3 Ztráty tlaku při proudění tekutin v přímém potrubí a v místních odporech

Rozměr: px
Začít zobrazení ze stránky:

Download "3 Ztráty tlaku při proudění tekutin v přímém potrubí a v místních odporech"

Transkript

1 3 Ztráty tlaku při proudění tekutin v přímém potrubí a v místních odporech Oldřich Holeček, Lenka Schreiberová, Vladislav Nevoral I Základní vztahy a definice Při popisu proudění tekutin se vychází z rovnice kontinuity, která je vyjádřením zákona zachování hmoty a z Bernoulliho rovnice, vyjadřující zákon zachování mechanické energie. Vzhledem k tomu, že se dá objemový tok tekutiny V zapsat jako součin rychlosti a průtočného průřezu S V S, (3-) je zápis bilance hmotnosti pro systém vymezený průřezy a při ustáleném stavu S S, (3-) který pro konstantní hustotu tekutiny přechází na tvar S S. (3-3) Při proudění zařízením ztrácí reálná tekutina část své mechanické energie třením a vířením. Velikost těchto ztrát se často vyjadřuje ekvivalentní tlakovou diferencí, nazývanou ztráta tlaku. Ke ztrátám tlaku dochází při proudění tekutin přímým potrubím a v místních odporech, což je souhrnný termín pro tvarové kusy, armatury a místa v potrubní lince, ve kterých dochází k náhlé změně průřezu potrubí. Zde se budeme zabývat ztrátami tlaku v přímém potrubí a v armaturách. Vyjdeme z Bernoulliho rovnice ve tvaru p p h g h g edis,, (3-4) v níž indexy a označují průřezy potrubí na začátku a konci měřeného úseku, p tlaky, rychlosti a h geometrické výšky vztažené k těmto průřezům, značí hustotu proudící tekutiny, g tíhové zrychlení a e dis, měrnou ztrátovou energii mezi průřezy a. Ztráta tlaku souvisí s měrnou ztrátovou energií vztahem dis, dis, p e. (3-5) Ztrátovou energii v místních odporech charakterizujeme většinou pomocí součinitele místního odporu, který je definovaný vztahem e. (3-6) dis, / V přímém potrubí používáme součinitel tření, zavedený rovnicí l/ d e, (3-7) dis, / kde l je délka potrubí a d jeho průměr. Při výpočtech hodnot a z experimentálních dat vyjádříme nejprve z Bernoulliho rovnice (3-4) změnu tlaku p = p - p 3-

2 p h h g edis,. (3-8) Pokud jsou geometrické výšky zvolených průřezů stejné, tj. h = h rovnice (3-8) se zjednoduší na tvar p edis,. (3-9) Jestliže jsou plochy zvolených průřezů stejné, vyplývá z rovnice kontinuity, že jsou stejné i rychlosti a rovnice (3-9) se zjednoduší na vztah p e p. (3-0) dis, dis, Tlakovou diferenci p na zařízení měříme diferenčním manometrem. Mezi ní a rozdílem hladin manometrické kapaliny h platí vztah p = h ( m - ) g, (3-) kde m je hustota manometrické kapaliny. Kombinací vztahů (3-7) a (3-) dostaneme vzorec pro výpočet součinitele p ( ). (3-) Součinitel tření vypočteme z rovnice, kterou dostaneme ze vztahů (3-8) a (3-) p d (l ). (3-3) Rychlost proudění určíme z objemového průtoku a průřezu potrubí podle rovnice (3-). Hodnota součinitele tření (obecně i hodnota ) závisí na hustotě a viskozitě proudící tekutiny, rychlosti proudění, charakteristickém délkovém rozměru systému (u kruhové trubky je to její vnitřní průměr, u místních odporů je to vnitřní průměr trubky, do které jsou instalovány) a na drsnosti potrubí. Teorie podobnosti ukazuje, že závislost na hustotě a viskozitě proudící tekutiny, rychlosti proudění a charakteristickém délkovém rozměru lze vyjádřit jako závislost na jediné bezrozměrné proměnné - Reynoldsově kritériu, které je pro trubku kruhového průřezu definováno vztahem Re = d / (3-4) Závislost na Re byla zjištěna experimentálně (stejnými pokusy, jaké děláte v laboratoři, jen rozsah experimentů byl větší) a je uvedena například ve skriptech Chemické inženýrství I. Prohlédneme-li si ji, vidíme, že až do hodnoty Re = 300 závisí jen na hodnotě Re. Oblast proudění, při níž Re 300 (pro tok uvnitř trubky), se nazývá laminární a vyznačuje se tím, že rovnoběžné vrstvičky tekutiny po sobě kloužou a k přenosu hybnosti ve směru kolmém na směr proudění dochází jen na molekulární úrovni (viskozita). Pro hodnoty Re 0 4 (plně vyvinuté turbulentní proudění) dochází k intenzivnímu přenosu hybnosti ve směru kolmém na směr proudění (tím i ke zvýšeným ztrátám energie) makroskopickými turbulentními víry. Tvorbu vírů podporuje zvyšování rychlosti proudění a náhlé změny směru proudění tekutiny. K náhlým změnám směru proudění dochází jednak při průtoku tekutiny místními odpory, jednak při obtékání drobných nerovností na stěně trubky, jejichž střední výšku nazýváme absolutní drsnost potrubí a její hodnoty jsou pro různé materiály tabelovány. V blízkosti stěny trubky, kde je tekutina bržděna a její rychlost je nižší, zůstává i za podmínek, kdy v ose trubky je proudění turbulentní, zachována laminárně proudící vrstvička tekutiny, jejíž 3-

3 tloušťka se vzrůstajícím Re klesá. Výčnělky na stěně trubky se vynořují z laminární podvrstvy a začínají se uplatňovat při zvyšování intenzity turbulence, přestává záviset na Re a je funkcí pouze relativní drsnosti. Z tohoto kvalitativního výkladu je zřejmé, proč se hodnoty uvádějí v tabulkách jako konstanty nezávislé na Re. Předpokládá se totiž, že v tvarových kusech a armaturách je vždy vysoká intenzita turbulence. Uspořádání pokusů v laboratoři dovoluje platnost tohoto předpokladu ověřit. II Cíl práce. Určit součinitel tření pro zadaný rovný úsek potrubí a součinitele místního odporu pro zadané armatury.. Graficky znázornit závislost součinitele tření na Reynoldsově kritériu v měřeném oboru podmínek. 3. Pro součinitele místních odporů stanovit průměrnou hodnotu z hodnot naměřených při různých hodnotách objemového průtoku. III Popis zařízení Zařízení pro práci Ztráty tlaku je znázorněno na obr. 3-. Ze zásobní nádrže se odstředivým čerpadlem 3 čerpá voda přes jeden z dvojice ventilů 4 do jednoho ze dvou rotametrů 5. Princip měření průtoku rotametrem je popsán v oddíle II kapitoly Některé měřicí přístroje používané v laboratoři, která se nachází na v části Doplňky. Z rotametru je voda vedena do potrubí, které je rozděleno do tří větví A, B, C. Každá větev má postupně ve směru toku tekutiny přímý úsek trubky a jednu z proměřovaných armatur 7, 8, 9. Jednotlivé měřené části potrubního systému jsou přes propojovací moduly hadicemi trvale připojeny k manometru. Na obrázku je přerušovanou čarou schematicky znázorněno pouze propojení při měření tlakové ztráty na armatuře 7 (šoupě) s moduly. Ostatní části potrubního systému jsou zapojeny analogicky, při měření tlakové ztráty se propojení manometru s měřeným úsekem provede otevřením příslušné dvojice ventilů 5 0, všechny ostatní jsou zavřené. Diferenční manometr pro měření tlakové ztráty na jednotlivých úsecích aparatury je tvořen skleněnou U-trubicí naplněnou manometrickou kapalinou nemísitelnou s vodou. Manometr je vybaven odvzdušňovacími ventily a zkratovacím kohoutem 3. Ventily 0 a slouží k odvzdušnění aparatury při napouštění vody. Šoupětem 6 se reguluje objemový průtok vody zařízením. 3-3

4 a 0a 8a 9a 0a b 9b 0b 5a 6a 7a 4 8 A B C 5b 6b 7b a b 3 5a 4a 0b b 5b 4b Obr. 3- Schéma zařízení 3 - nádrž 8 ventil se šikmým vřetenem 5a,b - ventily pro připojení manometru na přímé potrubí A spínač čerpadla 9 ventil s kolmým vřetenem 6a,b - ventily pro připojení manometru na přímé potrubí B 3 - čerpadlo 0a, b ventily pro odvzdušnění potrubí 7a,b - ventily pro připojení manometru na přímé potrubí C 4 - ventily - diferenční manometr 8a,b - ventily pro připojení manometru na armatury rotametry ventily pro odvzdušnění manometru 9a,b - ventily pro připojení manometru na armatury šoupě 3 - zkratovací kohout manometru 0a,b - ventily pro připojení manometru na armatury šoupě 4 - teploměr a,b propojovací moduly A, B, C - úseky přímého potrubí, na kterých se provádí měření IV Postup práce IV. Příprava zařízení k měření. Zkontrolujeme, zda je nádrž naplněna vodou, pokud ne, doplníme ji destilovanou vodou.. Otevřeme armatury 7, 8 a 9 a odvzdušňovací ventily 0. Oba ventily 4 otevřeme o dvě otáčky a šoupě 6 zavřeme. Zkontrolujeme, zda jsou uzavřeny všechny ventily 5 až 0 na vývodech k propojovacím modulům pro diferenční manometr. Spustíme čerpadlo spínačem a počkáme, až se z hadic připojených k odvzdušňovacím ventilům 0 začne do zásobní nádrže vracet voda bez bublin. Tím jsme odstranili vzduch z aparatury. Vypneme 3-4

5 čerpadlo a uzavřeme ventily Uzavřeme dvě armatury z armatur 7, 8, 9 na těch dvou větvích, na kterých právě nebudeme měřit, armatura na proměřované větvi musí být otevřena naplno a otevřeme asi o dvě až tři otáčky ty správné ventily z 5-0 na větvi, na které měřit budeme. 4. Před vlastním měřením musíme odvzdušnit manometr, neboť přítomnost bubliny v přípoji k manometru způsobí chybu měření tlakové diference. Před odvzdušňováním manometru otevřeme ventil 4b, který vede do menšího rotametru o tři otáčky, 4a uzavřeme. Šoupě 6 otevřeme o dvě otáčky. Pak otevřeme naplno zkratovací kohout 3, zapneme čerpadlo a velmi opatrně povolíme jeden z odvzdušňovacích ventilů. Při této činnosti hrozí, že se podaří vypudit manometrickou kapalinu z trubky manometru. To je nežádoucí, protože je drahá a jedovatá. Vytéká-li z hadice připojené k odvzdušňovacímu ventilu voda bez bublinek, je příslušné rameno manometru odvzdušněno, stejně postupujeme u druhého ramene. Pak opatrně uzavřeme zkratovací ventil 3. Manometr je připraven k měření. Správnou funkci manometru můžeme zkontrolovat tak, že uzavřeme oba ventily 4. Při nulovém průtoku musí manometr ukazovat nulovou diferenci. 5. Zjistíme dosažitelný rozsah průtoků pro měření na připojeném úseku: Minimální měřitelný průtok je udán u kalibrační rovnice menšího rotametru, může se ale stát, že při této hodnotě nelze odečíst ztrátu tlaku. Pak je minimální průtok ten, při kterém je ztráta tlaku ještě měřitelná. Maximální průtok zjistíme tak, že zapneme čerpadlo a pomalu otevíráme přívodní ventil 4a k většímu rotametru, (menší rotametr odstavíme) a současně otevíráme šoupě 6. Pozorujeme současně rotametr a manometr. Maximální průtok je shora omezen buď výkonem čerpadla, nebo tím, že měřená tlaková ztráta dosáhne rozsahu diferenčního manometru, nebo tím, že je překročen měřící rozsah většího rotametru. Tuto činnost musíme opakovat pokaždé, když přepojíme manometr na nový měřený úsek. IV. Měření Před započetím měřením odečteme teplotu vody na teploměru 4 a zapíšeme do formuláře protokolu. Rozdíl mezi maximální a minimální hodnotou průtoku zjištěný v bodě 5 předchozí části rozdělíme na tolik stejných intervalů, aby byly zaplněny všechny řádky ve formuláři pro příslušné měření. Šoupětem 6 nastavujeme hodnoty průtoku a odečítáme tlakovou ztrátu, získané údaje zapisujeme do formuláře protokolu. Při malých průtocích přivíráme i ventil 4 před právě používaným rotametrem. IV.3 Ukončení práce Po změření posledního úseku změříme teplotu vody. Po ukončení všech zadaných měření uzavřeme oba ventily 4 a vypneme čerpadlo spínačem a uzavřeme šoupě

6 V Bezpečnostní opatření. Nelezeme po aparatuře, není na to dimenzována.. Varujeme se jakéhokoliv dotyku čerpadla v chodu. 3. Průtok vody měníme pomalu, abychom nevystavovali zařízení rázům. VI Zpracování naměřených hodnot Jednotlivé sloupce protokolu postupně vypočteme následovně: a) Průtok z kalibrační rovnice rotametru, která je na vývěsce u aparatury. b) Rychlost z průtoku a rovnice (3-). Potřebné rozměry aparatury jsou rovněž na vývěsce. Pro místní odpory vypočteme rychlost z průřezu té trubky, ve které jsou zařazeny. c) Tlakovou ztrátu vypočteme z údaje diferenčního manomentru a ze vztahu (3-). Hustota manometrické kapaliny je uvedena na vývěsce. d) Reynoldsovo kritérium ze vzorce (3-4). Hustotu a viskozitu vody odečteme z tabulek pro průměrnou hodnotu teploty vody během měření. e) Součinitel odporu pro místní odpory ze vztahu (3-). f) Součinitel tření pro přímé potrubí ze vztahu (3-3). K protokolu náleží i grafické znázornění změřené závislosti součinitele tření na Reynoldsově kritériu v semilogaritmických souřadnicích. Logaritmické souřadnice jsou pouze na x-ové ose (Reynoldsovo kritérium). Upozornění: Není vynášena hodnota logaritmu Reynoldsova kritéria, ale logaritmické měřítko na ose x (pokud je Re = 0 000, pak je vynesena hodnota a ne 4), osa y je v dekadickém měřítku. Kalibrační rovnici rotametru a další údaje z vývěsky je nutno si opsat ještě během měření. Vztah pro přepočet údaje manometru na tlakovou ztrátu předpokládá dosazení všech veličin v jednotkách SI! 3-6

7 VII Symboly d vnitřní průměr potrubí m e dis měrná ztrátová energie m s - g tíhové zrychlení m s - h geometrická výška potrubí m l délka potrubí m p tlak v potrubí Pa Re Reynoldsovo kritérium S průtočná plocha m v rychlost tekutiny m s - V objemový průtok tekutiny m 3 s - h rozdíl výšek hladin v manometru m p rozdíl tlaků, zde tlaková ztráta Pa dynamická viskozita Pa s součinitel tření v přímém potrubí hustota proudící tekutiny kg m -3 m hustota manometrické kapaliny kg m -3 součinitel místního odporu VIII Kontrolní otázky. Co je cílem práce, jaké veličiny budete nastavovat a jaké měřit?. Co uděláte před měřením? 3. Jak budete postupovat při měření? 4. Jak budete postupovat při odvzdušňování aparatury a kdy ji budete odvzdušňovat? 5. Jak budete postupovat při odvzdušňování manometru a kdy jej budete odvzdušňovat? 6. Jak zajistíte, aby neutekla manometrická kapalina? 7. Můžete sahat na ventily, když jimi proudí kapalina? Může být zapnuté odstředivé čerpadlo, má-li zavřené ventily na výtlaku? 8. Můžete měřit při současném průtoku tekutiny menším a větším rotametrem? 9. Jak budete postupovat při odečtu z U manometru? Jak poznáte, že je manometr správně odvzdušněný? 0. Jak moc budete otevírat nebo uzavírat měřené a neměřené armatury? 3-7

3 Ztráty tlaku při proudění tekutin v přímém potrubí a v místních odporech

3 Ztráty tlaku při proudění tekutin v přímém potrubí a v místních odporech 3 Ztráty tlaku při proudění tekutin v přímém potrubí a v místních odporech Oldřich Holeček, Lenka Schreiberová, Vladislav Nevoral I Základní vztahy a definice Při popisu proudění tekutin se vychází z rovnice

Více

Univerzita obrany. Měření součinitele tření potrubí K-216. Laboratorní cvičení z předmětu HYDROMECHANIKA. Protokol obsahuje 14 listů

Univerzita obrany. Měření součinitele tření potrubí K-216. Laboratorní cvičení z předmětu HYDROMECHANIKA. Protokol obsahuje 14 listů Univerzita obrany K-216 Laboratorní cvičení z předmětu HYDROMECHANIKA Měření součinitele tření potrubí Protokol obsahuje 14 listů Vypracoval: Vít Havránek Studijní skupina: 21-3LRT-C Datum zpracování:5.5.2011

Více

CVIČENÍ č. 11 ZTRÁTY PŘI PROUDĚNÍ POTRUBÍM

CVIČENÍ č. 11 ZTRÁTY PŘI PROUDĚNÍ POTRUBÍM CVIČENÍ č. 11 ZTRÁTY PŘI PROUDĚNÍ POTRUBÍM Místní ztráty, Tlakové ztráty Příklad č. 1: Jistá část potrubí rozvodného systému vody se skládá ze dvou paralelně uspořádaných větví. Obě potrubí mají průřez

Více

1 Tlaková ztráta při toku plynu výplní

1 Tlaková ztráta při toku plynu výplní I Základní vztahy a definice 1 Tlaková ztráta při toku plynu výplní Proudění plynu (nebo kapaliny) nehybnou vrstvou částic má řadu aplikací v chemické technoloii. Částice tvořící vrstvu mohou být kuličky,

Více

12 Prostup tepla povrchem s žebry

12 Prostup tepla povrchem s žebry 2 Prostup tepla povrchem s žebry Lenka Schreiberová, Oldřich Holeček Základní vztahy a definice V případech, kdy je třeba sdílet teplo z média s vysokým součinitelem přestupu tepla do média s nízkým součinitelem

Více

5 Charakteristika odstředivého čerpadla

5 Charakteristika odstředivého čerpadla 5 Charakteristika odstředivého čerpadla František Hovorka I Základní vztahy a definie K dopravě kapalin se často používá odstředivýh čerpadel Znalost harakteristiky čerpadla umožňuje posouzení hospodárnosti

Více

CVIČENÍ č. 7 BERNOULLIHO ROVNICE

CVIČENÍ č. 7 BERNOULLIHO ROVNICE CVIČENÍ č. 7 BERNOULLIHO ROVNICE Výtok z nádoby, Průtok potrubím beze ztrát Příklad č. 1: Určete hmotnostní průtok vody (pokud otvor budeme považovat za malý), která vytéká z válcové nádoby s průměrem

Více

Proudění Sborník článků z on-line pokračujícího zdroje Transformační technologie.

Proudění Sborník článků z on-line pokračujícího zdroje Transformační technologie. Proudění Sborník článků z on-line pokračujícího zdroje Transformační technologie. 37. Škrcení plynů a par 38. Vznik tlakové ztráty při proudění tekutiny 39. Efekty při proudění vysokými rychlostmi 40.

Více

Taková vrstva suspenze je nazývána fluidní vrstvou. Její existence je vymezena přesně definovanou oblastí mimovrstvové rychlosti tekutiny,

Taková vrstva suspenze je nazývána fluidní vrstvou. Její existence je vymezena přesně definovanou oblastí mimovrstvové rychlosti tekutiny, 8 Fluidace Lenka Schreiberová I Základní vztahy a definice Fluidace je děj, při kterém tekutina proudící ve směru opačném směru zemské tíže vytváří spolu s pevnými částicemi suspenzi. Suspenze může vyplňovat

Více

PŘÍKLADY Z HYDRODYNAMIKY Poznámka: Za gravitační zrychlení je ve všech příkladech dosazována přibližná hodnota 10 m.s -2.

PŘÍKLADY Z HYDRODYNAMIKY Poznámka: Za gravitační zrychlení je ve všech příkladech dosazována přibližná hodnota 10 m.s -2. PŘÍKLADY Z HYDRODYNAMIKY Poznámka: Za gravitační zrychlení je ve všech příkladech dosazována přibližná hodnota 10 m.s -. Řešené příklady z hydrodynamiky 1) Příklad užití rovnice kontinuity Zadání: Vodorovným

Více

6. Mechanika kapalin a plynů

6. Mechanika kapalin a plynů 6. Mechanika kapalin a plynů 1. Definice tekutin 2. Tlak 3. Pascalův zákon 4. Archimedův zákon 5. Rovnice spojitosti (kontinuity) 6. Bernoulliho rovnice 7. Fyzika letu Tekutiny: jejich rozdělení, jejich

Více

Třecí ztráty při proudění v potrubí

Třecí ztráty při proudění v potrubí Třecí ztráty při proudění v potrubí Vodorovným ocelovým mírně zkorodovaným potrubím o vnitřním průměru 0 mm proudí 6 l s - kapaliny o teplotě C. Určete tlakovou ztrátu vlivem tření je-li délka potrubí

Více

Mechanika tekutin. Tekutiny = plyny a kapaliny

Mechanika tekutin. Tekutiny = plyny a kapaliny Mechanika tekutin Tekutiny = plyny a kapaliny Vlastnosti kapalin Kapaliny mění tvar, ale zachovávají objem jsou velmi málo stlačitelné Ideální kapalina: bez vnitřního tření je zcela nestlačitelná Viskozita

Více

Určování povahy toku a výpočet příslušných hodnot Reynoldsova čísla

Určování povahy toku a výpočet příslušných hodnot Reynoldsova čísla Určování povahy toku a výpočet příslušných hodnot Reynoldsova čísla Úvod: Reynoldsovo číslo Re má význam pro posouzení charakteru proudění tekutin. Tekutiny mohou proudit laminárně, přechodově nebo turbulentně.

Více

ČVUT v Praze Fakulta stavební Katedra Technických zařízení budov. Modelování termohydraulických jevů 3.hodina. Hydraulika. Ing. Michal Kabrhel, Ph.D.

ČVUT v Praze Fakulta stavební Katedra Technických zařízení budov. Modelování termohydraulických jevů 3.hodina. Hydraulika. Ing. Michal Kabrhel, Ph.D. ČVUT v Praze Fakulta stavební Katedra Technických zařízení budov Modelování termohydraulických jevů 3.hodina Hydraulika Ing. Michal Kabrhel, Ph.D. Letní semestr 008/009 Pracovní materiály pro výuku předmětu.

Více

Ztráty tlaku v mikrofluidních zařízeních

Ztráty tlaku v mikrofluidních zařízeních Ztráty tlaku v mikrofluidních zařízeních 1 Teoretický základ Mikrofluidní čipy jsou zařízení obsahující jeden nebo více kanálků sloužících k manipulaci a zpracování tutin nebo k detci chemických slož v

Více

Mechanika tekutin. Hydrostatika Hydrodynamika

Mechanika tekutin. Hydrostatika Hydrodynamika Mechanika tekutin Hydrostatika Hydrodynamika Hydrostatika Kapalinu považujeme za kontinuum, můžeme využít předchozí úvahy Studujeme kapalinu, která je v klidu hydrostatika Objem kapaliny bude v klidu,

Více

1141 HYA (Hydraulika)

1141 HYA (Hydraulika) ČVUT v Praze, fakulta stavební katedra hydrauliky a hydrologie (K4) Přednáškové slidy předmětu 4 HYA (Hydraulika) verze: 09/008 K4 Fv ČVUT Tato webová stránka nabízí k nahlédnutí/stažení řadu pdf souborů

Více

PROUDĚNÍ KAPALIN A PLYNŮ, BERNOULLIHO ROVNICE, REÁLNÁ TEKUTINA

PROUDĚNÍ KAPALIN A PLYNŮ, BERNOULLIHO ROVNICE, REÁLNÁ TEKUTINA Škola: Autor: DUM: Vzdělávací obor: Tematický okruh: Téma: Masarykovo gymnázium Vsetín Mgr. Vladislav Válek MGV_F_SS_1S2_D16_Z_MECH_Proudeni_kapalin_bernoulliho_ rovnice_realna_kapalina_aerodynamika_kridlo_pl

Více

BIOMECHANIKA. Studijní program, obor: Tělesná výchovy a sport Vyučující: PhDr. Martin Škopek, Ph.D.

BIOMECHANIKA. Studijní program, obor: Tělesná výchovy a sport Vyučující: PhDr. Martin Škopek, Ph.D. BIOMECHANIKA 8, Disipativní síly II. (Hydrostatický tlak, hydrostatický vztlak, Archimédův zákon, dynamické veličiny, odporové síly, tvarový odpor, Bernoulliho rovnice, Magnusův jev) Studijní program,

Více

teplosměnná plocha Obr. 11-1 Schéma souproudu

teplosměnná plocha Obr. 11-1 Schéma souproudu 11 Sdílení tepla Lenka Schreiberová, Oldřich Holeček I Základní vztahy a definice Sdílením tepla rozumíme převod energie z místa s vyšší teplotou na místo s nižší teplotou vlivem rozdílu teplot. Zařízení

Více

Pokud proudění splňuje všechny výše vypsané atributy, lze o něm prohlásit, že je turbulentní (atributy je třeba znát).

Pokud proudění splňuje všechny výše vypsané atributy, lze o něm prohlásit, že je turbulentní (atributy je třeba znát). Laminární proudění je jeden z typů proudění reálné, tedy vazké, tekutiny. Laminární proudění vzniká obecně při nižších rychlostech (přesněji Re). Proudnice laminárního proudu jsou rovnoběžné a vytvářejí

Více

PROCESY V TECHNICE BUDOV cvičení 3, 4

PROCESY V TECHNICE BUDOV cvičení 3, 4 UNIVERZITA TOMÁŠE ATI VE ZLÍNĚ FAKULTA APLIKOVANÉ INFORMATIKY PROCESY V TECHNICE UDOV cvičení 3, 4 část Hana Charvátová, Dagmar Janáčová Zlín 013 Tento studijní materiál vznikl za finanční podpory Evropského

Více

Laboratorní úloha Měření charakteristik čerpadla

Laboratorní úloha Měření charakteristik čerpadla Laboratorní úloha Měření charakteristik čerpadla Zpracováno dle [1] Teorie: Čerpadlo je hydraulický stroj, který mění přiváděnou energii (mechanickou) na užitečnou energii (hydraulickou). Hlavní parametry

Více

MECHANIKA KAPALIN A PLYNŮ. Mgr. Jan Ptáčník - GJVJ - Fyzika - Mechanika - 1. ročník

MECHANIKA KAPALIN A PLYNŮ. Mgr. Jan Ptáčník - GJVJ - Fyzika - Mechanika - 1. ročník MECHANIKA KAPALIN A PLYNŮ Mgr. Jan Ptáčník - GJVJ - Fyzika - Mechanika - 1. ročník Mechanika kapalin a plynů Hydrostatika - studuje podmínky rovnováhy kapalin. Aerostatika - studuje podmínky rovnováhy

Více

Výtok kapaliny otvorem ve dně nádrže (výtok kapaliny z danaidy)

Výtok kapaliny otvorem ve dně nádrže (výtok kapaliny z danaidy) Výtok kapaliny otvorem ve dně nádrže (výtok kapaliny z danaidy) Úvod: Problematika výtoku kapaliny z nádrže se uplatňuje při vyprazdňování nádrží a při nejjednodušším nastavování konstantních průtoků.

Více

13 Reverzní osmóza. I Základní vztahy a definice. Lukáš Valenz, František Rejl, Oldřich Holeček

13 Reverzní osmóza. I Základní vztahy a definice. Lukáš Valenz, František Rejl, Oldřich Holeček 13 Reverzní osmóza Lukáš Valenz, rantišek Rejl, Oldřich Holeček I Základní vztahy a definice Oddělíme-li roztok látky B v rozpouštědle A v nádobě konstantního objemu polopropustnou membránou od čistého

Více

PROCESY V TECHNICE BUDOV 11

PROCESY V TECHNICE BUDOV 11 UNIVERZITA TOMÁŠE BATI VE ZLÍNĚ FAKULTA APLIKOVANÉ INFORMATIKY PROCESY V TECHNICE BUDOV 11 Dagmar Janáčová, Hana Charvátová, Zlín 2013 Tento studijní materiál vznikl za finanční podpory Evropského sociálního

Více

9 Míchání. I Základní vztahy a definice. Milan Jahoda

9 Míchání. I Základní vztahy a definice. Milan Jahoda 9 Míchání Milan Jahoda I Základní vztahy a definice Míchání je hydrodynamický proces, při kterém je různými způsoby vyvoláván vzájemný pohyb částic míchané vsádky. Míchání slouží k homogenizaci vzájemně

Více

Proudění viskózní tekutiny. Renata Holubova renata.holubov@upol.cz. Viskózní tok, turbulentní proudění, Poiseuillův zákon, Reynoldsovo číslo.

Proudění viskózní tekutiny. Renata Holubova renata.holubov@upol.cz. Viskózní tok, turbulentní proudění, Poiseuillův zákon, Reynoldsovo číslo. PROMOTE MSc POPIS TÉMATU FYZKA 1 Název Tematický celek Jméno a e-mailová adresa autora Cíle Obsah Pomůcky Poznámky Proudění viskózní tekutiny Mechanika kapalin Renata Holubova renata.holubov@upol.cz Popis

Více

Míchání. P 0,t = Po ρ f 3 d 5 (2)

Míchání. P 0,t = Po ρ f 3 d 5 (2) Míchání Úvod: Mícháním se urychluje dosažení koncentrační a teplotní homogenity, které podstatně ovlivňují průběh tepelných a difuzních operací, reakcí v reaktorech a bezpečnost chemických provozů, která

Více

Stanovení měrného tepla pevných látek

Stanovení měrného tepla pevných látek 61 Kapitola 10 Stanovení měrného tepla pevných látek 10.1 Úvod O teple se dá říci, že souvisí s energií neuspořádaného pohybu molekul. Úhrnná pohybová energie neuspořádaného pohybu molekul, pohybu postupného,

Více

Mechanika kontinua. Mechanika elastických těles Mechanika kapalin

Mechanika kontinua. Mechanika elastických těles Mechanika kapalin Mechanika kontinua Mechanika elastických těles Mechanika kapalin Mechanika kontinua Mechanika elastických těles Mechanika kapalin a plynů Kinematika tekutin Hydrostatika Hydrodynamika Kontinuum Pro vyšetřování

Více

38. VZNIK TLAKOVÉ ZTRÁTY PŘI PROUDĚNÍ TEKUTINY Jiří Škorpík

38. VZNIK TLAKOVÉ ZTRÁTY PŘI PROUDĚNÍ TEKUTINY Jiří Škorpík 38. VZNIK TLAKOVÉ ZTRÁTY PŘI PROUDĚNÍ TEKUTINY Jiří Škorpík Laminární proudění viskozita 1 Stanovení ztráty při laminárním proudění 3 Proudění turbulentní Reynoldsovo číslo 5 Stanovení střední rychlosti

Více

4 Ztráty tlaku v trubce s výplní

4 Ztráty tlaku v trubce s výplní 4 Ztráty tlaku v trubce s výlní Miloslav Ludvík, Milan Jahoda I Základní vztahy a definice Proudění kaaliny či lynu nehybnou vrstvou částic má řadu alikací v chemické technologii. Částice tvořící vrstvu

Více

Hydromechanické procesy Obtékání těles

Hydromechanické procesy Obtékání těles Hydromechanické procesy Obtékání těles M. Jahoda Klasifikace těles 2 Typy externích toků dvourozměrné osově symetrické třírozměrné (s/bez osy symetrie) nebo: aerodynamické vs. neaerodynamické Odpor a vztlak

Více

Základy fyziky + opakovaná výuka Fyziky I

Základy fyziky + opakovaná výuka Fyziky I Ústav fyziky a měřicí techniky Pohodlně se usaďte Přednáška co nevidět začne! Základy fyziky + opakovaná výuka Fyziky I Web ústavu: ufmt.vscht.cz : @ufmt444 1 Otázka 8 Rovinná rotace, valení válce po nakloněné

Více

ρ = měrný odpor, ρ [Ω m] l = délka vodiče

ρ = měrný odpor, ρ [Ω m] l = délka vodiče 7 Kapitola 2 Měření elektrických odporů 2 Úvod Ohmův zákon definuje ohmický odpor, zkráceně jen odpor, R elektrického vodiče jako konstantu úměrnosti mezi stejnosměrným proudem I, který protéká vodičem

Více

STANOVENÍ VLASTNOSTÍ AERAČNÍCH ZAŘÍZENÍ

STANOVENÍ VLASTNOSTÍ AERAČNÍCH ZAŘÍZENÍ STANOVENÍ VLASTNOSTÍ AERAČNÍCH ZAŘÍZENÍ Zadání: 1. Stanovte oxygenační kapacitu a procento využití kyslíku v čisté vodě pro provzdušňovací porézní element instalovaný v plexi válci následujících rozměrů:

Více

Stanovení hustoty pevných a kapalných látek

Stanovení hustoty pevných a kapalných látek 55 Kapitola 9 Stanovení hustoty pevných a kapalných látek 9.1 Úvod Hustota látky ρ je hmotnost její objemové jednotky, definované vztahem: ρ = dm dv, kde dm = hmotnost objemového elementu dv. Pro homogenní

Více

h ztr = ς = v = (R-4) π d Po dosazení z rov.(r-3) a (R-4) do rov.(r-2) a úpravě dostaneme pro ztrátový součinitel (R-1) a 2 Δp ς = (R-2)

h ztr = ς = v = (R-4) π d Po dosazení z rov.(r-3) a (R-4) do rov.(r-2) a úpravě dostaneme pro ztrátový součinitel (R-1) a 2 Δp ς = (R-2) Stanovení součinitele odporu a relativní ekvivalentní délky araturního prvku Úvod: Potrubí na dopravu tekutin (kapalin, plynů) jsou vybavena araturníi prvky, kterýi se regulují průtoky (ventily, šoupata),

Více

Praktikum I Mechanika a molekulová fyzika

Praktikum I Mechanika a molekulová fyzika Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK Praktikum I Mechanika a molekulová fyzika Úloha č. III Název: Proudění viskózní kapaliny Pracoval: Matyáš Řehák stud.sk.: 16 dne: 20.3.2008

Více

Univerzita obrany. Měření na výměníku tepla K-216. Laboratorní cvičení z předmětu TERMOMECHANIKA. Protokol obsahuje 13 listů. Vypracoval: Vít Havránek

Univerzita obrany. Měření na výměníku tepla K-216. Laboratorní cvičení z předmětu TERMOMECHANIKA. Protokol obsahuje 13 listů. Vypracoval: Vít Havránek Univerzita obrany K-216 Laboratorní cvičení z předmětu TERMOMECHANIKA Měření na výměníku tepla Protokol obsahuje 13 listů Vypracoval: Vít Havránek Studijní skupina: 21-3LRT-C Datum zpracování: 7.5.2011

Více

7. MECHANIKA TEKUTIN - statika

7. MECHANIKA TEKUTIN - statika 7. - statika 7.1. Základní vlastnosti tekutin Obecným pojem tekutiny jsou myšleny. a. Mají společné vlastnosti tekutost, částice jsou od sebe snadno oddělitelné, nemají vlastní stálý tvar apod. Reálné

Více

Proudění vody v potrubí. Martin Šimek

Proudění vody v potrubí. Martin Šimek Proudění vody v potrubí Martin Šimek Zadání problému Umělá vlna pro surfing Dosavadní řešení pomocí čerpadel Sestrojení modelu pro přívod vody z řeky Vyčíslení tohoto modelu Zhodnocení výsledků Návrh systému

Více

VISKOZITA A POVRCHOVÉ NAPĚTÍ

VISKOZITA A POVRCHOVÉ NAPĚTÍ VISKOZITA A POVRCHOVÉ NAPĚTÍ TEORETICKÝ ÚVOD V proudící reálné tekutině se projevuje mezi elementy tekutiny vnitřní tření. Síly tření způsobí, že rychlejší vrstva tekutiny se snaží zrychlit vrstvu pomalejší

Více

Operační program Vzdělávání pro konkurenceschopnost Název projektu: Inovace magisterského studijního programu Fakulty ekonomiky a managementu

Operační program Vzdělávání pro konkurenceschopnost Název projektu: Inovace magisterského studijního programu Fakulty ekonomiky a managementu Operační program Vzdělávání pro konkurenceschopnost Název projektu: Inovace magisterského studijního programu Fakulty ekonomiky a managementu Registrační číslo projektu: CZ.1.07/2.2.00/28.0326 PROJEKT

Více

Teoretické otázky z hydromechaniky

Teoretické otázky z hydromechaniky Teoretické otázky z hydromechaniky 1. Napište vztah pro modul pružnosti kapaliny (+ popis jednotlivých členů a 2. Napište vztah pro Newtonův vztah pro tečné napětí (+ popis jednotlivých členů a 3. Jaká

Více

Praktikum I Mechanika a molekulová fyzika

Praktikum I Mechanika a molekulová fyzika Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK Praktikum I Mechanika a molekulová fyzika Úloha č. XIX Název: Pád koule ve viskózní kapalině Pracoval: Matyáš Řehák stud.sk.: 16 dne:

Více

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE Fakulta stavební. Laboratoře TZB

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE Fakulta stavební. Laboratoře TZB ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE Fakulta stavební Laboratoře TZB Cvičení č. 4 Zjištění charakteristiky teplovodní otopné soustavy Ing. Daniel Adamovský, Ph.D. Katedra TZB, fakulta stavební, ČVUT v

Více

Hydrodynamika. Archimédův zákon Proudění tekutin Obtékání těles

Hydrodynamika. Archimédův zákon Proudění tekutin Obtékání těles Hydrodynamika Archimédův zákon Proudění tekutin Obtékání těles Opakování: Osnova hodin 1. a 2. Archimédův zákon Proudění tekutin Obtékání těles reálnou tekutinou Využití energie proudící tekutiny Archimédes

Více

Laboratorní práce č. 1: Určení výtokové rychlosti kapaliny

Laboratorní práce č. 1: Určení výtokové rychlosti kapaliny Přírodní vědy moderně a interaktivně SEMINÁŘ FYZIKY Laboratorní práce č. 1: Určení výtokové rychlosti kapaliny Přírodní vědy moderně a interaktivně SEMINÁŘ FYZIKY FYZIKÁLNA 2. ročník šestiletého studia

Více

7 Tenze par kapalin. Obr. 7.1 Obr. 7.2

7 Tenze par kapalin. Obr. 7.1 Obr. 7.2 7 Tenze par kapalin Tenze par (neboli tlak sytých, případně nasycených par) je tlak v jednosložkovém systému, kdy je za dané teploty v rovnováze fáze plynná s fází kapalnou nebo pevnou. Tenze par je nejvyšší

Více

d p o r o v t e p l o m ě r, t e r m o č l á n k

d p o r o v t e p l o m ě r, t e r m o č l á n k d p o r o v t e p l o m ě r, t e r m o č l á n k Ú k o l : a) Proveďte kalibraci odporového teploměru, termočlánku a termistoru b) Určete teplotní koeficienty odporového teploměru, konstanty charakterizující

Více

Koncept tryskového odstředivého hydromotoru

Koncept tryskového odstředivého hydromotoru 1 Koncept tryskového odstředivého hydromotoru Ing. Ladislav Kopecký, květen 2017 Obr. 1 Návrh hydromotoru provedeme pro konkrétní typ čerpadla a to Čerpadlo SIGMA 32-CVX-100-6- 6-LC-000-9 komplet s motorem

Více

Univerzita obrany K-204. Laboratorní cvičení z předmětu AERODYNAMIKA. Měření rozložení součinitele tlaku c p na povrchu profilu Gö 398

Univerzita obrany K-204. Laboratorní cvičení z předmětu AERODYNAMIKA. Měření rozložení součinitele tlaku c p na povrchu profilu Gö 398 Univerzita obrany K-204 Laboratorní cvičení z předmětu AERODYNAMIKA Měření rozložení součinitele tlaku c p na povrchu profilu Gö 39 Protokol obsahuje 12 listů Vypracoval: Vít Havránek Studijní skupina:

Více

12. VISKOZITA A POVRCHOVÉ NAPĚTÍ

12. VISKOZITA A POVRCHOVÉ NAPĚTÍ 12. VISKOZITA A POVRCHOVÉ NAPĚTÍ 12.1 TEORETICKÝ ÚVOD V proudící reálné tekutině se projevuje mezi elementy tekutiny vnitřní tření. Síly tření způsobí, že rychlejší vrstva tekutiny se snaží zrychlit vrstvu

Více

5b MĚŘENÍ VISKOZITY KAPALIN POMOCÍ PADAJÍCÍ KULIČKY

5b MĚŘENÍ VISKOZITY KAPALIN POMOCÍ PADAJÍCÍ KULIČKY Laboratorní cvičení z předmětu Reologie potravin a kosmetických prostředků 5b MĚŘENÍ VISKOZITY KAPALIN POMOCÍ PADAJÍCÍ KULIČKY 1. TEORIE: Měření viskozity pomocí padající kuličky patří k nejstarším metodám

Více

U218 - Ústav procesní a zpracovatelské techniky FS ČVUT v Praze. ! t 2 :! Stacionární děj, bez vnitřního zdroje, se zanedbatelnou viskózní disipací

U218 - Ústav procesní a zpracovatelské techniky FS ČVUT v Praze. ! t 2 :! Stacionární děj, bez vnitřního zdroje, se zanedbatelnou viskózní disipací VII. cená konvekce Fourier Kirchhoffova rovnice T!! ρ c p + ρ c p u T λ T + µ d t :! (g d + Q" ) (VII 1) Stacionární děj bez vnitřního zdroje se zanedbatelnou viskózní disipací! (VII ) ρ c p u T λ T 1.

Více

Pohyb tělesa po nakloněné rovině

Pohyb tělesa po nakloněné rovině Pohyb tělesa po nakloněné rovině Zadání 1 Pro vybrané těleso a materiál nakloněné roviny zjistěte závislost polohy tělesa na čase při jeho pohybu Výsledky vyneste do grafu a rozhodněte z něj, o jakou křivku

Více

2. DOPRAVA KAPALIN. h v. h s. Obr. 2.1 Doprava kapalin čerpadlem h S sací výška čerpadla, h V výtlačná výška čerpadla 2.1 HYDROSTATICKÁ ČERPADLA

2. DOPRAVA KAPALIN. h v. h s. Obr. 2.1 Doprava kapalin čerpadlem h S sací výška čerpadla, h V výtlačná výška čerpadla 2.1 HYDROSTATICKÁ ČERPADLA 2. DOPRAVA KAPALIN Zařízení pro dopravu kapalin dodávají tekutinám energii pro transport kapaliny, pro hrazení ztrát způsobených jejich viskozitou (vnitřním třením), překonání výškových rozdílů, umožnění

Více

Kalorimetrická měření I

Kalorimetrická měření I KATEDRA EXPERIMENTÁLNÍ FYZIKY PŘÍRODOVĚDECKÁ FAKULTA UNIVERZITY PALACKÉHO V OLOMOUCI FYZIKÁLNÍ PRAKTIKUM Z MOLEKULOVÉ FYZIKY A TERMODYNAMIKY Kalorimetrická měření I Úvod Teplo Teplo Q je určeno energií,

Více

13 Reverzní osmóza. I Základní vztahy a definice. p +, začne rozpouštědlo pronikat membránou opačným směrem - dochází k reverzní

13 Reverzní osmóza. I Základní vztahy a definice. p +, začne rozpouštědlo pronikat membránou opačným směrem - dochází k reverzní 13 Reverzní osmóza O. Holeček, J. Kotowski, J. Hrdlička I Základní vztahy a definice Oddělíme-li roztok látky B v rozpouštědle A v nádobě konstantního objemu polopropustnou membránou od čistého rozpouštědla

Více

Proč funguje Clemův motor

Proč funguje Clemův motor - 1 - Proč funguje Clemův motor Princip - výpočet - konstrukce (c) Ing. Ladislav Kopecký, 2004 Tento článek si klade za cíl odhalit podstatu funkce Clemova motoru, provést základní výpočty a navrhnout

Více

Měření prostupu tepla

Měření prostupu tepla KATEDRA EXPERIMENTÁLNÍ FYZIKY PŘÍRODOVĚDECKÁ FAKULTA UNIVERZITY PALACKÉHO V OLOMOUCI FYZIKÁLNÍ PRAKTIKUM Z MOLEKULOVÉ FYZIKY A TERMODYNAMIKY Měření prostupu tepla Úvod Prostup tepla je kombinovaný případ

Více

3 - Hmotnostní bilance filtrace a výpočet konstant filtrační rovnice

3 - Hmotnostní bilance filtrace a výpočet konstant filtrační rovnice 3 - Hmotnostní bilance filtrace a výpočet konstant filtrační rovnice I Základní vztahy a definice iltrace je jedna z metod dělení heterogenních směsí pevná fáze tekutina. Směs prochází pórovitým materiálem

Více

PRAKTIKUM... Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK. Odevzdal dne: Seznam použité literatury 0 1. Celkem max.

PRAKTIKUM... Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK. Odevzdal dne: Seznam použité literatury 0 1. Celkem max. Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK PRAKTIKUM... Úloha č. Název: Pracoval: stud. skup. dne Odevzdal dne: Možný počet bodů Udělený počet bodů Práce při měření 0 5 Teoretická

Více

Síla, vzájemné silové působení těles

Síla, vzájemné silové působení těles Síla, vzájemné silové působení těles Síla, vzájemné silové působení těles Číslo DUM v digitálním archivu školy VY_32_INOVACE_07_02_01 Vytvořeno Leden 2014 Síla, značka a jednotka síly, grafické znázornění

Více

Mechanika kapalin a plynů

Mechanika kapalin a plynů Mechanika kapalin a plynů Petr Pošta pposta@karlin.mff.cuni.cz 24. listopadu 2010 Obsah Tekutiny Tlak Tlak v kapalině vyvolaný vnější silou Tlak v kapalině vyvolaný tíhovou silou Tlak v kapalině vyvolaný

Více

VYBRANÉ STATĚ Z PROCESNÍHO INŢENÝRSTVÍ cvičení 2

VYBRANÉ STATĚ Z PROCESNÍHO INŢENÝRSTVÍ cvičení 2 UNIVERZITA TOMÁŠE BATI VE ZLÍNĚ FAKULTA APLIKOVANÉ INFORMATIKY VYBRANÉ STATĚ Z PROCESNÍHO INŢENÝRSTVÍ cvičení 2 Přestup tepla nucená konvekce beze změny skupenství v trubkových systémech Hana Charvátová,

Více

8. TLAKOMĚRY. Úkol měření. Popis přípravků a přístrojů

8. TLAKOMĚRY. Úkol měření. Popis přípravků a přístrojů Úkol měření 8. TLAKOMĚRY 1. Ověřte funkci diferenčního kapacitního tlakoměru pro měření malých tlakových rozdílů. 2. Změřte závislost obou kapacit na tlakovém rozdílu.. Údaje porovnejte s průmyslovým diferenčním

Více

Potrubí a armatury. Potrubí -slouží k dopravě kapalin, plynů, sypkých hmot i kusového materiálu

Potrubí a armatury. Potrubí -slouží k dopravě kapalin, plynů, sypkých hmot i kusového materiálu Potrubí a armatury Potrubí -slouží k dopravě kapalin, plynů, sypkých hmot i kusového materiálu Výhody : snadná regulovatelnost dopravovaného množství Možnost vzájemného míšení několik látek dohromady Snadné

Více

HUSTOTA PEVNÝCH LÁTEK

HUSTOTA PEVNÝCH LÁTEK HUSTOTA PEVNÝCH LÁTEK Hustota látek je základní informací o studované látce. V případě homogenní látky lze i odhadnout druh materiálu s pomocí známých tabulkovaných údajů (s ohledem na barvu a vzhled materiálu

Více

Vytápění BT01 TZB II cvičení

Vytápění BT01 TZB II cvičení CZ.1.07/2.2.00/28.0301 Středoevropské centrum pro vytváření a realizaci inovovaných technicko-ekonomických studijních programů Vytápění BT01 TZB II cvičení Zadání U zadaného RD nadimenzujte potrubní rozvody

Více

HYDROSTATICKÝ TLAK. 1. K počítači připojíme pomocí kabelu modul USB.

HYDROSTATICKÝ TLAK. 1. K počítači připojíme pomocí kabelu modul USB. HYDROSTATICKÝ TLAK Vzdělávací předmět: Fyzika Tematický celek dle RVP: Mechanické vlastnosti tekutin Tematická oblast: Mechanické vlastnosti kapalin Cílová skupina: Žák 7. ročníku základní školy Cílem

Více

125ESB 1-B Energetické systémy budov

125ESB 1-B Energetické systémy budov ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE Fakulta stavební Katedra technických zařízení budov 15ESB 1-B Energetické systémy budov doc. Ing. Michal Kabrhel, Ph.D. Pracovní materiály pro výuku předmětu 1 Dimenzování

Více

Senzory průtoku tekutin

Senzory průtoku tekutin Senzory průtoku tekutin Průtok - hmotnostní - objemový - rychlostní Druhy proudění - laminární parabolický rychlostní profil - turbulentní víry Způsoby měření -přímé: dávkovací senzory, čerpadla -nepřímé:

Více

Teorie měření a regulace

Teorie měření a regulace Ústav technologie, mechanizace a řízení staveb Teorie měření a regulace měření průtoku 17.SPEC-t.4 ZS 2015/2016 2015 - Ing. Václav Rada, CSc. Další pokračování o principech měření Průtok je určen střední

Více

Vysoká škola báňská Technická univerzita Ostrava Mechanika tekutin návody pro laboratorní měření Milada Kozubková a kolektiv Ostrava 2007

Vysoká škola báňská Technická univerzita Ostrava Mechanika tekutin návody pro laboratorní měření Milada Kozubková a kolektiv Ostrava 2007 Vysoká škola báňská Technická univerzita Ostrava Mechanika tekutin návody pro laboratorní měření Milada Kozubková a kolektiv Ostrava 007 Určeno pro projekt: Operační program Rozvoj lidských zdrojů Název:

Více

FYZIKÁLNÍ PRAKTIKUM FJFI ČVUT V PRAZE. Měření Poissonovy konstanty vzduchu. Abstrakt

FYZIKÁLNÍ PRAKTIKUM FJFI ČVUT V PRAZE. Měření Poissonovy konstanty vzduchu. Abstrakt FYZIKÁLNÍ PRAKTIKUM FJFI ČVUT V PRAZE Úloha 4: Měření dutých objemů vážením a kompresí plynu Datum měření: 23. 10. 2009 Měření Poissonovy konstanty vzduchu Jméno: Jiří Slabý Pracovní skupina: 1 Ročník

Více

Rušené usazování Úvod: Při rušeném usazování dochází ke srážkám částic a jejich narážení na stěny nádoby. Výsledkem je prodlužování dráhy částic a

Rušené usazování Úvod: Při rušeném usazování dochází ke srážkám částic a jejich narážení na stěny nádoby. Výsledkem je prodlužování dráhy částic a Rušené usazování Úvod: Při rušeném usazování dochází ke srážkám částic a jejich narážení na stěny nádoby. Výsledkem je prodlužování dráhy částic a zpomalování usazování. V praxi probíhá usazování v usazovácích

Více

215.1.18 REOLOGICKÉ VLASTNOSTI ROPNÝCH FRAKCÍ

215.1.18 REOLOGICKÉ VLASTNOSTI ROPNÝCH FRAKCÍ 215.1.18 REOLOGICKÉ VLASTNOSTI ROPNÝCH FRAKCÍ ÚVOD Reologie se zabývá vlastnostmi látek za podmínek jejich deformace toku. Reologická měření si kladou za cíl stanovení materiálových parametrů látek při

Více

p gh Hladinové (rovňové) plochy Tlak v kapalině, na niž působí pouze gravitační síla země

p gh Hladinové (rovňové) plochy Tlak v kapalině, na niž působí pouze gravitační síla země Hladinové (rovňové) plochy Plochy, ve kterých je stálý statický tlak. Při posunu po takové ploše je přírůstek tlaku dp = 0. Hladinová plocha musí být všude kolmá ke směru výsledného zrychlení. Tlak v kapalině,

Více

Dimenzování teplovodních otopných soustav

Dimenzování teplovodních otopných soustav ČVUT v Praze Fakulta stavební Katedra technických zařízení budov Dimenzování teplovodních otopných soustav Ing. Michal Kabrhel, Ph.D. Základní fyzikální vztahy Množství tepla Q (W) Hmotnostní průtok (kg/s)

Více

E1 - Měření koncentrace kyslíku magnetickým analyzátorem

E1 - Měření koncentrace kyslíku magnetickým analyzátorem E1 - Měření koncentrace kyslíku magnetickým analyzátorem Funkční princip analyzátoru Podle chování plynů v magnetickém poli rozlišujeme plyny paramagnetické a diamagnetické. Charakteristickou konstantou

Více

LINEÁRNÍ ROVNICE S ABSOLUTNÍ HODNOTOU

LINEÁRNÍ ROVNICE S ABSOLUTNÍ HODNOTOU LINEÁRNÍ ROVNICE S ABSOLUTNÍ HODNOTOU LINEÁRNÍ ROVNICE S ABSOLUTNÍ HODNOTOU je lineární rovnice, ve které se vyskytuje jeden nebo více výrazů v absolutní hodnotě. ABSOLUTNÍ HODNOTA x reálného čísla x je

Více

2302R007 Hydraulické a pneumatické stroje a zařízení Specializace: - Rok obhajoby: 2006. Anotace

2302R007 Hydraulické a pneumatické stroje a zařízení Specializace: - Rok obhajoby: 2006. Anotace VŠB Technická univerzita Ostrava Fakulta strojní Katedra hydromechaniky a hydraulických zařízení Název práce: Tlakové ztráty mazacího systému s plastickým mazivem Autor práce: Jiří Milata Typ práce: bakalářská

Více

1. Změřte teplotní závislost povrchového napětí destilované vody σ v rozsahu teplot od 295 do 345 K metodou bublin.

1. Změřte teplotní závislost povrchového napětí destilované vody σ v rozsahu teplot od 295 do 345 K metodou bublin. 1 Pracovní úkoly 1. Změřte teplotní závislost povrchového napětí destilované vody σ v rozsahu teplot od 295 do 35 K metodou bublin. 2. Měřenou závislost znázorněte graficky. Závislost aproximujte kvadratickou

Více

Únik plynu plným průřezem potrubí

Únik plynu plným průřezem potrubí Únik plynu plným průřezem potrubí Studentská vědecká konference 22. 11. 13 Autorka: Angela Mendoza Miranda Vedoucí práce: doc. Ing. Václav Koza, CSc. Roztržení, ocelové potrubí DN 300 http://sana.sy/servers/gallery/201201/20120130-154715_h.jpg

Více

Základní části teplovodních otopných soustav

Základní části teplovodních otopných soustav OTOPNÉ SOUSTAVY 56 Základní části teplovodních otopných soustav 58 1 Navrhování OS Vstupní informace Umístění stavby Účel objektu (obytná budova, občanská vybavenost, průmysl, sportovní stavby) Provoz

Více

Výsledný tvar obecné B rce je ve žlutém rámečku

Výsledný tvar obecné B rce je ve žlutém rámečku Vychází N-S rovnice, kterou ovšem zjednodušuje zavedením určitých předpokladů omezujících předpokladů. Bernoulliova rovnice v základním tvaru je jednorozměrný model stacionárního proudění nevazké a nestlačitelné

Více

2. M ení t ecích ztrát na vodní trati

2. M ení t ecích ztrát na vodní trati 2. M ení t ecích ztrát na vodní trati 2. M ení t ecích ztrát na vodní trati 2.1. Úvod P i proud ní skute ných tekutin vznikají následkem viskozity t ecí odpory, tj. síly, které p sobí proti pohybu ástic

Více

Studentská tvůrčí činnost 2009. 3D modelování vírových struktur v rozváděcí turbínové lopatkové mříži. David Jícha

Studentská tvůrčí činnost 2009. 3D modelování vírových struktur v rozváděcí turbínové lopatkové mříži. David Jícha Studentská tvůrčí činnost 2009 3D modelování vírových struktur v rozváděcí turbínové lopatkové mříži David Jícha Vedoucí práce : Prof.Ing.P.Šafařík,CSc. a Ing.D.Šimurda 3D modelování vírových struktur

Více

NÁVODY DO LABORATOŘE PROCESNÍHO INŽENÝRSTVÍ II studijní opora

NÁVODY DO LABORATOŘE PROCESNÍHO INŽENÝRSTVÍ II studijní opora Vysoká škola báňská Technická univerzita Ostrava Fakulta metalurgie a materiálového inženýrství NÁVODY DO LABORATOŘE PROCESNÍHO INŽENÝRSTVÍ II studijní opora Lucie Obalová Marek Večeř Ostrava 2013 Recenze:

Více

Měření povrchového napětí

Měření povrchového napětí Měření povrchového napětí Úkol : 1. Změřte pomocí kapilární elevace povrchové napětí daných kapalin při dané teplotě. 2. Změřte pomocí kapkové metody povrchové napětí daných kapalin při dané teplotě. Pomůcky

Více

Stanovení účinku vodního paprsku

Stanovení účinku vodního paprsku Vysoké učení technické v Brně akulta strojního inženýrství Energetický ústav Odbor fluidního inženýrství Victora Kaplana NÁZEV: tanovení účinku vodního paprsku tudijní skupina: 3B/16 Vypracovali: Jméno

Více

Charakteristika čerpání kapaliny.

Charakteristika čerpání kapaliny. Václav Slaný BS design Bystřice nad Pernštejnem Úvod Charakteristika čerpání kapaliny. Laboratorní zařízení průtoku kapalin, které provádí kalibraci průtokoměrů statickou metodou podle ČSN EN 24185 [4],

Více

2 Tokové chování polymerních tavenin reologické modely

2 Tokové chování polymerních tavenin reologické modely 2 Tokové chování polymerních tavenin reologické modely 2.1 Reologie jako vědní obor Polymerní materiály jsou obvykle zpracovávány v roztaveném stavu, proto se budeme v prvé řadě zabývat jejich tokovým

Více

1. Změřte modul pružnosti v tahu E oceli z protažení drátu. 2. Změřte modul pružnosti v tahu E oceli a duralu nebo mosazi z průhybu trámku.

1. Změřte modul pružnosti v tahu E oceli z protažení drátu. 2. Změřte modul pružnosti v tahu E oceli a duralu nebo mosazi z průhybu trámku. 1 Pracovní úkoly 1. Změřte modul pružnosti v tahu E oceli z protažení drátu. 2. Změřte modul pružnosti v tahu E oceli a duralu nebo mosazi z průhybu trámku. 3. Výsledky měření graficky znázorněte, modul

Více

Komponenta Vzorce a popis symbol propojení Hydraulický válec jednočinný. d: A: F s: p provoz.: v: Q přítok: s: t: zjednodušeně:

Komponenta Vzorce a popis symbol propojení Hydraulický válec jednočinný. d: A: F s: p provoz.: v: Q přítok: s: t: zjednodušeně: Plánování a projektování hydraulických zařízení se provádí podle nejrůznějších hledisek, přičemž jsou hydraulické elementy voleny podle požadovaných funkčních procesů. Nejdůležitějším předpokladem k tomu

Více