3 Základní modely reaktorů

Podobné dokumenty
kde k c(no 2) = 2, m 6 mol 2 s 1. Jaká je hodnota rychlostní konstanty v rychlostní rovnici ? V [k = 1, m 6 mol 2 s 1 ]

Kinetika spalovacích reakcí

Úloha 1-39 Teplotní závislost rychlostní konstanty, reakce druhého řádu... 11

5. PRŮTOČNÉ HOMOGENNÍ REAKTORY

MODELOVÁNÍ A SIMULACE

Aplikované chemické procesy

2. KINETICKÁ ANALÝZA HOMOGENNÍCH REAKCÍ

Jednosložkové soustavy

CHEMICKÉ VÝPOČTY I. ČÁST LÁTKOVÉ MNOŽSTVÍ. HMOTNOSTI ATOMŮ A MOLEKUL.

5. CHEMICKÉ REAKTORY

Modelování rizikových stavů v rodinných domech

CHEMIE A CHEMICKÉ TECHNOLOGIE (N150013) 3.r.

Zadání příkladů řešených na výpočetních cvičeních z Fyzikální chemie I, obor CHTP. Termodynamika. Příklad 10

Cvičení z termomechaniky Cvičení 2. Stanovte objem nádoby, ve které je uzavřený dusík o hmotnosti 20 [kg], teplotě 15 [ C] a tlaku 10 [MPa].

Úloha 3-15 Protisměrné reakce, relaxační kinetika Úloha 3-18 Protisměrné reakce, relaxační kinetika... 6

Numerická matematika 1. t = D u. x 2 (1) tato rovnice určuje chování funkce u(t, x), která závisí na dvou proměnných. První

Kolik energie by se uvolnilo, kdyby spalování ethanolu probíhalo při teplotě o 20 vyšší? Je tato energie menší nebo větší než při teplotě 37 C?

Dynamická podstata chemické rovnováhy

Výzkum vlivu přenosových jevů na chování reaktoru se zkrápěným ložem katalyzátoru. Petr Svačina

Zkouškový test z fyzikální a koloidní chemie

Autokláv reaktor pro promíchávané vícefázové reakce

Vícefázové reaktory. Probublávaný reaktor plyn kapalina katalyzátor. Zuzana Tomešová

Kapitola 10: Diferenciální rovnice 1/14

Entalpie je extenzívní veličina a označuje se symbolem H. Vyjadřuje se intenzívními veličinami, tj. molární entalpií h či měrnou entalpií h jako

LABORATOŘ OBORU I. Testování katalyzátorů pro přípravu prekurzorů vonných látek. Umístění práce:

Chemické výpočty 11. Stechiometrické výpočty (včetně reakcí s ideálními plyny); reakce s přebytkem výchozí látky

Chemické reaktory. Chemické reaktory. Mikrokinetika a Makrokinetika. Rychlost vzniku složky reakcí. Rychlost reakce

= 2,5R 1,5R =1,667 T 2 =T 1. W =c vm W = ,5R =400,23K. V 1 =p 2. p 1 V 2. =p 2 R T. p 2 p 1 1 T 1 =p 2 1 T 2. =p 1 T 1,667 = ,23

Bilan a ce c zák á l k ad a ní pojm j y m aplikace zákonů o zachování čehokoli

pevná látka tekutina (kapalina, plyn) (skripta str )

MĚŘENÍ EMISÍ A VÝPOČET TEPELNÉHO VÝMĚNÍKU

Model dokonalého spalování pevných a kapalných paliv Teoretické základy spalování. Teoretické základy spalování

Modelování adiabatické dehydrogenace

N A = 6, mol -1

Třífázové trubkové reaktory se zkrápěným ložem katalyzátoru. Předmět: Vícefázové reaktory Jméno: Veronika Sedláková

Bezpečnost chemických výrob N111001

6. Bilance energie v reagujících soustavách. Modely homogenních reaktorů v neisotermním režimu.

Chemické výpočty II. Vladimíra Kvasnicová

Inovace bakalářského studijního oboru Aplikovaná chemie CZ.1.07/2.2.00/ Výpočty z chemických vzorců

STANOVENÍ VLASTNOSTÍ AERAČNÍCH ZAŘÍZENÍ

9 Charakter proudění v zařízeních

Fyzikální chemie. 1.2 Termodynamika

Chemické výpočty I. Vladimíra Kvasnicová

1/6. 2. Stavová rovnice, plynová konstanta, Avogadrův zákon, kilomol plynu

1. Termochemie - příklady 1. ročník

Cvičení z termomechaniky Cvičení 3.

PROCESNÍ INŽENÝRSTVÍ cvičení 5

10 Bioreaktor. I Základní vztahy a definice. Petr Kočí, Lenka Schreiberová, Milan Jahoda (revize )

Fyzikální chemie. Magda Škvorová KFCH CN463 tel února 2013

6. Bilance energie v reagujících soustavách. Modely homogenních reaktorů v neisotermním režimu.

Chemické veličiny, vztahy mezi nimi a chemické výpočty

SIMULACE. Numerické řešení obyčejných diferenciálních rovnic. Měřicí a řídicí technika magisterské studium FTOP - přednášky ZS 2009/10

Tepelná kapacita = T. Ē = 1 2 hν + hν. 1 = 1 e x. ln dx. Einsteinův výpočet (1907): Soustava N nezávislých oscilátorů se stejnou vlastní frekvencí má

Plyn. 11 plynných prvků. Vzácné plyny. He, Ne, Ar, Kr, Xe, Rn Diatomické plynné prvky H 2, N 2, O 2, F 2, Cl 2

V xv x V V E x. V nv n V nv x. S x S x S R x x x x S E x. ln ln

Hydrochemie koncentrace látek (výpočty)

ZÁPADOČESKÁ UNIVERZITA V PLZNI

PROCESY V TECHNICE BUDOV cvičení 3, 4

Numerické řešení 2D stlačitelného proudění s kondenzací. Michal Seifert

Metodický pokyn odboru ochrany ovzduší Ministerstva životního prostředí

ANALÝZA VZTAHU DVOU SPOJITÝCH VELIČIN

VYUŽITÍ STECHIOMETRICKÝCH VZTAHŮ PŘI POČÍTAČOVÉM MODELOVÁNÍ OHNIŠŤ

III. STRUKTURA A VLASTNOSTI PLYNŮ

Složení soustav (roztoky, koncentrace látkového množství)

Porovnání GUM a metody Monte Carlo

Ústřední komise Chemické olympiády. 55. ročník 2018/2019 TEST ŠKOLNÍHO KOLA. Kategorie E ŘEŠENÍ

Laboratorní práce č. 1: Přibližné určení průměru molekuly kyseliny olejové

Třecí ztráty při proudění v potrubí

Úloha 1 Stavová rovnice ideálního plynu. p V = n R T. Látkové množství [mol]

Termodynamika 2. UJOP Hostivař 2014

E = E red,pravý E red,levý + E D = E red,pravý + E ox,levý + E D

Sdílení tepla. Úvod - Přehled. Sdílení tepla mezi termodynamickou soustavou a okolím je podmíněno rozdílností teplot soustavy T.

nafty protéká kruhovým potrubím o průměru d za jednu sekundu jestliže rychlost proudění nafty v potrubí je v. Jaký je hmotnostní průtok m τ

VI. VÝPOČET Z CHEMICKÉ ROVNICE

Teorie transportu plynů a par polymerními membránami. Doc. Ing. Milan Šípek, CSc. Ústav fyzikální chemie VŠCHT Praha

Univerzita obrany. Měření na výměníku tepla K-216. Laboratorní cvičení z předmětu TERMOMECHANIKA. Protokol obsahuje 13 listů. Vypracoval: Vít Havránek

DOMÁCÍ HASICÍ PŘÍSTROJ (ČÁST 1)

50 th IChO 2018 TEORETICKÉ ÚLOHY BACK TO WHERE IT ALL BEGAN. 19 th 29 th July 2018 Bratislava, SLOVAKIA Prague, CZECH REPUBLIC

Bezpečnost chemických výrob N111001

ÚSTAV ORGANICKÉ TECHNOLOGIE

stechiometrický vzorec, platné číslice 1 / 10

13. Kolik molů vodíku vznikne reakcí jednoho molu zinku s kyselinou chlorovodíkovou?

9.5. Soustavy diferenciálních rovnic

Matematické modelování ve stavební fyzice

Nedokonalé spalování. Spalování uhlíku C na CO. Metodika kontroly spalování. Kontrola jakosti spalování. Části uhlíku a a b C + 1/2 O 2 CO

SIMULACE A ŘÍZENÍ PNEUMATICKÉHO SERVOPOHONU POMOCÍ PROGRAMU MATLAB SIMULINK. Petr NOSKIEVIČ Petr JÁNIŠ

ina ina Diskrétn tní náhodná veličina může nabývat pouze spočetně mnoha hodnot (počet aut v náhodně vybraná domácnost, výsledek hodu kostkou)

Příkon míchadla při míchání nenewtonské kapaliny

Plyn. 11 plynných prvků. Vzácné plyny. He, Ne, Ar, Kr, Xe, Rn Diatomické plynné prvky H 2, N 2, O 2, F 2, Cl 2

CVIČENÍ č. 10 VĚTA O ZMĚNĚ TOKU HYBNOSTI

Chemie - cvičení 2 - příklady

Hydrochemie koncentrace látek (výpočty)

Matematická analýza ve Vesmíru. Jiří Bouchala

u (x i ) U i 1 2U i +U i+1 h 2. Na hranicích oblasti jsou uzlové hodnoty dány okrajovými podmínkami bud přímo

KDE VZÍT PLYNY? Václav Piskač, Brno 2014

Jana Fauknerová Matějčková

p st plyny 1 čistétuhél.akap.

Transkript:

3 Základní modely reaktorů Rovnce popsující chování reakční směs v reaktoru (v čase a prostoru) vycházejí z blančních rovnc pro hmotu, energ a hybnost. Blanc lze formulovat pro extenzvní velčnu B v obecném elementu za časový úsek t takto Množství vstupující elementu t B do za + ( Zdroj B v elementu ) Množství vystupující elementu t B z za + Akumulace B v elementu Blancovanou extenzvní velčnou rozumíme například hmotnost, látkové množství, teplo, hybnost. 3. Vsádkové reaktory (BATCH) () P F F }{{} + ν k, V r V,k dv n t, (2) kde F je molární tok složky, ν k, je stechometrcký koefcent složky v k-té reakc, r V je reakční rychlost k-té reakce vztaženou na objemovou jednotku a n je látkové množství složky. Pro konstantní objem reaktoru V V dn d(n /V ) dc NR ν k, r V,k. (3)

Pro konstantní celkový tlak v reaktoru V dn V d(c V ) dc dc + c d ln V ν k, r V,k. (4) d ln V ν k, r V,k c (5) 3.2 Reaktory s pístovým tokem (PFR) V V + dv F F F (V +dv ) F (V ) }{{} výstup-vstup d F dv dj dz d(vc ) dz ν k, r V,k dv, (6) ν k, r V,k (7) ν k, r V,k (8) ν k, r V,k (9) 2

3.3 Průtočné, deálně míchané reaktory (CSTR) F F Ve staconárním stavu platí pro průtočný, deálně míchaný reaktor tento vztah F F }{{} + ν k, r V,k V R. () vstup-výstup Matematcká vsuvka - Eulerova metoda řešení obyčejných dferencálních rovnc Máme obyčejnou dferencální rovnc s počáteční podmínkou y f(x, y) () y(a) y (2) Zvolíme dskrétní množnu bodů (uzlů sítě) a x < x < x 2 <... < x n b. Obvykle volíme tzv. ekvdstantní sít x + x h;,,..., n, kde h je krok metody. Na této sít budeme hledat aproxmace y n přesného řešení funkce y(x n ) v bodě x n pomocí hodnot y n, y n 2,..., y n k (resp. z předchozích kroků). Je-l použto jen předchozího kroku (k ), metoda se nazývá jednokroková. Vyjádříme-l dervac y v bodě x n pomocí dference x n, x n získáme Eulerovu metodu. y n y n + f(x n, y n )(x n x n ) y n + f(x n, y n )h (3) 3

Obrázek : Chyba př výpočtu pomocí Eulerovy metody. h je délka kroku Eulerovy metody a e je chyba metody Příklad 3. V zotermním trubkovém reaktoru probíhá reakce 2A B Reakce probíhá v kapalné faz a rychlost toku reakční směs je rovna.5 m.s můžeme j považovat za konstantní podél celého reaktoru. Vznk látky B popsuje rychlostní rovnce r B ν B kc 2 A. Rychlostní konstanta je rovna.3 m3.kmol.s a délka reaktoru je 2.4 m. Na vstupu do reaktoru platí c A () 2kmol.m 3, c B () kmol.m 3, c C () 2kmol.m 3. Odvod te rovnce popsující koncentrační profl složek A, B, C podél reaktoru a vypočtěte konverz klíčové složky A na výstupu z reaktoru. Porovnejte řešení obdržené analytcky a numercky (například Eulerovou metodou) Řešení Sestavíme blanční tabulku Složka z z L A c A c A c A ν A νa c A X A B c B c B c B ν B νa c A X A C c C c C c C ν C νa c A X A Pro výpočet použjeme dferencální rovnc pro trubkový reaktor s konstantní rychlostí proudění reakční směs (vz. rovnce 9) v následujícím tvaru Pro rychlost reakce r V B) dc dz v ν r V. (4) platí (konkrétně v našem případě známe-l rychlost tvorby složky r V r B /ν B kc 2 A. (5) 4

Dosadíme-l do dferencální rovnce 4 za obecnou složku složku A dx A dz ν Ar V. (6) vc A Chceme-l získat analytcké řešení dferencální rovnce 6, provedeme separac proměnných a výslednou rovnc ntegrujeme vc A ν A f r V dx A L dz, (7) kde f je neznámá konverze (kterou chceme zjstt) a L je délka reaktoru. Dosadíme-l za r V z rovnce 5 a za c A z blanční tabulky obdržíme v kc A ν A a ntegrací v daných mezích získáme f v kc A ν A ( X A ) 2 dx A L dz, (8) ( ) f L. (9) Úpravou získáme vztah pro f f v v Lkc A ν A. (2) Konverze složky A na výstupu z reaktoru je X A.85 Příklad 3.2 Ethylacetát se získává esterfkací kyselny octové ethanolem v BATCH zotermním reaktoru. Stechometre reakce je následující CH 3 COOH(A) + CH 2 H 5 OH(B) CH 3 COOC 2 H 5 (R) + H 2 O(S) Reakční směs v reaktoru se skládá z 5 kg m 3 etanolu a 25 kg m 3 kyselny octové. Zbytek směs tvoří voda a stopy HCl, která zde plní funkc katalyzátoru. Hustota reakční směs je 4 kg m 3 a předpokládá se, že během rekce zůstává konstantní Jelkož esterfkace je vratná reakce, je její rychlost popsána těmto vztahy r k c A c B, (2) r 2 k 2 c R c S, (22) r r r 2. (23) 5

Hodnoty rychlostních konstant př 373 K jsou k 8 9 m 3 mol s, k 2 2.55 9 m 3 mol s. Reakce je zastavena př konverz X A.3. Pokud je potřeba počítat 3 mnut na vypuštění, vyčštění a napuštění reaktoru, určete objem reaktoru potřebného k produkc t za den. V 7 m 3 Příklad 3.3 Ve vsádkovém, deálně míchaném reaktoru s konstantním objemem probíhá za konstantní teploty a tlaku reakce aa + bb ss. Rychlost reakce je popsána rovncí r V kc α A cβ A, kde α a β. Vyjádřete obecně (v dferencální formě) změnu konverze klíčové složky A v čase. dx A akc (α ) A Příklad 3.4 ( ( XA ) α (c B b a c AX A ) β) Anlín (A) je vyráběn hydrogenací ntrobenzenu (N) na měděném katalyzátoru. Reakce probíhá v plynné fáz v trubkovém reaktoru za atmosférckého tlaku a teploty 5 o C. Reakční rychlost vysthuje následující rovnce r V k(t )CN.58 mol m 3 h, ( ) 2958 k(t ).56 7 exp, T kde T je teplota v K. Hydrogenace je vedena v přebytku vodíku, molární zlomek ntrobenzenu v nástřku je y N.67. Objemový průtok nástřku je.6 m3 h (př normálních podmínkách, p kpa a T 273 K). Jaká bude konverze ntrobenzenu na výstupu pro reaktor dlouhý metr a o průměru 2.5 cm? X N.98 Příklad 3.5 V provozu na syntézu fosgenu se uvažuje o využtí nového typu katalyzátoru. Předpokládá se použtí stávajícího reaktoru. Parametry reaktoru, který je k dspozc jsou následující: Trubkový reaktor o objemu 4 L, maxmální provozní tlak 3 kpa a provozní teplota 5 o C. 6

Dále je známo množství nástřku reakční směs a její složení: F.244 mol s, yco y Cl 2.5. Syntéza fosgenu probíhá podle následující rovnce CO(A) + Cl 2 (B) COCl 2 (C). (24) Knetcká rovnce byla určena na základě platnost předpokladu ustáleného stavu (SSH), r V kc A c 3/2 B. (25) V lteratuře byla nalezena data popsující knetcké expermenty provedené na dvou různých typech katalyzátoru, mající stejnou sypnou hustotu. V první laboratoř použl katalyzátor α a naměřl závslost poklesu celkového tlaku v BATCH reaktoru (o konstantním objemu) během reakce 24. Teplota expermentu byla 423 K, reaktor byl na počátku natlakován na 6 kpa a obsahoval ekvmolární směs CO a Cl 2. Naměřená data jsou uvedena v tabulce. V druhé laboratoř použl katalyzátor β a naměřl závslost konverze CO na době zdržení v trubkovém reaktoru o objemu 2 ml. Teplota v reaktoru byla udržována na Tabulka : Tabulka naměřených dat pro syntézu fosgenu na dvou různých typech katalyzátoru (α a β). Kat. α, BATCH Kat. β, PFR t / s p / Pa t r / s X A 599554 45.9.997 2 43487 22.9.995 4 39338 9.2.992 6 373953 4.6.987 8 378726 2.3.979 35728.5.97 2 352..965 4 33665.9.958 6 343442.8.952 8 33724.7.946 2 325668.5.928 22 3335.2.87 24 342957 26 327858 28 32577 3 325457 32 334276 34 39888 36 329878 38 3762 423 K a tlak na 3 kpa. Nástřk se skládal z ekvmolární směs CO a Cl 2. Naměřená data jsou uvedena v tabulce. Vypočtěte konverz CO na výstupu z navrhovaného průmyslového reaktoru pro oba typy katalyzátoru (α a β). k α,batch. 3 (m 3 mol ) 3/2 s, X CO,α.33 k β,pfr 57.2 3 (m 3 mol ) 3/2 s, X CO,β.965 Nápověda: Řešení ntegrálu X ((2 X)/( X))5/2 dx pro PFR 2 ( x ) 3 2 + 6 3 x x 2 () x 5 ln 2 ( x + ) 4 5 ln + ) x 4 ( 7

Příklad 3.6 Ústav anorgancké technologe: Aplkovaná reakční knetka - cvčení 3 Látka B dmerzuje podle schématu 2B R. Reakce probíhá za teploty 6 K v plynné fáz a je provozována v dskontnuálním vsádkovém reaktoru s konstantním objemem. Reaktor je na počátku naplněn pouze látkou B za tlaku.5 bar. Reakční rychlost je popsána vztahem r V kp 2 B, (26) kde k je 2.5 3 mol m 3 Pa 2 s. Jaké bude složení reakční směs a celkový tlak po uplynutí jedné hodny? x B.6, p.6 bar Příklad 3.7 V průtočném reaktoru s pístovým tokem probíhá v kapalné fáz vratná reakce A B, jejíž rychlost je popsána následující knetckou rovncí r V k C A k 2 C B, (27) kde k je.94 h a k 2 je.2 h. Koncentrace složek na vstupu je: C A 9.22 kmol m 3, C B.67 kmol m 3. Vypočtěte objem reaktoru pokud je nástřk.5 m 3 h a je požadována produkce.4 kmol h látky B. Teplota, tlak a hustota reakční směs je konstantní v celém reaktoru. V R.47 m 3 Příklad 3.8 Rozklad azoxdu na dusík a kyslík probíhá podle rovnce 2N 2 O 2N 2 + O 2, v plynné fáz ve vsádkovém reaktoru s konstantním objemem. Teplota v reaktoru je udržována konstantní na hodnotě 2 K. Počáteční tlak v reaktoru je kpa a je naplněn pouze azoxdem. Knetka rozkladné reakce je druhého řádu a rychlostní konstanta je př výše uvedené teplotě rovna.98 3 m 3 mol s. Za jakou dobu stoupne tlak v reaktoru na 45 kpa? Uvažujte deální chování plynů. t 34 s 8

Příklad 3.9 Ústav anorgancké technologe: Aplkovaná reakční knetka - cvčení 3 V zotermním-zobarckém trubkovém reaktoru probíhá v plynné fáz následující systém reakcí 2A B r V, k CA 2 B C r V,2 k 2 C B. Rychlostní konstanty uvedených reakcí jsou [ k m 3 mol 8.73 exp 2 ] s RT [ k 2 2.6 exp 8 ] s RT Teplota v reaktoru je 623 K a tlak 5 kpa. Nástřk se skládá pouze ze složky A a je roven 2.3 mol s. Navrhněte opatření s cílem zajstt co nejvyšší koncentrac látky B na výstupu z reaktoru. Své úvahy podpořte výpočty! Př uvedených podmínkách V R.5 m 3 Příklad 3. Reakce probíhá v plynné fáz v deálně míchaném vsádkovém reaktoru př konstantní teplotě 5 K A + B C. Na počátku je v reaktoru přítomna eqvmolární směs látek A a B. Počáteční tlak v reaktoru je je 6.4 atm a rychlost reakce je vyjádřena vztahem r V kc 2 Ac B, kde rychlostní konstanta k dm 6 mol s. Vypočtěte čas potřebný k dosažení 9% konverze látky A a taktéž celkový tlak v reaktoru př stejné konverz.... 9