T.1 Informační systémy a informační technologie



Podobné dokumenty
Principy GPS mapování

VYUŽÍTÍ SYSTÉMŮ AUTOMATICKÉ IDENTIFIKACE V KONFEKČNÍ VÝROBĚ

Globální polohové a navigační systémy

Global Positioning System

Geoinformační technologie

GPS - Global Positioning System

2012, Brno Ing.Tomáš Mikita, Ph.D. Geodézie a pozemková evidence

Zdroje dat GIS. Digitální formy tištěných map. Vstup dat do GISu:

Informační technologie v logistice Získávání a přenos informací

Ing. Jiří Fejfar, Ph.D. GNSS. Globální navigační satelitní systémy

Ing. Jan Bartoš, MBA. Jednatel společnosti Smartdata, s.r.o.

AKTIVNÍ RFID SYSTÉMY. Ing. Václav Kolčava vedoucí vývoje HW COMINFO a.s.

Informační systémy v logistice

VYUŽÍTÍ SYSTÉMŮ AUTOMATICKÉ IDENTIFIKACE V KONFEKČNÍ VÝROBĚ

14. Elektronická navigace od lodní přes leteckou po GPS principy, vlastnosti, technické prostředky

Geografické Informační Systémy

Využití moderních technologií v oblasti Bezpečnosti majetku a osob

Zobrazení informací o stavu spojení

Satelitní navigace v informačních systémech dopravce. Plzeň Seminář ZČU Plzeň 1

ČESKÁ TECHNICKÁ NORMA

Galileo evropský navigační družicový systém

Pozorování dalekohledy. Umožňují pozorovat vzdálenější a méně jasné objekty (až stonásobně více než pouhým okem). Dají se použít jakékoli dalekohledy

GPS. Uživatelský segment. Global Positioning System

Globální navigační satelitní systémy a jejich využití v praxi

Když čárový kód nechce prodat výrobek... a zákazník má problém

GPS Manuál. Tato příručka je vánoční dárkem Orlíků pro oddíl.

Základní komunikační řetězec

Globální družicový navigační systém

KIS a jejich bezpečnost I Šíření rádiových vln

Obsah. Kapitola 1 Co je GPS Kapitola 2 Typy přijímačů GPS Kapitola 3 Automobilová navigace Úvod... 7

4. ZPŮSOBY ZÍSKÁVÁNÍ TECHNOLOGICKÝCH INFORMACÍ Z VOZIDEL...

IsoMatch Tellus CHYTŘE EFEKTIVNĚ SNADNĚ. Budoucnost zemědělství

1 Princip a funkce systémů GPS

Využití GPS pro optimalizaci pohonu elektromobilů

Mezinárodní standard pro obchod a logistiku

Vstup a úkoly pro 11. kapitolu IDENTIFIKACE A BALENÍ JAKO SUBSYSTÉM ŘETĚZCE.

SYSTÉM GALILEO. Jakub Štolfa, sto231


GPS 4M. Návod k obsluze a návod k montáži

Aplikovaný vývoj RFID technologií

POROVNÁNÍ JEDNOTLIVÝCH SYSTÉMŮ

Evropský navigační systém. Jan Golasowski GOL091

Úvod do mobilní robotiky AIL028

MSA PLUS Elektrosvařovací jednotky

Ústav automobilního a dopravního inženýrství. Datové sběrnice CAN. Brno, Česká republika

PB169 Operační systémy a sítě

GPS MAGELLAN model Meridian Europe

Aplikace na čipových kartách

zákaznický ceník platný od

10. GPS Základní pojmy Plánování trasy. Kapitola 10: GPS 1

Mobilní jednotka O2 Car Control

PROJEKT ŘEMESLO - TRADICE A BUDOUCNOST Číslo projektu: CZ.1.07/1.1.38/ PŘEDMĚT PRÁCE S POČÍTAČEM

Nové trendy v zabezpečení rozsáhlých areálů

Leica DISTO TM Laserové dálkoměry

FAKULTA ELEKTROTECHNICKÁ Spojujeme elektrotechniku a informatiku PRACUJ V OBORU. S OBRATEM VÍCE NEŽ MILIARD Kč

Směrnice o tabákových výrobcích EU 1 PODROBNOSTI KE KÓDOVÁNÍ Informace pro obchod

Požadavky na značení léčivých přípravků. Lenka Martínková, GS1 Czech Republic

Vypracoval: Ing. Antonín POPELKA. Datum: 30. června Revize 01

AUTOMATICKÝ TRANSPORTNÍ SYSTÉM LEO. Radim Špidlen, Martin Hynčica

Kinematika Trajektorie pohybu, charakteristiky pohybu Mirek Kubera

9 MODERNÍ PŘÍSTROJE A TECHNOLOGIE V GEODEZII

Automatické rozpoznávání dopravních značek

RFID ŘEŠENÍ PRO SBĚR KOMUNÁLNÍHO ODPADU

Registrační číslo projektu: CZ.1.07/1.5.00/ Elektronická podpora zkvalitnění výuky CZ.1.07 Vzděláním pro konkurenceschopnost

Technologie pro automatizaci procesů skladování

Nové technologie pro určování polohy kontejneru na terminálu

MSA PLUS Elektrosvařovací jednotky

ZÁKLADY DATOVÝCH KOMUNIKACÍ

SeeMe MOBILE. Uživatelská příručka SeeMe Mobile. Provozovatel GPS služeb: pobočka ZNOJMO pobočka JIHLAVA pobočka DOMAŽLICE pobočka PRAHA Identifikace

INFORMAČNÍ SYSTÉMY PRO KRIZOVÉ ŘÍZENÍ GEOGRAFICKÉ INFORMAČNÍ SYSTÉMY A JEJICH VYUŽITÍ V KRIZOVÉM ŘÍZENÍ ING. JIŘÍ BARTA, RNDR. ING.

Agenda Požadavky na značení léčivých přípravků. Úvod Pozice GS1 ve zdravotnickém sektoru Značení léků

DOPRAVNÍ DATA PRO KAŽDOU SITUACI

Diagnostika signálu vlakového zabezpečovače

LOGISTIKA + PRŮMYSL. ProGlove MARK. Inteligentní pracovní rukavice pro průmysl 4.0

CAR MONITOR. MONITORING VOZIDEL - SYSTÉMY GPS a GSM

CZ.1.07/1.5.00/

N Á V R H. OPATŘENÍ OBECNÉ POVAHY ze dne 2005, o rozsahu požadovaných údajů v žádosti o udělení oprávnění k využívání rádiových kmitočtů

ČESKÁ TECHNICKÁ NORMA

MHD v mobilu. Instalace a spuštění. Co to umí

Pracovní listy s komponentou ICT

Mobilní datové nosič do vysokých teplot TW-Q51WH-HT-B128

Bezpečnostní mechanismy

Nové technologie pro určování polohy kontejneru na terminálu

Systém GS1. Identifikace obchodních jednotek

RadioBase 3 Databázový subsystém pro správu dat vysílačů plošného pokrytí

Elektronická Kniha jízd.

Výukové texty. pro předmět. Automatické řízení výrobní techniky (KKS/ARVT) na téma

Požadavky na značení léčivých přípravků

Komponenty systému RFID

Role logistiky v ekonomice státu a podniku 1

Pilotní projekt STO GNSS,DSRC,GPS,GPRS,GSM,OBU, EETS,MISTER,EFC,EG,EOBU,HMI, EFC,GALILEO,LSVA,ETC,FC, GLONASS

VÍTEJTE Obsah Úvodník 2 Novinky z Webdispečinku 3 Editace jízd Výpočet stravného Práce s mapou KML soubory Kdo vlastně stojí za službou Webdispečink?

(Ne)daleká budoucnost technologie tachografů. 53.konference ČKS

GS1 System. Systém GS1 v logistice

Mobilní telefony, základnové stanice a zdraví

Průmyslový terminál PT-17

Často kladené otázky k Satelitnímu systému ochrany vozidla AVM

Systém GS1. Lineární čárové kódy

Služby pro zařízení vysokého napětí. Spolehlivé sledování stavu zařízení

Pasport č. 1 údaje o území. I. oddíl poskytovatel údaje (identifikační údaje)

Transkript:

T.1 Informační systémy a informační technologie 1.1Automatická identifikace předmětů Neoddělitelnou součástí a nutným požadavkem logistických systémů je existence včasných a správných informaci. Automatická identifikace (Automated Data Capture - ADC) je progresivní technologie, tento požadavek umožňuje splnit. Vytváří předpoklady pro realizaci důležité logistické zásady - předstihu toku informací před tokem hmotných prvků. Způsob je založen na automatické identifikaci pasivních prvků (výrobky a díly nebo z nich vytvořené manipulační a přepravní jednotky, přepravní prostředky _ přepravky, palety, kontejnery aj.) i aktivních prvků (hlavně dopravní prostředky) logistických řetězců. Automatická identifikace může využívat principy: optický (koncem devadesátých let přes 80 % aplikací), * čárové kódy (Bar coding), * písmo OCR (Optical Character Recognition), * biometrické technologie na bázi otisků prstů či podpisů, radiofrekvenčni (Radio Frequency Identification - RF/ID) _ vysílání radiofrekvenčního signálu. který vyvolává odpověď identifikačního štítku umístěného na identifikovaném objektu; v téže době asi 9 % aplikací, ale nejrychleji se rozvíjející způsob (identifikace dopravních a přepravních prostředků, evidence pohybu materiálu i osob apod.), induktivní (obdobný princip jako radiofrekvenční s tím rozdílem, že přenos kódovaných dat mezi snímačem a štítkem je elektromagnetickou indukcí na malou vzdálenost (označování a identifikace paletových jednotek, kontejnerů apod.), magnetický se čtením informace na magnetickém médiu pomocí snímací hlavy * plastikové karty s magnetickým proužkem (Magnetic Stripe) pro bezhotovostní placení, přístup povolaných osob do uzavřených prostorů apod., * technologie MICR (Magnetic lnk Character Recognition) - peněžní a bankovní operace, třídění dokumentů apod., hlasový, s rozeznáváním vybraných slov či normálně mluvené řeči.

Oblastmi praktického užití automatické identifikace jsou: - záznam, identifikace a vyhledávání informací - identifikace a vyhledáváni předmětů, - identifikace míst (orientace v prostoru), - kontrola stavů (např. stavu zásob pomocí identifikačních symbolů), - sledování a řízení procesů (třídění zásilek na poštách, manipulace se zavazadly na letištích, řízení výroby apod.), - transakční procesy (prodej, návaznost sklad - dopravce, aukce čerstvých potravin, květin apod.); na rozdíl od řízení procesů, které představuje uzavřený okruh, transakční procesy jsou otevřeným okruhem zahrnujícím několik subjektů. Jednotlivé technologie automatické identifikace vykazují rozdíly: - ve vzdálenosti nosiče od snímacího zařízení, - v objemu uschovaných dat, - v hustotě uschovaných dat, - v programovatelnosti, - v možnosti ručního vkládání dat, - v rychlosti čtení informací, - ve spolehlivosti, - v trvanlivosti nosiče a kódového označení, - ve vhodnosti pro různá pracovní prostředí, - v bezpečnosti a ochraně dat před třetími osobami. 1.1. Čárové kódy čárové kódy jsou grafickým vyjádřením numerických či alfanumerických znaků pomocí nejrůznějších kombinací různých druhů čar. Výhody automatické identifikace pomoci čárových kódů jsou známy z řady aplikací. Jsou ve světě v současné době nejrozšířenější pro automatickou identifikaci objektů, služeb a bezdokladovou výměnu dat. Jejich používáním je možné podstatně zvýšit efektivnost evidenčních operací, takže v mnoha aplikacích je umožněno i sledování daných objektů v reálném čase. Existují čárové kódy (obr. 1.1): - lineární, - složené (zhuštěné) lineární a - maticové

Příklady nejpoužívanějších typů čárových kódů:

1.1.2 Lineární čárové kódy Dosavadní aplikace byly založeny na lineárních (ID) čárových kódech. Ty jsou dnes téměř všudypřítomné a významně přispěly ke zvýšení produktivity práce v mnoha odvětvích. Skládají se z jednoho řádku čar a mezer. Lze je číst pomocí čtecí tužky, CCD snímačů nebo pomocí laserových snímačů. Mají řadu omezení (malý objem dat, nemožnost snímání všemi směry, omezená možnost oprav chyb, omezení v rozměrech). Většinou jsou používány jako klíče k externím databázím (licence plates). Nejznámější jsou EAN 13, EAN 8, Code 39, Code 128. Poznámka: Lineární kódy byly použity v roce 1967 v USA pro sledování vlaku. V roce 1973 byl v USA a Kanadě zaveden 12-ti(6-ti)místný kód UPC (Universal Product Code), původně určený pro sledováni potravinářského zboží. V roce 1977 byla v Bruselu založena organizace EAN International, která upravuje a koordinuje používání kódu EAN (European Article Numbering) v evropských podmínkách. Nejrozšířenější jsou třináctimístný EAN 13 a osmimístný EAN 8. Byly odvozeny z kódů UPC a jsou s nimi kompatibilní. Původně byly určeny pro označování spotřebitelského zboži, v současnosti jsou používány i pro identifikaci distribučních i jiných logistických jednotek. Kód EAN 13 obsahuje informace: - prefix (země p6vodu zboží, 6R - 859), - kód výrobce, - kód výrobku a - kontrolní číslici Původně měl kód EAN 13 následující strukturu: x x x prefix / x x x x výrobce/ x x x x x výrobek / x kontrolní číslo V současné době se pro označení výrobce používá 4 až 6 míst. Kód EAN 8 obsahuje pouze prefix, číslo výrobku a kontrolní číslici. Ostatní informace je třeba zajišťovat pomocí dodatkových označeni.

V této souvislosti se rozlišují: doplňkové záznamy pro dodatkové informace pro jednotky v distribučních obalech s proměnlivým množstvím (např. hmotnost bochníka sýra) a - přídavné záznamy pro data časem se měnící jako např.: číslo partie (číslo výrobní linky, číslo směny), datum výroby či balení, doporučená lhůta spotřeby, označení varianty výrobku, informace pro vnitřní potřebu uživatele apod. V rámci systému EAN se používají kombinace s jinými druhy čárových kódů. Nejčastěji se používají: - EAN/ITF 14 pro označování distribučních jednotek a - EAN/UCC 128 pro označovaní distribučních a přepravních jednotek a doplňkových informací. Zapojit se do systému EAN má možnost každá právnická osoba, která podá přihlášku a uzavře smlouvu s národní organizaci EAN ČR a zaplatí příslušný vstupní a roční provozní poplatek. (V roce 1997 činil vstupní poplatek 4 000 Kč a roční provozní poplatky byly odstupňovány v závislosti na ročním obratu firmy - třídy firem A až I v rozsahu obratu do jednoho milionu Kč až do obratu nad 5 miliard Kč a tomu odpovídající poplatky od 500 Kč do 28000 Kč). Podmínky používání čárových kódů upravují normy 6SN: - ČSN 770 060 Všeobecná ustanovení, - ČSN 770 061 Spotřebitelské obaly, - ČSN 770 064 Obchodní a přepravní jednotky. 1.1.3 Dvoudimenzionální čárové kódy [7,34] Požadavky na vlastnosti kódů neustále rostou. Nedostatky lineárních čárových kódů jako: - relativně malý objem dat, který lze zachytit na jedné etiketě, - nedostatek možnosti snímáni všemi směry, - omezená možnost oprav chyb a omezení v rozměrech přináší v praxi řadu problémů.

Proto byly vyvinuty dvourozměrné (2D) kódy, které dnes i řada dopravních společností používá. Očekává se, že v dohledné době se stane jejich používání samozřejmostí i v jiných oblastech. vývoj nových ZD kódů je motivován snahou umístit na etiketě bezpečně stále více dat. Kódy ld se označují jako "licence plates", poněvadž data v nich zakódovaná jsou zpravidla klíčem nebo odkazem k externí databázi. Termín dvourozměrný se používá pro kterýkoli z nových kódů, které nespočívají na jediné řadě značek a mezer pro zakódování dat. Vyskytují se ve dvou typech: - zhuštěný lineární (stacked linear) a - maticový (matrix neboli block) Zhuštěné lineární kódy 2D zajišťují zvýšení kapacity zhuštěním obyčejných lineárních kódů. Mají zpravidla společné kódování startovacího a ukončovacího znaku. Čtou se pomocí dvoudmenzionálních CCD a laserových snímačů. Jako příklad je možné jmenovat Code 49, 16 K, Codablock, Supercode, PDF 417, Micro PDF. Příklady zhuštěného kódu 1. generace jsou kódy 49 nebo 16K. Nabízejí střední kapacitu a poměrně velkou hustotu záznamu. Z prostorového hlediska jsou však méně efektivní než některé novější kódy 2D. Rovněž nenabízejí možnost oprav chyb. Zhuštěnými kódy nové generace jsou PDF 417 A Supercode, které nabízejí velmi vysokou datovou kapacitu (přes Z 500 znaků), vysokou hustotu záznamu a robustní možnosti opravy chyb. Je možné kompletní a přesné dekódování etikety, poškozené až na 50%. Mohou být používány i k zakódování binárních dat, čímž je dána možnost zakódování fotografií, otisků prstů a jakýchkoli jiných datových struktur. Snímání informací musí být prováděno v jediné orientaci (zleva doprava, zprava doleva, shora dolů nebo zdola nahoru). To představuje určité omezení ideálního řešení pro aplikace tříděni, kde je zpravidla potřebné snímání ve všech směrech. Maticové kódy 2D (matrix neboli block) jsou tvořeny z polygonicky uspořádaných skupin datových buněk. Mají velkou datovou kapacitu, vysokou hustotu záznamu a proti lineárním nebo zhuštěným kódům je lze snímat všemi směry. Jsou rozpoznatelné podle symbolů vyhledávacích elementů, které jsou rozdílné podle typu kódu. Jako příklady je možné uvést Aztek, QR Code, Code Dne, Data Matrix, Vericode, MaxiCode aj. V těchto kódech je informace uschována ve dvou směrech, ale v matici nebo v

šachovnicovém vzoru. Hustota záznamu v kombinaci se snímáním všemi směry, činí tyto kódy ideálními pro označování malých dílců a možnosti rychlého třídění balíků. Nemohou být snímány běžnými lineárními scannery CCD nebo laserovými snímači. Vyžadují buď videozařízení nebo kamery. Využívání 2D kódů jako průmyslových standardů mohou ukázat následující údaje: Normotvorná organizace amerických výrobců aut; A/AG (Automotive lndustry Action Group) ve svých směrnicích doporučuje následovné používání kódů: Datamatrix - označováni malých dilů, MaxiCode - třidění a sledováni materiálu, PDF 417 - kontrola jakosti, - evidence výroby, - řízení montáže, - značení bezpečnosti materiálu. Americká normotvorná organizace ANSI (American National Standa rds Lnstitut e) vydala doporučení pro užívání: MaxiCode - pro aplikace třídění, PDF 417 - pro označováni nákladů a dopravních úkonů. Poznámka: Electronics Industry Association zvolila Datamatrix rovněž pro označovaní malých dílů. Americké ministerstvo obrany a americké letectvo používá kód PDF 417 pro průkazy totožnosti. Všeobecně lze očekávat, že v blízké budoucnosti budou kódy 2D používány pro nákladní listy, intermodální přepravy, tříděni nákladů a jejich sledování, jakož i pro použití v náročném prostředí. 1.2 Radiofrekvenční kódování Automatická identifikace se neomezuje jen na výrobní oblast. V současné době se stále více používá zejména v přepravě zboží a v dopravní technice. Běžné identifikační systémy jsou zde často nevhodné. Tyto systémy sestávají ze: - směrové antény, která pracuje v GHz, - zapisovače a čtecí jednotky - z nosičů dat, které se připevní na objekty, které se mají identifikovat.

Zpracování dat lze provádět: - centrálně i - decentrálně U centralizovaného zpracování mohou mít všechny nosiče dat uložen do paměti pouze neměnný kód. Všechny další informace spravuje nadřazený počítač. Decentralizované zpracování: Mají-li se však jednotlivé předměty sledovat na velké vzdálenosti, jako např. při dopravě zboží nebo v dopravní technice, byl by tento systém méně účelný. Bylo by asi sotva možné, aby počítač vedl všechny údaje jako je tomu uvnitř továrny. V tomto případě nosiče pracují jako elektronické průvodní štítky, které mají v paměti uloženy všechny informace týkající se daného objektu a musí být možné je i znovu aktualizovat. Jejich paměťová kapacita se pohybuje od 8 do 32 Kbytů, což odpovídá rozsahu asi 16 normalizovaných stran psaných na stroji (30 řádků po 60 úderech). Nosiče dat jsou uloženy v plastovém pouzdře a mají tvar krabičky zpravidla o rozměrech 90(240) x 60 x 18 mm. Upevňují se na objekt, který se má identifikovat (Obr. 1.2). Obr. 1.2. Identifikační štítky radiofrekvenčního kódování Štítek určený k umístění na dopravní prostředky Typickým příkladem jejich použití je sledování kontejnerů při dopravě zboží po silnici, železnici, vodě i ve vzduchu. V nosiči připevněném na kontejner jsou uloženy všechny údaje potřebné pro jeho identifikaci, tj. poznávací značka, údaje o nákladu, místo určení apod. Tyto údaje lze snímat, případně doplňovat na všech rozhodujících místech trasy. Je k tornu potřeba pouze anténa a snímací a zapisovací jednotka (liniový článek), které se mohou stabilně

umístit u vjezdu do spedičního podniku, terminálu kombinované dopravy, přístavu apod. Popis činnosti zařízení: Anténa vysílá vysokofrekvenční signál. Zasáhne-li signál elektronickou etiketu, je modulován datovým telegramem a odráží se zpět k anténě. Snímací a zapisovací jednotka dekóduje tuto informaci a předá ji organizačnímu počítači. Mají-li se do etikety zapsat další údaje, půjdou opačnou cestou. Počítač je předá snímací a zapisovací jednotce, která je upraví tak, aby se daly vyslat anténou. Ani pro čteni, ani pro další zápis se nemusí kontejnery zastavovat, protože jejich etikety lze identifikovat v plné jízdě (i na desítky metrů a rychlostech nad 100 km/h). Jediným předpokladem je, že nosič dat se musí pohybovat v poli antény alespoň po dobu jedné milisekundy. Protože etikety jako nosiče dat samostatně nevysílají údaje, nepotřebují samy vlastní vysílač. Energie potřebná k modulaci signálu, případně ke snímání z paměti, se odebírá z liniového článku. U pevně kódovaných nosičů se potřebná energie oddělí z vysokofrekvenčního signálu. Další využití: Systém je možné používat i pro jiné aplikace. Lze jím mimo jiné registrovat auta v souvislosti s placením silničních poplatků, využívat ho pro řízení parkovišť, provádět dozor nad přepravou nebezpečných a odpadních látek apod. Využití může být zajímavé i pro oblast průmyslu, především v těžkých podmínkách (nečistota, extrémní teploty, fyzické překážky mezi snímačem, vysílačem, nosičem apod.). Vysoké frekvence a rychlosti, používané při snímání a čtení zabezpečují, že systém je odolný proti rušení a sám nemůže být rovněž jeho zdrojem. Při používáni polarizovaného vlnění jsou v podstatě vyloučeny odrazy od cizích těles, např. od kovových předmětů uvnitř snímací oblasti. Anténa sejme jen záření modulované a odražené od nosičů dat. Systém je vhodný pro vytváření informačních a řídících systémů pracujících v reálném čase. V některých aplikacích jsou jinými technickými prostředky nenahraditelné. V současné době je asi jejich jedinou nevýhodou poněkud vyšší cena ve srovnání s dosud nejrozšířenějšími čárovými kódy. 1.3 Komunikační technologie Automatická identifikace musí být kombinována s vhodnou komunikační technologií. Vedle stále používaných klasických telefonů, dálnopisů a radiové komunikace se uplatňují stále více nové způsoby komunikace: - radiofrekvenční datová komunikace komunikace s řídícím počítačem v dialogovém režimu v rámci podniku (kontrola průběhu příjmových, skladových a kompletačních procesů), - mobilní telefony - proti radiové komunikaci výhod a snadného univerzálního spojení s účastníky telefonní sítě (i zákazníci, servisní střediska, policie apod.), - mobilní faxy - možnost vydáváni dokumentovaných informací pracovníkům v terénu (plánky měst a jiné informace a pokyny pro řidiče apod.),

- satelitní komunikace - původně v námořní a letecké dopravě, nyní i v dopravě silniční (Inmarsat-C a Euteltracs - zjišťování polohy a registrace trasy vozidel, komunikace s posádkou, oboustranný přenos faxových zpráv, mailbox, * GPS - Global Positioning System - především pro usnadnění orientace řidičů při projíždění velkými městy znázorňováním silničních (uličních plánů) na obrazovce palubního počítače vozidla, * Radio Data System/Traffic Message Channel (RDS/TMC) systém umoznuj1cl nabízet řidičům alternativní trasu při vzniku kritické situace na základě aktuální dopravní situace), - elektronická výměna dat (Electronic Data Interchange - EDI) je mezipodniková výměna obchodních dat ve standardní formě zpracovatelné na počítači. Uplatnění UN/EDIFACT (projekt OSN pro EDI for Administration, Commerce and Transport, EDI pro administrativu, obchod a dopravu) znamená přechod od papírových nosičů informací (dokumentů) na elektronickou, bezdokumentovou formu. Tím se snižují náklady na výměnu dat až na jednu třicetinu a doba na předání jedné zprávy se zkracuje z několika dnů a na několik sekund. Snižuje se chybovost, nedochází ke zpožďování informací za hmotnými toky, vznikají personální úspory na administrativu, zlepšuji se služby zákazníkům. Zavedení EDI přináší značnou konkurenční výhodu a obráceně, podniky, které na EDI nepřistoupí, mohou být vystaveny riziku, že jejich partneři využívající EDI na ně přenesou jim vzniklé ztráty (až 50 dolarů za každou stránku dokumentu nepředaného prostřednictvím EDI).

Graf 1.3 Logistický informační systém podniku

Jak funguje GPS, princip navigace a jeho vysvětlení GPS (Global Positioning System) je projekt, který umožňuje komukoli na povrchu planety Země zjistit své zeměpisné souřadnice. Ke své funkci využívá několika specializovaných družic, které ze svých oběžných drah vysílají směrem k Zemi signály v podobě elektromagnetických vln. 0 GPS (Global Positioning System) Systém vznikal v sedmdesátých letech minulého století původně pro vojenské účely Ministerstva obrany Spojených států. Cílem byla možnost zjistit aktuální polohu na libovolném místě na zeměkouli pomocí přijímače. V devadesátých letech došlo k uvolnění systému i pro širokou veřejnost s tím, že signál byl jednak uměle zkreslován, takže odchylka byla kolem 20 až 30 metrů a jednak signál byl dostupný jen někde (selektivní dostupnost, selected availibility). Bylo to opatření hlavně kvůli zneužití teroristy. 1. května 2000 byly zrušeny i tato omezení a civilnímu sektoru se dostalo stejných možností jako vojenskému (selektivní dostupnost byla údajně opět zapnuta při válce v Iráku). Celý systém GPS je možné rozdělit na tři části: kosmickou, řídící (nebo též kontrolní) uživatelskou. Satelity (kosmická část) Kosmickou část tvoří 24 nestacionárních satelitů Navstar od firmy Rockwell International (z toho jsou tři záložní) umístěných 20 tisíc kilometrů nad zemským povrchem. Tyto satelity obíhají Zeměkouli za 11 hodin a 56 minut na šesti oběžných drahách skloněných o 60 stupňů. Z každého místa na zemi tak v ideálním případě vidíte 12 družic. Každá z těchto družic obsahuje přijímač, vysílač, cesiové atomové hodiny s přesností miliardtin sekundy a mnoho dalších zařízení, které již pro vlastní určování polohy nejsou potřebné (např. detekce výbuchů jaderných zbraní). Přijímač slouží k předávání dat z řídícího střediska na Zemi do vnitřního počítače družice. Na základě těchto dat pak koriguje např. svou dráhu. Vysílač je určen jednak k zasílání dat zpět do řídících center, ale hlavně k vysílání dat uživatelům. Monitorování družic (řídící část)

Řídící systém má za úkol monitorovat běh družic a v případě problémů tyto řešit. Řídící systémy jsou v devíti pozemních stanicích umístěných podél rovníku. Hlavní řídicí stanice je v Colorado Springs, dále je pět monitorovacích stanic a tři pozemní řídící stanice. Vaše navigace v kapse (uživatelská část) Poslední částí je uživatelská, tedy ta, kterou si může každý koupit a používat. Jde jednak o klasické přijímače (dnes už vždy alespoň s primitivním displejem) a jednak přijímače zabudované do dalších zařízení (PDA, telefony a další). Většina přijímačů je pasivní (tedy pouze přijímají, nikoliv vysílají) jednak proto, že není potřeba vysílat, a jednak kvůli bezpečnosti v armádě když voják nemá vysílač, ale pouze přijímač, nelze jej pomocí signálu GPS vystopovat. Princip navigačního systému - jednoduché vysvětlení A jak to celé funguje dohromady? Každá družice vysílá informace o své poloze, přesný čas z atomových hodin a dále přibližné polohy ostatních družic. Přijímač, který musí mít přímou viditelnost na oblohu, pak pro výpočet polohy využívá časového rozdílu mezi okamžikem vyslání a okamžikem přijmutí dat. Pokud takto získá a zpracuje data ze tří družic, dokáže určit zeměpisnou šířku a délku (tvz. 2D poloha). Pro výpočet nadmořské výšky je pak potřeba signál ze satelitů čtyř (tvz. 3D poloha). Díky ostatním satelitům se výpočet více zpřesňuje. K uvedenému výpočtu je nutné, aby i v přijímači byl přesný čas, kterého se dociluje jednodušším zařízením než jsou atomové hodiny (jednak jsou drahé a jednak rozměrné) a při načítání informací o družicích se aktuální čas upraví. Pokud by byl čas rozdílný byť jen o jednu tisícinu vteřiny, chyba v určení polohy by byla řádově stovky kilometrů. Většina uživatelů GSP přijímačů si jistě všimla, že od zapnutí přístroje k získání prvních údajů může uběhnout několik desítek vteřin až několik minut. Je to z toho důvodu, že na začátku (případně na základě dalších faktorů jako je např. zeměpisná či časová vzdálenost aktuální pozice od naposledy zaznamenané) je nutné načíst informace o jednotlivých družicích a další data (tvz. almanach). Tomuto procesu se říká inicializace. Almanach o velikosti 37500 bitů se odesílá rychlostí 50 bps, takže pokud bychom jej chtěli do přijímače načíst celý, potřebovali bychom 12,5 minuty. Naštěstí je z almanachu potřeba jen část, takže se nečte celý. Rozhodně rychlost načtení je ještě ovlivněna prostředím, kde se přijímá. V úzkých uličkách s vysokými budovami je to horší než na vrcholu holého kopce. Z tohoto důvodu doporučuji v případě, že plánujete pohyb v místech se zhoršeným signálem, načtěte almanach (zapněte přijímač) v místě, kde je výhled na oblohu dostatečný. Kromě almanachu si musí přístroj načíst ještě informace o sobě, tzv. efemeridy, ale to je vzhledem k almanachu již zanedbatelný časový okamžik. GPS přijímač komunikuje s počítačem (či jiným zařízením) nejčastěji pomocí protokolu NMEA (National Marine Electronics Association). V tomto protokolu se kromě jiného předávají informace o čase, poloze, polohách družic, rychlosti, azimutu, počtu aktivních satelitů a další. Tento formát je textový a některé aplikace jej umí ukládat na disk k dalšímu zpracování (např. pro knihy

jízd, generování výškových a rychlostních profilů a další). Co můžete vidět např. na turistické GPSce nebo PDA? Většina GPS přijímačů dokáže zobrazit data přijímaná z přijímače v grafické podobě. První panel zobrazuje dostupnost satelitů a sílu signálu z každého z nich. Dále zobrazuje aktuální pozici a počet používaných a viditelných satelitů. Tyto informace ještě nestačí k tomu, abychom dokázali něco říct o kvalitě signálu. K tomu je ještě nutné znát polohy satelitů vůči sobě i vůči přijímači. K tomu slouží další záložka, která zobrazuje polohy satelitů na obloze:

Nejlepší je mít aktivní satelity co nejvíce nad sebou (blízko středu) s tím, že 4 z nich jsou každý v jiném kvadrantu (nebo jinak: je vhodné, aby satelity byly rovnoměrně rozmístěné po obloze). Pokud je satelit na okraji, je tedy na horizontu a zde při posílání signálu dochází k lomu a tedy zkreslení signálu. Vyšší odchylku v určení polohy také dostaneme, jsou-li satelity v jedné linii (typicky v úzkých uličkách s vysokými stavbami). Další panel je již čistě uživatelský: Zobrazuje totiž aktuální rychlost, nadmořskou výšku, azimut (směr, ve kterém se přijímač pohybuje) a rychlost, s jakou se mění aktuální nadmořská výška. Poslední panel je pak pro uživatele nadané statistickým vnímáním:

Přesnost a použitelnost v reálném provozu V běžném provozu s dobrým signálem je rozdíl oproti skutečnosti dva až tři metry co se zeměpisné délky a šířky týče a deset až dvacet metrů, pokud jde o nadmořskou výšku (přesnou nadmořskou výšku lze zjistit ve s barometrem přesné přístroje však stojí řádově desítky tisíc korun). Jak bylo uvedeno, přijímač musí mít na družice přímý výhled, jinak od nich žádná data nezíská. Z tohoto důvodu jakýkoliv předmět ve výhledu degraduje kvalitu získané pozice. Ve či v lese je obecně přesnost horší než v otevřené krajině. Pokud jste uvnitř, musíte být s přijímačem u okna. Stejně tak v autě, vlaku či autobuse. Pokud například v autobuse sedíte v uličce, máte téměř určitě smůlu (okolo vás je kovový plášť autobusu, který "stíní" signál). V metru, v jeskyních či v přepravním prostoru dodávky nechytnete nic. Signálu také může bránit vaše vlastní tělo. Naopak hustý déšť, sněžení či vítr na kvalitu signálu vliv nemají. Na intenzitě signálu se také velmi málo podepisuje tenká, takže zapnutý GPS přijímač můžete mít např. v boční kapse batohu. Použití GPS Vynecháme-li vojenské potřeby, kvůli kterým GPS vlastně vznikl, pak v civilním sektoru nacházíme dvě hlavní uplatnění: navigace a sledování. V případě navigace si lze ušetřit mnoho nervů, pokud tedy máte kvalitní mapové podklady a dobrý navigační software samotná pozice nestačí. Sledování je druhým nejčastějším využitím. GPS ve spolupráci s mobilem se používá jednak v zabezpečovacích systémech aut (některé pojišťovny dokonce na takto zabezpečené auto dávají slevu) a jednak pro spediční společnosti pro sběr dat a sledování pohybu jejich vlastních vozidel. Data se pak mohou použít např. v knize jízd. Budoucnost je Galileo a AGPS Protože Evropa nechtěla zůstat pozadu, přišla s vlastním řešením pojmenovaným Galileo. Systém Galileo, který má být plně funkční v roce 2008 a spravovaný na rozdíl od GPS civilním sektorem, bude mít 30 satelitů (z toho 3 záložní), 2 řídící stanice a dalších 15 pozemních stanic. Měl by umožnit běžným aplikacím určení polohy s přesností cca 1 m. Celkové investiční náklady by měly být 3,2 mld Euro, roční provozní náklady od r. 2008 se odhadují na 220 miliónů Euro. Navigaci v brzké době nalezneme také v mobilních telefonech pod označením AGPS (Assisted GPS), který se od klasické GPS bude lišit v několika drobnostech. AGPS přijímač

bude vlastně mobilní telefon s integrovanou GPS anténou. GPS přijímač ovšem nebude načítat almanach z družice, ale poskytne mu je telefon zkrz GSM síť. Kromě něj navíc telefon předá GPS přijímači přepočítaná data pro kolerátory (slouží k zjištění doby letu signálu z GPS do telefonu). Na základě polohy vysílačů GSM signálu se zjistí přibližná zeměpisná poloha telefonu a podle toho se mu zašlou informace o GPS družících a další data. Díky nim pak není potřeba získávat signál minimálně ze čtyř družic, ale jen ze tří zbytek dodá mobilní operátor. V současné době se AGPS technologií u nás zabývá např. T-Mobile, na trhu by se brzy měli objevit první telefony podporující AGPS.