{ } 9.1.9 Kombinace II. Předpoklady: 9108. =. Vypiš všechny dvoučlenné kombinace sestavené z těchto pěti prvků. Urči počet kombinací pomocí vzorce.



Podobné dokumenty
9.2.5 Sčítání pravděpodobností I

Jakub Juránek Určete počet kvádru, jejichž velikosti hran jsou přirozená čísla nejvýše rovná deseti. Kolik je v tomto počtu krychlí?

Domácí úkol DU01_2p MAT 4AE, 4AC, 4AI

Nerovnice s absolutní hodnotou

2.8.9 Parametrické rovnice a nerovnice s absolutní hodnotou

3.2.4 Podobnost trojúhelníků II

( ) Neúplné kvadratické rovnice. Předpoklady:

STEREOMETRIE. Vzdálenost bodu od přímky. Mgr. Jakub Němec. VY_32_INOVACE_M3r0113

( ) ( ) ( ) 2 ( ) Rovnice s neznámou pod odmocninou II. Předpoklady: 2715

Tvorba trendové funkce a extrapolace pro roční časové řady

4.6.6 Složený sériový RLC obvod střídavého proudu

2.7.2 Mocninné funkce se záporným celým mocnitelem

= musíme dát pozor na: jmenovatel 2a, zda je a = 0 výraz pod odmocninou, zda je > 0, < 0, = 0 (pak je jediný kořen)

1.3.1 Kruhový pohyb. Předpoklady: 1105

Kapitola I - Množiny bodů daných vlastností I.a Co je množinou všech bodů v rovině, které mají od daných dvou různých bodů stejnou vzdálenost? I.

Př. 3: Dláždíme čtverec 12 x 12. a) dlaždice 2 x 3 12 je dělitelné 2 i 3 čtverec 12 x 12 můžeme vydláždit dlaždicemi 2 x 3.

1.1.1 Kvadratické rovnice (dosazení do vzorce) I

M - Rovnice - lineární a s absolutní hodnotou

Přepočet přes jednotku - podruhé II

65. ročník matematické olympiády Řešení úloh klauzurní části školního kola kategorie B

Funkce rostoucí, funkce klesající I

2.7.1 Mocninné funkce s přirozeným mocnitelem

1. Kruh, kružnice. Mezi poloměrem a průměrem kružnice platí vztah : d = 2. r. Zapíšeme k ( S ; r ) Čteme kružnice k je určena středem S a poloměrem r.

Soustavy lineárních rovnic

Microsoft Office. Word styly

Důkazové metody. Teoretická informatika Tomáš Foltýnek

Číselné soustavy Ing. M. Kotlíková, Ing. A. Netrvalová Strana 1 (celkem 7) Číselné soustavy

(a) = (a) = 0. x (a) > 0 a 2 ( pak funkce má v bodě a ostré lokální maximum, resp. ostré lokální minimum. Pokud je. x 2 (a) 2 y (a) f.

15 s. Analytická geometrie lineárních útvarů

Funkce více proměnných

Kvadratické rovnice pro učební obory

( ) Kreslení grafů funkcí metodou dělení definičního oboru I. Předpoklady: 2401, 2208

UŽITÍ DERIVACÍ, PRŮBĚH FUNKCE

Všechny možné dvojice ze čtyř možností, nezáleží na uspořádání m (všechny výsledky jsou rovnocenné), 6 prvků. m - 5 prvků

Dopravní úloha. Jiří Neubauer. Katedra ekonometrie FEM UO Brno

Matematika 9. ročník

Řešení 3. série. typ čtverce o kolik se zvýší počet 1 x 1 2k x 2 2k 1 3 x 3 2k 3. . k x k 3 (k + 1) x (k + 1) 1

Abstrakt. Následující text obsahuje detailní popis algoritmu Minimax, který se používá při realizaci rozhodování

Rovnice s neznámou pod odmocninou a parametrem

Inovace výuky prostřednictvím ICT v SPŠ Zlín, CZ.1.07/1.5.00/ Vzdělávání v informačních a komunikačních technologií

Název: VY_32_INOVACE_PG3309 Booleovské objekty ve 3DS Max - sčítání a odčítání objektů

Zákonitosti, vztahy a práce s daty

Dualita v úlohách LP Ekonomická interpretace duální úlohy. Jiří Neubauer. Katedra ekonometrie FEM UO Brno

Pohyb v listu. Řady a posloupnosti

Sada 2 - MS Office, Excel

INFORMATIKA WORD 2007


Svobodná chebská škola, základní škola a gymnázium s.r.o. Zlomky sčítání a odčítání. Dušan Astaloš. samostatná práce, případně skupinová práce

IMPORT A EXPORT MODULŮ V PROSTŘEDÍ MOODLE

4.4.2 Kosinová věta. Předpoklady: 4401

Tabulky Word egon. Tabulky, jejich formátování, úprava, změna velikosti

EXPONENCIÁLNÍ A LOGARITMICKÁ FUNKCE

1 Průběh funkce. Pomůcka pro cvičení: 1. semestr Bc studia Průběh funkce - ruční výpočet

Číslo projektu: CZ.1.07/1.5.00/ Název projektu: Inovace a individualizace výuky

PŘIJÍMACÍ ZKOUŠKY I.termín

2.1 Pokyny k otevřeným úlohám. 2.2 Pokyny k uzavřeným úlohám TESTOVÝ SEŠIT NEOTVÍREJTE, POČKEJTE NA POKYN!

PŘÍLOHA č. 2B PŘÍRUČKA IS KP14+ PRO OPTP - ŽÁDOST O ZMĚNU

Metodika pro učitele

Pingpongový míček. Petr Školník, Michal Menkina. TECHNICKÁ UNIVERZITA V LIBERCI Fakulta mechatroniky, informatiky a mezioborových studií

17 t. Analytická geometrie přímky rovnice přímky, vzájemná poloha přímek, odchylka přímek, průsečík přímek, vzdálenost přímky od roviny

JAK PŘIDAT UŽIVATELE PRO ADMINISTRÁTORY

Lokální a globální extrémy funkcí jedné reálné proměnné

Aplikované úlohy Solid Edge. SPŠSE a VOŠ Liberec. Ing. Aleš Najman [ÚLOHA 18 TVORBA PLOCH]

4.2.7 Voltampérová charakteristika rezistoru a žárovky

DUM téma: KALK Výrobek sestavy

když n < 100, n N, pak r(n) = n,

KONSTRUKČNÍ ÚLOHY ŘEŠENÉ UŽITÍM MNOŽIN BODŮ

Google AdWords - návod

Kvadratické rovnice pro studijní obory

1 Typografie. 1.1 Rozpal verzálek. Typografie je organizace písma v ploše.

Gymnázium Vysoké Mýto nám. Vaňorného 163, Vysoké Mýto

MATEMATIKA PŘIJÍMACÍ ZKOUŠKA K 8LETÉMU STUDIU NA SŠ ROK 2013

3. Ve zbylé množině hledat prvky, které ve srovnání nikdy nejsou napravo (nevedou do nich šipky). Dát do třetí

Různostranné obecné Rovnoramenné Rovnostranné. třetí, základna, je různá

Šablona pro zadávání otázek pro přijímací řízení pro akademický rok 2008/2009

Vztah mezi dvěma čísly, které se rovnají, se nazývá rovnost, jako například : ( 2) 3 = 8 4 = 2 ; 16 = 4 ; 1 = 1 a podobně. 2

Nyní jste jedním z oněch kouzelníků CÍL: Cílem hry je zničit soupeřovy HERNÍ KOMPONENTY:

Sada 2 CAD CADKON 2D 2011 Nosníkový strop

M - Příprava na 2. čtvrtletku pro třídu 4ODK

Lekce 5 Jaký, jaká, jaké?

Optika. VIII - Seminář

Orientovaná úseka. Vektory. Souadnice vektor

E-ZAK. metody hodnocení nabídek. verze dokumentu: QCM, s.r.o.

IS BENEFIT7 POKYNY PRO VYPLNĚNÍ ZJEDNODUŠENÉ ŽÁDOSTI O PLATBU EX-ANTE ZÁLOŽKA ŽÁDOST O PLATBU

Dutý plastický trojúhelník by Gianelle

4.5.2 Magnetické pole vodiče s proudem

V týmové spolupráci jsou komentáře nezbytností. V komentářích se může např. kolega vyjadřovat k textu, který jsme napsali atd.

PŘEPOČET ZÚČTOVANÝCH ZÁLOH V 10% NA 14% V KONOCOVÉ

Sestrojte trojúhelník ABC, jestliže znáte délku jeho dvou stran (a = 5cm, b = 7cm) a poloměr kružnice jemu opsané (r = 6cm).

Vrtání závitů bez vyrovnávací hlavičky (G331, G332)

DIPLOMOVÁ PRÁCE DIPLOMA THESIS

Druhá mocnina. Druhá odmocnina Druhá odmocnina. Předpoklady: V této hodině jsou kalkulačky zakázány.

Popis připojení elektroměru k modulům SDS Micro, Macro a TTC.

Digitální učební materiál

Tvorba a využití výukových animací pro praktikum z genetiky

Sada 2 Geodezie II. 11. Určování ploch z map a plánů

Grafické řešení soustav lineárních rovnic a nerovnic

Drsná matematika I Demonstrované cvičení 6. Relace a zobrazení

ALGEBRA LINEÁRNÍ, KVADRATICKÉ ROVNICE

Mongeova projekce - řezy hranatých těles

Transkript:

9.1.9 Kombinace II Předpoklady: 9108 Př. 1: Je dána pěti prvková množina: M { a; b; c; d; e} =. Vypiš všechny dvoučlenné kombinace sestavené z těchto pěti prvků. Urči počet kombinací pomocí vzorce. Vypisujeme kombinace přehledně od a:,,, a, e { a b }, { a, { a, { },,, { d, 10 kombinací. 5 5 4 Počet kombinací pomocí vzorce: = = 10 2 2! odpovídá. Každá kombinace prvků z množiny M je její podmnožinou. Vytvořením k-členné kombinace rozdělíme prvky množiny M na dvě skupiny: prvky, které jsme vybrali do kombinace (je jich k), prvky, které jsme do ní nevybrali (je jich n k ). Tato druhá skupina je také kombinací z n prvků a to n k člennou v našem konkrétním případě, tedy kromě dvoučlenných kombinací, vytváříme i kombinace tříčlenné (zbytky)., c, d, e { a b } { } d, c, d, c, c, { d, Obou kombinací musí být stejně platí: K ( n) K ( n) k n n = n k nebo-li k n k. Pro všechna nezáporná čísla n, k, n k, platí: n n k n k Větu snadno dokážeme i dosazením do faktoriálového vyjádření: 1

n n! n! n! = = =. n k n ( n k )! ( n k )! ( n n + k )! ( n k )! k! ( n k )! k Př. 2: Urči kolika způsoby je možné vybrat z mariášových karet: a) tři karty, b) tři karty červené barvy, c) tři karty stejné hodnoty. a) tři karty Vybíráme tři karty ze 32, nezáleží na tom, kterou vybereme jako první sestavujeme tří členné kombinace ze 32 K3 = 4960 b) tři karty červené barvy Opět vybíráme tři karty, ale tentokrát pouze z osmi červených, nezáleží na pořadí sestavujeme tří členné kombinace z 8 K3 ( 8) = 56 3 c) tři karty stejné hodnoty Nejdříve určíme počet možností, jak vybrat například tři krále: Vybíráme tři karty ze čtyř králů, nezáleží na pořadí sestavujeme tří členné kombinace ze 4 4 K3 ( 4) = 4 3 V mariášových kartách máme osm různých hodnot 8 možností, jak vybrat hodnotu, pro každou hodnotu 4 možnosti, jak vybrat karty, kombinujeme navzájem celkem 8 4 = 32 Př. 3: Urči kolika způsoby je možné na šachovnici 8x8 vybrat: a) trojici políček, b) trojici políček neležících v jednom sloupci, c) trojici políček neležících v jednom sloupci ani v jedné řadě, d) trojici políček, která nemají stejnou barvu. a) trojici políček Vybíráme tři políčka ze 64, nezáleží na pořadí vybrání (záleží pouze na tom, která políčka 64 jsme vybrali) sestavujeme tří členné kombinace ze 64 K3 = 41664 b) trojici políček neležících v jednom sloupci Přímý výpočet je obtížný (políčka buď leží v různých sloupcích nebo leží dvě v jednom a třetí v jiném. V druhém případě záleží výběr třetího polička na výběru předchozích dvou ) zvolíme nepřímý postup: určíme počet všech trojic a od něj odečteme počet trojic, které nevyhovují zadání: všechny trojice: (předchozí bod), trojice poliček v jednom konkrétním sloupci vybíráme z osmi políček tři K3 ( 8) 3, na šachovnici je osm sloupců v osmi sloupcích je 8 možností, jak vybrat tři políčka v jednom sloupci, 2

trojice políček neležících v jednom sloupci: 8 = 41216. 3 c) trojici políček neležících v jednom sloupci ani v jedné řadě Podobné jako v předchozím bodě, kromě trojic v jednom sloupci, musíme odečíst i trojice v jednom řádku (opět 8 možností) celkem: 8 8 16 = 40 768 3 3 3 d) trojici políček, která nemají stejnou barvu Přímý postup: na šachovnici jsou dvě barvy z vybraných políček budou dvě bílá a jedno černé (nebo obráceně): vybíráme dvě bílá políčka vybíráme dvě z 32 možností, vybíráme černé políčko 32 možností, možnosti navzájem kombinujeme na výběr dvou bílých a jednoho černého políčka máme 32 možností, na výběr dvou černých a jednoho bílého políčka máme 32 možností, celkově 32 + 32 = 2 32 = 64 = 31744 Nepřímý postup: všechny trojice:, trojice bílých políček vybíráme tři z 32 bílých políček K3, trojice černých políček vybíráme tři z 32 černých políček K3, políčka, která nemají stejnou barvu: 2 = 31744 Dodatek: První verzi výsledku v bodě d) předchozího příkladu 64 můžeme také interpretovat takto: na výběr prvního políčka máme 64 možností a pak vybíráme dvě políčka ze 32 políček druhé barvy. 3

Př. 4: Urči kolika způsoby je možné na šachovnici 8x8 rozestavit: a) čtyři pěšce stejné barvy, b) pěšce, střelce, věž a královnu, c) dva bílé a dva černé pěšce. Šachovnice je prázdná a při rozestavování nedodržujeme pravidla hry (například bílého pěšce můžeme umístit i na černé políčko). a) čtyři pěšce stejné barvy Na šachovnici rozestavujeme čtyři stejné figury nezáleží na tom, na které z políček jsme postavili figurku jako první, nezáleží na pořadí, ve kterém jsme políčka vybrali K4 = 635376 4 b) pěšce, střelce, věž a královnu Na šachovnici rozdělujeme čtyři různé figury záleží na tom, na které z políček jsme postavili figurku jako první (na prvním políčku je pěšec, který už nemůže být na žádném z později vybraných políček) vybíráme čtyři políčka ze 64 záleží na pořadí 64! V 4 = = 15249024 60! c) dva bílé a dva černé pěšce Rozestavujeme postupně: rozestavujeme dva bílé pěšce nezáleží na pořadí (jsou oba stejní) vybíráme dvě políčka ze 64 K2, rozestavujeme dva černé pěšce nezáleží na pořadí (jsou oba stejní) vybíráme 62 dvě políčka ze 62 (dvě políčka jsou obsazena bílými pěšci) K2 ( 62), možnosti rozestavení bílých a černých pěšců spolu můžeme navzájem kombinovat 62 celkově = 3812 256 Př. 5: Někteří studenti při řešení předchozího příkladu 4 c) získají špatný výsledek 64 62 2, který zdůvodňují tím, že máme dvě možnosti, jak vybrat barvu pěšců, které budeme rozestavovat jako první. Proč je tato argumentace nesprávná? V příkladu 4 rozestavujeme pěšce po šachovnici. Jde nám o to, abychom získali rozestavení figur na šachovnici. Rozlišovat barvu pěšců, které jsme rozestavovali jako první, bychom museli v případě, že by existovalo takové rozestavení pěšců, které bychom nezískali v případě, že začneme s bílými. Takové rozestavení, ale neexistuje. V rozestavení pěšců nehraje roli, kdy jsme ho na šachovnici postavili, proto také nezáleží na tom, které pěšce rozestavujeme jako první. Př. 6: V rovině je dáno n bodů, z nichž p leží na jedné přímce. Kromě těchto p bodů žádné další tři body na jedné přímce neleží. Urči, kolik je těmto body určeno: a) přímek, b) trojúhelníků, c) kružnic. a) přímek 4

Přímka je dána dvěma body, nezáleží na pořadí, ve kterém je vybereme, takových dvojic můžeme z n bodů sestavit 2. Ne všechny tyto dvojice určují nové přímky, protože p bodů leží na přímce všechny p přímky sestavené z těchto bodů splývají v jedinou, z p bodů bychom sestavili přímek, 2 p celkem sestavíme + 1 přímek. 2 2 b) trojúhelníků Trojúhelník je určen třemi body, které neleží v přímce, nezáleží na pořadí, ve kterém je vybereme, takových trojic můžeme z n bodů sestavit 3. Ne všechny tyto trojice určují trojúhelníky, protože p bodů leží na přímce z p bodů p bychom sestavili trojic, které neurčují trojúhelník. 3 p Celkem sestavíme 3 3 trojúhelníků. c) kružnic Kružnice je stejně jako trojúhelník určena třemi body, ale na rozdíl od trojúhelníků se tak snadno nedá zjistit, zda na jedné kružnici neleží více bodů. Může se stát, že na kružnici určené trojicí bodů leží i další bod, který samozřejmě neleží na trojúhelníku určeném původními body počet kružnic je stejný nebo menší než počet trojúhelníků, více o něm tvrdit nemůžeme. Př. 7: Petáková: strana 147/cvičení 64 b) c) d) e) f) strana 147/cvičení 66 strana 147/cvičení 67 n n Shrnutí: Pro kombinační čísla platí: k n k. 5