Enzymy = biokatalyzátory

Rozměr: px
Začít zobrazení ze stránky:

Download "Enzymy = biokatalyzátory"

Transkript

1 Enzymy = biokatalyzátory

2 Enzymy biologické katalyzátory Analogie s chemickými katalyzátory Katalyzátor je jiná látka než reaktant a produkt reakce Zvyšuje rychlost reakce v obou směrech, snižuje aktivační energii obou reakcí; reakce vedena jinudy (ilustrace tok řeky) Z toho plyne, že zkracuje dobu potřebnou k dosažení rovnováhy ale neovlivňuje tuto rovnováhu!!!!!! Vystupuje z reakce nezměněn

3 bílkoviny ( vyjímka ribozymy, např. 2S-rRNA) aktivní místo - vazebné skupiny - katalytické skupiny vazba substrátu - zámek a klíč - indukované přizpůsobení úloha "zbytku molekuly"

4 Aktivační energie rozkladu peroxidu vodíku H 2 2 2H Katalyzátor Reakční rychlost (mol.l - 1.s -1 ) E a (kj.mol -1 ) Žádný ,1 HBr ,2 Fe(H) 2 -triethylen tetraamin ,3 Katalasa ,4

5 Enzymy biologické katalyzátory Platí o nich totéž co o chemických katalyzátorech, ale mají něco navíc: účinné snížení aktivační energie specifita regulovatelnost účinnosti (aktivity)

6 Enzymy = biokatalyzátory Každá (metabolická) reakce má svůj enzym

7 Co umí enzymy účinné snížení aktivační energie specifita účinku specifita substrátová regulovatelnost účinnosti (aktivity)

8 Snížení aktivační energie

9

10 Enzym = buď jednoduchá bílkovina nebo apoenzym (peptidový řetězec) + kofaktor = holoenzym Kofaktor: nepeptidová součást enzymu, která se přímo účastní chemické reakce (bez něj by to nešlo), častá souvislost s vitaminy Prosthetická skupina - pevně vázána na peptidový řetězec Koenzym - volně vázaná molekula

11 prosthetická skupina (př. FAD, PLP, hem) E-Pr + S1 E-Pr* + P1 E-Pr* + S2 E-Pr + P2 E-Pr S1 + S2 P1 + P2 koenzym (druhý substrát) (př. NAD(P),CoA, ATP) E1 S1 + K P1 + K* E2 K* + S2 K + P2 S1 + S2 P1 + P2

12 Prosthetická skupina x Koenzym

13 AKTIVNÍ MÍST ENZYMŮ relativně malá kapsa (štěrbina) uvnitř nebo při povrchu enzymu, často hydrofóbní, umožňující vazbu substrátu(ů), ev. nebílkovinné části enzymu slabšími přechodnými, většinou nekovalentními vazbami: - vodíkovými můstky (výrazně směrovaná) - elektrostatickým přitahováním - hydrofóbními interakcemi - van der Waalsovými silami bsahuje postranní řetězce sekvenčně vzdálených aminokyselin, které představují kontaktní, orientující a katalytické zbytky a vytvářejí biospecifickou trojrozměrnou strukturu (konformaci). -efekt zvýšení koncentrace Vzniká dočasně a reverzibilně komplex enzym-substrát (ES).

14

15 AKTIVNÍ MÍST ENZYMŮ

16 Teorie zámku a klíče

17 Změna konformace hexokinasy způsobená vazbou substrátu

18 Kofaktory - prosthetická skupina 1. prosthetická skupina (př. FAD, PLP, hem) E-Pr + S 1 E-Pr * + P 1 E-Pr * + S 2 E-Pr + P 2 E-Pr S 1 + S 2 P 1 + P 2

19 přenos elektronů, riboflavin B 2 Prosthetická skupina - FAD

20 Prosthetická skupina - PLP

21 Prosthetická skupina - hem

22 Kofaktory - koenzym 2. koenzym (druhý substrát) (př. NAD(P),CoA, ATP) E 1 S 1 + K P 1 + K * E 2 K * + S 2 K + P 2 S 1 + S 2 P 1 + P 2

23 Koenzymy NAD +, NADP +

24 Koenzymy CoA

25 Koenzymy ATP

26 Kofaktory - ostatní 3. "nespecifické" organické sloučeniny - kyselina askorbová (komplex s Fe) - některé další vitaminy 4. kovy přímo se účastnící reakce (metaloenzymy, Zn, Fe, Se, Cu...) 5. specifické kovy, působící "nepřímo" (Mg a ATP)

27 Jednotky vyjadřování enzymové aktivity katal (zkratka kat): množství enzymové aktivity, které katalyzuje přeměnu l molu substrátu za sekundu; l0-6 kat = µkat ; l0-9 kat = nkat starší mezinárodní jednotka: U : množství enzymové aktivity, které katalyzuje přeměnu l µmolu substrátu za minutu; l0-3 U = mu PŘEVD: U=16,67 nkat 60 U=1 µkat Faktory ovlivňující enzymovou aktivitu koncentrace substrátu (K m, V, k cat ) teplota ph iontová síla aktivátory a inhibitory

28 Názvosloví enzymů triviální (pepsin, trypsin, elastasa, invertasa...) doporučené ("polosystematické") (alkoholdegydrogenasa...)

29 Slovník biochemických pojmů: enzymy - názvosloví {1} enzyme nomenclature a) triviální (např. pepsin, trypsin, thrombin, elastasa {EC , EC } ), b) tzv. doporučené, tvořené názvem substrátu, typem reakce a příponou -asa (např. alkoholdehydrogenasa, glukosaoxidasa, alaninaminotransferasa {EC }, alaninracemasa {EC } ), c) systémové (též systematické), vytvářené podle daných pravidel. Systémové názvosloví je založeno (až na výjimky) pouze na účinkové a substrátové specifitě enzymů a vychází z rozdělení enzymů do šesti tříd (viz enzymy - rozdělení do tříd). Vedle tohoto jednoznačného, byť v běžné praxi poněkud nepohodlného názvosloví má každý enzym ještě své katalogové číslo (viz EC, enzymový katalog). Názvy enzymů mají, kromě nejstarších triviálních názvů, příponu -asa.

30 Příklady: ENTRY EC NAME -Fructofuranosidase Invertase Saccharase CLASS Hydrolases Glycosidases Hydrolysing -glycosyl compounds SYSNAME -D-Fructofuranoside fructohydrolase REACTIN Hydrolysis of terminal non-reducing -D-fructofuranoside residues in -D-fructofuranosides SUBSTRATE -D-Fructofuranoside Sucrose H 2 PRDUCT -D-Fructose PZNÁMKA: Termín invertasa vznikl proto, že při hydrolyse sacharosy se obrací (invertuje) optická rotace z pravotočivého na levotočivý smysl. Enzym se využívá k výrobě invertního cukru (směs glukosy a fruktosy), který je mnohem sladší a stravitelnější než sacharosa; používá se jako umělý med, jako sladidlo do zmrzliny, čokolád apod.

31 1) xidoreduktasy Třídy enzymů katalyzují různé oxidoredukční reakce, často s využitím koenzymů jako např. NADH, NADPH, FADH2,nebo hemu. Triviální názvy v této třídě: dehydrogenasy, oxidasy, cytochromy, peroxidasa, katalasa. 2) Transferasy Katalyzují přenos skupin: amino-, methyl-, acyl-, glykosyl-, fosforyl-. Kinasy katalyzují přenos fosfátové skupiny z ATP nebo jiných nukleosidtrifosfátů. Triviální názvy v této třídě: aminotransferasy (transaminasy), acyltransferasy, fosfotransferasy. 3) Hydrolasy Katalyzují štěpení vazeb mezi atomem uhlíku a jinými atomy prostřednictvím spotřebované molekuly vody. bvyklé triviální názvy: esterasy, peptidasy, amylasy, fosfatasy, lipasy, proteasy (pepsin, trypsin, chymotrypsin).

32 Třídy enzymů 4) Lyasy Katalyzují adiční reakci na dvojné vazbě nebo eliminační reakci mezi dvěma C atomy za vzniku dvojné vazby. Příklady: fumaráthydratasa (fumarasa), karbonátdehydratasa (karboanhydrasa), aldolasa, citrátlyasa, dekarboxylasy..5) Isomerasy Katalyzují racemizaci optických isomerů nebo vytváření polohových isomerů: epimerasy, racemasy, mutasy. 6) Ligasy Katalyzují tvorbu vazeb mezi uhlíkem a jinými atomy spojenou se štěpením ATP (spřažení exergonické a endergonické reakce): karboxylasy, synthetasy (glutaminsynthetasa).

33 1. XIDREDUKTASY donor + akceptor oxidovaný donor + redukovaný akceptor Systematický název: donor : akceptor-oxidoreduktasa angl.: donor : acceptor oxidoreductase Triviální názvy: dehydrogenasa reduktasa (důležitější redukce substrátu) transhydrogenasa (vzácné, glutathion-cystin-transhyhrogenasa) oxidasa (přenos dvou elektronů na 2, obvykle vznik H 2 2 ) oxygenasa (1 nebo 2 atomy jsou inkorporovány do substrátu(ů), monooxygenasa: vzniká voda, dioxygenasa: nevzniká) peroxidasa (peroxid vodíku je akceptorem elektronů) katalasa (disproporcionace peroxidu vodíku)

34 donor akceptor 1.1. CH _ H (alkohol) 1.n.1 NAD + nebo NADP CH (aldehyd) 1.n.2 cytochrom 1.3. CH _ CH 1.n.3 molekulový kyslík 1.4. CH _ NH 2 1.n.4 disulfidová sloučenina 1.5. CH _ NH (sekundární amin) 1.n.5 chinon nebo příbuzné látky 1.6. NADH nebo NADPH 1.n.6 dusíkatá skupina 1.7. ostatní dusíkaté donory 1.n.7 FeS proteiny 1.8. sloučeniny síry 1.n.8 flavin 1.9. hemová skupina difenoly a příbuzné slouč peroxid vodíku jako akceptor vodík působící na jeden donor, do něhož se vnáší kyslík (oxygenasy) (14.) 11 až 18 (různé působící na dva donory, typy oxygenačních reakcí) které inkorporují kyslík superoxidový radikál jako akceptor kovové ionty _ CH _ 2 (vzniká alkohol) redukovaný ferredoxin redukovaný flavodoxin ostatní oxidoreduktasy 1.n.99 různé další akceptory

35 xidoreduktasy - příklady EC Methan,NAD(P)H:kyslík-oxidoreduktasa (hydroxylující) CH 4 + NAD(P)H + H CH 3 H + NAD(P) + + H 2 EC H 2 2 : H 2 2 -oxidoreduktasa, katalasa (též peroxid vodíku:peroxid vodíku - oxidoreduktasa) H H H EC donor: H 2 2 -oxidoreduktasa, peroxidasa donor + H 2 2 oxidovaný donor + 2 H 2

36 xidoreduktasy - příklady EC Alkohol:NAD + -oxidoreduktasa, alkoholdehydrogenasa CH 3 -CH 2- H + NAD + CH 3 -CH + NADH + H + EC D-Glukosa: 2-1-oxidoreduktasa, glukosaoxidasa -D-glukosa + 2 -D-glukono-1,5-lakton + H 2 2 EC Síra:kyslík-oxidoreduktasa, síradioxygenasa S + 2 S 2

37 2. TRANSFERASY donor _ SK + akceptor donor + akceptor _ SK Systematický název: donor : akceptor _ skupinatransferasa angl. donor : acceptor grouptransferase Triviální názvy: methyltransferasy, hydroxymethyltransferasy aminotransferasy (dříve transaminasy) kinasy = fosfotransferasy atd.

38 Kofaktory transferas (koenzym)

39 Kofaktory transferas (koenzym) přenos acylových zbytků

40 2. TRANSFERASY 2.1 Přenášející jednouhlíkatou skupinu Methyltransferasy Hydroxymethyltransferasy Karboxyl _ a karbamoyltransferasy Amidinotransferasy 2.2 Přenášející aldehydické nebo ketonické skupiny Transaldolasy a transketolasy 2.3 Acyltransferasy Acyltransferasy Aminoacyltransferasy

41 2. TRANSFERASY 2.4 Glykosyltransferasy Hexosyltransferasy Pentosyltransferasy Přenášející ostatní glykosylové skupiny 2.5 Přenášející akrylové nebo arylové skupiny jiné než methyl (velmi heterogenní skupina) 2.6 Přenášející dusíkaté skupiny Aminotransferasy ximinotransferasy Přenášející jiné dusíkaté skupiny

42 2. TRANSFERASY 2.7. Přenášející skupiny obsahující fosfor Fosfotransferasy s alkoholem jako akceptorem Fosfotransferasy s karboxylem jako akceptorem Fosfotransferasy s dusíkatou skup. jako akcept Fosfotransferasy s fosfátovou skup. jako akcept Difosfotransferasy Nukleotidyltransferasy Transferasy ostatních substituovaných fosf. skup Fosfotransferasy se dvěma akceptory 2.8. Přenášející sirné skupiny Sulfurtransferasy (sirné skupiny kromě a ) Sulfotransferasy (přenášející sulfát) CoA _ transferasy

43 Transferasy - příklady EC ,4- -D-Glukan:orthofosfát- -D-glukosyltransferasa, fosforylasa (1,4- -D-glukan) n + P i (1,4- -D-glukan) n-1 + -D-glukosa-1- fosfát EC L-Alanin:2-oxoglutarát-aminotransferasa, alaninaminotransferasa (AAT) + H 3 N C CH CH 3 C C CH 2 CH 2 C + + L-Ala + 2-oxoglutarát pyruvát + L-Glu C C CH 3 + H 3 N C CH CH 2 CH 2 C

44 Transferasy - příklady EC ATP:D-hexosa-6-fosfotransferasa, hexokinasa ATP + D-hexosa ADP + D-hexosa-6-fosfát NH 2 P P P N H 2 C H N H H N N H P H H CH 2 H H H H H H H H

45 3. HYDRLASY A _ B + H 2 AH + HB Systematický název: substrát (skupina) hydrolasa angl.: substrate (group) hydrolase Triviální název: substrátasa, často zcela nesystematické názvy

46 3. HYDRLASY 3.1 Esterasy Estery karboxylových kyselin (lipasy) Monoestery fosforečné kyseliny (fosfatasy) Diestery fosforečné kyseliny (fosfodiesterasy, štěpení c-amp) _ 30 Endo _ a exo _ (deoxy)nukleasy 3.2 Glykosidasy Hydrolysující _ glykosidové vazby (amylasy, invertasa=sacharasa, celulasy) Hydrolysující N-glykosidové vazby 3.3 Působící na etherové vazby

47 3. HYDRLASY 3.4 Peptidasy _ Aminoacylpeptid hydrolasy (aminopeptidasy) Dipeptid hydrolasy Dipeptidylpeptid hydrolasy Peptidyldipeptid hydrolasy Serinové karboxypeptidasy Metallo _ karboxypeptidasy Cysteinové karboxypeptidasy Serinové proteinasy Cysteinové proteinasy Aspartátové proteinasy Metallo _ proteinasy Proteinasy neznámého katalyt. mechanismu 3.5 Působící na C _ N vazbu jinou než peptidovou

48 3. HYDRLASY 3.6 Působící na anhydridy kyselin Anhydridy fosforečné kyseliny (pyrrofosfatasa, nespec. ATPasy) a zprostředkující membránový transport (transportní ATPasy) umožňující pohyb (aktomyosinový komplex, složky cytoskeletu) 3.7 Působící na vazbu C _ C 3.8 Působící na vazby halogenů 3.9 Působící na P _ N vazby 3.10 Působící na S _ N vazbu 3.11 Působící na C _ P vazbu

49 4. LYASY substrát 1 (+ substrát 2) produkt 1 + produkt 2 (malý) Systematický název: substrát 1 (substrát 2)- produkt 2lyasa angl: substrate l (substrate 2)- product 2 lyase Triviální název: dekarboxylasa, hydrolyasy (=dehydratasa), ammonialyasa, aldolasa, synthasa (velmi riskantní)

50 4. LYASY 4.1 C _ C lyasy Karboxylyasy (dekarboxylasy) Aldehydlyasy (aldolasy) xo _ acid lyasy (např. citrátsynthasa) statní C _ C lyasy 4.2 C _ lyasy Hydrolyasy (např. fumarasa) Působící na polysacharidy (štěpí za vzniku deoxysacharidů) statní C _ lyasy 4.3 C _ N lyasy Ammonia _ lyasy (např. aspartátamonialyasa) 4.4 C _ S lyasy 4.5 C _ halogen lyasy 4.6 P _ lyasy 4.99 statní lyasy

51 4. LYASY Lyasy - příklady: EC pyruvát-karboxylyasa, pyruvátdekarboxylasa CH 3 -C-CH CH 3 -CH + C 2 EC karbonát-hydrolyasa, karbonátanhydrasa, karbonátdehydratasa H 2 C 3 C 2 + H 2

52 EC ATP-pyrrofosfátlyasa (cyklisující), adenylátcyklasa ATP camp + PP i H P H H H H H 2 C H N N N N NH 2 P P H P H H H CH 2 H N N N N NH 2 P P 4. LYASY +

53 5. ISMERASY Triviální názvy: (různé typy isomerací _ v systematickém názvu) podobně i racemasy, cis _ trans _ isomerasy, ketolisomerasy, mutasy, atd. Systematický název: substráttyp angl.: substrate type

54 5. ISMERASY 5.2 Cis _ trans _ isomerasy 5.3 Intramolekulární oxidoreduktasy Přeměňující aldehydy na ketony (ketolisomerasy) Přeměňující ketoskupiny na enoly (keto _ enolisomerasy) Posunující C=C vazbu ( n _ m isomerasy) Posunující S _ S vazbu (proteindisulfid _ isomerasa) statní intramolekulární oxidoreduktasy

55 5. ISMERASY 5.4 Intramolekulární transferasy (mutasy) Přenášející acylovou skupinu (acylmutasy) Fosfotransferasy (fosfomutasy) Přesunující aminoskupinu (aminomutasy) 5.5 Intramolekulární lyasy (decyklisující, intramolekulární adice) 5.99 statní isomerasy (např. DNA-topoisomerasy)

56 Isomerasy - příklady: EC Aspartátracemasa (s poloviční rychlostí působí též na Ala) EC Laktátracemasa EC D-Glyceraldehyd-3-fosfátketolisomerasa, triosafosfátisomerasa HC H H CH H 2 C C H 2 C P H 2 C P D-glyceraldehyd-3-fosfát dihydroxyacetonfosfát EC D-Fosfoglycerát-2,3-fosfomutasa, fosfoglycerátmutasa C C H CH P CH H 2 C P H 2 C H 3-fosfo-D-glycerát 2-fosfo-D-glycerát

57 6. LIGASY substrát 1 + substrát 2 + A(G) TP substrát 1 + substrát 2 + ATP substrát 1 _ substrát 2 + ADP + P i nebo substrát 1 _ substrát 2 + AMP + PP i Systematický název: substrát1: substrát 2 _ ligasa (tvořící ADP, AMP nebo GDP) angl.: substrate l : substrate 2 ligase (ADP, AMP or GDP _ forming) Triviální názvy: pokud možno substrát 1 _ substrát 2 _ ligasa (synthetasy jsou možné, často se však vyskytují i synthasy)

58 6. LIGASY 6.1 Tvořící C _ vazby (aminoacyl _ trna _ ligasy a podobné estery) 6.2 Tvořící C _ S vazby (kyselina _ thiol _ ligasy) 6.3 Tvořící C _ N vazby Acid _ ammonia (or amine) ligases (asparaginsynthetasa) Acid _ amino _ acid ligases (např. peptidsynthetasy) Cyklisující ligasy statní C _ N ligasy C _ N ligasy s glutaminem jako donorem dusíku (např. karbamoylfosfátsynthetasa) 6.4 Tvořící C _ C vazby (např. karboxylasy) 6.5 Tvořící estery kyseliny fosforečné (např. DNA-ligasa)

59 Ligasy - příklady EC L-Tyrosin:tRNA Tyr -ligasa (AMP-tvořící), tyrosin-trna-ligasa L-Tyr + trna Tyr + ATP L-Tyr-tRNA Tyr + AMP + PP i EC Acetát:CoA-ligasa (AMP-tvořící), acetát-coa ligasa CH 3 C - + HSCoA + ATP acetyl-scoa + AMP + PP i EC L-Aspartát:amoniak-ligasa (ADP-tvořící), asparaginsynthetasa L-Asp + NH 3 + ATP L-Asn + ADP + P i (EC AMP-tvořící) EC Pyruvát:oxid uhličitý-ligasa (ADP-tvořící), pyruvátkarboxylasa CH 3 -C-C - + HC 3- +ATP - C-CH 2 -C-C - + ADP + P i EC Poly(deoxyribonukleotid): poly(deoxyribonukleotid)-ligasa (AMPtvořící), DNA-ligasa ATP + (deoxyribonukleotid) n + (deoxyribonukleotid) m (deoxyribonukleotid) n+m + AMP + PP i

60

Enzymy = biokatalyzátory

Enzymy = biokatalyzátory Enzymy = biokatalyzátory Enzymy biologické katalyzátory Analogie s chemickými katalyzátory -katalyzátor je jiná látka než reaktant a produkt reakce -zvyšuje rychlost reakce v obou směrech, snižuje aktivační

Více

Historie poznání enzymů

Historie poznání enzymů Historie poznání enzymů 1835 Jacob Berzelius katalytická fce diastasy pol. 18.stol. Luis Pasteur vitalismus 1878 Frederic W. Kühn enzym 1894 Emil Fischer teorie zámku a klíče 1897 Büchnerův pokus 1926

Více

Enzymy: Struktura a mechanismus působení. Prof. MUDr. Jiří Kraml, DrSc. Ústav lékařské biochemie 1.LF UK

Enzymy: Struktura a mechanismus působení. Prof. MUDr. Jiří Kraml, DrSc. Ústav lékařské biochemie 1.LF UK Enzymy: Struktura a mechanismus působení Prof. MUDr. Jiří Kraml, DrSc. Ústav lékařské biochemie 1.LF UK 1 ENZYMY JAKO HOMOGENNÍ BIOKATALYZÁTORY 1. Bílkovinná povaha ( + některé RNA-enzymy - ribozymy) 2.

Více

Enzymy. Prof. MUDr. Jiří Kraml, DrSc.

Enzymy. Prof. MUDr. Jiří Kraml, DrSc. Enzymy Prof. MUDr. Jiří Kraml, DrSc. ENZYMY JAKO HOMOGENNÍ BIOKATALYZÁTORY 1. Bílkovinná povaha ( + některé RNA-enzymy - ribozymy) 2. Větší účinnost (faktor minimálně 10 6 ) 3. Specifičnost - substrátová

Více

Figure 3-23 Molecular Biology of the Cell ( Garland Science 2008)

Figure 3-23 Molecular Biology of the Cell ( Garland Science 2008) Figure 3-23 Molecular Biology of the Cell ( Garland Science 2008) Dělení bílkovin podle jejich funkce stavební a podpůrné kolageny, elastin, keratiny (fibrilární) bílkoviny cytoskeletu (tubulin, vimentin,

Více

Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti. ENZYMY I úvod, názvosloví, rozdělení do tříd

Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti. ENZYMY I úvod, názvosloví, rozdělení do tříd Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti ENZYMY I úvod, názvosloví, rozdělení do tříd Úvod z řeckého EN ZYME (v kvasinkách) biologický katalyzátor, protein (RNA) liší se od chemických

Více

Enzymologie. Věda ležící na pomezí fyz. ch. a bioch. Zabývá se problematikou biokatalyzátorů.

Enzymologie. Věda ležící na pomezí fyz. ch. a bioch. Zabývá se problematikou biokatalyzátorů. ENZYMOLOGIE 1 Enzymologie Věda ležící na pomezí fyz. ch. a bioch. Zabývá se problematikou biokatalyzátorů. Jak je možné, že buňka dokáže utřídit hrozivou změť chemických procesů, které v ní v každém okamžiku

Více

>>> E A1 + E A2. . aktivační energie potřebná k reakci bez přítomnosti katalyzátoru E A E A1. energie potřebná ke vzniku enzym-substrátového komplexu

>>> E A1 + E A2. . aktivační energie potřebná k reakci bez přítomnosti katalyzátoru E A E A1. energie potřebná ke vzniku enzym-substrátového komplexu Enzymy Charakteristika enzymů- fermentů katalyzátory biochem. reakcí biokatalyzátory umožňují a urychlují průběh rcí v organismu nachází se ve všech živých systémech z chemického hlediska jednoduché nebo

Více

ENZYMY. RNDr. Lucie Koláčná, Ph.D.

ENZYMY. RNDr. Lucie Koláčná, Ph.D. ENZYMY RNDr. Lucie Koláčná, Ph.D. Enzymy: katalyzátory živé buňky jednoduché nebo složené proteiny Apoenzym: proteinová část Kofaktor: nízkomolekulová neaminokyselinová struktura nezbytně nutná pro funkci

Více

Aminokyseliny, proteiny, enzymologie

Aminokyseliny, proteiny, enzymologie Aminokyseliny, proteiny, enzymologie Aminokyseliny Co to je? Organické látky karboxylové kyseliny, které mají na sousedním uhlíku navázanou aminoskupinu Jak to vypadá? K čemu je to dobré? AK jsou stavební

Více

Proč biokatalýza? Vyšší reakční rychlost Vyšší specificita reakce Mírnější reakční podmínky Možnost regulace

Proč biokatalýza? Vyšší reakční rychlost Vyšší specificita reakce Mírnější reakční podmínky Možnost regulace Enzymy Proč biokatalýza? Vyšší reakční rychlost Vyšší specificita reakce Mírnější reakční podmínky Možnost regulace COO - - COO NH 2 OH - COO NH 2 - COO O OH - COO Chorismate mutase - OOC O OH - COO -

Více

Redoxní děj v neživých a živých soustavách

Redoxní děj v neživých a živých soustavách Enzymy Enzymy Katalyzují chemické reakce, kdy se mění substrát na produkt Katalytickým působením se snižuje aktivační energie reagujících molekul substrátu, tím se reakce urychlí Za přítomnosti enzymu

Více

Eva Benešová. Dýchací řetězec

Eva Benešová. Dýchací řetězec Eva Benešová Dýchací řetězec Dýchací řetězec Během oxidace látek vstupujících do různých metabolických cyklů (glykolýza, CC, beta-oxidace MK) vznikají NADH a FADH 2, které následně vstupují do DŘ. V DŘ

Více

Kofaktory enzymů. T. Kučera. (upraveno z J. Novotné)

Kofaktory enzymů. T. Kučera. (upraveno z J. Novotné) Kofaktory enzymů T. Kučera (upraveno z J. Novotné) Kofaktory enzymů neproteinová, nízkomolekulární složka enzymu ko-katalyzátor potřebný k aktivitě enzymu pomocné molekuly v enzymové reakci holoenzym (aktivní)

Více

BIOKATALYZÁTORY I. ENZYMY

BIOKATALYZÁTORY I. ENZYMY BIOKATALYZÁTORY I. Obecné pojmy - opakování: Katalyzátory látky, které ovlivňují průběh katalyzované reakce a samy se přitom nemění. Dělíme je na: pozitivní (aktivátory) urychlující reakce negativní (inhibitory)

Více

Text zpracovala Mgr. Taťána Štosová, Ph.D PŘÍRODNÍ LÁTKY

Text zpracovala Mgr. Taťána Štosová, Ph.D PŘÍRODNÍ LÁTKY Inovace profesní přípravy budoucích učitelů chemie CZ.1.07/2.2.00/15.0324 Text zpracovala Mgr. Taťána Štosová, Ph.D PŘÍRODNÍ LÁTKY Obsah 1 Úvod do problematiky přírodních látek... 2 2 Vitamíny... 2 2.

Více

POLYPEPTIDY. Provitaminy = organické sloučeniny bez vitaminózního účinku, které se v živočišném těle mění působením ÚV záření nebo enzymů na vitaminy.

POLYPEPTIDY. Provitaminy = organické sloučeniny bez vitaminózního účinku, které se v živočišném těle mění působením ÚV záření nebo enzymů na vitaminy. POLYPEPTIDY Provitaminy = organické sloučeniny bez vitaminózního účinku, které se v živočišném těle mění působením ÚV záření nebo enzymů na vitaminy. Hormony = katalyzátory v živočišných organismech (jsou

Více

kofaktory nejsou: - stabilizující sloučeniny - allosterické aktivátory - post-translační modifikace mimo aktivní místo - proteinové podjednotky

kofaktory nejsou: - stabilizující sloučeniny - allosterické aktivátory - post-translační modifikace mimo aktivní místo - proteinové podjednotky Kofaktory, koenzymy a prosthetické skupiny kofaktory nízkomolekulární sloučeniny potřebné pro enzymovou katalýzu, účastní se katalýzy - koenzymy - prosthetické skupiny - kovalentní modifikace aminokyselinových

Více

Historie. Pozor! né vždy jen bílkovinná část

Historie. Pozor! né vždy jen bílkovinná část Enzymy a hormony Enzymy = biokatalyzátory jejich působení je umožněn souhrn chemických přeměn v organismu (metabolismus) jednoduché, složené bílkoviny globulární v porovnání s katalyzátory účinnější, netoxické,

Více

ENZYMY A NUKLEOVÉ KYSELINY

ENZYMY A NUKLEOVÉ KYSELINY ENZYMY A NUKLEOVÉ KYSELINY Autor: Mgr. Stanislava Bubíková Datum (období) tvorby: 28. 3. 2013 Ročník: devátý Vzdělávací oblast: Člověk a příroda / Chemie / Organické sloučeniny 1 Anotace: Žáci se seznámí

Více

Aminokyseliny. Aminokyseliny. Peptidy & proteiny Enzymy Lipidy COOH H 2 N. Aminokyseliny. Aminokyseliny. Postranní řetězec

Aminokyseliny. Aminokyseliny. Peptidy & proteiny Enzymy Lipidy COOH H 2 N. Aminokyseliny. Aminokyseliny. Postranní řetězec optická aktivita Peptidy & proteiny Enzymy Lipidy α-uhlík je asymetrický pouze L-aminokyseliny 2 α R rozdělení dle polarity podle počtu karboxylových skupin podle počtu bazických skupin podle polarity

Více

ENZYMY. Klasifikace enzymů

ENZYMY. Klasifikace enzymů ENZYMY Enzymy jsou bílkoviny, které katalyzují chemické reakce probíhající v živých organismech. Byly identifikovány tisíce enzymů, mnohé z nich byly izolovány čisté. Klasifikace enzymů Vzhledem k tomu,

Více

Využití enzymů pro analytické a výzkumné účely

Využití enzymů pro analytické a výzkumné účely Využití enzymů pro analytické a výzkumné účely Enzymy jako analytická činidla Stanovení enzymových aktivit Diagnostika (klinická biochemie) Indikátory technologických a jakostních změn v potravinářství

Více

CHEMICKÉ ZNAKY ŽIVÝCH SOUSTAV

CHEMICKÉ ZNAKY ŽIVÝCH SOUSTAV CHEMICKÉ ZNAKY ŽIVÝCH SOUSTAV a) Chemické složení a. biogenní prvky makrobiogenní nad 0,OO5% (C, O, N, H, S, P, Ca.) - mikrobiogenní pod 0,005%(Fe,Zn, Cu, Si ) b. voda 60 90% každého organismu - 90% příjem

Více

Metabolismus bílkovin. Václav Pelouch

Metabolismus bílkovin. Václav Pelouch ZÁKLADY OBECNÉ A KLINICKÉ BIOCHEMIE 2004 Metabolismus bílkovin Václav Pelouch kapitola ve skriptech - 3.2 Výživa Vyvážená strava člověka musí obsahovat: cukry (50 55 %) tuky (30 %) bílkoviny (15 20 %)

Více

Sekunda (2 hodiny týdně) Chemické látky a jejich vlastnosti Směsi a jejich dělení Voda, vzduch

Sekunda (2 hodiny týdně) Chemické látky a jejich vlastnosti Směsi a jejich dělení Voda, vzduch Sekunda (2 hodiny týdně) Chemické látky a jejich vlastnosti Směsi a jejich dělení Voda, vzduch Atom, složení a struktura Chemické prvky-názvosloví, slučivost Chemické sloučeniny, molekuly Chemická vazba

Více

Enzymy (katalýza biochemických reakcí)

Enzymy (katalýza biochemických reakcí) Enzymy (katalýza biochemických reakcí) Enzymy (fermenty) Biokatalyzátory chemických reakcí (globulární proteiny) Ve velmi malých množstvích specificky urychlují průběh chemických reakcí tak, že snižují

Více

Opakování

Opakování Slabé vazebné interakce Opakování Co je to atom? Opakování Opakování Co je to atom? Atom je nejmenší částice hmoty, chemicky dále nedělitelná. Skládá se z atomového jádra obsahujícího protony a neutrony

Více

Enzymy charakteristika a katalytický účinek

Enzymy charakteristika a katalytický účinek Enzymy charakteristika a katalytický účinek Tematická oblast Datum vytvoření Ročník Stručný obsah Způsob využití Autor Kód Chemie přírodních látek enzymy 28.7.2012 3. ročník čtyřletého G Charakteristika

Více

nepolární polární kyselý bazický

nepolární polární kyselý bazický opticky aktivní rozdělení α-uhlík je asymetrický pouze L-aminokyseliny (D-aminokyseliny: bakterie, antibiotika, ) 2 α R podle počtu karboxylových skupin podle počtu aminoskupin podle polarity postranního

Více

AMINOKYSELINY REAKCE

AMINOKYSELINY REAKCE CHEMIE POTRAVIN - cvičení AMINOKYSELINY REAKCE Milena Zachariášová (milena.zachariasova@vscht.cz) Ústav chemie a analýzy potravin, VŠCHT Praha REAKCE AMINOKYSELIN část 1 ELIMINAČNÍ REAKCE DEKARBOXYLACE

Více

Didaktické testy z biochemie 1

Didaktické testy z biochemie 1 Didaktické testy z biochemie 1 Trávení Milada Roštejnská elena Klímová Trávení br. 1. Trávicí soustava Rubrika A Z pěti možných odpovědí (alternativ) vyberte tu nejsprávnější. A B D E 1 Mezi monosacharidy

Více

ENZYMY. Charakteristika enzymaticky katalyzovaných reakcí:

ENZYMY. Charakteristika enzymaticky katalyzovaných reakcí: ENZYMY Definice: Enzymy (biokatalyzátory) jsou jednoduché či složené makromolekulární bílkoviny s katalytickou aktivitou. Urychlují reakce v organismech tím, že snižují aktivační energii (Ea) potřebnou

Více

Co jsou to enzymy? pozoruhodné chemické katalyzátory

Co jsou to enzymy? pozoruhodné chemické katalyzátory Enzymy Co jsou to enzymy? pozoruhodné chemické katalyzátory Vyšší reakční rychlost (6-12 řádů) Mírnější podmínky reakce (nižší teplota, atmosférický tlak, neutrální ph) Vyšší specifita reakce (specifické

Více

Aminokyseliny, proteiny, enzymy Základy lékařské chemie a biochemie 2014/2015 Ing. Jarmila Krotká Metabolismus základní projev života látková přeměna souhrn veškerých dějů, které probíhají uvnitř organismu

Více

4. Enzymy. Obtížnost A

4. Enzymy. Obtížnost A 4. Enzymy btížnost A Enzymy a) zvyšují rychlost chemických reakcí tím, že zvyšují jejich aktivační energii; b) zvyšují rovnovážný výtěžek chemické reakce tím, že zvyšují hodnotu rovnovážné konstanty; c)

Více

Metabolismus proteinů a aminokyselin

Metabolismus proteinů a aminokyselin Metabolismus proteinů a aminokyselin Proteiny jsou nejdůležitější složkou potravy všech živočichů, nelze je nahradit ani cukry, ani lipidy. Je to proto, že organismus živočichů nedokáže ve svých metabolických

Více

Historie poznávání enzymů

Historie poznávání enzymů Enzymy (en-zýme -- v kvasnicích) Charakteristika enzymů- fermentů katalyzátory biochem. reakcí biokatalyzátory umožňují a urychlují průběh rcí v organismu nachází se ve všech živých systémech-jejich působením

Více

Obecný metabolismus.

Obecný metabolismus. mezioborová integrace výuky zaměřená na rostlinnou biochemii a fytopatologii CZ.1.07/2.2.00/28.0171 Obecný metabolismus. Enzymy biokatalyzátory (6). Prof. RNDr. Pavel Peč, CSc. Katedra biochemie, Přírodovědecká

Více

Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti. Citrátový a glyoxylátový cyklus

Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti. Citrátový a glyoxylátový cyklus Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti Citrátový a glyoxylátový cyklus Buněčná respirace I. Fáze Energeticky bohaté látky jako glukosa, mastné kyseliny a některé aminokyseliny

Více

ENZYMY enzymová katalýza

ENZYMY enzymová katalýza Základy biochemie KB / B EZYMY enzymová katalýza Inovace studia biochemie prostřednictvím e-learningu Z.04.1.03/3.2.15.3/0407 Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem

Více

Testové úlohy aminokyseliny, proteiny. post test

Testové úlohy aminokyseliny, proteiny. post test Testové úlohy aminokyseliny, proteiny post test 1. Které aminokyseliny byste hledali na povrchu proteinů umístěných uvnitř fosfolipidových membrán a které na povrchu proteinů vyskytujících se ve vodném

Více

11. Metabolismus lipidů

11. Metabolismus lipidů 11. Metabolismus lipidů Obtížnost A Následující procesy a metabolické reakce, vedoucí ke zkrácení řetězce mastné kyseliny, vázané v triacylglycerolu, a vzniku acetyl-coa, seřaďte ve správném pořadí: a)

Více

Enzymy. Názvosloví enzymů

Enzymy. Názvosloví enzymů Enzymy Enzymy jsou bílkoviny, které působí jako biologické katalyzátory. Podobně jako ostatní katalyzátory snižují aktivační energii chemické reakce a tím urychlují její průběh. Enzymy neovlivňují hodnotu

Více

Enzymy biologické katalyzátory. regulovatelnost účinnosti (aktivity) Platí o nich totéž co o chemických katalyzátorech, ale mají něco navíc:

Enzymy biologické katalyzátory. regulovatelnost účinnosti (aktivity) Platí o nich totéž co o chemických katalyzátorech, ale mají něco navíc: Enzymy biologické katalyzátory Platí o nich totéž co o chemických katalyzátorech, ale mají něco navíc: účinné snížení aktivační energie specifita regulovatelnost účinnosti (aktivity) Regulace účinnosti

Více

OXIDATIVNÍ FOSFORYLACE

OXIDATIVNÍ FOSFORYLACE OXIDATIVNÍ FOSFORYLACE OBSAH Mitochondrie Elektronový transport Oxidativní fosforylace Kontrolní systém oxidativního metabolismu. Oxidace a syntéza ATP jsou spojeny transmembránovým tokem protonů Dýchací

Více

TEST + ŘEŠENÍ. PÍSEMNÁ ČÁST PŘIJÍMACÍ ZKOUŠKY Z CHEMIE bakalářský studijní obor Bioorganická chemie 2010

TEST + ŘEŠENÍ. PÍSEMNÁ ČÁST PŘIJÍMACÍ ZKOUŠKY Z CHEMIE bakalářský studijní obor Bioorganická chemie 2010 30 otázek maximum: 60 bodů TEST + ŘEŠEÍ PÍSEMÁ ČÁST PŘIJÍMACÍ ZKUŠKY Z CEMIE bakalářský studijní obor Bioorganická chemie 2010 1. apište názvy anorganických sloučenin: (4 body) 4 BaCr 4 kyselina peroxodusičná

Více

Obsah. 2. Mechanismus a syntetické využití nejdůležitějších organických reakcí 31 2.1. Adiční reakce 31 2.1.1. Elektrofilní adice (A E

Obsah. 2. Mechanismus a syntetické využití nejdůležitějších organických reakcí 31 2.1. Adiční reakce 31 2.1.1. Elektrofilní adice (A E Obsah 1. Typy reakcí, reakčních komponent a jejich roztřídění 6 1.1. Formální kritérium pro klasifikaci reakcí 6 1.2. Typy reakčních komponent a způsob jejich vzniku jako další kriterium pro klasifikaci

Více

Gymnázium Jana Nerudy. Závěrečná práce studentského projektu. Enzymatická aktivita

Gymnázium Jana Nerudy. Závěrečná práce studentského projektu. Enzymatická aktivita Gymnázium Jana Nerudy Evropský sociální fond Praha a EU Investujeme do vaší budoucnosti Závěrečná práce studentského projektu Enzymatická aktivita Vedoucí práce: Mgr. Jiří Vozka RNDr. Lenka Simonianová

Více

Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti. Fotosyntéza

Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti. Fotosyntéza Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti Fotosyntéza Fotosyntéza pohlcení energie slunečního záření a její přeměna na chemickou energii rovnováha fotosyntetisujících a heterotrofních

Více

DYNAMICKÁ BIOCHEMIE. Daniel Nechvátal :: www.gymzn.cz/nechvatal

DYNAMICKÁ BIOCHEMIE. Daniel Nechvátal :: www.gymzn.cz/nechvatal DYNAMICKÁ BIOCHEMIE Daniel Nechvátal :: www.gymzn.cz/nechvatal Energetický metabolismus děje potřebné pro zabezpečení života organismu ANABOLISMUS skladné reakce, spotřeba E KATABOLISMUS rozkladné reakce,

Více

Gymnázium Jiřího Ortena, Kutná Hora

Gymnázium Jiřího Ortena, Kutná Hora Předmět: Náplň: Třída: Počet hodin: Pomůcky: Chemie (CHE) Organická chemie, biochemie 3. ročník a septima 2 hodiny týdně Školní tabule, interaktivní tabule, tyčinkové a kalotové modely molekul, zpětný

Více

BÍLKOVINY. V organismu se nedají nahradit jinými sloučeninami, jen jako zdroj energie je mohou nahradit sacharidy a lipidy.

BÍLKOVINY. V organismu se nedají nahradit jinými sloučeninami, jen jako zdroj energie je mohou nahradit sacharidy a lipidy. BÍLKOVINY o makromolekulární látky, z velkého počtu AMK zbytků o základ všech organismů o rostliny je vytvářejí z anorganických sloučenin (dusičnanů) o živočichové je musejí přijímat v potravě, v trávicím

Více

Sacharidy a polysacharidy (struktura a metabolismus)

Sacharidy a polysacharidy (struktura a metabolismus) Sacharidy a polysacharidy (struktura a metabolismus) Sacharidy Živočišné tkáně kolem 2 %, rostlinné 85-90 % V buňkách rozličné fce: Zdroj a zásobárna energie (glukóza, škrob, glykogen) Výztuž a ochrana

Více

10. Metabolismus sacharidů

10. Metabolismus sacharidů 10. Metabolismus sacharidů Obtížnost A Vysvětlete rozdíly v následujících dvojicích pojmů: aldosa/ketosa; redukující/neredukující sacharid; škrob/glykogen; homopolysacharid/heteropolysacharid; amylosa/amylopektin.

Více

V organismu se bílkoviny nedají nahradit žádnými jinými sloučeninami, jen jako zdroj energie je mohou nahradit sacharidy a lipidy.

V organismu se bílkoviny nedají nahradit žádnými jinými sloučeninami, jen jako zdroj energie je mohou nahradit sacharidy a lipidy. BÍLKOVINY Bílkoviny jsou biomakromolekulární látky, které se skládají z velkého počtu aminokyselinových zbytků. Vytvářejí látkový základ života všech organismů. V tkáních vyšších organismů a člověka je

Více

Výukový materiál zpracován v rámci projektu EU peníze školám Registrační číslo projektu: CZ.1.07/1.5.00/34.0996

Výukový materiál zpracován v rámci projektu EU peníze školám Registrační číslo projektu: CZ.1.07/1.5.00/34.0996 Výukový materiál zpracován v rámci projektu EU peníze školám Registrační číslo projektu: CZ.1.07/1.5.00/34.0996 Šablona: III/2 č. materiálu: VY_32_INOVACE_CHE_419 Jméno autora: Třída/ročník: Mgr. Alena

Více

- pro biologickou funkci je rozhodující terciární (resp. kvartérní) struktura enzymu

- pro biologickou funkci je rozhodující terciární (resp. kvartérní) struktura enzymu Otázka: Enzymy, vitamíny, hormony Předmět: Chemie Přidal(a): VityVity Enzymy, vitamíny, hormony a jejich význam pro biologickou funkci živých organismů Enzymy - látka sloužící jako biokatalyzátory - historie:

Více

MATURITNÍ OTÁZKY Z CHEMIE

MATURITNÍ OTÁZKY Z CHEMIE MATURITNÍ OTÁZKY Z CHEMIE 1 Složení a struktura atomu Vývoj představ o složení a struktuře atomu, elektronový obal atomu, modely atomu, pojem orbital, typy orbitalů, jejich znázorňování a pravidla pro

Více

Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti. Informace Seminář z biochemie II Laboratorní cvičení z biochemie

Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti. Informace Seminář z biochemie II Laboratorní cvičení z biochemie Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti Informace Seminář z biochemie II Laboratorní cvičení z biochemie Pravidla pro udělení klasifikovaného zápočtu ze Semináře z Biochemie

Více

Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti. Metabolismus dusíkatých látek

Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti. Metabolismus dusíkatých látek Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti Metabolismus dusíkatých látek Oxidace aminokyselin Podíl AK na metabolické E se silně liší dle organismu a jeho momentálních potřeb, např.

Více

METABOLISMUS SACHARIDŮ

METABOLISMUS SACHARIDŮ METABOLISMUS SAHARIDŮ A. Odbourávání sacharidů - nejdůležitější zdroj energie pro heterotrofy - oxidací sacharidů až na. získávají aerobní organismy energii ve formě. - úplná oxidace glukosy: složitý proces

Více

Dýchací řetězec, oxidativní fosforylace, mitochondriální transportní systémy

Dýchací řetězec, oxidativní fosforylace, mitochondriální transportní systémy Dýchací řetězec, oxidativní fosforylace, mitochondriální transportní systémy JAN ILLNER Dýchací řetězec & oxidativní fosforylace Tvorba energie v živých systémech ATP zdroj E pro biochemické procesy Tvorba

Více

Funkce Kofaktory enzymů aktivní formy enzymová aktivita Další funkce Specifické AA Nespecifické Další látky Vitaminy?? specifická funkce??

Funkce Kofaktory enzymů aktivní formy enzymová aktivita Další funkce Specifické AA Nespecifické Další látky Vitaminy?? specifická funkce?? YDRFILÍ VITAMIY Funkce Kofaktory enzymů aktivní formy enzymová aktivita Další funkce Specifické AA especifické Další látky Vitaminy?? specifická funkce?? deficience?? potřeba?? Thiamin Vitamin B1 + 3 2

Více

Pentosový cyklus. osudy glykogenu. Eva Benešová

Pentosový cyklus. osudy glykogenu. Eva Benešová Pentosový cyklus a osudy glykogenu Eva Benešová Pentosový cyklus pentosafosfátová cesta, fosfoglukonátová cesta nebo hexosamonofosfátový zkrat Funkce: 1) výroba NADPH 2) výroba ribosa 5-fosfátu 3) zpracování

Více

Obecný metabolismus.

Obecný metabolismus. mezioborová integrace výuky zaměřená na rostlinnou biochemii a fytopatologii CZ.1.07/2.2.00/28.0171 Obecný metabolismus. Regulace glykolýzy a glukoneogeneze (5). Prof. RNDr. Pavel Peč, CSc. Katedra biochemie,

Více

Inovace profesní přípravy budoucích učitelů chemie

Inovace profesní přípravy budoucích učitelů chemie Inovace profesní přípravy budoucích učitelů chemie I n v e s t i c e d o r o z v o j e v z d ě l á v á n í CZ.1.07/2.2.00/15.0324 Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem

Více

Toxikologie PřF UK, ZS 2016/ Toxikodynamika I.

Toxikologie PřF UK, ZS 2016/ Toxikodynamika I. Toxikodynamika toxikodynamika (řec. δίνευω = pohánět, točit) interakce xenobiotika s cílovým místem (buňkou, receptorem) biologická odpověď jak xenobiotikum působí na organismus toxický účinek nespecifický

Více

AMINOKYSELINY STANOVENÍ AMINOKYSELINOVÉHO SLOŽENÍ BÍLKOVIN. Stanovení sirných aminokyselin. Obecná struktura

AMINOKYSELINY STANOVENÍ AMINOKYSELINOVÉHO SLOŽENÍ BÍLKOVIN. Stanovení sirných aminokyselin. Obecná struktura AMIKYSELIY becná struktura STAVEÍ AMIKYSELIVÉH SLŽEÍ BÍLKVI 1. IZLAE (jen v některých případech) 2. HYDLÝZA kyselá hydrolýza pomocí Hl ( c = 5 mol.dm -3 ) klasicky: 105-120, 18-24 h, inertní atmosféra,

Více

Oxidace proteinů, tuků a cukrů jako zdroj energie v živých organismech

Oxidace proteinů, tuků a cukrů jako zdroj energie v živých organismech Citrátový cyklus Oxidace proteinů, tuků a cukrů jako zdroj energie v živých organismech 1. stupeň: OXIDACE cukrů, tuků a některých aminokyselin tvorba Acetyl-CoA a akumulace elektronů v NADH a FADH 2 2.

Více

Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti. Metabolismus sacharidů II

Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti. Metabolismus sacharidů II Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti Metabolismus sacharidů II NUTNO ZNÁT VSTUP TĚCHTO ZÁKLADNÍCH MONOSACHARIDŮ DO GLYKOLÝZY Glykogen glukosa hlavní zdroj energie pro metabolismus

Více

NaLékařskou.cz Přijímačky nanečisto

NaLékařskou.cz Přijímačky nanečisto alékařskou.cz Chemie 2016 1) Vyberte vzorec dichromanu sodného: a) a(cr 2 7) 2 b) a 2Cr 2 7 c) a(cr 2 9) 2 d) a 2Cr 2 9 2) Vypočítejte hmotnostní zlomek dusíku v indolu. a) 0,109 b) 0,112 c) 0,237 d) 0,120

Více

Karboxylové kyseliny a jejich funkční deriváty

Karboxylové kyseliny a jejich funkční deriváty Karboxylové kyseliny a jejich funkční deriváty Úvod Karboxylové kyseliny jsou nejdůležitější organické kyseliny. Jejich funkční skupina je karboxylová skupina a tento název je složen ze slov karbonyl a

Více

Energetický metabolizmus buňky

Energetický metabolizmus buňky Energetický metabolizmus buňky Buňky vyžadují neustálý přísun energie pro tvorbu a udržování biologického pořádku (život). Tato energie pochází z energie chemických vazeb v molekulách potravy (energie

Více

Metabolické dráhy. František Škanta. Glykolýza. Repetitorium chemie X. 2011/2012. Glykolýza. Jaký je osud pyruátu bez přítomnosti kyslíku?

Metabolické dráhy. František Škanta. Glykolýza. Repetitorium chemie X. 2011/2012. Glykolýza. Jaký je osud pyruátu bez přítomnosti kyslíku? Repetitorium chemie X. 2011/2012 Metabolické dráhy František Škanta Metabolické dráhy xidativní fosforylace xidace mastných kyselin 1. fosforylace 2. štěpení hexosy na dvě vzájemně převoditelné triosy

Více

KA 2340/4-8up Chemické laboratorní metody v analýze potravin H1CL. Studijní podklady

KA 2340/4-8up Chemické laboratorní metody v analýze potravin H1CL. Studijní podklady KA 2340/4-8up Chemické laboratorní metody v analýze potravin H1CL Studijní podklady Téma: Principy enzymových metod v analýze potravin živočišného původu Vypracovala Prof. MVDr. Lenka Vorlová, Ph.D. Úvod:

Více

Tabulace učebního plánu. Obecná chemie. Vzdělávací obsah pro vyučovací předmět : Ročník: 1.ročník a kvinta

Tabulace učebního plánu. Obecná chemie. Vzdělávací obsah pro vyučovací předmět : Ročník: 1.ročník a kvinta Tabulace učebního plánu Vzdělávací obsah pro vyučovací předmět : CHEMIE Ročník: 1.ročník a kvinta Obecná Bezpečnost práce Názvosloví anorganických sloučenin Zná pravidla bezpečnosti práce a dodržuje je.

Více

I N V E S T I C E D O R O Z V O J E V Z D Ě L Á V Á N Í

I N V E S T I C E D O R O Z V O J E V Z D Ě L Á V Á N Í KARBONYLOVÉ SLOUČENINY = látky, které obsahují karbonylovou skupinu Aldehydy mají skupinu C=O na konci řetězce, aldehydická skupina má potom tvar... Názvosloví aldehydů: V systematickém názvu je zakončení

Více

Teorie: Trávení: proces rozkladu molekul na menší molekuly za pomoci enzymů trávícího traktu

Teorie: Trávení: proces rozkladu molekul na menší molekuly za pomoci enzymů trávícího traktu Trávení Jan Kučera Teorie: Trávení: proces rozkladu molekul na menší molekuly za pomoci enzymů trávícího traktu Trávicí trakt člověka (trubice + žlázy) Dutina ústní Hltan Jícen Žaludek Tenké střevo Tlusté

Více

Reakční kinetika enzymových reakcí

Reakční kinetika enzymových reakcí Reakční kinetika enzymových reakcí studuje časový průběh enzymových reakcí za různých reakčních podmínek zabývá se faktory, které ovlivňují rychlost reakcí katalyzovaných enzymy - uvažujme monomolekulární

Více

BÍLKOVINY R 2. sféroproteiny (globulární bílkoviny): - rozpustné ve vodě, globulární struktura - odlišné funkce (zásobní, protilátky, enzymy,...

BÍLKOVINY R 2. sféroproteiny (globulární bílkoviny): - rozpustné ve vodě, globulární struktura - odlišné funkce (zásobní, protilátky, enzymy,... BÍLKVIY - látky peptidické povahy tvořené více než 100 aminokyselinami - aminokyseliny jsou poutány...: R 1 2 + R 2 R 1 R 2 2 2. Dělení bílkovin - vznikají proteosyntézou Struktura bílkovin primární sekundární

Více

Enzymy. RNDr. Bohuslava Trnková ÚKBLD 1.LF UK. ls 1

Enzymy. RNDr. Bohuslava Trnková ÚKBLD 1.LF UK. ls 1 Enzymy RNDr. Bohuslava Trnková ÚKBLD 1.LF UK ls 1 z řeckého "zymé" -kvasnice specifické katalyzátory chemických reakcí v živých organismech i v nejjednodušší buňce více než 3000 enzymů, druhová specifita

Více

Biologie buňky. proteiny, nukleové kyseliny, procesy genom, architekura (membrána), funkce mitoza, buněčná smrt, kmenové buňky, diferenciace

Biologie buňky. proteiny, nukleové kyseliny, procesy genom, architekura (membrána), funkce mitoza, buněčná smrt, kmenové buňky, diferenciace Biologie buňky Molecules of life Struktura buňky Buněčný cyklus proteiny, nukleové kyseliny, procesy genom, architekura (membrána), funkce mitoza, buněčná smrt, kmenové buňky, diferenciace Biologie tkání

Více

Gymnázium Vysoké Mýto nám. Vaňorného 163, 566 01 Vysoké Mýto

Gymnázium Vysoké Mýto nám. Vaňorného 163, 566 01 Vysoké Mýto Gymnázium Vysoké Mýto nám. Vaňorného 163, 566 01 Vysoké Mýto SUBSTITUČNÍ DERIVÁTY KARBOXYLOVÝCH O KYSELIN R C O X karboxylových kyselin - substituce na vedlejším uhlovodíkovém řetězci aminokyseliny - hydroxykyseliny

Více

Aerobní odbourávání cukrů+elektronový transportní řetězec

Aerobní odbourávání cukrů+elektronový transportní řetězec Aerobní odbourávání cukrů+elektronový transportní řetězec Dochází k němu v procesu jménem aerobní respirace. Skládá se z kroků: K1) Glykolýza K2) oxidativní dekarboxylace pyruvátu K3) Krebsův cyklus K4)

Více

ZŠ ÚnO, Bratří Čapků 1332

ZŠ ÚnO, Bratří Čapků 1332 Animovaná chemie Top-Hit Analytická chemie Analýza anorganických látek Důkaz aniontů Důkaz kationtů Důkaz kyslíku Důkaz vody Gravimetrická analýza Hmotnostní spektroskopie Chemická analýza Nukleární magnetická

Více

Metabolismus krok za krokem - volitelný předmět -

Metabolismus krok za krokem - volitelný předmět - Metabolismus krok za krokem - volitelný předmět - Vladimíra Kvasnicová pracovna: 411, tel. 267 102 411, vladimira.kvasnicova@lf3.cuni.cz informace, studijní materiály: http://vyuka.lf3.cuni.cz Sylabus

Více

Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti. Metabolusmus lipidů - anabolismus

Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti. Metabolusmus lipidů - anabolismus Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti Metabolusmus lipidů - anabolismus LIPIDY Zásobárna energie Hlavní složka buněčných membrán Pigmenty (retinal, karoten), kofaktory (vitamin

Více

Otázka: Metabolismus. Předmět: Biologie. Přidal(a): Furrow. - přeměna látek a energie

Otázka: Metabolismus. Předmět: Biologie. Přidal(a): Furrow. - přeměna látek a energie Otázka: Metabolismus Předmět: Biologie Přidal(a): Furrow - přeměna látek a energie Dělení podle typu reakcí: 1.) Katabolismus reakce, při nichž z látek složitějších vznikají látky jednodušší (uvolňuje

Více

Metabolismus aminokyselin I. Jana Novotná 2. LF UK, Ústav lékařské chemie a klinické biochemie

Metabolismus aminokyselin I. Jana Novotná 2. LF UK, Ústav lékařské chemie a klinické biochemie Metabolismus aminokyselin I Jana Novotná 2. LF UK, Ústav lékařské chemie a klinické biochemie Metabolismus aminokyselin PROTEINY Z POTRAVY GLYKOLÝZA KREBSŮV CYCLUS Proteosyntéza Trávení Transaminace TĚLESNÉ

Více

Úvod do biochemie. Vypracoval: RNDr. Milan Zimpl, Ph.D.

Úvod do biochemie. Vypracoval: RNDr. Milan Zimpl, Ph.D. Úvod do biochemie Vypracoval: RNDr. Milan Zimpl, Ph.D. TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY Co je to biochemie? Biochemie je chemií živých soustav.

Více

Substituční deriváty karboxylových kyselin

Substituční deriváty karboxylových kyselin Substituční deriváty karboxylových kyselin Vznikají substitucemi v, ke změnám v karboxylové funkční skupině. Poloha nové skupiny se často ve spojení s triviálními názvy označuje řeckými písmeny: Mají vlastnosti

Více

Lodish et al, Molecular Cell Biology, 4-6 vydání Alberts et al, Molecular Biology of the Cell, 4 vydání

Lodish et al, Molecular Cell Biology, 4-6 vydání Alberts et al, Molecular Biology of the Cell, 4 vydání Lodish et al, Molecular Cell Biology, 4-6 vydání Alberts et al, Molecular Biology of the Cell, 4 vydání http://web.natur.cuni.cz/~zdenap/zdenateachingnf.html CHEMICKÉ SLOŽENÍ BUŇKY BUŇKA: 99 % C, H, N,

Více

METABOLISMUS SACHARIDŮ

METABOLISMUS SACHARIDŮ METABLISMUS SAHARIDŮ GLUKNEGENEZE GLUKNEGENEZE entrální úloha glukosy Palivo Prekursor strukturních sacharidů a jiných molekul Syntéza glukosy z necukerných prekurzorů Laktát Aminokyseliny (uhlíkatý řetězec

Více

Aminokyseliny, proteiny, enzymy

Aminokyseliny, proteiny, enzymy Aminokyseliny, proteiny, enzymy Základy lékařské chemie a biochemie 2013/2014 Ing. Jarmila Krotká Metabolismus základní projev života látková přeměna souhrn veškerých dějů, které probíhají uvnitř organismu

Více

Příklady chemické sloučeniny a chemické vazby

Příklady chemické sloučeniny a chemické vazby DUM Základy přírodních věd DUM III/2-T3-2-15 Téma: Příklady chemické sloučeniny a chemické vazby Střední škola Rok: 2012 2013 Varianta: A Zpracoval: Mgr. Pavel Hrubý Mgr. Josef Kormaník Příklady chemické

Více

Centrální dogma molekulární biologie

Centrální dogma molekulární biologie řípravný kurz LF MU 2011/12 Centrální dogma molekulární biologie Nukleové kyseliny 1865 zákony dědičnosti (Johann Gregor Mendel) 1869 objev nukleových kyselin (Miescher) 1944 genetická informace v nukleových

Více

Chemická vazba. Molekula vodíku. Elektronová teorie. Oktetové pravidlo (Kossel, Lewis, 1916) Pevnost vazby vazebná energie.

Chemická vazba. Molekula vodíku. Elektronová teorie. Oktetové pravidlo (Kossel, Lewis, 1916) Pevnost vazby vazebná energie. Elektronová teorie ktetové pravidlo (Kossel, Lewis, 1916) Chemická vazba sdílení 2 valenčních e - opačného spinu 2 atomy za vzniku stabilní elektronové konfigurace vzácného plynu Spojení atomů prvků v

Více

Citrátový cyklus a Dýchací řetězec. Milada Roštejnská Helena Klímová

Citrátový cyklus a Dýchací řetězec. Milada Roštejnská Helena Klímová Citrátový cyklus a Dýchací řetězec Milada oštejnská elena Klímová 1 bsah 1 Citrátový cyklus Citrátový cyklus (reakce) Citrátový cyklus (schéma) espirace (dýchání) Vnější a vnitřní respirace Dýchací řetězec

Více