6. Vektorový počet Studijní text. 6. Vektorový počet
|
|
- Mária Kašparová
- před 8 lety
- Počet zobrazení:
Transkript
1 6. Vektorový počet Budeme se pohybovat v prostoru R n, což je kartézská mocnina množiny reálných čísel R; R n = R R. Obvykle nám bude stačit omezení na případy n = 1, 2, 3; nicméně teorie je platná obecně. Prvky R n budeme nazývat body a značit např. A = [a 1,..., a n ], reálná čísla a 1,..., a n pak nazýváme souřadnice bodu. Poznámka 6.1. Polohu obecného bodu P v R 3 charakterizujeme nejčastěji trojicí souřadnic x, y, z a znázorňujeme jej v pravotočivé soustavě Oxyz, viz. Obrázek 6.1. Obr. 6.1: Význam trojice souřadnic [x, y, z] charakterizujících polohu bodu P (x, y, z) v trojrozměrné pravotočivé soustavě pravoúhlých souřadnic Oxyz. Definice 6.2. Uspořádanou dvojici bodů A, B nazveme vázaný vektor v R n s počátkem v A a s koncem v B. Značíme AB = ([a 1,..., a n ], [b 1,..., b n ]). Je zřejmé, že vázaný vektor AB lze zadat i tak, že zadáme bod A a spolu s ním uspořádanou n-tici reálných čísel (b 1 a 1,..., b n a n ). Samotnou tuto n-tici pak nazýváme volný vektor a značíme u = AB; je ovšem jasné, že u body A, B neurčuje, protože i jiné body C, D mohou vést k témuž volnému vektoru u (přesněji, definujeme zde binární relaci mezi vázanými vektory: řekneme, že dva vázané vektory AB, CD patří do relace R, jestliže (b 1 a 1,..., b n a n ) = (d 1 c 1,..., d n c n ); tato relace (protože je ekvivalence) určuje rozklad množiny vázaných vektorů na třídy zvané volné vektory). Dále se budeme zabývat volnými vektory. Poznámka 6.3. Při vyšetřování vztahů mezi vektorovými veličinami s užitím kartézské soustavy souřadnic se zavádějí některé další pojmy a operace. Kolmé průměty vektorové veličiny a do souřadnicových os se značí a x, a y, a z (viz Obr. 6.2) a jsou definovány vztahy a x = a cos α, a y = a cos β, a z = a cos γ. (6.1) ÚM FSI VUT v Brně 22
2 Obr. 6.2: Vyjádření vektorů a a b pomocí jejich složek a x, a y, a z (resp. b x (= 0), b y, b z ) a jednotkových vektorů ı, j, k. V obrázku jsou rovněž vyznačeny úhly, které svírá vektor a se souřadnicovými osami. Tyto veličiny se nazývají rovněž souřadnice vektoru a. Ze vztahu (6.1) plyne a x > 0 pro 0 α π/2, a x = 0 pro α = π/2, a x < 0 pro π/2 < α π. Užívá se zápisu a = (a x, a y, a z ). Vektor a a jeho souřadnice mají stejné jednotky. Je-li dán vektor svými souřadnicemi, např. a = (a x, a y, a z ), lze určit jeho velikost a úhly, které svírá se souřadnicovými osami, s užitím vztahů plynoucích z Obrázku 6.2: a = a = a 2 x + a 2 y + a 2 z; cos α = a x a, cos β = a y y, cos γ = a z a. Definice 6.4. (Součet a násobení skalárem) Pro volné vektory nyní definujeme operaci součet u + v = w vztahem (w 1,..., w n ) = (u 1 + v 1,..., u n + v n ) a operaci násobení skalárem c u = v (c R) vztahem (v 1,..., v n ) = (cu 1,..., cu n ). Množinu volných vektorů na R n spolu s těmito operacemi pak nazýváme vektorový prostor a značíme V n (poznamenáváme zde, že vůbec není naším cílem budovat obecnou teorii algebraických struktur zvaných vektorové prostory; název vektorový prostor zde tedy užíváme vědomě jen pro právě uvedený příklad). Povšimněme si, že volné vektory spolu s binární operací sčítání jsou dalším příkladem grupy, která byla definována v tématu Relace, zobrazení, operace a algebraické struktury. Neutrálním prvkem je zde tzv. nulový vektor o = (0,..., 0). Definice 6.5. Řekneme, že vektor v je lineární kombinací vektorů u 1,..., u k, jestliže ho pro nějaká c 1,..., c k R lze vyjádřit jako v = c1 u c k u k. Poznámka 6.6. Povšimněme si, že nulový vektor o je vždy triviální lineární kombinací (tj. s c 1 = = = c k = 0) libovolných vektorů u 1,..., u k. Někdy je také jejich netriviální kombinací, tzn. alespoň jedno z čísel c 1,..., c k je nenulové (je-li např. k = 2, u 1 = u a u 2 = u, vztah je splněn pro libovolné c 1 = c 2 = c R). ÚM FSI VUT v Brně 23
3 To nás vede k následující definici. Řekneme, že vektory u 1,..., u k jsou lineárně závislé, pokud je nulový vektor jejich netriviální lineární kombinací. Pokud tomu tak není, tedy nulový vektor lze obdržet pouze jako triviální lineární kombinaci vektorů u 1,..., u k, nazveme tyto vektory lineárně nezávislé. V prostoru V n lze vybrat nejvýše n lineárně nezávislých vektorů; množina n lineárně nezávislých vektorů se nazývá báze V n. Lze sice vybrat nekonečně mnoho bází V n, jednu však preferujeme: je to tzv. kanonická báze: e 1 = (1, 0, 0,..., 0) e 2 = (0, 1, 0,..., 0) e 3 = (0, 0, 1,..., 0)... e n = (0, 0, 0,..., 1) Povšimněme si, že vektory kanonické báze e 1,..., e n zapsané jako řádky matice dávají jednotkovou matici E; obecně, vektory libovolné báze představují vždy regulární matici. Poznámka 6.7. Jednotkové vektory ve směru souřadnicových os Ox, Oy, Oz v R 3 budeme obvykle značit ı, j, k. Tyto vektory jsou navzájem kolmé (viz Obrázek 6.2) a platí pro ně ı = j = k = 1. Vektory a x ı, a y j, a z k o velikostech ax, a y, a z se nazývají složky vektoru a v souřadnicových osách. Platí pro ně tzv. semikartézské vyjádření vektoru a a = a x ı + a y j + a z k. Předpokládejme, že vektor u má souřadnice v obvyklé, tedy kanonické bázi. Uvažujme jinou bázi a 1,..., a n, zapsanou řádkově do matice ji označme A. Vektor u v této bázi budeme označovat u A. Zřejmě platí (vektory u, u A píšeme sloupcově) A u A = E u a tedy u A = A 1 u. Ještě obecněji, předpokládejme, že vektor u B je vyjádřen v bázi (maticově) B a chceme jej vyjádřit v bázi A. Postupem analogickým předchozímu odstavci zjistíme, že u A = A 1 B u B. Matici A 1 B nazýváme matice přechodu od báze B k bázi A (v této důležité úloze aplikujeme tedy jak výpočet inverzní matice, tak součin matic). Definice 6.8. (Skalární součin) Na V n lze zavést další operaci: skalární součin u v = c (c R) definujeme vztahem c = u 1 v u n v n. Vektorový prostor V n s takto zavedeným skalárním součinem nazýváme euklidovský prostor a značíme E n (skalární součin lze zavést i jiným způsobem, tomu se ale zde nevěnujeme). Geometrický význam skalárního součinu. Skalární součin a b dvou (libovolných) vektorových veličin a, b je skalární veličina c daná vztahem kde α je dutý nebo přímý úhel sevřený vektory a, b (viz Obrázek 6.3). c(= a b) = ab cos α, (6.2) ÚM FSI VUT v Brně 24
4 Obr. 6.3: Geometrický význam skalárního součinu a b = a b cos α(= a b b = b a a). Příklad 6.9. Vagón je tažen na přímém úseku délky s = 20 m lanem, které svírá se směrem rychlosti vagonu úhel α = 20 a které je napínáno silou o velikosti F = 800 N. Vyjádřete práci W vykonanou silou F pomocí skalárního součinu a vypočtěte ji. Řešení. Zavedeme vektor s podle Obrázku 6.4. Pak W = F s s = F cos α) s = F s, W = F s = F s cos α = 800 N 20 m cos 20 = 1, J. Obr. 6.4: K příkladu 6.9. Definice (Vektorový součin) Dále, definujme pro n > 1 na V n tzv. vektorový součin jako (n 1)-ární operaci přiřazující vektorům u 1 = (u 11,..., u 1n ),..., u n 1 = (u (n 1)1,..., u (n 1)n ) vektor w = u 1 u n 1 jako determinant kde e 1,..., e n jsou vektory kanonické báze. u 11 u u 1n u 21 u u 2n w =... u (n 1)1 u (n 1)2... u (n 1)n e 1 e 2... e n Pro n = 2 jde o unární operaci, která vektoru u = (u 1, u 2 ) přiřadí vektor w = u 1 (0, 1) u 2 (1, 0) = ( u 2, u 1 ). Pro n = 3 jde o binární operaci, která vektorům u = (u 1, u 2, u 3 ), v = (v 1, v 2, v 3 ) přiřadí vektor w = u 1 v 2 (0, 0, 1) + u 2 v 3 (1, 0, 0) + u 3 v 1 (0, 1, 0) u 1 v 3 (0, 1, 0) u 2 v 1 (0, 0, 1) u 3 v 2 (1, 0, 0) = (u 2 v 3 u 3 v 2, u 3 v 1 u 1 v 3, u 1 v 2 u 2 v 1 ). Poznámka Doporučujeme čtenáři hlouběji se seznámit s vlastnostmi operace vektorového součinu (tato operace je mj. pro n = 3 antikomutativní: u v = v u ). Důležitým výsledkem (dokáže se přímým výpočtem) dále je, že skalární součin vektoru w = u 1 u n 1 s libovolným z vektorů u 1,..., u n 1 je vždy nulový., Geometrický význam vektorového součinu. Vektorový součin a b dvou (libovolných) vektorových veličin a, b je vektorová veličina c, kterou je graficky možno znázornit tak, že oba vektory a, b umístíme do jednoho (libovolného) bodu (bod P v Obrázku 6.5). ÚM FSI VUT v Brně 25
5 Pro vektor c = a b platí: 1. Velikost: Obr. 6.5: Geometrický význam vektorového součinu a b. c = ab sin α, tj. platí, že velikost vektoru c je rovna plošnému obsahu kosodélníka vyšrafovaného v Obrázku 6.5, kde α je tupý nebo přímý úhel sevřený vektory a, b. 2. Směr je kolmý na rovinu danou vektory a, b tak, že vektory a, b, c (v uvedeném pořadí) tvoří pravotočivý trojhran (nebo: pravotočivý šroub otáčení kolem přímky p od a do b nejkratší cestou, vektor c má směr postupu šroubu) viz Obrázek 6.5. Příklad Síla F působící na těleso v bodě P vyvozuje vzhledem k počátku souřadnic otáčivý moment M = r F, kde r je polohový vektor bodu P (viz Obrázek 6.6). Obr. 6.6: Příklad užití vektorového součinu: otáčivý moment M síly F působící na těleso v bodě P, jehož polohový vektor je r, je roven M = r F. Příklad Na konci tyče délky l působí síla F Ox podle Obrázku 6.7. Určete otáčivý moment síly F vzhledem k počátku O. (Pozn.: symbolem a b vyjadřujeme, že vektory a, b jsou souhlasně rovnoběžné, tj. paralelní. Symbol a b vyjadřuje, že vektory a, b jsou nesouhlasně rovnoběžné, tj. antiparalelní). Řešení. M = r F. Vektor M zakreslíme v bodě O, směr je zřejmý z Obrázku 6.7. Platí M = r F sin 90 = 1 2 lf. ÚM FSI VUT v Brně 26
6 Obr. 6.7: K příkladu Definice Pro n > 1 na V n definujeme také tzv. vnější součin jako n-ární operaci přiřazující vektorům u 1 = (u 11,..., u 1n ),..., u n = (u n1,..., u nn ) determinant (tedy číslo) u 11 u u 1n u 21 u u 2n.... u n1 u n2... u nn Absolutní hodnota vnějšího součinu vyjadřuje objem n-rozměrného rovnoběžnostěnu s vrcholy O (počátek), O + u 1, O + u 1 + u 2,..., O + u 1 + u u n. V prostoru V 2 jde o obsah rovnoběžníka. V prostoru V 3 jde o objem rovnoběžnostěnu (pro úplnost ještě uveďme alternativní možnost: pokud v prostoru V 3 vynásobíme dva vektory u, v vektorově a výsledek pak s třetím vektorem w skalárně, obdržíme tzv. smíšený součin tří vektorů; ten splývá s vnějším součinem: tedy jeho absolutní hodnota udává objem rovnoběžnostěnu s hranami představovanými vektory u, v a w ). Definice Na E n dále definujeme velikost u vektoru u vztahem u = u u (odmocnina skalárního součinu vektoru se sebou samým). Takto zavedená velikost mj. splňuje tzv. trojúhelníkovou nerovnost u + v u + v. Definice pro něž Můžeme dále na E n zavést úhel dvou nenulových vektorů u a v jako číslo φ [0, π), cos φ = u v u v. Zřejmě φ = π 2 nastává právě tehdy, když skalární součin u a v je nulový; takové vektory tedy nazýváme kolmé (a viz nyní znovu Poznámka 6.11). Pro vektory u a v v E 3 svírající úhel φ pak např. platí u v = u v sin φ, jak si čtenář může nyní dokázat. ÚM FSI VUT v Brně 27
Eukleidovský prostor a KSS Eukleidovský prostor je bodový prostor, ve kterém je definována vzdálenost dvou bodů (metrika)
Eukleidovský prostor a KSS Eukleidovský prostor je bodový prostor, ve kterém je definována vzdálenost dvou bodů (metrika) Kartézská soustava souřadnic je dána počátkem O a uspořádanou trojicí bodů E x,
6. ANALYTICKÁ GEOMETRIE
Vektorová algebra 6. ANALYTICKÁ GEOMETRIE Pravoúhlé souřadnice bodu v prostoru Poloha bodu v prostoru je vzhledem ke třem osám k sobě kolmým určena třemi souřadnicemi, které tvoří uspořádanou trojici reálných
1 Báze a dimenze vektorového prostoru 1
1 Báze a dimenze vektorového prostoru 1 Báze a dimenze vektorového prostoru 1 2 Aritmetické vektorové prostory 7 3 Eukleidovské vektorové prostory 9 Levá vnější operace Definice 5.1 Necht A B. Levou vnější
Vybrané kapitoly z matematiky
Vybrané kapitoly z matematiky VŠB-TU Ostrava 2017-2018 Vybrané kapitoly z matematiky 2017-2018 1 / 19 Základní informace předmět: 714-0513, 5 kreditů přednáší: Radek Kučera kontakt: radek.kucera@vsb.cz,
Dá se ukázat, že vzdálenost dvou bodů má tyto vlastnosti: 2.2 Vektor, souřadnice vektoru a algebraické operace s vektory
Vektorový počet.1 Eklidovský prostor E 3 Eklidovský prostor E 3 je prostor spořádaných trojic (tj. bodů), v němž je definována vzdálenost dvo jeho bodů A, B (značíme ji AB ). Vzdálenost bodů A = [a 1,
A[a 1 ; a 2 ; a 3 ] souřadnice bodu A v kartézské soustavě souřadnic O xyz
1/15 ANALYTICKÁ GEOMETRIE Základní pojmy: Soustava souřadnic v rovině a prostoru Vzdálenost bodů, střed úsečky Vektory, operace s vektory, velikost vektoru, skalární součin Rovnice přímky Geometrie v rovině
3. Analytická geometrie
3. Analytická geometrie 3A. Vektorový počet 3. Analytická geometrie Objekty v rovině i prostoru (body, úsečky, přímky, křivky, roviny, plochy atd.) lze popsat pomocí čísel. Popisem a studiem těchto objektů
ANALYTICKÁ GEOMETRIE V ROVINĚ
ANALYTICKÁ GEOMETRIE V ROVINĚ Analytická geometrie vyšetřuje geometrické objekty (body, přímky, kuželosečky apod.) analytickými metodami. Podle prostoru, ve kterém pracujeme, můžeme analytickou geometrii
příkladů do cvičení. V textu se objeví i pár detailů, které jsem nestihl (na které jsem zapomněl) a(b u) = (ab) u, u + ( u) = 0 = ( u) + u.
Několik řešených příkladů do Matematiky Vektory V tomto textu je spočteno několik ukázkových příkladů které vám snad pomohou při řešení příkladů do cvičení. V textu se objeví i pár detailů které jsem nestihl
6.1 Vektorový prostor
6 Vektorový prostor, vektory Lineární závislost vektorů 6.1 Vektorový prostor Nechť je dán soubor nějakých prvků, v němž je dána jistá struktura vztahů mezi jednotlivými prvky nebo v němž jsou předepsána
Matematika 1 MA1. 1 Analytická geometrie v prostoru - základní pojmy. 4 Vzdálenosti. 12. přednáška ( ) Matematika 1 1 / 32
Matematika 1 12. přednáška MA1 1 Analytická geometrie v prostoru - základní pojmy 2 Skalární, vektorový a smíšený součin, projekce vektoru 3 Přímky a roviny 4 Vzdálenosti 5 Příčky mimoběžek 6 Zkouška;
Matematika B101MA1, B101MA2
Matematika B101MA1, B101MA2 Zařazení předmětu: povinný předmět 1.ročníku bc studia 2 semestry Rozsah předmětu: prezenční studium 2 + 2 kombinované studium 16 + 0 / semestr Zakončení předmětu: ZS zápočet
VEKTORY. Obrázek 1: Jediný vektor. Souřadnice vektoru jsou jeho průměty do souřadných os x a y u dvojrozměrného vektoru, AB = B A
VEKTORY Vektorem se rozumí množina všech orientovaných úseček, které mají stejnou velikost, směr a orientaci, což vidíme na obr. 1. Jedna konkrétní orientovaná úsečka se nazývá umístění vektoru na obr.
Matematika I 12a Euklidovská geometrie
Matematika I 12a Euklidovská geometrie Jan Slovák Masarykova univerzita Fakulta informatiky 3. 12. 2012 Obsah přednášky 1 Euklidovské prostory 2 Odchylky podprostorů 3 Standardní úlohy 4 Objemy Plán přednášky
DEFINICE Z LINEÁRNÍ ALGEBRY
DEFINICE Z LINEÁRNÍ ALGEBRY Skripta Matematické metody pro statistiku a operační výzkum (Nešetřilová, H., Šařecová, P., 2009). 1. definice Vektorovým prostorem rozumíme neprázdnou množinu prvků V, na které
Maticí typu (m, n), kde m, n jsou přirozená čísla, se rozumí soubor mn veličin a jk zapsaných do m řádků a n sloupců tvaru:
3 Maticový počet 3.1 Zavedení pojmu matice Maticí typu (m, n, kde m, n jsou přirozená čísla, se rozumí soubor mn veličin a jk zapsaných do m řádků a n sloupců tvaru: a 11 a 12... a 1k... a 1n a 21 a 22...
6 Skalární součin. u v = (u 1 v 1 ) 2 +(u 2 v 2 ) 2 +(u 3 v 3 ) 2
6 Skalární součin Skalární součin 1 je operace, která dvěma vektorům (je to tedy binární operace) přiřazuje skalár (v našem případě jde o reálné číslo, obecně se jedná o prvek nějakého tělesa T ). Dovoluje
8 Matice a determinanty
M Rokyta, MFF UK: Aplikovaná matematika II kap 8: Matice a determinanty 1 8 Matice a determinanty 81 Matice - definice a základní vlastnosti Definice Reálnou resp komplexní maticí A typu m n nazveme obdélníkovou
Úvod do lineární algebry
Úvod do lineární algebry 1 Aritmetické vektory Definice 11 Mějme n N a utvořme kartézský součin R n R R R Každou uspořádanou n tici x 1 x 2 x, x n budeme nazývat n rozměrným aritmetickým vektorem Prvky
Necht L je lineární prostor nad R. Operaci : L L R nazýváme
Skalární součin axiomatická definice odvození velikosti vektorů a úhlu mezi vektory geometrická interpretace ortogonalita vlastnosti ortonormálních bázi [1] Definice skalárního součinu Necht L je lineární
0.1 Úvod do lineární algebry
Matematika KMI/PMATE 1 01 Úvod do lineární algebry 011 Lineární rovnice o 2 neznámých Definice 011 Lineární rovnice o dvou neznámých x, y je rovnice, která může být vyjádřena ve tvaru ax + by = c, kde
7. Lineární vektorové prostory
7. Lineární vektorové prostory Tomáš Salač MÚ UK, MFF UK LS 2017/18 Tomáš Salač ( MÚ UK, MFF UK ) 7. Lineární vektorové prostory LS 2017/18 1 / 62 7.1 Definice a příklady Definice 7.1 Množina G s binární
Matematika I, část I. Rovnici (1) nazýváme vektorovou rovnicí roviny ABC. Rovina ABC prochází bodem A a říkáme, že má zaměření u, v. X=A+r.u+s.
3.4. Výklad Předpokládejme, že v prostoru E 3 jsou dány body A, B, C neležící na jedné přímce. Těmito body prochází jediná rovina, kterou označíme ABC. Určíme vektory u = B - A, v = C - A, které jsou zřejmě
Vektory a matice. Obsah. Aplikovaná matematika I. Carl Friedrich Gauss. Základní pojmy a operace
Vektory a matice Aplikovaná matematika I Dana Říhová Mendelu Brno Obsah 1 Vektory Základní pojmy a operace Lineární závislost a nezávislost vektorů 2 Matice Základní pojmy, druhy matic Operace s maticemi
Čtvercové matice. Čtvercová matice je taková matice, jejíž počet řádků je roven počtu jejích sloupců
Determinant matice Čtvercové matice Čtvercová matice je taková matice, jejíž počet řádků je roven počtu jejích sloupců Determinant je zobrazení, které přiřadí každé čtvercové matici A skalár (reálné číslo).
ALGEBRA. Téma 4: Grupy, okruhy a pole
SLEZSKÁ UNIVERZITA V OPAVĚ Matematický ústav v Opavě Na Rybníčku 1, 746 01 Opava, tel. (553) 684 611 DENNÍ STUDIUM Téma 4: Grupy, okruhy a pole Základní pojmy unární operace, binární operace, asociativita,
Operace s maticemi. 19. února 2018
Operace s maticemi Přednáška druhá 19. února 2018 Obsah 1 Operace s maticemi 2 Hodnost matice (opakování) 3 Regulární matice 4 Inverzní matice 5 Determinant matice Matice Definice (Matice). Reálná matice
MATICE. a 11 a 12 a 1n a 21 a 22 a 2n A = = [a ij]
MATICE Matice typu m/n nad tělesem T je soubor m n prvků z tělesa T uspořádaných do m řádků a n sloupců: a 11 a 12 a 1n a 21 a 22 a 2n A = = [a ij] a m1 a m2 a mn Prvek a i,j je prvek matice A na místě
maticeteorie 1. Matice A je typu 2 4, matice B je typu 4 3. Jakých rozměrů musí být matice X, aby se dala provést
Úlohy k zamyšlení 1. Zdůvodněte, proč třetí řádek Hornerova schématu pro vyhodnocení polynomu p v bodě c obsahuje koeficienty polynomu r, pro který platí p(x) = (x c) r(x) + p(c). 2. Dokažte, že pokud
V: Pro nulový prvek o lineárního prostoru L platí vlastnosti:
Zpracoval: hypspave@fel.cvut.cz. Základní vlastnosti abstraktních lineárních prostorů. Lineární závislost, nezávislost, báze, souřadnice vzhledem k bázi, matice lineárního zobrazení vzhledem k bázím.skalární
1 Připomenutí vybraných pojmů
1 Připomenutí vybraných pojmů 1.1 Grupa Definice 1 ((Komutativní) grupa). Grupou (M, ) rozumíme množinu M spolu s operací na M, která má tyto vlastnosti: i) x, y M; x y M, Operace je neomezeně definovaná
Základní pojmy teorie množin Vektorové prostory
Základní pojmy teorie množin Přednáška MATEMATIKA č. 1 Katedra ekonometrie FEM UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz 7. 10. 2010 Základní pojmy teorie množin Základní pojmy
Matematika (CŽV Kadaň) aneb Úvod do lineární algebry Matice a soustavy rovnic
Přednáška třetí (a pravděpodobně i čtvrtá) aneb Úvod do lineární algebry Matice a soustavy rovnic Lineární rovnice o 2 neznámých Lineární rovnice o 2 neznámých Lineární rovnice o dvou neznámých x, y je
označme j = (0, 1) a nazvěme tuto dvojici imaginární jednotkou. Potom libovolnou (x, y) = (x, 0) + (0, y) = (x, 0) + (0, 1)(y, 0) = x + jy,
Komplexní čísla Množinu všech uspořádaných dvojic (x, y) reálných čísel x, y nazýváme množinou komplexních čísel C, jestliže pro každé dvě takové dvojice (x, y ), (x 2, y 2 ) je definována rovnost, sčítání
0.1 Úvod do lineární algebry
Matematika KMI/PMATE 1 01 Úvod do lineární algebry 011 Vektory Definice 011 Vektorem aritmetického prostorur n budeme rozumět uspořádanou n-tici reálných čísel x 1, x 2,, x n Definice 012 Definice sčítání
VEKTOR. Vymyslete alespoň tři příklady vektorových a skalárních fyzikálních veličin. vektorové: 1. skalární
VEKTOR Úvod Vektor je abstraktní pojem sloužící k vyjádření jistého směru a velikosti. S vektorovými veličinami se setkáváme například ve fyzice. Jde o veličiny, u nichž je rozhodující nejen velikost,
4. Statika základní pojmy a základy rovnováhy sil
4. Statika základní pojmy a základy rovnováhy sil Síla je veličina vektorová. Je určena působištěm, směrem, smyslem a velikostí. Působiště síly je bod, ve kterém se přenáší účinek síly na těleso. Směr
Lineární algebra : Lineární prostor
Lineární algebra : Lineární prostor (3. přednáška) František Štampach, Karel Klouda LS 2013/2014 vytvořeno: 17. dubna 2014, 14:43 1 2 3.1 Aximotické zavedení lineárního prostoru Číselné těleso Celou lineární
Kapitola 11: Vektory a matice 1/19
Kapitola 11: Vektory a matice 1/19 2/19 Prostor R n R n = {(x 1,..., x n ) x i R, i = 1,..., n}, n N x = (x 1,..., x n ) R n se nazývá vektor x i je i-tá souřadnice vektoru x rovnost vektorů: x = y i =
Cílem kapitoly je opakování a rozšíření středoškolských znalostí v oblasti teorie množin.
1.2. Cíle Cílem kapitoly je opakování a rozšíření středoškolských znalostí v oblasti teorie množin. Průvodce studiem Množina je jedním ze základních pojmů moderní matematiky. Teorii množin je možno budovat
Vektorový prostor. Př.1. R 2 ; R 3 ; R n Dvě operace v R n : u + v = (u 1 + v 1,...u n + v n ), V (E 3 )...množina vektorů v E 3,
Vektorový prostor Příklady: Př.1. R 2 ; R 3 ; R n...aritmetický n-rozměrný prostor Dvě operace v R n : součet vektorů u = (u 1,...u n ) a v = (v 1,...v n ) je vektor u + v = (u 1 + v 1,...u n + v n ),
VEKTORY A ANALYTICKÁ GEOMETRIE PAVLÍNA RAČKOVÁ JAROMÍR KUBEN
VEKTORY A ANALYTICKÁ GEOMETRIE PAVLÍNA RAČKOVÁ JAROMÍR KUBEN Brno 2014 Verze 30. listopadu 2014 1 Volné a vázané vektory v rovině a prostoru 1.1 Kartézská soustava souřadnic, souřadnice bodu, vzdálenost
1.4. VEKTOROVÝ SOUČIN
.4. VEKTOROVÝ SOUČIN V této kapitole se dozvíte: definici vektorového (také vnějšího) součinu, jeho vlastnosti a geometrický význam; co rozumíme pravotočivou ortonormální nebo ortogonální bází; definici
3.2. ANALYTICKÁ GEOMETRIE ROVINY
3.2. ANALYTICKÁ GEOMETRIE ROVINY V této kapitole se dozvíte: jak popsat rovinu v třídimenzionálním prostoru; jak analyzovat vzájemnou polohu bodu a roviny včetně jejich vzdálenosti; jak analyzovat vzájemnou
Afinita je stručný název pro afinní transformaci prostoru, tj.vzájemně jednoznačné afinní zobrazení bodového prostoru A n na sebe.
4 Afinita Afinita je stručný název pro afinní transformaci prostoru, tj.vzájemně jednoznačné afinní zobrazení bodového prostoru A n na sebe. Poznámka. Vzájemně jednoznačným zobrazením rozumíme zobrazení,
1 Analytická geometrie
1 Analytická geometrie 11 Přímky Necht A E 3 a v R 3 je nenulový Pak p = A + v = {X E 3 X = A + tv, t R}, je přímka procházející bodem A se směrovým vektorem v Rovnici X = A + tv, t R, říkáme bodová rovnice
1 Vektorové prostory.
1 Vektorové prostory DefiniceMnožinu V, jejíž prvky budeme označovat a, b, c, z, budeme nazývat vektorovým prostorem právě tehdy, když budou splněny následující podmínky: 1 Je dáno zobrazení V V V, které
1 Linearní prostory nad komplexními čísly
1 Linearní prostory nad komplexními čísly V této přednášce budeme hledat kořeny polynomů, které se dále budou moci vyskytovat jako složky vektorů nebo matic Vzhledem k tomu, že kořeny polynomu (i reálného)
Skalární součin dovoluje zavedení metriky v afinním bodovém prostoru, tj. umožňuje nám určovat vzdálenosti, odchylky, obsahy a objemy.
6 Skalární součin Skalární součin dovoluje zavedení metriky v afinním bodovém prostoru, tj. umožňuje nám určovat vzdálenosti, odchylky, obsahy a objemy. Příklad: Určete odchylku přímek p, q : p : x =1+3t,
Základy matematiky pro FEK
Základy matematiky pro FEK 2. přednáška Blanka Šedivá KMA zimní semestr 2016/2017 Blanka Šedivá (KMA) Základy matematiky pro FEK zimní semestr 2016/2017 1 / 20 Co nás dneska čeká... Závislé a nezávislé
Hisab al-džebr val-muqabala ( Věda o redukci a vzájemném rušení ) Muhammada ibn Músá al-chvárizmího (790? - 850?, Chiva, Bagdád),
1 LINEÁRNÍ ALGEBRA 1 Lineární algebra Slovo ALGEBRA pochází z arabského al-jabr, což znamená nahrazení. Toto slovo se objevilo v názvu knihy islámského matematika Hisab al-džebr val-muqabala ( Věda o redukci
Zdrojem většiny příkladů je sbírka úloh 1. cvičení ( ) 2. cvičení ( )
Příklady řešené na cvičení LA II - LS 1/13 Zdrojem většiny příkladů je sbírka úloh http://kam.mff.cuni.cz/~sbirka/ 1. cvičení (..13) 1. Rozhodněte, které z následujících operací jsou skalárním součinem
Kapitola 11: Vektory a matice:
Kapitola 11: Vektory a matice: Prostor R n R n = {(x 1,, x n ) x i R, i = 1,, n}, n N x = (x 1,, x n ) R n se nazývá vektor x i je i-tá souřadnice vektoru x rovnost vektorů: x = y i = 1,, n : x i = y i
MENDELOVA UNIVERZITA V BRNĚ LDF MT MATEMATIKA VEKTORY, MATICE
MENDELOVA UNIVERZITA V BRNĚ LDF MT MATEMATIKA VEKTORY, MATICE Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem na discipliny společného
MENDELOVA UNIVERZITA V BRNĚ LDF MT MATEMATIKA VEKTORY, MATICE
MENDELOVA UNIVERZITA V BRNĚ LDF MT MATEMATIKA VEKTORY, MATICE Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem na discipliny společného
PROSTORY SE SKALÁRNÍM SOUČINEM. Definice Nechť L je lineární vektorový prostor nad R. Zobrazení L L R splňující vlastnosti
PROSTORY SE SKALÁRNÍM SOUČINEM Definice Nechť L je lineární vektorový prostor nad R. Zobrazení L L R splňující vlastnosti 1. (x, x) 0 x L, (x, x) = 0 x = 0, 2. (x, y) = (y, x) x, y L, 3. (λx, y) = λ(x,
EUKLIDOVSKÉ PROSTORY
EUKLIDOVSKÉ PROSTORY Necht L je lineární vektorový prostor nad tělesem reálných čísel R. Zobrazení (.,.) : L L R splňující vlastnosti 1. (x, x) 0 x L, (x, x) = 0 x = 0, 2. (x, y) = (y, x) x, y L, 3. (λx,
Euklidovské prostory. Euklidovský prostor dimense 3
Euklidovské prostory Euklides nebo také Eukleides byl řecký matematik žijící kolem roku 300 př.n.l. Jeho nejznámějším dílem jsou Základy, ve kterých vybudoval geometrii způsobem definice- věta- důkaz.
VI. Maticový počet. VI.1. Základní operace s maticemi. Definice. Tabulku
VI Maticový počet VI1 Základní operace s maticemi Definice Tabulku a 11 a 12 a 1n a 21 a 22 a 2n, a m1 a m2 a mn kde a ij R, i = 1,, m, j = 1,, n, nazýváme maticí typu m n Zkráceně zapisujeme (a ij i=1m
Těleso racionálních funkcí
Těleso racionálních funkcí Poznámka. V minulém semestru jsme libovolnému oboru integrity sestrojili podílové těleso. Pro libovolné těleso R je okruh polynomů R[x] oborem integrity, máme tedy podílové těleso
Uspořádanou n-tici reálných čísel nazveme aritmetický vektor (vektor), ā = (a 1, a 2,..., a n ). Čísla a 1, a 2,..., a n se nazývají složky vektoru
1 1. Lineární algebra 1.1. Lineární závislost a nezávislost vektorů. Hodnost matice Aritmetické vektory Uspořádanou n-tici reálných čísel nazveme aritmetický vektor (vektor), ā = (a 1, a 2,..., a n ).
1 Řešení soustav lineárních rovnic
1 Řešení soustav lineárních rovnic 1.1 Lineární rovnice Lineární rovnicí o n neznámých x 1,x 2,..., x n s reálnými koeficienty rozumíme rovnici ve tvaru a 1 x 1 + a 2 x 2 +... + a n x n = b, (1) kde koeficienty
Střední škola automobilní Ústí nad Orlicí
Síla Základní pojmy Střední škola automobilní Ústí nad Orlicí vzájemné působení těles, které mění jejich pohybový stav nebo tvar zobrazuje se graficky jako úsečka se šipkou ve zvoleném měřítku m f je vektor,
1 Zobrazení 1 ZOBRAZENÍ 1. Zobrazení a algebraické struktury. (a) Ukažte, že zobrazení f : x
1 ZOBRAZENÍ 1 Zobrazení a algebraické struktury 1 Zobrazení Příklad 1.1. (a) Ukažte, že zobrazení f : x na otevřený interval ( 1, 1). x x +1 je bijekce množiny reálných čísel R (b) Necht a, b R, a < b.
Program SMP pro kombinované studium
Zadání příkladů k procvičení na seminář Program SMP pro kombinované studium Nejdůležitější typy příkladů - minimum znalostí před zkouškovou písemkou 1) Matice 1. Pro matice 1 0 2 1 0 3 B = 7 3 4 4 2 0
Analytická geometrie ( lekce)
Analytická geometrie (5. - 6. lekce) Sylva Potůčková, Dana Stesková, Lubomír Sedláček Gymnázium a Jazyková škola s právem státní jazykové zkoušky Zlín Zlín, 20. června 2011 Vektory Vektorový součin Vektorový
19 Eukleidovský bodový prostor
19 Eukleidovský bodový prostor Eukleidovským bodovým prostorem rozumíme afinní bodový prostor, na jehož zaměření je definován skalární součin. Víme, že pomocí skalárního součinu jsou definovány pojmy norma
10. DETERMINANTY " # $!
10. DETERMINANTY $ V této kapitole zavedeme determinanty čtvercových matic libovolného rozměru nad pevným tělesem, řekneme si jejich základní vlastnosti a naučíme se je vypočítat včetně příkladů jejich
7 Analytické vyjádření shodnosti
7 Analytické vyjádření shodnosti 7.1 Analytická vyjádření shodných zobrazení v E 2 Osová souměrnost Osová souměrnost O(o) podle osy o s obecnou rovnicí o : ax + by + c =0: x = x 2a (ax + by + c) a 2 +
1 Projekce a projektory
Cvičení 3 - zadání a řešení úloh Základy numerické matematiky - NMNM20 Verze z 5. října 208 Projekce a projektory Opakování ortogonální projekce Definice (Ortogonální projekce). Uvažujme V vektorový prostor
Lineární prostory. - vektorové veličiny(síla, rychlost, zrychlení,...), skládání, násobení reálným číslem
Lineární prostory - vektorové veličiny(síla, rychlost, zrychlení,...), skládání, násobení reálným číslem - volné vektory a operace s nimi(sčítání, násobení reálným číslem) -ve 2 nebove 3 vázanévektorysespolečnýmpočátkem
ALGEBRA. Téma 5: Vektorové prostory
SLEZSKÁ UNIVERZITA V OPAVĚ Matematický ústav v Opavě Na Rybníčku 1, 746 01 Opava, tel. (553) 684 611 DENNÍ STUDIUM Téma 5: Vektorové prostory Základní pojmy Vektorový prostor nad polem P, reálný (komplexní)
METRICKÉ A NORMOVANÉ PROSTORY
PŘEDNÁŠKA 1 METRICKÉ A NORMOVANÉ PROSTORY 1.1 Prostor R n a jeho podmnožiny Připomeňme, že prostorem R n rozumíme množinu uspořádaných n tic reálných čísel, tj. R n = R } R {{ R }. n krát Prvky R n budeme
Matice. Předpokládejme, že A = (a ij ) je matice typu m n: diagonálou jsou rovny nule.
Matice Definice. Maticí typu m n nazýváme obdélníkové pole, tvořené z m n reálných čísel (tzv. prvků matice), zapsaných v m řádcích a n sloupcích. Značíme např. A = (a ij ), kde i = 1,..., m, j = 1,...,
V předchozí kapitole jsme podstatným způsobem rozšířili naši představu o tom, co je to číslo. Nadále jsou pro nás důležité především vlastnosti
Kapitola 5 Vektorové prostory V předchozí kapitole jsme podstatným způsobem rozšířili naši představu o tom, co je to číslo. Nadále jsou pro nás důležité především vlastnosti operací sčítání a násobení
Algebraické struktury s jednou binární operací
16 Kapitola 1 Algebraické struktury s jednou binární operací 1.1 1. Grupoid, pologrupa, monoid a grupa Chtěli by jste vědět, co jsou to algebraické struktury s jednou binární operací? No tak to si musíte
14. přednáška. Přímka
14 přednáška Přímka Začneme vyjádřením přímky v prostoru Přímku v prostoru můžeme vyjádřit jen parametricky protože obecná rovnice přímky v prostoru neexistuje Přímka v prostoru je určena bodem A= [ a1
Matematika B101MA1, B101MA2
Matematika B101MA1, B101MA2 Zařazení předmětu: povinný předmět 1.ročníku bc studia 2 semestry Rozsah předmětu: prezenční studium 2 + 2 kombinované studium 16 + 0 / semestr Zakončení předmětu: ZS zápočet
Rovnice přímky. s = AB = B A. X A = t s tj. X = A + t s, kde t R. t je parametr. x = a 1 + ts 1 y = a 2 + ts 2 z = a 3 + ts 3. t R
Rovnice přímky Přímka p je určená dvěma různými body (A, B)(axiom) směrový vektor nenulový rovnoběžný (kolineární) s vektorem s = AB = B A pro libovolný bod X na přímce platí: X A = t s tj. Vektorová rovnice
Učební texty k státní bakalářské zkoušce Matematika Skalární součin. študenti MFF 15. augusta 2008
Učební texty k státní bakalářské zkoušce Matematika Skalární součin študenti MFF 15. augusta 2008 1 10 Skalární součin Požadavky Vlastnosti v reálném i komplexním případě Norma Cauchy-Schwarzova nerovnost
Seriál II.II Vektory. Výfučtení: Vektory
Výfučtení: Vektory Abychom zcela vyjádřili veličiny jako hmotnost, teplo či náboj, stačí nám k tomu jediné číslo (s příslušnou jednotkou). Říkáme jim skalární veličiny. Běžně se však setkáváme i s veličinami,
Vlastní čísla a vlastní vektory
Vlastní čísla a vlastní vektory 1 Motivace Uvažujme lineární prostor všech vázaných vektorů v rovině, které procházejí počátkem, a lineární zobrazení tohoto prostoru do sebe(lineární transformaci, endomorfismus)
Lineární algebra : Metrická geometrie
Lineární algebra : Metrická geometrie (16. přednáška) František Štampach, Karel Klouda LS 2013/2014 vytvořeno: 6. května 2014, 10:42 1 2 Úvod Zatím jsme se lineární geometrii věnovali v kapitole o lineárních
Lineární zobrazení. 1. A(x y) = A(x) A(y) (vlastnost aditivity) 2. A(α x) = α A(x) (vlastnost homogenity)
4 Lineární zobrazení Definice: Nechť V a W jsou vektorové prostory Zobrazení A : V W (zobrazení z V do W nazýváme lineárním zobrazením, pokud pro všechna x V, y V a α R platí 1 A(x y = A(x A(y (vlastnost
Lineární algebra - I. část (vektory, matice a jejich využití)
Lineární algebra - I. část (vektory, matice a jejich využití) Michal Fusek Ústav matematiky FEKT VUT, fusekmi@feec.vutbr.cz 2. přednáška z ESMAT Michal Fusek (fusekmi@feec.vutbr.cz) 1 / 40 Obsah 1 Vektory
Úlohy k přednášce NMAG 101 a 120: Lineární algebra a geometrie 1 a 2,
Úlohy k přednášce NMAG a : Lineární algebra a geometrie a Verze ze dne. května Toto je seznam přímočarých příkladů k přednášce. Úlohy z tohoto seznamu je nezbytně nutné umět řešit. Podobné typy úloh se
10. Soustavy lineárních rovnic, determinanty, Cramerovo pravidlo
0. Soustavy lineárních rovnic, determinanty, Cramerovo pravidlo (PEF PaA) Petr Gurka aktualizováno 9. prosince 202 Obsah Základní pojmy. Motivace.................................2 Aritmetický vektorový
Cvičení z Lineární algebry 1
Cvičení z Lineární algebry Michael Krbek podzim 2003 2392003 Hodina Jsou dána komplexní čísla z = +2 i a w = 2 i Vyjádřete c algebraickém tvaru (z + w) 3,, (zw), z w 2 Řešte v komplexním oboru rovnice
INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ. Modernizace studijního programu Matematika na PřF Univerzity Palackého v Olomouci CZ.1.07/2.2.00/28.
INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ Modernizace studijního programu Matematika na PřF Univerzity Palackého v Olomouci CZ.1.07/2.2.00/28.0141 Relace, zobrazení, algebraické struktury Michal Botur Přednáška
Afinní transformace Stručnější verze
[1] Afinní transformace Stručnější verze je posunutí plus lineární transformace má svou matici vzhledem k homogenním souřadnicím body a vektory: afinní prostor využití například v počítačové grafice a)
INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ. Modernizace studijního programu Matematika na PřF Univerzity Palackého v Olomouci CZ.1.07/2.2.00/28.
INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ Modernizace studijního programu Matematika na PřF Univerzity Palackého v Olomouci CZ.1.07/2.2.00/28.0141 Báze vektorových prostorů, transformace souřadnic Michal Botur Přednáška
2. prosince velikosti symboly a, b, je b ω a b = a b cosω (1) a. ω pro ω π/2, π platí a b = b a a (3) a b = a 1 b 1 + a 2 b 2 + a 3 b 3 (5)
Vektorové prostory se skalárním součinem 2. prosince 25 1 Skalární součin geometrických vektorů Skalární součin geometrických vektorů je definován jako součin jejich velikostí násobený kosinem jejich odchylky.
Základy maticového počtu Matice, determinant, definitnost
Základy maticového počtu Matice, determinant, definitnost Petr Liška Masarykova univerzita 18.9.2014 Matice a vektory Matice Matice typu m n je pravoúhlé (nebo obdélníkové) schéma, které má m řádků a n
Slovo ALGEBRA pochází z arabského al-jabr, což znamená nahrazení. Toto slovo se objevilo v názvu knihy
1 Lineární algebra Slovo ALGEBRA pochází z arabského al-jabr, což znamená nahrazení. Toto slovo se objevilo v názvu knihy islámského matematika Hisab al-džebr val-muqabala ( Věda o redukci a vzájemném
Základní vlastnosti eukleidovského prostoru
Kapitola 2 Základní vlastnosti eukleidovského prostoru 2.1 Eukleidovský prostor Eukleidovský prostor a jeho podprostory. Metrické vlastnosti, jako např. kolmost, odchylka, vzdálenost, obsah, objem apod.
Matematický ústav Slezské univerzity v Opavě Učební texty k přednášce ALGEBRA II, letní semestr 2000/2001 Michal Marvan. 14.
Matematický ústav Slezské univerzity v Opavě Učební texty k přednášce ALGEBRA II, letní semestr 2000/2001 Michal Marvan 14. Vlastní vektory Bud V vektorový prostor nad polem P. Lineární zobrazení f : V
Analytická geometrie lineárních útvarů
) Na přímce: a) Souřadnice bodu na přímce: Analtická geometrie lineárních útvarů Bod P nazýváme počátek - jeho souřadnice je P [0] Nalevo od počátku leží čísla záporná, napravo čísla kladná. Každý bod
1 Lineární prostory a podprostory
Lineární prostory a podprostory Přečtěte si: Učebnice AKLA, kapitola první, podkapitoly. až.4 včetně. Cvičení. Které z následujících množin jsou lineárními prostory s přirozenými definicemi operací?. C
Kapitola 2. o a paprsek sil lze ztotožnit s osou x (obr.2.1). sil a velikost rovnou algebraickému součtu sil podle vztahu R = F i, (2.
Kapitola 2 Přímková a rovinná soustava sil 2.1 Přímková soustava sil Soustava sil ležící ve společném paprsku se nazývá přímková soustava sil [2]. Působiště všech sil m i lze posunout do společného bodu
ANALYTICKÁ GEOMETRIE LINEÁRNÍCH ÚTVARŮ V ROVINĚ
ANALYTICKÁ GEOMETRIE LINEÁRNÍCH ÚTVARŮ V ROVINĚ Parametrické vyjádření přímky v rovině Máme přímku p v rovině určenou body A, B. Sestrojíme vektor u = B A. Pro bod B tím pádem platí: B = A + u. Je zřejmé,