají nás základní množinové operace kartézské součiny, relace zobrazení, operace. Teoretické základy informatiky.
Teorie množin V matematice je všechno množina I čísla jsou definována pomocí množin Informatika stojí na matematice Znalosti Teorie množin využijeme v databázových systémech v informačních systémech při
VíceNerovnice. Vypracovala: Ing. Stanislava Kaděrková
Nerovnice Vypracovala: Ing. Stanislava Kaděrková Název školy Název a číslo projektu Název modulu Obchodní akademie a Střední odborné učiliště, Veselí nad Moravou Motivace žáků ke studiu technických předmětů
VíceFunkce a základní pojmy popisující jejich chování
a základní pojmy ující jejich chování Pro zobrazení z reálných čísel do reálných čísel se používá termín reálná funkce reálné proměnné. 511 f bude v této části znamenat zobrazení nějaké neprázdné podmnožiny
VíceVektorový prostor. d) Ke každému prvku u V n existuje tzv. opačný prvek u, pro který platí, že u + u = o (vektor u nazýváme opačný vektor k vektoru u)
Hodnost matice Vektorový prostor Vektorový prostor V n je množina všech n-složkových vektorů spolu s operacemi sčítání vektorů a reálný násobek vektoru, přičemž platí: a) V n je uzavřenou množinou vůči
Více1. 1 P Ř I R O Z E N Á Č Í S L A
1. Č Í S E L N É O B O R Y 1. 1 P Ř I R O Z E N Á Č Í S L A Přirozená čísla (definice, značení, množinový zápis) Číslice (cifry 0 9) Číslo (rozvinutý resp. zkrácený zápis přirozeného čísla v desítkové
VíceFunkce základní pojmy a vlastnosti
Funkce základní pojm a vlastnosti Aplikovaná matematika I Dana Říhová Mendelu Brno Obsah Pojem funkce Vlastnosti funkcí Inverzní funkce 4 Základní elementární funkce Mocninné Eponenciální Logaritmické
VíceFunkce více proměnných - úvod
Funkce více proměnných - úvod Helena Říhová FBMI 14. července 2014 Helena Říhová (ČVUT) Funkce více proměnných - úvod 14. července 2014 1 / 16 Obsah 1 Úvod Grafy funkcí dvou proměnných Eukleidovská vzdálenost
VíceVybrané kapitoly z matematiky
Vybrané kapitoly z matematiky VŠB-TU Ostrava 8-9 Vybrané kapitoly z matematiky 8-9 / 6 Funkce více proměnných Vybrané kapitoly z matematiky 8-9 / 6 Definice Necht M R n, M. Funkcí n proměnných je zobrazení
Více( + ) ( ) f x x f x. x bude zmenšovat nekonečně přesný. = derivace funkce f v bodě x. nazýváme ji derivací funkce f v bodě x. - náš základní zápis
1.. Derivace elementárních funkcí I Předpoklad: 1 Shrnutí z minulé hodin: Chceme znát jakým způsobem se mění hodnot funkce f ( f ( + f ( přibližná hodnota změn = přesnost výpočtu se bude zvětšovat, kdž
VíceGrafy elementárních funkcí v posunutém tvaru
Graf elementárních funkcí v posunutém tvaru Vsvětlíme si, jak se změní graf funkce, jestliže se částečně změní funkční předpis základní elementární funkce Všechn změn původního grafu budou demonstrován
Více(FAPPZ) Petr Gurka aktualizováno 12. října Přehled některých elementárních funkcí
1. Reálná funkce reálné proměnné, derivování (FAPPZ) Petr Gurka aktualizováno 12. října 2011 Obsah 1 Přehled některých elementárních funkcí 1 1.1 Polynomické funkce.......................... 1 1.2 Racionální
VíceFunkce základní pojmy a vlastnosti
Funkce základní pojm a vlastnosti Základ všší matematik LDF MENDELU Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakult MENDELU v Brně (LDF) s ohledem na disciplín společného
Více7. Funkce jedné reálné proměnné, základní pojmy
, základní pojmy POJEM FUNKCE JEDNÉ PROMĚNNÉ Reálná funkce f jedné reálné proměnné je funkce (zobrazení) f: X Y, kde X, Y R. Jde o zvláštní případ obecného pojmu funkce definovaného v přednášce. Poznámka:
VíceInovace a zkvalitnění výuky prostřednictvím ICT
Střední průmyslová škola a Vyšší odborná škola technická Brno, Sokolská 1 Šablona: Téma: Název: Autor: Inovace a zkvalitnění výuky prostřednictvím ICT Funkce Funkce a její vlastnosti Ing. Vacková Věra
VícePříklad 1 ŘEŠENÉ PŘÍKLADY Z M1A ČÁST 6
Příklad 1 Vyšetřete průběh funkce: a) = b) = c) = d) =ln1+ e) =ln f) = Poznámka K vyšetřování průběhu funkce použijeme postup uvedený v zadání. Některé kroky nejsou již tak detailní, všechny by ale měly
VíceVícerozměrná rozdělení
Vícerozměrná rozdělení 7. září 0 Učivo: Práce s vícerozměrnými rozděleními. Sdružené, marginální, podmíněné rozdělení pravděpodobnosti. Vektorová střední hodnota. Kovariance, korelace, kovarianční matice.
VíceFUNKCE, ZÁKLADNÍ POJMY
MENDELOVA UNIVERZITA V BRNĚ LDF MT MATEMATIKA FUNKCE, ZÁKLADNÍ POJMY Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakult MENDELU v Brně (LDF) s ohledem na disciplin společného
VíceFunkce základní pojmy a vlastnosti
Funkce základní pojm a vlastnosti Základ všší matematik LDF MENDELU Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakult MENDELU v Brně (LDF) s ohledem na discipĺın společného
VíceVariace. Mocniny a odmocniny
Variace 1 Mocniny a odmocniny Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz. 1. Mocniny a odmocniny Obor přirozených
Více4EK213 LINEÁRNÍ MODELY
4EK213 LINEÁRNÍ MODELY Úterý 11:00 12:30 hod. učebna SB 324 Mgr. Sekničková Jana, Ph.D. 2. PŘEDNÁŠKA MATEMATICKÝ MODEL ÚLOHY LP Mgr. Sekničková Jana, Ph.D. 2 OSNOVA PŘEDNÁŠKY Obecná formulace MM Množina
VíceDefinice. Vektorový prostor V nad tělesem T je množina s operacemi + : V V V, tj. u, v V : u + v V : T V V, tj. ( u V )( a T ) : a u V které splňují
Definice. Vektorový prostor V nad tělesem T je množina s operacemi + : V V V, tj. u, v V : u + v V : T V V, tj. ( u V )( a T ) : a u V které splňují 1. u + v = v + u, u, v V 2. (u + v) + w = u + (v + w),
VíceNalezněte obecné řešení diferenciální rovnice (pomocí separace proměnných) a řešení Cauchyho úlohy: =, 0 = 1 = 1. ln = +,
Příklad Nalezněte obecné řešení diferenciální rovnice (pomocí separace proměnných) a řešení Cauchyho úlohy: a) =, 0= b) =, = c) =2, = d) =2, 0= e) =, 0= f) 2 =0, = g) + =0, h) =, = 2 = i) =, 0= j) sin+cos=0,
Více16. DEFINIČNÍ OBORY FUNKCÍ
6 DEFINIČNÍ OBORY FUNKCÍ 6 Urči definiční obor funkce 7 46 0 7 46 = 0 46 ± 5, = = 7; = 4 7 D ( f ) = ( ; 7 ; ) 7 f : y = 7 46 Funkce odmocnina je definována pro kladná reálná čísla a pro nulu Problematické
VíceFunkce jedn e re aln e promˇ enn e Derivace Pˇredn aˇska ˇr ıjna 2015
Funkce jedné reálné proměnné Derivace Přednáška 2 15. října 2015 Obsah 1 Funkce 2 Limita a spojitost funkce 3 Derivace 4 Průběh funkce Informace Literatura v elektronické verzi (odkazy ze STAGu): 1 Lineární
VíceMatematická analýza 1
Matematická analýza 1 ZS 2019-20 Miroslav Zelený 1. Logika, množiny a základní číselné obory 2. Limita posloupnosti 3. Limita a spojitost funkce 4. Elementární funkce 5. Derivace 6. Taylorův polynom Návod
VíceAlgebraické výrazy-ii
Algebraické výrazy-ii Jednou ze základních úprav mnohočlenů je jejich rozklad na součin mnohočlenů nižšího stupně. Ne všechny mnohočleny lze na součin rozložit. Pro provedení rozkladu můžeme použít: 1.
VíceKapitola 1: Reálné funkce 1/13
Kapitola 1: Reálné funkce 1/13 Číselné množiny 2/13 N = {1, 2, 3, 4,... }... přirozená čísla N 0 = N {0} = {0, 1, 2, 3, 4,... } Z = {..., 2, 1, 0, 1, 2, 3, 4,... }... celá čísla Q = { p q p, q Z}... racionální
VíceCZ.1.07/1.5.00/34.0527
Projekt: Příjemce: Digitální učební materiály ve škole, registrační číslo projektu CZ.1.07/1.5.00/34.0527 Střední zdravotnická škola a Vyšší odborná škola zdravotnická, Husova 3, 371 60 České Budějovice
VíceDiferenciální počet funkcí jedné proměnné
Diferenciální počet funkcí jedné proměnné 1 2. Spojitost funkce 2.2. Spojitost funkce v intervalu 2 Spojitost funkce v intervalu Od spojitosti funkce v bodě přejdeme ke spojitosti funkce v intervalu. Nejprve
VíceTexty k přednáškám z MMAN3: 4. Funkce a zobrazení v euklidovských prostorech
Texty k přednáškám z MMAN3: 4. Funkce a zobrazení v euklidovských prostorech 1. července 2008 1 Funkce v R n Definice 1 Necht n N a D R n. Reálnou funkcí v R n (reálnou funkcí n proměnných) rozumíme zobrazení
Více1 Základní pojmy. 1.1 Množiny
1 Základní pojmy V této kapitole si stručně připomeneme základní pojmy, bez jejichž znalostí bychom se v dalším studiu neobešli. Nejprve to budou poznatky z logiky a teorie množin. Dále se budeme věnovat
VíceBooleovská algebra. Booleovské binární a unární funkce. Základní zákony.
Booleovská algebra. Booleovské binární a unární funkce. Základní zákony. Tomáš Bayer bayertom@natur.cuni.cz Katedra aplikované geoinformatiky a kartografie, Přírodovědecká fakulta UK. Tomáš Bayer bayertom@natur.cuni.cz
VíceZáklady teorie pravděpodobnosti
Základy teorie pravděpodobnosti Náhodná veličina Roman Biskup (zapálený) statistik ve výslužbě, aktuálně analytik v praxi ;-) roman.biskup(at)email.cz 12. února 2012 Statistika by Birom Základy teorie
VíceFUNKCE, ZÁKLADNÍ POJMY
MENDELOVA UNIVERZITA V BRNĚ LDF MT MATEMATIKA FUNKCE, ZÁKLADNÍ POJMY Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakult MENDELU v Brně (LDF) s ohledem na disciplin společného
VíceLineární funkce, rovnice a nerovnice 4 lineární nerovnice
Lineární funkce, rovnice a nerovnice 4 lineární nerovnice 4.1 ekvivalentní úpravy Při řešení lineárních nerovnic používáme ekvivalentní úpravy (tyto úpravy nijak neovlivní výsledek řešení). Jsou to především
VíceJe založen na pojmu derivace funkce a její užití. Z předchozího studia je třeba si zopakovat a orientovat se v pojmech: funkce, D(f), g 2 : y =
0.1 Diferenciální počet Je částí infinitezimálního počtu, což je souhrnný název pro diferenciální a integrální počet. Je založen na pojmu derivace funkce a její užití. Z předchozího studia je třeba si
VíceMnožiny. množinové operace jsou mírně odlišné od
Množiny Množina se dá chápat jako soubor prvků. ( Např. lidé na planetě zemi tvoří jednu velkou množinu.) Každá množina tedy obsahuje určitý počet prvků, který může být konečný (lze spočítat) nebo nekonečný
Více5.2. Funkce, definiční obor funkce a množina hodnot funkce
5. Funkce 8. ročník 5. Funkce 5.. Opakování - Zobrazení a zápis intervalů a) uzavřený interval d) otevřený interval čísla a,b krajní body intervalu číslo a patří do intervalu (plné kolečko) číslo b patří
Více1. Několik základních pojmů ze středoškolské matematiky. Na začátku si připomeneme následující pojmy:
Opakování středoškolské matematiky Slovo úvodem: Tato pomůcka je určena zejména těm studentům presenčního i kombinovaného studia na VŠFS, kteří na středních školách neprošli dostatečnou průpravou z matematiky
Více1.3. Číselné množiny. Cíle. Průvodce studiem. Výklad
1.3. Cíle Cílem kapitoly je seznámení čtenáře s axiomy číselných oborů a jejich podmnožin (intervalů) a zavedení nových pojmů, které nejsou náplní středoškolských osnov. Průvodce studiem Vývoj matematiky
VíceANALYTICKÁ GEOMETRIE V ROVINĚ
ANALYTICKÁ GEOMETRIE V ROVINĚ Analytická geometrie vyšetřuje geometrické objekty (body, přímky, kuželosečky apod.) analytickými metodami. Podle prostoru, ve kterém pracujeme, můžeme analytickou geometrii
Více4. Určete definiční obor elementární funkce g, jestliže g je definována předpisem
4 Určete definiční obor elementární funkce g jestliže g je definována předpisem a) g ( x) = x 16 + ln ( x) x 16 ( x + 4 )( x 4) Řešíme-li kvadratickou nerovnice pomocí grafu kvadratické funkce tj paraboly
VíceText může být postupně upravován a doplňován. Datum poslední úpravy najdete u odkazu na stažení souboru. Veronika Sobotíková
Tento text není samostatným studijním materiálem. Jde jen o prezentaci promítanou na přednáškách, kde k ní přidávám slovní komentář. Některé důležité části látky píšu pouze na tabuli a nejsou zde obsaženy.
VíceMetody výpočtu limit funkcí a posloupností
Metody výpočtu limit funkcí a posloupností Martina Šimůnková, 6. listopadu 205 Učební tet k předmětu Matematická analýza pro studenty FP TUL Značení a terminologie R značí množinu reálných čísel, rozšířenou
Vícea = a 0.a 1 a 2 a 3...
Reálná čísla Definice 1 Nekonečným desetinným rozvojem čísla a nazýváme výraz a = a 0.a 1 a 2 a 3... kde a 0 je celé číslo a každé a i, i =1, 2,... je jedna z číslic 0,...,9. Pokud existuje m N takové,
Vícea r Co je to r-tá mocnina čísla a, za jakých podmínek má smysl, jsme důkladně probrali v kurzu ČÍSELNÉ MNOŽINY. Tam jsme si mj.
@121 12. Mocninné funkce a r Co je to r-tá mocnina čísla a, za jakých podmínek má smysl, jsme důkladně probrali v kurzu ČÍSELNÉ MNOŽINY. Tam jsme si mj. řekli: 1. Je-li exponent r přirozené číslo, může
VícePříklad 1 ŘEŠENÉ PŘÍKLADY Z M1B ČÁST 2. Určete a načrtněte definiční obory funkcí více proměnných: a) (, ) = b) (, ) = 3. c) (, ) = d) (, ) =
Příklad 1 Určete a načrtněte definiční obory funkcí více proměnných: a) (, ) = b) (, ) = 3 c) (, ) = d) (, ) = e) (, ) = ln f) (, ) = 1 +1 g) (, ) = arcsin( + ) Poznámka V těchto úlohách máme nalézt největší
Více1 Báze a dimenze vektorového prostoru 1
1 Báze a dimenze vektorového prostoru 1 Báze a dimenze vektorového prostoru 1 2 Aritmetické vektorové prostory 7 3 Eukleidovské vektorové prostory 9 Levá vnější operace Definice 5.1 Necht A B. Levou vnější
VíceDefinice 1.1. Nechť je M množina. Funkci ρ : M M R nazveme metrikou, jestliže má následující vlastnosti:
Přednáška 1. Definice 1.1. Nechť je množina. Funkci ρ : R nazveme metrikou, jestliže má následující vlastnosti: (1 pro každé x je ρ(x, x = 0; (2 pro každé x, y, x y, je ρ(x, y = ρ(y, x > 0; (3 pro každé
Více2. Množiny, funkce. Poznámka: Prvky množiny mohou být opět množiny. Takovou množinu, pak nazýváme systém množin, značí se
MNOŽIN, ZÁKLDNÍ POJMY Pojem množiny patří v matematice ke stěžejním. Nelze jej zavést ve formě definice pomocí primitivních pojmů; považuje se totiž rovněž za pojem primitivní. Představa o pojmu množina
VíceMatematika (CŽV Kadaň) aneb Úvod do lineární algebry Matice a soustavy rovnic
Přednáška třetí (a pravděpodobně i čtvrtá) aneb Úvod do lineární algebry Matice a soustavy rovnic Lineární rovnice o 2 neznámých Lineární rovnice o 2 neznámých Lineární rovnice o dvou neznámých x, y je
VíceVektorové podprostory, lineární nezávislost, báze, dimenze a souřadnice
Vektorové podprostory, lineární nezávislost, báze, dimenze a souřadnice Vektorové podprostory K množina reálných nebo komplexních čísel, U vektorový prostor nad K. Lineární kombinace vektorů u 1, u 2,...,u
Více3 Množiny, Relace a Funkce
3 Množiny, Relace a Funkce V přehledu matematických formalismů informatiky se v této lekci zaměříme na základní datové typy matematiky, tj. na množiny, relace a funkce. O množinách jste sice zajisté slyšeli
Více