PROTEOMIKA 6-8. 12. 2006



Podobné dokumenty
PROTEOMICKÝ EXPERIMENT

Co je proteomika? Proteom? Protein? Experimentální strategie proteomiky Vlastnosti AMK a proteinů

PROTEOMICKÝ EXPERIMENT

Dvoudimenzionální elektroforéza

Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti ELEKTROMIGRAČNÍ METODY

Příprava vzorků pro proteomickou analýzu

asné proteomiky Pavel Bouchal Laboratoř proteomiky Ústav biochemie PřF MU

IZOLACE, SEPARACE A DETEKCE PROTEINŮ I. Vlasta Němcová, Michael Jelínek, Jan Šrámek

Elektromigrační metody

Separační metody používané v proteomice

Izolace RNA. doc. RNDr. Jan Vondráček, PhD..

OPVK CZ.1.07/2.2.00/

Struktura proteinů. - testík na procvičení. Vladimíra Kvasnicová

Vizualizace DNA ETHIDIUM BROMID. fluorescenční barva interkalační činidlo. do gelu do pufru barvení po elfu SYBR GREEN

Metody práce s proteinovými komplexy

Pražské analytické centrum inovací Projekt CZ / /0002 spolufinancovaný ESF a Státním rozpočtem ČR

PŘÍPRAVA PROTEINOVÉHO VZORKU PRO MS ANALÝZU. Hana Konečná

IMUNOANALÝZA elektroforetické separační metody. 3. ročník Klinická biologie a chemie

METODY STUDIA PROTEINŮ

PROTEOMIKA Prezentace z přednášek na adrese:

Chromatofokusace. separace proteinů na základě jejich pi vysoké rozlišení. není potřeba připravovat ph gradient zaostřovací efekt jednoduchost

Izolace nukleových kyselin

Metody používané v MB. analýza proteinů, nukleových kyselin

Co je proteomika? Proteom? Protein? Experimentální strategie proteomiky Vlastnosti AMK a proteinů

Metody používané v MB. analýza proteinů, nukleových kyselin

Obsah Protein Gel Electrophoresis Kitu a jeho skladování

Jaterní homogenát, preparativní nanáška 2 mg, barvení koloidní Coomassie Blue 1025 spotů. ph 4 ph 7

laktoferin BSA α S2 -CN α S1 -CN Popis: BSA bovinní sérový albumin, CN kasein, LG- laktoglobulin, LA- laktalbumin

Imunochemické metody. na principu vazby antigenu a protilátky

Co je proteomika? Proteom? Protein? Experimentální strategie proteomiky Vlastnosti AMK a proteinů

ÚSTAV LÉKAŘSKÉ BIOCHEMIE 1.LF UK. Elektroforesa. v biochemii. Jan Pláteník. (grafická úprava obrázků Richard Buchal)

Analýza obrazu. Gabriela Lochmanová. Studijní materiály

Metabolismus bílkovin. Václav Pelouch

Seminář izolačních technologií

APLIKOVANÉ ELEKTROMIGRAČNÍ METODY

ELEKTROFORETICKÁ SEPARACE NUKLEOVÝCH KYSELIN

MENÍ A INTERPRETACE SPEKTER BIOMOLEKUL. Miloslav Šanda

PROTEINOVÁ DENATURUJÍCÍ ELEKTROFORÉZA (SDS PAGE)

Inovace studia molekulární a buněčné biologie

Interakce proteinu p53 s genomovou DNA v kontextu chromatinu glioblastoma buněk

Bílkoviny - proteiny

SDS-PAGE elektroforéza

Proteomické aplikace a experimenty v onkologickém výzkumu. Pavel Bouchal

Stanovení koncentrace (kvantifikace) proteinů

Tématické okruhy pro státní závěrečné zkoušky

První testový úkol aminokyseliny a jejich vlastnosti

Charakterizace proteomu piva

Obr. 1. Schematické znázornění 2D-PAGE (převzato z Lodish, H. a kol.: Molecular Cell Biology, 3. vyd., Freeman 1996)

Metody používané v MB. analýza proteinů, nukleových kyselin

Chemická reaktivita NK.

HMOTNOSTNÍ SPEKTROMETRIE

ELEKTROFORETICKÉ METODY

MOLEKULÁRNĚ BIOLOGICKÉ METODY V ENVIRONMENTÁLNÍ MIKROBIOLOGII. Martina Nováková, VŠCHT Praha

WESTERN BLOT. Velikost signálu je vyhodnocována srovnáním s naneseným proteinovým markerem, což je komerčně dostupná směs proteinů o známé velikosti.

DNA TECHNIKY IDENTIFIKACE ŽIVOČIŠNÝCH DRUHŮ V KRMIVU A POTRAVINÁCH. Michaela Nesvadbová

VÝBĚROVÁ ŘÍZENÍ CENTRUM REGIONU HANÁ PROJEKT EXCELENTNÍ VÝZKUM (OP VVV)

Gel-based a Gel-free kvantifikace v proteomice

ODŮVODNĚNÍ VEŘEJNÉ ZAKÁZKY

PROTEINY. Biochemický ústav LF MU (H.P.)

Možná uplatnění proteomiky směrem do klinické praxe

Klinická a farmaceutická analýza. Petr Kozlík Katedra analytické chemie

Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti URČOVÁNÍ PRIMÁRNÍ STRUKTURY BÍLKOVIN

Centrum aplikované genomiky, Ústav dědičných metabolických poruch, 1.LFUK

Určení molekulové hmotnosti: ESI a nanoesi

LABORATORNÍ PŘÍSTROJE A POSTUPY

Pokročilé biofyzikální metody v experimentální biologii

Stručný úvod ke cvičnému programu purifikace proteinů:

SDS polyakrylamidová gelová elektroforéza (SDS PAGE)

Základní vlastnosti proteinů

Hmotnostní detekce biologicky významných sloučenin pro biotechnologie část 3 - Provedení štěpení proteinů a následné analýzy,


INTERPRETACE HMOTNOSTNÍCH SPEKTER

Obecná biologie Fyziologie živočichů. Oddělení fyziologie a imunologie živočichů

Molekulárně biologické metody v mikrobiologii. Mgr. Martina Sittová Jaro 2014

HMOTNOSTNÍ SPEKTROMETRIE - kvalitativní i kvantitativní detekce v GC a LC - pyrolýzní hmotnostní spektrometrie - analýza polutantů v životním

Hybridizace nukleových kyselin

Testové úlohy aminokyseliny, proteiny. post test

Molekulární biotechnologie č.9. Cílená mutageneze a proteinové inženýrství

BÍLKOVINY R 2. sféroproteiny (globulární bílkoviny): - rozpustné ve vodě, globulární struktura - odlišné funkce (zásobní, protilátky, enzymy,...

Aminokyseliny, peptidy a bílkoviny

Cysteinové adukty globinu jako potenciální biomarkery expozice styrenu

Hmotnostní spektrometrie

Elektroforéza Sekvenování

Možnosti využití elektromigračních technik při studiu vlastností mikroorganismů. Anna Kubesová

Inovace bakalářského studijního oboru Aplikovaná chemie CZ.1.07/2.2.00/

STAFYLOKOKOVÉ ENTEROTOXINY. Zdravotní nezávadnost potravin. Veronika Talianová, FPBT, kruh: 346 Angelina Anufrieva, FPBT, kruh: 336

Název: Vypracovala: Datum: Zuzana Lacková

ZŠ ÚnO, Bratří Čapků 1332

Výzkumné centrum genomiky a proteomiky. Ústav experimentální medicíny AV ČR, v.v.i.

LABORATOŘ OBORU I ÚSTAV ORGANICKÉ TECHNOLOGIE (111) Použití GC-MS spektrometrie

UNIVERZITA PALACKÉHO V OLOMOUCI. Přírodovědecká fakulta Katedra fyzikální chemie

Izolace genomové DNA ze savčích buněk, stanovení koncentrace DNA pomocí absorpční spektrofotometrie

1. Proteiny. relativní. proteinu. Tento. České republiky.

VYUŽITÍ HMOTNOSTNÍ SPEKTROMETRIE V DIAGNOSTICE A VE VÝZKUMU AMYLOIDÓZY

Písemná zpráva zadavatele

Inovace bakalářského studijního oboru Aplikovaná chemie CZ.1.07/2.2.00/

NMR biomakromolekul RCSB PDB. Progr. NMR

Transkript:

PROTEOMIKA 6-8. 12. 2006 Středa: Čtvrtek: Pátek: Co je proteomika? Nástroje 2D elektroforéza IEF SDS PAGE Barvení Digesce Čištění peptidů Omezení 2D Zpracování Obrazu, Analýza 2D gelů (Dr. J. Pánek, AVČR) Hmotnostní spektrometrie (Dr. P. Halada, AVČR) Alternativní přístupy Nativní techniky Membránové proteiny Chromatografické Separace Klinická proteomika Sérové profilování Literatura a publikace Organizace

PROTEIN J. J. Berzelius 1838 Proteios PROTEOMIKA Marc Wilkins 1994 PROTEOM Kompletní sada bílkovin přítomných v daném okamžiku v buňce, nebo tkáni, zahrnující veškeré jejich modifikace, vzájemné interakce, lokalizaci a metabolický obrat. PROTEOMIKA kvantitativní a kvalitativní charakterizace úplné sady bílkovin organely, buněčné linie, tkáně nebo organismu kvantitativní a kvalitativní porovnání proteomů za různých podmínek

CÍL PROTEOMIKY Získat globální a integrovaný pohled na biologii studiem kompletní bílkovinné sítě buňky, spíše než studiem jednotlivých proteinů. Cílem je nejen identifikovat všechny bílkoviny, ale zároveň pochopit jejich funkci a strukturu a vytvořit 3D mapu buňky (určit lokalizaci jednotlivých bílkovin).

PROČ PROTEOMIKA KDYŽ MÁME GENOMIKU? nelze určit funkci proteinu na základě sekvence DNA nebo mrna nelze popsat molekulární mechanismy fyziologických dějů pomocí studia genomu 200 typů posttranslačních modifikací informace o lokalizaci bílkoviny!!!! špatná korelace hladin mrna a skutečných hladin bílkovin!!!! PROTOŽE PROTEINY A NIKOLIV GENY VYTVÁŘEJÍ FENOTYP!

JEDEN GENOM DVA PROTEOMY

JEDEN GEN, MNOHO BĹKOVIN Cca 25-30 000 genů Několik set tisíc bílkovin

STRUKTURNÍ PROTEOMIKA vytváření buněčných nebo subcelulárních map, kompletní informace o bílkovinách a jejich interakcích v dané organele nebo víceproteinovém komplexu. STRUKTURNÍ FUNKČNÍ PROTEOMIKA cílená sub-proteomická izolace a charakterizace funkčních celků nebo souborů bílkovin na základě společné funkce.( identifikace sub-proteomů na základě interakce s nějakým ligandem.) PROTEOMIKA FUNKČNÍ EXPRESNÍ EXPRESNÍ PROTEOMIKA kvantitativní studium porovnávající expresi mezi různými proteomy

Počet publikací s proteomickou tématikou (Medline) 3028 2581 1656 1231 747 3 8 36 62 154 374 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005

NOBELOVA CENA ZA CHEMII 2002 Desorpce laserem za přítomnosti matrice (MALDI) K. Tanaka Elektrosprejová ionizace John Fenn

KAM AŽ SAHÁ PROTEOMIKA? Graves and Haystead,(2002) MICROBIOLOGY AND MOLECULAR BIOLOGY REVIEWS, Vol. 66, No. 1

OBECNÉ SCHEMA PROTEOMICKÉHO EXPERIMENTU Separace směsi bílkovin Elektroforéza, chromatografie a jejich kombinace Výběr bílkovin k identifikaci Barvení gelů a výběr spotů, výběr píků Štěpení vybraných bílkovin a čištění peptidů Enzymatické či chemické štěpení spotů Nebo chromatografických frakcí, čištění Měření přesné hmotnosti peptidů a případně jejich Dalších fragmentů Získání hmotnostních spekter Porovnání hmotností sady peptidů s údaji o všech dostupných ORFs v databázích. Případně přímé porovnání sekvencí. Identifikace bílkovin

DVOJROZMĚRNÁ ELEKTROFORÉZA

HISTORICKÉ MINIMUM 2D ELEKTROFORÉZY 1930 Tiselius - papírová a škrobová elektroforéza (1948 Nobelova cena) 1956 Smithies a Poulík první 2D 1970 Laemli Akrylamidové gely 1971 Rigetti Izoelektrická fokusace (IEF) 1975 O Farrell : Kombinace IEF a SDS elektroforézy 1982 Bjellqvist: Immobilizované ph gradienty (IPG) Edmanovo sekvenování proteinů Hmotnostní spektrometrie a jemné způsoby ionizace (Tanaka a Fenn Nobelova cena) Genové databáze Nové detergenty a redukční činidla Metody detekce

TYPICKÉ USPOŘÁDÁNÍ 2D EXPERIMENTU Pandey & Mann Proteomics to study genes and genomes NATURE VOL 405 15 JUNE 2000

Příprava vzorků Izoelektrická fokusace Ekvilibrace SDS-PAGE Detekce bílkovin Zpracování dat a vyhodnocení

PŘÍPRAVA VZORKŮ Kontaminace, ztráty, degradace, modifikace versus reproducibilita Proteiny mají nejnižší rozpustnost v oblasti ph kolem jejich izoelektrického bodu!!! Tělní tekutiny, tkáňové nebo buněčné homogenáty či homogenizované subcelulární frakce Homogenizace buněk, nebo tkáně ( buněčná frakcionace). Mechanické rozbití (krystalizace vody, homogenizéry, sonikace, french-press) Lyzační pufr s detergentem LYZAČNÍ PUFR PRO IEF: Močovina, thiomočovina chaotropní činidlo, zvýšení rozpustnosti, denaturace bílkovin Detergent (CHAPS) čistý zwitteriontový detergent zvýšení rozpustnosti snížení agregace bílkovin Redukční činidlo (DTT) redukce disulfidický můstků (ionizují se nad ph 8) DTT, tributylfosfin Nosičové amfolyty -- (carrier ampholytes, IPG buffers) jsou náhražkou pufrů, je to směs ionizovatelných látek vytvářejí potřebný ph gardient Pigment (BFB) pro snazší manipulaci

KON PROTEÁZY A NEČISTOTY VE VZORKU PROTEÁZY stále aktivní i ve vysoké koncentraci močoviny!!! DNA a RNA Zhoršená separace Barví se v kyselé oblasti gelu Sonikace, DNázy, RNázy, Precipitace, komplexování s amfolyty LIPIDY Zhoršená separace Detergent nebo precipitace SOLI Špatná separace Ultrafiltrace, mikrodialýza, precipitace PROTEÁZY Degradace bílkovin Inhibitory proteáz PMSF, koktejly Precipitace UNIVERZÁLNÍ ŘEŠENÍ : Precipitace acetonem, TCA nebo kombinací, ALE Stanovení koncentrace bílkovin Analytická versus preparativní nanáška (10-2000 mikrogramů)

Příprava vzorků Izoelektrická fokusace Ekvilibrace SDS-PAGE Detekce bílkovin Zpracování dat a vyhodnocení

B A A B B

ZÁPORNĚ NABITÉ AMINOKYSELINY ph 7 ph > 9

KLADNĚ NABITÉ AMINOKYSELINY (ph 7)

TEORIE IZOELEKTRICKÉ FOKUSACE Celkový náboj proteinu (net charge) je součtem všech jeho negativních i pozitivních nábojů. Kyselé a zásadité skupiny polypeptidu jsou v protonovány a deptrotonovány v závislosti na ph okolí. Amfoterní molekula (bílkovina) v elektrickém poli v gradientu ph migruje do bodu, kde je její celkový náboj rovný nule. ph tohoto bodu odpovídá izoelektrickému bodu (pi) dané bílkoviny. ph < pi ph=pi ph > pi

Net charge TEORETICKÁ DISOCIAČNÍ KŘIVKA DVOU BÍLKOVIN +3 pi pi 3 4 5 6 7 8 9 10 11 ph ph pufru se vzorkem -4 + pi - + + - ph 3 ph 11 pi -

NOSIČOVÉ AMFOLYTY (CARRIER AMPHOLYTES) Zajišťují vytvoření stabilního a hladkého gradientu ph v elektrickém poli Vlastnosti: Vysoká pufrační kapacita a rozpustnost při vlastním pi Dostatečná a stálá elektrická vodivost Absence biologických efektů Nízká MW Původně: směsi různě dlouhých řetězců oligoamino-oligokarboxylových kyselin ALE ty MIGRUJÍ.nestabilní gradient!!! Zakotvené ph gradienty (Immobilized ph gradients IPG)

ZAKOTVENÉ PH GRADIENTY (IMMOBILIZED PH GRADIENTS IPG) Derivovaný akrylamid s disociovatelnými karboxy- a aminoskupinami

IPG STRIPY (IPG STRIPS) 3 mm široké, 0.5 mm silné, dehydrované - trvanlivost, reproducibilita, plastova podložka, stabilita, nemigrují, neinterferují s nimi redukční činidla.

ZOOMING ph 4-7 1071 ph 4-5 ph 5-6 ph 5,5-6,7 498 896 376 Celkem 1754

REHYDRATACE IPG STRIPŮ A NANÁŠKA VZORKU Rehydratace V pufru bez vzorku V pufru se vzorkem Cup loading (různé ph) aktivní pasivní Typický rehydratační pufr (většinou použit již pro lyzaci vzorku) 7 M Močovina 2 M Thiomočovina 2-4 % CHAPS 0.2 % DTT (TCEP, tributylfosfin] 0.5 1 % Nosičové amfolyty (IPG pufr) 0.002 % BFB

REHYDRATAČNÍ NANÁŠKA versus CUP LOADING PRO: Proteiny rovnoměrně rozložené, neprecipitují v místě nanášky Výhodné pro velké nanášky řidších vzorků Rehydratace a nanáška je spojena méně manipulací se vzorkem PRO: IEF ve vysoce kyselých a zásaditých gradientech probíhá lépe Vzorek jde přímo do gelu eliminují se proteinprotein interakce (např. proteázy) Aktivní rehydratace zlepšuje vstup velkých bílkovin do gelu PROTI: Vzorek je dlouhodobě při pokojové teplotě U bazických gradientů dochází k velkým ztrátám proteinu (nevstoupí do gelu) Při rehydrataci stoupá koncentrace proteinu mimo gel a může docházet k precipitaci PROTI: Proteiny s pi blízko bodu nanášky mají nízkou rozpustnost a mobilitu a mají tendenci precipitovat na povrchu gelu V první fázi se proteiny koncentrují na vstupu do gelu a mohou precipitovat

PODMÍNKY IZOELEKTRICKÉ FOKUSACE Optimalizace podmínek pro každý vzorek, typ stripu a nanášky. Platí zvlášť pro: větší nanášky, a větší a hydrofobnější proteiny. Teplota: kolem 20 o C ( KARBAMYLACE! versus krystalizace močoviny za nízkých teplot) Aktivníchlazení!!! Dochází k přehřívání na tzv. HOT SPOTS Elektrické podmínky : 50-70 microa na strip, E co nejvyšší, kroky nebo pozvolný vzestup V praxi až 10 kv. Celková fokusace pro 18-24 cm stripy 20-80 kvh Prevence oxidace a vysychání stripu : parafinový olej

PŘEHŘÍVÁNÍ IPG STRIPŮ NA TZV. HOT SPOTS (HOT SPOTS jsou hrany iontových pásů - hranice oblasti s nízkou a vysokou vodivostí) E Soli a ionty pufrů

TYPICKÝ IEF BĚH V BIO-RAD Protean IEF Cell 18 cm strip ph 3-10 Rehydratační nanáška 1mg 50 microa / strip Celkem 51 000 Vh + hold 5000 3000 1000 1 3 6 9 12 24 t [h]

INSTRUMENTACE IEF

Příprava vzorků Izoelektrická fokusace Ekvilibrace SDS-PAGE Detekce bílkovin Zpracování dat a vyhodnocení

EKVILIBRACE STRIPŮ PŘED DRUHÝM ROZMĚREM Cíle ekvilibrace: Převést bílkoviny do pufrů vhodných pro redukci, alkylaci a SDS separaci Maximalizovat přenos bílkovin ze stripu Redukovat disulfidické můstky Alkylovat cysteiny EKVILIBRAČNÍ PUFR (EQP): 50 mm Tris ph 8.8 2% SDS, 6 M močovina 30 % glycerol 15 min EQP + 1% DTT 15 min EQP + 2.5 % iodacetamid (!)

ELEKTROENDOOSMOTICKÝ EFEKT Nepohyblivé (zakotvené) nabité skupiny v elektrickém poli!! katoda Po ekvilibraci v neutrálním nebo zásaditém pufru: COOH disociovaná na COO-, aminoskupiny zůstávají nedisociované Disociovaný karboxyl je přitahována k anodě (+), ale nemůže. To je kompenzováno migrací H3O+ ke katodě (-) Voda nese rozpuštěné částice směrem ke katodě! COO- H3O + Následky: H3O + IEF : SDS-PAGE : bobtnání katodického (bazického) konce zhošená separace ztráta bílkovin na vstupu do gelu zhoršená separace + anoda

Příprava vzorků Izoelektrická fokusace Ekvilibrace SDS-PAGE Detekce bílkovin Zpracování dat a vyhodnocení

SDS ELEKTROFORÉZA SDS-PAGE (Sodium dodecyl sulphate polyacrylamide gel electrophoresis) Bílkoviny se rozdělují na základě jejich MW Záporně nabité SDS tvoří komplexy s bílkovinami a stíní náboje proteinu (1,4g SDS :1g proteinu) Komplex má jednotkový náboj na hmotnostní jednotku. Všechny komplexy jsou záporně nabité a migrují k anodě PUFR: Tris-chlorid/Tris-glycin pufrový systém s 0.1 % SDS Redukce disulfidických můstků (Dithiothreitol, Dithioerythrol, TCEP, beta-mercaptoethanol) SDS

POLYAKRYLAMIDOVÉ GELY Složení a příprava gelu: akrylamid (monomerní) bis-akrylamid (zesíťování polymeru) APS (katalyzátor, produkuje radikál), TEMED (tetramethylethylenediamine) odstraňuje kyslík bránící polymeraci) (+pufr a SDS) Celková koncentrace akrylamidu a bis-akrylamidu určuje KONCENTRACI (T) gelu v procentech (2-20 %) Poměr bis-akrylamidu a akrylamidu POROZITU (C) gelu. APS v zásaditém prostředí může reagovat s Trisem, koncentrace co nejnižší ve prospěch TEMEDu.

SDS-PAGE Ekvilibrace stripu Upevnění stripu : zalití agarózou MW markery? Podmínky separace: (minimalizace elektroendoosmozy, difúze, modifikace bílkovin a času) Nízké (nízké pole) prvních 30-60 minut (redukce elektroendoosmozy) Teplota : 10-25 o C, termostating, prevence smiling gelů, reprodukovatelný odvod tepla Výhoda rychlých separací (difuze se týká hlavně LMW) Plastic backing vs. fluorescence Reprodukovatelnost: Výhoda přípravy více gelů najednou pomocí multicasters

NEPHGE, Non-equilibrium ph gradient gel Někdy lepší pro bazické, hydrofobní a velké bílkoviny

WITA Small (8x7 cm), large (24x32 cm) and giant gels (48x32 cm) ( mouse ovary total protein extract, 5000-8000 spots).

Příprava vzorků Izoelektrická fokusace Ekvilibrace SDS-PAGE Detekce bílkovin Zpracování dat a vyhodnocení

DETEKCE BÍLKOVIN V GELECH Citlivost Možnost kvantifikace Linearita signálu Dynamický rozsah Kompatibilita s MS Cena (nízká toxicita) Kolorimetrické viditelné barvení Fluorescenční barvení DIGE Radioaktivní detekce

DETEKCE BÍLKOVIN VIDITELNÝMI PIGMENTY COOMASSIE BLUE SOLI STŘÍBRA! Různá účinnost na různé proteiny! COOMASSIE BRILIANT BLUE HORKÁ CBB (CBB-R350) Citlivost 100-200 ng KLASICKÁ CBB (CBB-R250) Citlivost 50-100 ng KOLOIDNÍ CBB (CBB-G250) Citlivost 10-30 ng BLUE SILVER (CBB-G250)!NEW! 2004, Candiano et al Citlivost 1-10 ng Alkohol-kyselina Pouze10 minut Vysoké pozadí Dlouhé odbarvování Alkohol-kyselina Odbarvování proteinů Špatná kvantifikace Nízká cena Alkohol - kyselina síran amonný Steady state (bez ztráty při odbarvení) Dobrá kvantifikace Středně vysoká cena Více pigmentu Alkohol - kyselina síran amonný Steady state (bez ztráty při odbarvení) Dobrá kvantifikace Středně vysoká cena

Jaterní homogenát, preparativní nanáška 2 mg, barvení koloidní Coomassie Blue 1025 spotů ph 4 ph 7

DETEKCE STŘÍBŘENÍM Redukce dusičnanu stříbrného na kovové stříbro, více než 100 variant Citlivost 0.5 ng! nízká cena Vícekrokový postup (až 20) Citlivý na přesnost Nízký dynamický rozsah Negativní barvení Komplikace s MS Problematická reproducibilita

FLUORESCENČNÍ DETEKCE (4 8 ng/band) (4 8 ng/band) (1 2 ng/band; comparable to silver staining) (4 8 ng/band) SYPRO RUBY (Molecular Probes) FLAMINGO (BIO-RAD) DEEP PURPLE (GE-Amersham) Sypro Ruby Dobrá kvantifikace Kompatibilní s dalším barvením Minimum kroků Dynamický rozsah Fluorescenční scanner (max. excitace daleko od UV) Sběr spotů je komplikovaný Flamingo Vysoká cena, ale..ale je tu ruthenium a bathophenantrolinsulfát

POROVNÁNÍ CITLIVOSTI SYPRO, STŘÍBŘENÍ A COOMASSIE Sypro Orange Sypro Ruby Silver Coomassie

2D-DIGE : 2D DIFFERENČNÍ GELOVÁ ELEKTROFORÉZA (Cy2, Cy3, Cy5 Difference gel electrophoresis) Maleimid - Cys (-SH) Succimid - Lys (ε aminoskupina) Hydrazid - karbonyl

EXPERIMENTÁLNÍ USPOŘÁDÁNÍ PRO DIGE Minimální versus maximální značení Rozdíly v migraci FlaSH dyes (Fuji, Raytest)

RADIOAKTIVNÍ ZNAČENÍ Inkorporace značených aminokyselin ( 35 S methionin, beta zářič) nebo jiných prekurzorů ŽIVÝMI buňkami - metabolické značení Vysoká citlivost Nejvyšší dynamické rozsah ALE. Gel je nutné usušit před detekcí Klasická radiografie je nepraktická Fosfoimager nezbytný Rizika práce s izotopy

Viditelné Klasická CBB nízká citlivost Koloidní CBB střední citlivost, dobrá kvantifikace Hot CBB Stříbření nízká citlivost vysoká citlivost Fluorescenční Sypro a Rb-BPS vyšší citlivost, kvantifikace, dynamický rozsah, F-scanner DIGE Cy-2, 3, 5 a další vysoká citlivost, cena!, scanner a software Radioaktivní detekce 35S a další nejvyšší citivost,kvantifikace, dynamický rozsah, P-imager

ZÍSKÁNÍ A ZPRACOVÁNÍ OBRAZU Kritické parametry: rozlišení bitová hloubka (dpi, μm dynamický rozsah

KRITICKÉ PARAMETRY rozlišení (počet pixelů na jednotku délky obrázku- dpi, μm, ) bitová hloubka (počet bitů definující každý pixel, stupně šedi, 8 bitů 256 stupňů šedi 16 bitů 65536 stupňů šedi) dynamický rozsah (pozor na saturaci)

Získání obrazu a hloubka a tak 100 dpi 300 dpi.

Softwarové vyhodnocení 2D gelů Komerční: PDQuest Phoretix Melanie ProFinder Bio Numerics a další Volně dostupné: GelScape Open2Dprot

Co když to ale nevypadá tak hezky?

KDYŽ TO NECHODÍ..

LIMITY 2D ELEKTROFORÉZY 5-10 000 aktivních genů v buňce 20 000-50 000 proteinů Detekce 5000 8 000 (2-30 %) 60-90 % proteinů zůstává mimo detekci

Hmotnostní a izoelektrický limit pro konvenční 2D

OMEZENÍ 2D TECHNOLOGIE Bílkoviny s extrémním pi! Bíloviny nad 150 kda! Membránové (hydrofobní) bílkoviny

Ztráty v průběhu 2D experimentu ZTRÁTY: Rehydratace 20-55 % IEF 7-14 % Ekvilibrace 17-24 % SDS-PAGE Fixace a barvení! Až 80 % proteinů může být ztraceno v průběhu konvenčního 2D experimentu!!!!!!

Příprava vzorků Izoelektrická fokusace Ekvilibrace SDS-PAGE Detekce bílkovin Zpracování dat a vyhodnocení Příprava vzorků pro identifikaci Identifikace bílkovin pomocí MS

ŠTĚPENÍ BÍLKOVIN MS analýza - Intaktní protein je příliš velký navíc komplikace s PTM Cíl fragmentace: Definovaně fragmentovat protein, aby jednotlivé peptidy byly dostatečně malé na optimální MS analýzu, ale zároveň poskytly dostatečnou sekvenční informaci Optimum 6-20 AA, cca 800-2500 Da Proteáza Místo štěpení Poznámka Trypsin za Lys, Arg nenásleduje Pro Glu-C (Proteáza V8) za Glu a Asp nenásleduje Pro Chymotrypsin za Phe,Trp,Tyr, Leu, Ileu, Val, Met nenásleduje Pro Lys-C za Lys nenásleduje Pro Arg-C za Arg nenásleduje Pro Chemická digesce CNBr Met organika, hydrofobní P. BNPS-SKATOL Trp Hydroxylamin Asn-Gly vazba

Trypsin: z kravského nebo prasečího pankreasu Štěpí na C- konci za Arg, Lys 50 kda protein : cca 30 peptidů Použití v roztoku, na blotu, v gelu Trypsin štěpí za Lys, Arg pokud nenásleduje Pro

PŘÍPRAVA VZORKŮ Z GELU PRO IDENTIFIKACI MS Výběr a vyříznutí spotu (spotpicking) Dehydratace gelu (redukce, alkylace) ACN, vakuum KERATIN!!! Rehydratace v pufru s Trypsinem Digesce 37 o C Extrakce (ACN) Čištění a koncentrace peptidů

ČIŠTĚNÍ A KONCENTRACE PEPTIDŮ PO DIGESCI ZipTips Chromatografie v reverzní fázi (Reverse Phase) Hydrofobní vazba peptidu na alifatické uhlovodíkové řetězce (C18 nebo C4) Objem vzorku po extrakci obvykle > 40 mikrolitrů Po koncentraci a odsolení na ZipTips jen 1 10 mikrolitrů