12. Determinanty. 12. Determinanty p. 1/25

Rozměr: px
Začít zobrazení ze stránky:

Download "12. Determinanty. 12. Determinanty p. 1/25"

Transkript

1 12. Determinanty 12. Determinanty p. 1/25

2 12. Determinanty p. 2/25 Determinanty 1. Induktivní definice determinantu 2. Determinant a antisymetrické formy 3. Výpočet hodnoty determinantu 4. Determinant součinu matic 5. Rozvoj determinantu podle prvků libovolného řádku 6. Adjungovaná a inverzní matice 7. Determinant transponované matice 8. Determinant jako funkce sloupců 9. Cramerovy vzorce pro řešení soustav

3 12. Determinanty p. 3/ Induktivní definice determinantu Budeme řešit soustavu a 11 x 1 + a 12 x 2 = b 1 a 21 x 1 + a 22 x 2 = b 2

4 12. Determinanty p. 3/ Induktivní definice determinantu Budeme řešit soustavu a 11 x 1 + a 12 x 2 = b 1 a 21 x 1 + a 22 x 2 = b 2 Úpravami, které nepoužívají dělení, dostaneme [ [ ] a11 a 12 b 1 a 11 a 12 b 1 a 21 a 22 b 2 ]a 22 r 1 a 12 r 2 a 11 a 22 a 12 a 21 0 b 1 a 22 a 12 b 2

5 12. Determinanty p. 3/ Induktivní definice determinantu Budeme řešit soustavu a 11 x 1 + a 12 x 2 = b 1 a 21 x 1 + a 22 x 2 = b 2 Úpravami, které nepoužívají dělení, dostaneme [ [ ] a11 a 12 b 1 a 11 a 12 b 1 a 21 a 22 b 2 ]a 22 r 1 a 12 r 2 a 11 a 22 a 12 a 21 0 b 1 a 22 a 12 b 2 [ a11 a 12 b 1 a 21 a 22 b 2 ]a 11 r 2 a 21 r 1 [ ] a11 a 12 b 1 0 a 11 a 22 a 12 a 21 a 11 b 2 b 1 a 21

6 12. Determinanty p. 3/ Induktivní definice determinantu Budeme řešit soustavu a 11 x 1 + a 12 x 2 = b 1 a 21 x 1 + a 22 x 2 = b 2 Úpravami, které nepoužívají dělení, dostaneme [ [ ] a11 a 12 b 1 a 11 a 12 b 1 a 21 a 22 b 2 ]a 22 r 1 a 12 r 2 a 11 a 22 a 12 a 21 0 b 1 a 22 a 12 b 2 [ a11 a 12 b 1 a 21 a 22 b 2 ]a 11 r 2 a 21 r 1 odkud pro a 11 a 22 a 12 a 21 0 dostaneme [ ] a11 a 12 b 1 0 a 11 a 22 a 12 a 21 a 11 b 2 b 1 a 21 x 1 = b 1a 22 a 12 b 2 a 11 a 22 a 12 a 21, x 2 = a 11b 2 b 1 a 21 a 11 a 22 a 12 a 21.

7 12. Determinanty p. 4/ Induktivní definice determinantu Nyní si všimněme, že čitatele i jmenovatele lze vyjádřit pomocí jedné funkce matice: [ a b det c d ] = a b c d = ad bc.

8 12. Determinanty p. 4/ Induktivní definice determinantu Nyní si všimněme, že čitatele i jmenovatele lze vyjádřit pomocí jedné funkce matice: [ a b det c d ] = a b c d = ad bc. Řešení soustavy lze zapsat za pomocí tohoto označení ve tvaru b 1 a 12 b 2 a 22 a 11 b 1 a 21 b 2 x 1 =, x 2 = d d

9 12. Determinanty p. 4/ Induktivní definice determinantu Nyní si všimněme, že čitatele i jmenovatele lze vyjádřit pomocí jedné funkce matice: [ a b det c d ] = a b c d = ad bc. Řešení soustavy lze zapsat za pomocí tohoto označení ve tvaru b 1 a 12 b 2 a 22 a 11 b 1 a 21 b 2 x 1 =, x 2 = d d kde d = a 11 a 22 a 12 a 21 = a 11 a 12 a 21 a 22

10 12. Determinanty p. 4/ Induktivní definice determinantu Nyní si všimněme, že čitatele i jmenovatele lze vyjádřit pomocí jedné funkce matice: [ a b det c d ] = a b c d = ad bc. Řešení soustavy lze zapsat za pomocí tohoto označení ve tvaru b 1 a 12 b 2 a 22 a 11 b 1 a 21 b 2 x 1 =, x 2 = d d kde d = a 11 a 22 a 12 a 21 = a 11 a 12 a 21 a 22 Tyto vzorce se dají zobecnit na řešení soustav n rovnic o n neznámých.

11 12. Determinanty p. 5/ Induktivní definice determinantu DEFINICE 1 Pro každou čtvercovou matici A = [a ij ], necht M A ij značí matici, která vznikne vyškrtnutím jejího i-tého řádku aj-tého sloupce. MaticeM A ij se nazývá minor matice A příslušný k dvojici indexů (i,j).

12 12. Determinanty p. 5/ Induktivní definice determinantu DEFINICE 1 Pro každou čtvercovou matici A = [a ij ], necht M A ij značí matici, která vznikne vyškrtnutím jejího i-tého řádku aj-tého sloupce. MaticeM A ij se nazývá minor matice A příslušný k dvojici indexů (i,j). PŘÍKLAD 1 A = , MA 12 =

13 12. Determinanty p. 6/ Induktivní definice determinantu DEFINICE 2 Necht A = [a ij ] je čtvercová matice řádu n s reálnými nebo komplexními prvky. Determinant matice A je číslo, které značíme det A nebo A a vypočteme jej podle následujících pravidel:

14 12. Determinanty p. 6/ Induktivní definice determinantu DEFINICE 2 Necht A = [a ij ] je čtvercová matice řádu n s reálnými nebo komplexními prvky. Determinant matice A je číslo, které značíme det A nebo A a vypočteme jej podle následujících pravidel: D1 Je-lin = 1, pak deta = det[a 11 ] = a 11.

15 12. Determinanty p. 6/ Induktivní definice determinantu DEFINICE 2 Necht A = [a ij ] je čtvercová matice řádu n s reálnými nebo komplexními prvky. Determinant matice A je číslo, které značíme det A nebo A a vypočteme jej podle následujících pravidel: D1 Je-lin = 1, pak deta = det[a 11 ] = a 11. D2 Předpokládejme, že n > 1 a že umíme určit determinant libovolné čtvercové matice řádu n 1. Pak deta = a 11 M A 11 a 12 M A 12 +a 13 M A ( 1) n+1 a 1n M A 1n

16 12.1 Induktivní definice determinantu DEFINICE 2 Necht A = [a ij ] je čtvercová matice řádu n s reálnými nebo komplexními prvky. Determinant matice A je číslo, které značíme det A nebo A a vypočteme jej podle následujících pravidel: D1 Je-lin = 1, pak deta = det[a 11 ] = a 11. D2 Předpokládejme, že n > 1 a že umíme určit determinant libovolné čtvercové matice řádu n 1. Pak deta = a 11 M A 11 a 12 M A 12 +a 13 M A ( 1) n+1 a 1n M A 1n Determinant matice je tedy funkce prvků matice, která je definována explicitně pron = 1 a pro n > 1 je definována pomocí pravidla, které definuje determinant matice řádu n pomocí determinantů řádu n Determinanty p. 6/25

17 12. Determinanty p. 7/ Induktivní definice determinantu PŘÍKLAD = = = 1( ) 2( )+3(1 2 ( 1) 1 ) = = 1 ( 5) = 8.

18 12. Determinanty p. 7/ Induktivní definice determinantu PŘÍKLAD = = = 1( ) 2( )+3(1 2 ( 1) 1 ) = = 1 ( 5) = 8. PŘÍKLAD 3 l l 21 l l n1 l n2... l nn = l 11 Odtud speciálně plyne deti = 1. l l 32 l l n2 l n3... l nn = = l 11 l nn.

19 12. Determinanty p. 8/ Induktivní definice determinantu Definujme algebraický doplněk matice A příslušný k dvojici indexů (i, j) předpisem A ij = ( 1) i+j M A ij Vzorec D2 lze pak přepsat ve tvaru. deta = a 11 A a 1n A 1n.

20 12. Determinanty p. 8/ Induktivní definice determinantu Definujme algebraický doplněk matice A příslušný k dvojici indexů (i, j) předpisem A ij = ( 1) i+j M A ij Vzorec D2 lze pak přepsat ve tvaru. deta = a 11 A a 1n A 1n. Determinant matice n-tého řádu počítaný podle pravidla D2 vyžaduje vyčíslení součtunsoučinů čísel a determinantů matic řádu n 1. Použijeme-li pravidlo D2 na determinanty řádu n 1, dostaneme, že vyčíslení determinantu matice n-tého řádu vyžaduje vyčíslení součtu n(n 1) součinů dvou čísel a determinantů řádu n 2. Opakováním tohoto postupu zjistíme, že vyčíslení determinantu matice n-tého řádu vyžaduje n! sčítanců tvořených součiny n čísel, tj. celkem (n 1)n! součinů.

21 12.1 Induktivní definice determinantu Definujme algebraický doplněk matice A příslušný k dvojici indexů (i, j) předpisem A ij = ( 1) i+j M A ij Vzorec D2 lze pak přepsat ve tvaru. deta = a 11 A a 1n A 1n. Determinant matice n-tého řádu počítaný podle pravidla D2 vyžaduje vyčíslení součtunsoučinů čísel a determinantů matic řádu n 1. Použijeme-li pravidlo D2 na determinanty řádu n 1, dostaneme, že vyčíslení determinantu matice n-tého řádu vyžaduje vyčíslení součtu n(n 1) součinů dvou čísel a determinantů řádu n 2. Opakováním tohoto postupu zjistíme, že vyčíslení determinantu matice n-tého řádu vyžaduje n! sčítanců tvořených součiny n čísel, tj. celkem (n 1)n! součinů. Existují efektivnější postupy výpočtu determinantů. 12. Determinanty p. 8/25

22 12. Determinanty p. 9/ Determinant a antisymetrické formy LEMMA 1 Necht A = [a ij ] a B = [b ij ] jsou čtvercové matice, které se liší nanejvýš v prvním řádku, aαje libovolný skalár. Pak αra 1 = αdeta, r A 1 +r B 1 = deta+detb.

23 12. Determinanty p. 9/ Determinant a antisymetrické formy LEMMA 1 Necht A = [a ij ] a B = [b ij ] jsou čtvercové matice, které se liší nanejvýš v prvním řádku, aαje libovolný skalár. Pak αra 1 = αdeta, r A 1 +r B 1 = deta+detb. DŮKAZ: αra 1 = αa αa 1n a a 2n = αa 11 A αa 1n A 1n = αdeta a n1... a nn

24 12. Determinanty p. 9/ Determinant a antisymetrické formy LEMMA 1 Necht A = [a ij ] a B = [b ij ] jsou čtvercové matice, které se liší nanejvýš v prvním řádku, aαje libovolný skalár. Pak αra 1 = αdeta, r A 1 +r B 1 = deta+detb. DŮKAZ: αra 1 = ra 1 +r B 1 = αa αa 1n a a 2n = αa 11 A αa 1n A 1n = αdeta a n1... a nn a 11 +b a 1n +b 1n a a 2n = a n1... a nn = (a 11 +b 11 )A (a 1n +b 1n )A 1n = = (a 11 A a 1n A 1n )+(b 11 A b 1n A 1n ) = deta+detb.

25 12. Determinanty p. 10/ Determinant a antisymetrické formy LEMMA 2 Necht A=[a ij ] je čtvercová matice řádu n 2. Pak r A 1 deta = r A r A 2 2 = r A 1.

26 12. Determinanty p. 10/ Determinant a antisymetrické formy LEMMA 2 Necht A=[a ij ] je čtvercová matice řádu n 2. Pak r A 1 deta = r A r A 2 2 = r A 1. DŮKAZ: Pron = 2 platí ra 1 = a 11 a 12 a 21 a = 22 r A 2 = a 11 a 22 a 12 a 21 = (a 21 a 12 a 22 a 11 ) = ra 2 r A 1.

27 12.2 Determinant a antisymetrické formy LEMMA 2 Necht A=[a ij ] je čtvercová matice řádu n 2. Pak r A 1 deta = r A r A 2 2 = r A 1. DŮKAZ: Pron = 2 platí ra 1 = a 11 a 12 a 21 a = 22 r A 2 = a 11 a 22 a 12 a 21 = (a 21 a 12 a 22 a 11 ) = ra 2 r A 1. Důkaz pro obecnější případ se provede rozepsáním determinantů minorů v D2 a vhodnou úpravou. Úplný důkaz je však komplikovaný. 12. Determinanty p. 10/25

28 12. Determinanty p. 11/ Determinant a antisymetrické formy VĚTA 1 Necht A = [a ij ] je čtvercová matice řádu n 2 a necht B = [b ij ] je matice, která vznikla z matice A vzájemnou výměnou i-tého a j-tého řádku. Pak r A i deta = i r r A j j = A j i r A i j = detb.

29 12. Determinanty p. 11/ Determinant a antisymetrické formy VĚTA 1 Necht A = [a ij ] je čtvercová matice řádu n 2 a necht B = [b ij ] je matice, která vznikla z matice A vzájemnou výměnou i-tého a j-tého řádku. Pak r A i deta = i r r A j j = A j i r A i j = detb. DŮKAZ: Důkaz se provádí pomocí matematické indukce s využitím Lemma 2. Viz literatura.

30 12. Determinanty p. 12/ Determinant a antisymetrické formy VĚTA 2 Necht A a B jsou čtvercové matice, které mají stejné řádky s výjimkou k-tého. Pak pro libovolné α platí k αr A k = αdeta, k r A k +rb k = deta+detb.

31 12. Determinanty p. 12/ Determinant a antisymetrické formy VĚTA 2 Necht A a B jsou čtvercové matice, které mají stejné řádky s výjimkou k-tého. Pak pro libovolné α platí k αr A k = αdeta, k r A k +rb k = deta+detb. DŮKAZ: Důkaz se provádí pomocí matematické indukce s využitím Lemma 1 a Věty 1. Viz literatura.

32 12. Determinanty p. 12/ Determinant a antisymetrické formy VĚTA 2 Necht A a B jsou čtvercové matice, které mají stejné řádky s výjimkou k-tého. Pak pro libovolné α platí k αr A k = αdeta, k r A k +rb k = deta+detb. DŮKAZ: Důkaz se provádí pomocí matematické indukce s využitím Lemma 1 a Věty 1. Viz literatura. Věty 1. a 2. můžeme shrnout tvrzením, že determinant je antisymetrická bilineární forma libovolné dvojice řádků matice.

33 12. Determinanty p. 13/ Determinant a antisymetrické formy DŮSLEDEK: Necht A je libovolná čtvercová matice:

34 12. Determinanty p. 13/ Determinant a antisymetrické formy DŮSLEDEK: Necht A je libovolná čtvercová matice: 1. Má-li A dva stejné řádky, pak deta = 0.

35 12. Determinanty p. 13/ Determinant a antisymetrické formy DŮSLEDEK: Necht A je libovolná čtvercová matice: 1. Má-li A dva stejné řádky, pak deta = Má-li A nulový řádek, pak deta = 0.

36 12. Determinanty p. 13/ Determinant a antisymetrické formy DŮSLEDEK: Necht A je libovolná čtvercová matice: 1. Má-li A dva stejné řádky, pak deta = Má-li A nulový řádek, pak deta = Je-li B čtvercová matice, která má stejné řádky jako A s výjimkou k-tého, a r B k = r A k +αr A l, k l, pak deta = detb.

37 12. Determinanty p. 13/ Determinant a antisymetrické formy DŮSLEDEK: Necht A je libovolná čtvercová matice: 1. Má-li A dva stejné řádky, pak deta = Má-li A nulový řádek, pak deta = Je-li B čtvercová matice, která má stejné řádky jako A s výjimkou k-tého, a r B k = r A k +αr A l, k l, pak deta = detb. 4. Jsou-li řádky A lineárně závislé, pak deta = 0.

38 12. Determinanty p. 14/ Výpočet hodnoty determinantu Elementární řádkové úpravy ovlivňují velmi jednoduše hodnotu determinantu.

39 12. Determinanty p. 14/ Výpočet hodnoty determinantu Elementární řádkové úpravy ovlivňují velmi jednoduše hodnotu determinantu. 1. Vzájemná výměna dvou řádků změní znaménko determinantu

40 12. Determinanty p. 14/ Výpočet hodnoty determinantu Elementární řádkové úpravy ovlivňují velmi jednoduše hodnotu determinantu. 1. Vzájemná výměna dvou řádků změní znaménko determinantu 2. Vynásobení řádku skalárem vynásobí tímto skalárem determinant

41 12. Determinanty p. 14/ Výpočet hodnoty determinantu Elementární řádkové úpravy ovlivňují velmi jednoduše hodnotu determinantu. 1. Vzájemná výměna dvou řádků změní znaménko determinantu 2. Vynásobení řádku skalárem vynásobí tímto skalárem determinant 3. Přičtení násobku některého řádku k jinému hodnotu determinantu nezmění

42 12. Determinanty p. 14/ Výpočet hodnoty determinantu Elementární řádkové úpravy ovlivňují velmi jednoduše hodnotu determinantu. 1. Vzájemná výměna dvou řádků změní znaménko determinantu 2. Vynásobení řádku skalárem vynásobí tímto skalárem determinant 3. Přičtení násobku některého řádku k jinému hodnotu determinantu nezmění Elementární řádkové úpravy matice proto můžeme využít k převodu matice na speciální tvar vhodný pro výpočet determinantu. Pro nás je to prozatím dolní trojúhelníková matice, jejíž determinant je podle příkladu 3 roven součinu diagonálních prvků.

43 12. Determinanty p. 15/ Výpočet hodnoty determinantu PŘÍKLAD r 3 +2r 3 = = = r 2 = = 2 ( 6) 1 ( 1) = 12

44 12.3 Výpočet hodnoty determinantu PŘÍKLAD r 3 +2r 3 = = = r 2 = = 2 ( 6) 1 ( 1) = 12 PŘÍKLAD r 3 = r 2 = r 3 = = ( 2) 1 1 = Determinanty p. 15/ r 2 =

45 12. Determinanty p. 16/ Determinant součinu matic VĚTA 3 Necht A a B jsou čtvercové matice řádun. Pak det(ab) = deta detb.

46 12.5 Rozvoj determinantu podle libovolného 12. Determinanty p. 17/25 řádku VĚTA 4 JestližeA = [a ij ] je čtvercová matice řádun > 1, pak pro libovolný index k platí deta = a k1 A k1 + +a kn A kn.

47 12.5 Rozvoj determinantu podle libovolného 12. Determinanty p. 17/25 řádku VĚTA 4 JestližeA = [a ij ] je čtvercová matice řádun > 1, pak pro libovolný index k platí deta = a k1 A k1 + +a kn A kn. DŮSLEDEK: Necht A = [a ij ] je čtvercová matice řádun > Jsou-li k,l dva různé indexy řádků matice A, pak a k1 A l1 + +a kn A ln = Je-li A trojúhelníková matice, pak deta = a 11 a nn.

48 12. Determinanty p. 18/ Adjungovaná a inverzní matice DEFINICE 3 Necht A je libovolná čtvercová matice řádu n > 1. Pak adjungovaná matice à k matici A je čtvercová matice stejného řádu definovaná předpisem [ ] A11... A n1 à = A 1n... A nn

49 12. Determinanty p. 18/ Adjungovaná a inverzní matice DEFINICE 3 Necht A je libovolná čtvercová matice řádu n > 1. Pak adjungovaná matice à k matici A je čtvercová matice stejného řádu definovaná předpisem [ ] A11... A n1 à = A 1n... A nn PŘÍKLAD 6 Pro matici A = je à =

50 12. Determinanty p. 19/ Adjungovaná a inverzní matice PŘÍKLAD 6 Pokračování Opravdu A 11 = = 2, A 12 = = ( 2 6) = 8, A 13 = = 2, A 21 = = ( 2 1) = 3, A 22 = = 3 3 = 6, A 23 = = 3, A 31 = = 4, A 32 = = 4, A 33 = = 4.

51 12. Determinanty p. 20/ Adjungovaná a inverzní matice VĚTA 5 Necht A je čtvercová regulární matice řádun > 1. PakdetA 0 a A 1 = 1 detaã.

52 12. Determinanty p. 21/ Adjungovaná a inverzní matice PŘÍKLAD 7 Pro matici A definovanou v Příkladu 6 dostaneme = =

53 12. Determinanty p. 21/ Adjungovaná a inverzní matice PŘÍKLAD 7 Pro matici A definovanou v Příkladu 6 dostaneme = = DŮSLEDEK: Matice A je regulární, právě když deta 0.

54 12. Determinanty p. 21/ Adjungovaná a inverzní matice PŘÍKLAD 7 Pro matici A definovanou v Příkladu 6 dostaneme = = DŮSLEDEK: Matice A je regulární, právě když deta 0. DŮKAZ: Je-li A singulární, pak má závislé řádky, takže podle důsledku 4 vět 1 a 2 platí deta = 0. Obrácené tvrzení plyne z věty 5.

55 12. Determinanty p. 22/ Determinant transponované matice VĚTA 6 Necht A je čtvercová matice. Pak deta = deta.

56 12. Determinanty p. 22/ Determinant transponované matice VĚTA 6 Necht A je čtvercová matice. Pak deta = deta. DŮKAZ: Každou permutační matici P vyjádřit ve tvarup = P 1 P k součinu elementárních permutačních maticp i, které jsou symetrické, takže P = P k P 1 a detp = P k P 1 = detp.

57 12. Determinanty p. 22/ Determinant transponované matice VĚTA 6 Necht A je čtvercová matice. Pak deta = deta. DŮKAZ: Každou permutační matici P vyjádřit ve tvarup = P 1 P k součinu elementárních permutačních maticp i, které jsou symetrické, takže P = P k P 1 a detp = P k P 1 = detp. Jelikož transponování nemění diagonálu matice a determinant trojúhelníkové matice je roven součinu jejích diagonálních prvků, platí tvrzení také pro každou trojúhelníkovou matici.

58 12. Determinanty p. 22/ Determinant transponované matice VĚTA 6 Necht A je čtvercová matice. Pak deta = deta. DŮKAZ: Každou permutační matici P vyjádřit ve tvarup = P 1 P k součinu elementárních permutačních maticp i, které jsou symetrické, takže P = P k P 1 a detp = P k P 1 = detp. Jelikož transponování nemění diagonálu matice a determinant trojúhelníkové matice je roven součinu jejích diagonálních prvků, platí tvrzení také pro každou trojúhelníkovou matici. Jestliže je A obecná čtvercová matice, pak podle věty o LUP rozkladu existují dolní trojúhelníková matice L, horní trojúhelníková matice U a permutační matice P tak, že A = LUP.

59 12. Determinanty p. 22/ Determinant transponované matice VĚTA 6 Necht A je čtvercová matice. Pak deta = deta. DŮKAZ: Každou permutační matici P vyjádřit ve tvarup = P 1 P k součinu elementárních permutačních maticp i, které jsou symetrické, takže P = P k P 1 a detp = P k P 1 = detp. Jelikož transponování nemění diagonálu matice a determinant trojúhelníkové matice je roven součinu jejích diagonálních prvků, platí tvrzení také pro každou trojúhelníkovou matici. Jestliže je A obecná čtvercová matice, pak podle věty o LUP rozkladu existují dolní trojúhelníková matice L, horní trojúhelníková matice U a permutační matice P tak, že A = LUP. S použitím věty o součinu determinantů odtud plyne deta = det(p U L ) = P U L = L U P = det(lup) = deta.

60 12. Determinanty p. 23/ Determinant jako funkce sloupců Z věty 6 vyplývá, že determinant považovaný za funkci sloupců má stejné vlastnosti jako determinant považovaný za funkci řádků. Například determinant je antisymetrická bilineární forma libovolné dvojice sloupců matice.

61 12. Determinanty p. 23/ Determinant jako funkce sloupců Z věty 6 vyplývá, že determinant považovaný za funkci sloupců má stejné vlastnosti jako determinant považovaný za funkci řádků. Například determinant je antisymetrická bilineární forma libovolné dvojice sloupců matice. VĚTA 7 Necht A je čtvercová matice řádun > 1. Pak proi = 1,...,n platí deta = a 1i A 1i + +a ni A ni.

62 12. Determinanty p. 24/ Cramerovy vzorce Použijeme-li vzorec pro inverzní matici k řešení soustavy Ax = b s regulární čtvercovou maticí A řádun > 1, dostaneme pro složkyx i řešení x vzorce

63 12. Determinanty p. 24/ Cramerovy vzorce Použijeme-li vzorec pro inverzní matici k řešení soustavy Ax = b s regulární čtvercovou maticí A řádun > 1, dostaneme pro složkyx i řešení x vzorce x i = [ A 1 b ] i = 1 deta (A 1ib 1 + +A ni b n ).

64 12. Determinanty p. 24/ Cramerovy vzorce Použijeme-li vzorec pro inverzní matici k řešení soustavy Ax = b s regulární čtvercovou maticí A řádun > 1, dostaneme pro složkyx i řešení x vzorce x i = [ A 1 b ] i = 1 deta (A 1ib 1 + +A ni b n ). Minory příslušné k prvkůmi-tého sloupce neobsahují prvky i-tého sloupce, a proto můžeme výraz v kulaté závorce považovat za rozvoj determinantu podle i-tého sloupce matice

65 12. Determinanty p. 24/ Cramerovy vzorce Použijeme-li vzorec pro inverzní matici k řešení soustavy Ax = b s regulární čtvercovou maticí A řádun > 1, dostaneme pro složkyx i řešení x vzorce x i = [ A 1 b ] i = 1 deta (A 1ib 1 + +A ni b n ). Minory příslušné k prvkůmi-tého sloupce neobsahují prvky i-tého sloupce, a proto můžeme výraz v kulaté závorce považovat za rozvoj determinantu podle i-tého sloupce matice i i A b i = [ b ] = [ s A 1... s A i 1 b s A i+1... s A n která vznikne z A záměnoui-tého sloupce za b. ],

66 12.9 Cramerovy vzorce Použijeme-li vzorec pro inverzní matici k řešení soustavy Ax = b s regulární čtvercovou maticí A řádun > 1, dostaneme pro složkyx i řešení x vzorce x i = [ A 1 b ] i = 1 deta (A 1ib 1 + +A ni b n ). Minory příslušné k prvkůmi-tého sloupce neobsahují prvky i-tého sloupce, a proto můžeme výraz v kulaté závorce považovat za rozvoj determinantu podle i-tého sloupce matice i i A b i = [ b ] = [ s A 1... s A i 1 b s A i+1... s A n která vznikne z A záměnoui-tého sloupce za b. Výrazy ], x i = detab i deta, se nazývají Cramerovy vzorce. i = 1,...,n 12. Determinanty p. 24/25

67 12. Determinanty p. 25/ Cramerovy vzorce PŘÍKLAD 8 Pomocí Cramerových vzorců najděte řešení soustavy 3x 1 + 2x 2 + x 3 = 6 2x 1 + 2x 3 = 0 3x 1 x 2 x 3 = 0

68 12. Determinanty p. 25/ Cramerovy vzorce PŘÍKLAD 8 Pomocí Cramerových vzorců najděte řešení soustavy 3x 1 + 2x 2 + x 3 = 6 2x 1 + 2x 3 = 0 3x 1 x 2 x 3 = 0 ŘEŠENÍ: Postupně vypočteme determinant matice soustavy A = = 20

69 12. Determinanty p. 25/ Cramerovy vzorce PŘÍKLAD 8 Pomocí Cramerových vzorců najděte řešení soustavy 3x 1 + 2x 2 + x 3 = 6 2x 1 + 2x 3 = 0 3x 1 x 2 x 3 = 0 ŘEŠENÍ: Postupně vypočteme determinant matice soustavy A = = 20 a čitatele Cramerových vzorců A b = = 12, Ab 2 = = 48, Ab 3 = = 12

70 12. Determinanty p. 25/ Cramerovy vzorce PŘÍKLAD 8 Pomocí Cramerových vzorců najděte řešení soustavy 3x 1 + 2x 2 + x 3 = 6 2x 1 + 2x 3 = 0 3x 1 x 2 x 3 = 0 ŘEŠENÍ: Postupně vypočteme determinant matice soustavy A = = 20 a čitatele Cramerových vzorců A b = = 12, Ab 2 = = 48, Ab 3 = = 12 Odtud x 1 = Ab 1 deta = 3 5, x 2 = Ab 2 deta = 12 5, x 3 = Ab 3 deta = 3 5.

Lineární algebra. Matice, operace s maticemi

Lineární algebra. Matice, operace s maticemi Lineární algebra Matice, operace s maticemi Operační program Vzdělávání pro konkurenceschopnost Název projektu: Inovace magisterského studijního programu Fakulty ekonomiky a managementu Registrační číslo

Více

1 Linearní prostory nad komplexními čísly

1 Linearní prostory nad komplexními čísly 1 Linearní prostory nad komplexními čísly V této přednášce budeme hledat kořeny polynomů, které se dále budou moci vyskytovat jako složky vektorů nebo matic Vzhledem k tomu, že kořeny polynomu (i reálného)

Více

HODNOST A DETERMINANT MATICE, INVERZNÍ MATICE

HODNOST A DETERMINANT MATICE, INVERZNÍ MATICE MENDELOVA UNIVERZITA V BRNĚ LDF MT MATEMATIKA HODNOST A DETERMINANT MATICE, INVERZNÍ MATICE Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s

Více

1. Matice a maticové operace. 1. Matice a maticové operace p. 1/35

1. Matice a maticové operace. 1. Matice a maticové operace p. 1/35 1. Matice a maticové operace 1. Matice a maticové operace p. 1/35 1. Matice a maticové operace p. 2/35 Matice a maticové operace 1. Aritmetické vektory 2. Operace s aritmetickými vektory 3. Nulový a opačný

Více

Učební texty k státní bakalářské zkoušce Matematika Vlastní čísla a vlastní hodnoty. študenti MFF 15. augusta 2008

Učební texty k státní bakalářské zkoušce Matematika Vlastní čísla a vlastní hodnoty. študenti MFF 15. augusta 2008 Učební texty k státní bakalářské zkoušce Matematika Vlastní čísla a vlastní hodnoty študenti MFF 15. augusta 2008 1 14 Vlastní čísla a vlastní hodnoty Požadavky Vlastní čísla a vlastní hodnoty lineárního

Více

Všechno, co jste kdy chtěli vědět o maticích, ale báli jste se zeptat

Všechno, co jste kdy chtěli vědět o maticích, ale báli jste se zeptat Všechno, co jste kdy chtěli vědět o maticích, ale báli jste se zeptat Čtvercová matice n n, např. může reprezentovat: A = A A 2 A 3 A 2 A 22 A 23 A 3 A 32 A 33 matici koeficientů soustavy n lineárních

Více

Vlastní čísla a vlastní vektory

Vlastní čísla a vlastní vektory Kapitola 11 Vlastní čísla a vlastní vektory Základní motivace pro studium vlastních čísel a vektorů pochází z teorie řešení diferenciálních rovnic Tato teorie říká, že obecné řešení lineární diferenciální

Více

Lineární algebra Operace s vektory a maticemi

Lineární algebra Operace s vektory a maticemi Lineární algebra Operace s vektory a maticemi Robert Mařík 26. září 2008 Obsah Operace s řádkovými vektory..................... 3 Operace se sloupcovými vektory................... 12 Matice..................................

Více

MATEMATIKA PRO PŘÍRODNÍ VĚDY LINEÁRNÍ ALGEBRA, DIFERENCIÁLNÍ POČET MPV, LADP TUL, ZS 2009/10

MATEMATIKA PRO PŘÍRODNÍ VĚDY LINEÁRNÍ ALGEBRA, DIFERENCIÁLNÍ POČET MPV, LADP TUL, ZS 2009/10 1 MATEMATIKA PRO PŘÍRODNÍ VĚDY LINEÁRNÍ ALGEBRA, DIFERENCIÁLNÍ POČET 2 koncepce/slides: Jan Picek přednášející: Jiří Veselý KAP, tel. 485352290, budova H konzul. hodiny: dle úmluvy e-mail: jvesely@karlin.mff.cuni.cz

Více

Determinant. Definice determinantu. Permutace. Permutace, vlastnosti. Definice: Necht A = (a i,j ) R n,n je čtvercová matice.

Determinant. Definice determinantu. Permutace. Permutace, vlastnosti. Definice: Necht A = (a i,j ) R n,n je čtvercová matice. [] Definice determinantu BI-LIN, determinant, 9, P Olšák [2] Determinant je číslo jistým způsobem charakterizující čtvercovou matici det A 0 pro singulární matici, det A 0 pro regulární matici používá

Více

2.6. VLASTNÍ ČÍSLA A VEKTORY MATIC

2.6. VLASTNÍ ČÍSLA A VEKTORY MATIC .6. VLASTNÍ ČÍSLA A VEKTORY MATIC V této kapitole se dozvíte: jak jsou definována vlastní (charakteristická) čísla a vektory čtvercové matice; co je to charakteristická matice a charakteristický polynom

Více

Soustavy lineárních rovnic

Soustavy lineárních rovnic 7 Matice. Determinant Soustavy lineárních rovnic 7.1 Matice Definice 1. Matice typu (m, n) jesoustavam n reálných čísel uspořádaných do m řádků a n sloupců a 11, a 12, a 13,..., a 1n a 21, a 22, a 23,...,

Více

2 Vektory a vektorové prostory 23 2.1 Lineární závislost a nezávislost vektorů... 25 2.2 Souřadná soustava a báze... 26

2 Vektory a vektorové prostory 23 2.1 Lineární závislost a nezávislost vektorů... 25 2.2 Souřadná soustava a báze... 26 Obsah 1 Matice 3 11 Operace s maticemi 4 12 Soustavy lineárních rovnic 11 13 Maticové rovnice a výpočet inverzní matice 15 14 Elementární matice 19 15 Cvičení 21 16 Řešení 22 2 Vektory a vektorové prostory

Více

Matematika I pracovní listy

Matematika I pracovní listy Matematika I pracovní listy Dagmar Dlouhá, Radka Hamříková, Zuzana Morávková, Michaela Tužilová Katedra matematiky a deskriptivní geometrie VŠB - Technická univerzita Ostrava Úvod Pracovní listy jsou určeny

Více

3. Matice a determinanty

3. Matice a determinanty . Matice a determinanty Teorie matic a determinantů představuje úvod do lineární algebry. Nejrozsáhlejší aplikace mají matice a determinanty při řešení systémů lineárních rovnic. Pojem determinantu zavedl

Více

Numerické metody a programování

Numerické metody a programování Projekt: Inovace výuky optiky se zaměřením na získání experimentálních dovedností Registrační číslo: CZ.1.7/2.2./28.157 Numerické metody a programování Lekce 4 Tento projekt je spolufinancován Evropským

Více

Součin matice A a čísla α definujeme jako matici αa = (d ij ) typu m n, kde d ij = αa ij pro libovolné indexy i, j.

Součin matice A a čísla α definujeme jako matici αa = (d ij ) typu m n, kde d ij = αa ij pro libovolné indexy i, j. Kapitola 3 Počítání s maticemi Matice stejného typu můžeme sčítat a násobit reálným číslem podobně jako vektory téže dimenze. Definice 3.1 Jsou-li A (a ij ) a B (b ij ) dvě matice stejného typu m n, pak

Více

A0M15EZS Elektrické zdroje a soustavy ZS 2011/2012 cvičení 1. Jednotková matice na hlavní diagonále jsou jedničky, všude jinde nuly

A0M15EZS Elektrické zdroje a soustavy ZS 2011/2012 cvičení 1. Jednotková matice na hlavní diagonále jsou jedničky, všude jinde nuly Matice Matice typu (m, n) je uspořádaná m-tice prvků z řádky matice.. Jednotlivé složky této m-tice nazýváme Matice se zapisují Speciální typy matic Nulová matice všechny prvky matice jsou nulové Jednotková

Více

Vlastní číslo, vektor

Vlastní číslo, vektor [1] Vlastní číslo, vektor motivace: směr přímky, kterou lin. transformace nezmění invariantní podprostory charakteristický polynom báze, vzhledem ke které je matice transformace nejjednodušší podobnost

Více

1. Algebraické struktury

1. Algebraické struktury 1. Algebraické struktury Definice 1.1 : Kartézský součin množin A,B (značíme A B) je množina všech uspořádaných dvojic [a, b], kde a A, b B. N-tou kartézskou mocninou nazveme A n. Definice 1.2 : Nechť

Více

KATEDRA INFORMATIKY UNIVERZITA PALACKÉHO LINEÁRNÍ ALGEBRA 1 OLGA KRUPKOVÁ VÝVOJ TOHOTO UČEBNÍHO TEXTU JE SPOLUFINANCOVÁN

KATEDRA INFORMATIKY UNIVERZITA PALACKÉHO LINEÁRNÍ ALGEBRA 1 OLGA KRUPKOVÁ VÝVOJ TOHOTO UČEBNÍHO TEXTU JE SPOLUFINANCOVÁN KATEDRA INFORMATIKY PŘÍRODOVĚDECKÁ FAKULTA UNIVERZITA PALACKÉHO LINEÁRNÍ ALGEBRA 1 OLGA KRUPKOVÁ VÝVOJ TOHOTO UČEBNÍHO TEXTU JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY

Více

ALGEBRA. Téma 4: Grupy, okruhy a pole

ALGEBRA. Téma 4: Grupy, okruhy a pole SLEZSKÁ UNIVERZITA V OPAVĚ Matematický ústav v Opavě Na Rybníčku 1, 746 01 Opava, tel. (553) 684 611 DENNÍ STUDIUM Téma 4: Grupy, okruhy a pole Základní pojmy unární operace, binární operace, asociativita,

Více

Matematika. Kamila Hasilová. Matematika 1/34

Matematika. Kamila Hasilová. Matematika 1/34 Matematika Kamila Hasilová Matematika 1/34 Obsah 1 Úvod 2 GEM 3 Lineární algebra 4 Vektory Matematika 2/34 Úvod Zkouška písemná, termíny budou včas vypsány na Intranetu UO obsah: teoretická a praktická

Více

[1] Motivace. p = {t u ; t R}, A(p) = {A(t u ); t R} = {t A( u ); t R}

[1] Motivace. p = {t u ; t R}, A(p) = {A(t u ); t R} = {t A( u ); t R} Vlastní číslo, vektor motivace: směr přímky, kterou lin. transformace nezmění invariantní podprostory charakteristický polynom báze, vzhledem ke které je matice transformace nejjednodušší podobnost s diagonální

Více

Učební texty k státní bakalářské zkoušce Matematika Matice. študenti MFF 15. augusta 2008

Učební texty k státní bakalářské zkoušce Matematika Matice. študenti MFF 15. augusta 2008 Učební texty k státní bakalářské zkoušce Matematika Matice študenti MFF 15. augusta 2008 1 12 Matice Požadavky Matice a jejich hodnost Operace s maticemi a jejich vlastnosti Inversní matice Regulární matice,

Více

1. Několik základních pojmů ze středoškolské matematiky. Na začátku si připomeneme následující pojmy:

1. Několik základních pojmů ze středoškolské matematiky. Na začátku si připomeneme následující pojmy: Opakování středoškolské matematiky Slovo úvodem: Tato pomůcka je určena zejména těm studentům presenčního i kombinovaného studia na VŠFS, kteří na středních školách neprošli dostatečnou průpravou z matematiky

Více

Praha & EU: investujeme do vaší budoucnosti. Daniel Turzík, Miroslava Dubcová,

Praha & EU: investujeme do vaší budoucnosti. Daniel Turzík, Miroslava Dubcová, E-sbírka příkladů Seminář z matematiky Evropský sociální fond Praha & EU: investujeme do vaší budoucnosti Daniel Turzík, Miroslava Dubcová, Pavla Pavlíková Obsah 1 Úpravy výrazů................................................................

Více

LINEÁRNÍ ALGEBRA. RNDr. Marie Hojdarová, CSc. Určeno pro studenty PS a AI

LINEÁRNÍ ALGEBRA. RNDr. Marie Hojdarová, CSc. Určeno pro studenty PS a AI LINEÁRNÍ ALGEBRA RNDr. Marie Hojdarová, CSc. Určeno pro studenty PS a AI Jihlava, říjen 2012 ISBN 978 80 87035 65-8 Úvod do studia předmětu Základy lineární algebry Milí studenti! Lineární algebra, kterou

Více

KIV/ZI Základy informatiky MS EXCEL MATICOVÉ FUNKCE A SOUHRNY

KIV/ZI Základy informatiky MS EXCEL MATICOVÉ FUNKCE A SOUHRNY KIV/ZI Základy informatiky MS EXCEL MATICOVÉ FUNKCE A SOUHRNY cvičící: Tomáš Ptáček zimní semestr 2012 MS EXCEL MATICE (ÚVOD) Vektor: (1D) v = [1, 2, 3, 5, 8, 13] Např.: matice sousednosti Matice: (2D)

Více

Nechť M je množina. Zobrazení z M M do M se nazývá (binární) operace

Nechť M je množina. Zobrazení z M M do M se nazývá (binární) operace Kapitola 2 Algebraické struktury Řada algebraických objektů má podobu množiny s nějakou dodatečnou strukturou. Například vektorový prostor je množina vektorů, ty však nejsou jeden jako druhý : jeden z

Více

Skalární součin je nástroj, jak měřit velikost vektorů a úhly mezi vektory v reálných a komplexních vektorových prostorech.

Skalární součin je nástroj, jak měřit velikost vektorů a úhly mezi vektory v reálných a komplexních vektorových prostorech. Kapitola 9 Skalární součin Skalární součin je nástroj, jak měřit velikost vektorů a úhly mezi vektory v reálných a komplexních vektorových prostorech. Definice 9.1 Je-li x = (x 1,..., x n ) T R n 1 reálný

Více

označme j = (0, 1) a nazvěme tuto dvojici imaginární jednotkou. Potom libovolnou (x, y) = (x, 0) + (0, y) = (x, 0) + (0, 1)(y, 0) = x + jy,

označme j = (0, 1) a nazvěme tuto dvojici imaginární jednotkou. Potom libovolnou (x, y) = (x, 0) + (0, y) = (x, 0) + (0, 1)(y, 0) = x + jy, Komplexní čísla Množinu všech uspořádaných dvojic (x, y) reálných čísel x, y nazýváme množinou komplexních čísel C, jestliže pro každé dvě takové dvojice (x, y ), (x 2, y 2 ) je definována rovnost, sčítání

Více

Skalár- veličina určená jedním číselným údajem čas, hmotnost (porovnej životní úroveň, hospodaření firmy, naše poloha podle GPS )

Skalár- veličina určená jedním číselným údajem čas, hmotnost (porovnej životní úroveň, hospodaření firmy, naše poloha podle GPS ) LINEÁRNÍ ALGEBRA Úvod vektor Skalár- veličina určená jedním číselným údajem čas, hmotnost (porovnej životní úroveň, hospodaření firmy, naše poloha podle GPS ) Kartézský souřadnicový systém -je taková soustava

Více

1 Mnohočleny a algebraické rovnice

1 Mnohočleny a algebraické rovnice 1 Mnohočleny a algebraické rovnice 1.1 Pojem mnohočlenu (polynomu) Připomeňme, že výrazům typu a 2 x 2 + a 1 x + a 0 říkáme kvadratický trojčlen, když a 2 0. Číslům a 0, a 1, a 2 říkáme koeficienty a písmenem

Více

S funkcemi můžeme počítat podobně jako s čísly, sčítat je, odečítat, násobit a dělit případně i umocňovat.

S funkcemi můžeme počítat podobně jako s čísly, sčítat je, odečítat, násobit a dělit případně i umocňovat. @08. Derivace funkce S funkcemi můžeme počítat podobně jako s čísly, sčítat je, odečítat, násobit a dělit případně i umocňovat. Definice: Součet funkce f a g je takový předpis, taková funkce h, která každému

Více

Numerické metody lineární algebry

Numerické metody lineární algebry Numerické metody lineární algebry 1 Úvod 11 Úlohy lineární algebry 1 Řešení soustav lineárních rovnic A x = b Řešení soustavy s regulární čtvercovou maticí A řádu n n pro jednu nebo více pravých stran

Více

2.6. Vlastní čísla a vlastní vektory matice

2.6. Vlastní čísla a vlastní vektory matice 26 Cíle V této části se budeme zabývat hledáním čísla λ které je řešením rovnice A x = λ x (1) kde A je matice řádu n Znalost řešení takové rovnice má řadu aplikací nejen v matematice Definice 261 Nechť

Více

Lineární Algebra I. Adam Liška 8. prosince 2014. Zápisky z přednášek Jiřího Fialy na MFF UK, zimní semestr, ak. rok 2007/2008

Lineární Algebra I. Adam Liška 8. prosince 2014. Zápisky z přednášek Jiřího Fialy na MFF UK, zimní semestr, ak. rok 2007/2008 Lineární Algebra I. Zápisky z přednášek Jiřího Fialy na MFF UK, zimní semestr, ak. rok 2007/2008 Adam Liška 8. prosince 2014 http://kam.mff.cuni.cz/~fiala http://www.adliska.com 1 Obsah 1 Soustavy lineárních

Více

5. Maticová algebra, typy matic, inverzní matice, determinant.

5. Maticová algebra, typy matic, inverzní matice, determinant. 5. Maticová algebra, typy matic, inverzní matice, determinant. Matice Matice typu m,n je matice složená z n*m (m >= 1, n >= 1) reálných (komplexních) čísel uspořádaných do m řádků a n sloupců: R m,n (resp.

Více

ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE. Matematika 0A1. Cvičení, zimní semestr. Samostatné výstupy. Jan Šafařík

ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE. Matematika 0A1. Cvičení, zimní semestr. Samostatné výstupy. Jan Šafařík Vysoké učení technické v Brně Stavební fakulta ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE Matematika 0A1 Cvičení, zimní semestr Samostatné výstupy Jan Šafařík Brno c 2003 Obsah 1. Výstup č.1 2 2. Výstup

Více

1. Jordanův kanonický tvar

1. Jordanův kanonický tvar . Jordanův kanonický tvar Obecně nelze pro zadaný lineární operátor ϕ : U U najít bázi α takovou, že (ϕ) α,α by byla diagonální. Obecně však platí, že pro každý lineární operátor ϕ : U U nad komplexními

Více

Euklidovský prostor Stručnější verze

Euklidovský prostor Stručnější verze [1] Euklidovský prostor Stručnější verze definice Eulidovského prostoru kartézský souřadnicový systém vektorový součin v E 3 vlastnosti přímek a rovin v E 3 a) eprostor-v2, 16, b) P. Olšák, FEL ČVUT, c)

Více

Algebraické struktury s jednou binární operací

Algebraické struktury s jednou binární operací 16 Kapitola 1 Algebraické struktury s jednou binární operací 1.1 1. Grupoid, pologrupa, monoid a grupa Chtěli by jste vědět, co jsou to algebraické struktury s jednou binární operací? No tak to si musíte

Více

Jazyk matematiky. 2.1. Matematická logika. 2.2. Množinové operace. 2.3. Zobrazení. 2.4. Rozšířená číslená osa

Jazyk matematiky. 2.1. Matematická logika. 2.2. Množinové operace. 2.3. Zobrazení. 2.4. Rozšířená číslená osa 2. Jazyk matematiky 2.1. Matematická logika 2.2. Množinové operace 2.3. Zobrazení 2.4. Rozšířená číslená osa 1 2.1 Matematická logika 2.1.1 Výrokový počet logická operace zapisujeme čteme česky negace

Více

Vektorový prostor. Př.1. R 2 ; R 3 ; R n Dvě operace v R n : u + v = (u 1 + v 1,...u n + v n ), V (E 3 )...množina vektorů v E 3,

Vektorový prostor. Př.1. R 2 ; R 3 ; R n Dvě operace v R n : u + v = (u 1 + v 1,...u n + v n ), V (E 3 )...množina vektorů v E 3, Vektorový prostor Příklady: Př.1. R 2 ; R 3 ; R n...aritmetický n-rozměrný prostor Dvě operace v R n : součet vektorů u = (u 1,...u n ) a v = (v 1,...v n ) je vektor u + v = (u 1 + v 1,...u n + v n ),

Více

Lineární algebra II. Adam Liška. 9. února 2015. Zápisky z přednášek Jiřího Fialy na MFF UK, letní semestr, ak. rok 2007/2008

Lineární algebra II. Adam Liška. 9. února 2015. Zápisky z přednášek Jiřího Fialy na MFF UK, letní semestr, ak. rok 2007/2008 Lineární algebra II Zápisky z přednášek Jiřího Fialy na MFF UK, letní semestr, ak rok 2007/2008 Adam Liška 9 února 2015 http://kammffcunicz/~fiala http://wwwadliskacom 1 Obsah 10 Permutace 3 11 Determinant

Více

STŘEDOŠKOLSKÁ MATEMATIKA

STŘEDOŠKOLSKÁ MATEMATIKA STŘEDOŠKOLSKÁ MATEMATIKA MOCNINY, ODMOCNINY, ALGEBRAICKÉ VÝRAZY VŠB Technická univerzita Ostrava Ekonomická fakulta 006 Mocniny, odmocniny, algebraické výrazy http://moodle.vsb.cz/ 1 OBSAH 1 Informace

Více

Matice. Přednáška MATEMATIKA č. 2. Jiří Neubauer. Katedra ekonometrie FEM UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.

Matice. Přednáška MATEMATIKA č. 2. Jiří Neubauer. Katedra ekonometrie FEM UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob. Přednáška MATEMATIKA č. 2 Katedra ekonometrie FEM UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz 13. 10. 2010 Uspořádané schéma vytvořené z m n reálných čísel, kde m, n N a 11 a 12 a

Více

Řešení. Hledaná dimenze je (podle definice) rovna hodnosti matice. a 1 2. 1 + a 2 2 1

Řešení. Hledaná dimenze je (podle definice) rovna hodnosti matice. a 1 2. 1 + a 2 2 1 Příklad 1. Určete všechna řešení následující soustavy rovnic nad Z 2 : 0 0 0 1 1 1 0 1 0 1 1 1 1 1 0 1 0 1 0 1 1 Gaussovou eliminací převedeme zadanou soustavu na ekvivalentní soustavu v odstupňovaném

Více

Jan Kotůlek. verze 3 ze dne 25. února 2011

Jan Kotůlek. verze 3 ze dne 25. února 2011 Integrace racionálních lomených funkcí Jan Kotůlek (kombinované studium, první soustředění) verze 3 ze dne 5. února 0 Abstrakt Tento článek je koncipován jako rozšířený zápis průběhu prvního soustředění

Více

a vlastních vektorů Příklad: Stanovte taková čísla λ, pro která má homogenní soustava Av = λv nenulové (A λ i I) v = 0.

a vlastních vektorů Příklad: Stanovte taková čísla λ, pro která má homogenní soustava Av = λv nenulové (A λ i I) v = 0. Výpočet vlastních čísel a vlastních vektorů S pojmem vlastního čísla jsme se již setkali například u iteračních metod pro řešení soustavy lineárních algebraických rovnic. Velikosti vlastních čísel iterační

Více

Josef Janyška Anna Sekaninová ANALYTICKÁ TEORIE KUŽELOSEČEK A KVADRIK

Josef Janyška Anna Sekaninová ANALYTICKÁ TEORIE KUŽELOSEČEK A KVADRIK Josef Janyška Anna Sekaninová ANALYTICKÁ TEORIE KUŽELOSEČEK A KVADRIK Obsah 1 KOMPLEXNÍ ROZŠÍŘENÍ PROSTORU 7 1 Komplexní rozšíření vektorového prostoru........... 7 Komplexní rozšíření reálného afinního

Více

ZADÁNÍ ZKOUŠKOVÉ PÍSEMNÉ PRÁCE Z PŘEDMĚTU LINEÁRNÍ ALGEBRA PRO IT. Verze 1.1A

ZADÁNÍ ZKOUŠKOVÉ PÍSEMNÉ PRÁCE Z PŘEDMĚTU LINEÁRNÍ ALGEBRA PRO IT. Verze 1.1A Verze 1.1A Čas na práci: 1 minut Za každý úkol můžete získat maximálně 1 bodů. Řešení každého příkladu zapisujte čitelně a srozumitelně, 2x 1 +4x 3 +3x 4 = 4 x 1 +2x 2 +4x 3 3x 4 = 1 2x 1 +x 2 x 3 3x 4

Více

Regulární matice. Věnujeme dále pozornost zejména čtvercovým maticím.

Regulární matice. Věnujeme dále pozornost zejména čtvercovým maticím. Regulární matice Věnujeme dále pozornost zejména čtvercovým maticím. Věta. Pro každou čtvercovou matici A = (a ij ) řádu n nad tělesem (T, +, ) jsou následující podmínky ekvivalentní: (i) Řádky matice

Více

MATEMATIKA 1. Sbírka úloh ÚSTAV MATEMATIKY

MATEMATIKA 1. Sbírka úloh ÚSTAV MATEMATIKY MATEMATIKA Sbírka úloh Edita Kolářová ÚSTAV MATEMATIKY MATEMATIKA Sbírka úloh Úvod Dostali jste do rukou sbírku příkladů k přednášce Matematika. Tato sbírka je doplněním tetu Fuchs, Krupkova: Matematika.

Více

c ÚM FSI VUT v Brně 20. srpna 2007

c ÚM FSI VUT v Brně 20. srpna 2007 20. srpna 2007 1. 3 arctg x 1+x 2 dx 2. (x 2 + 2x + 17)e x dx 3. 1 x 3 x dx Vypočtěte integrál: 3 arctg x 1 + x 2 dx Příklad 1. Řešení: Použijeme substituci: arctg x = t 3 arctg x dx = 1 dx = dt 1+x 2

Více

Gymnázium, Brno. Matice. Závěrečná maturitní práce. Jakub Juránek 4.A Školní rok 2010/11

Gymnázium, Brno. Matice. Závěrečná maturitní práce. Jakub Juránek 4.A Školní rok 2010/11 Gymnázium, Brno Matice Závěrečná maturitní práce Jakub Juránek 4.A Školní rok 2010/11 Konzultant: Mgr. Aleš Kobza Ph.D. Brno, 2011 Prohlášení Prohlašuji, že jsem předloženou práci zpracoval samostatně

Více

15. Moduly. a platí (p + q)(x) = p(x) + q(x), 1(X) = id. Vzniká tak struktura P [x]-modulu na V.

15. Moduly. a platí (p + q)(x) = p(x) + q(x), 1(X) = id. Vzniká tak struktura P [x]-modulu na V. Učební texty k přednášce ALGEBRAICKÉ STRUKTURY Michal Marvan, Matematický ústav Slezská univerzita v Opavě 15. Moduly Definice. Bud R okruh, bud M množina na níž jsou zadány binární operace + : M M M,

Více

Definice. Vektorový prostor V nad tělesem T je množina s operacemi + : V V V, tj. u, v V : u + v V : T V V, tj. ( u V )( a T ) : a u V které splňují

Definice. Vektorový prostor V nad tělesem T je množina s operacemi + : V V V, tj. u, v V : u + v V : T V V, tj. ( u V )( a T ) : a u V které splňují Definice. Vektorový prostor V nad tělesem T je množina s operacemi + : V V V, tj. u, v V : u + v V : T V V, tj. ( u V )( a T ) : a u V které splňují 1. u + v = v + u, u, v V 2. (u + v) + w = u + (v + w),

Více

Katedra aplikované matematiky FEI VŠB Technická univerzita Ostrava email: dalibor.lukas@vsb.cz http://www.am.vsb.cz/lukas/la1

Katedra aplikované matematiky FEI VŠB Technická univerzita Ostrava email: dalibor.lukas@vsb.cz http://www.am.vsb.cz/lukas/la1 Lineární algebra 10. přednáška: Ortogonalita II Dalibor Lukáš Katedra aplikované matematiky FEI VŠB Technická univerzita Ostrava email: dalibor.lukas@vsb.cz http://www.am.vsb.cz/lukas/la1 Text byl vytvořen

Více

Limita a spojitost funkce

Limita a spojitost funkce Limita a spojitost funkce Základ všší matematik Dana Říhová Mendelu Brno Průřezová inovace studijních programů Lesnické a dřevařské fakult MENDELU v Brně (LDF) s ohledem na disciplin společného základu

Více

Maticový a tenzorový počet

Maticový a tenzorový počet Maticový a tenzorový počet Doc. RNDr. Martin Kovár, Ph.D. Ústav matematiky Fakulta elektrotechniky a komunikačních technologií VUT v Brně Obsah. Test vstupních znalostí............................. 5 Matice

Více

Kapitola 1. Tenzorový součin matic

Kapitola 1. Tenzorový součin matic Kapitola 1 Tenzorový součin matic Definice 1.1. Buď F komutativní těleso. Pro matice A F m n a B F r s definujeme tenzorový součin A B jako matici o rozměru mr ns zapsanou blokově: A 11 B A 12 B A 1n B

Více

[1] Důkaz: Necht p(x) = a n x n +... + a 1 x + a 0 = 0 pro všechna x C,

[1] Důkaz: Necht p(x) = a n x n +... + a 1 x + a 0 = 0 pro všechna x C, Výsledky operací jsou tedy popsány pomocí svých koeficientů algoritmicky. Na vstupu do algoritmu jsou koeficienty polynomů, které sčítáme resp. násobíme. S proměnnou x algoritmy nepracují. Polynomy Polynom

Více

JčU - Cvičení z matematiky pro zemědělské obory (doc. RNDr. Nýdl, CSc & spol.) Minitest MT4

JčU - Cvičení z matematiky pro zemědělské obory (doc. RNDr. Nýdl, CSc & spol.) Minitest MT4 ŘEŠENÍ MINITESTŮ JčU - Cvičení z matematiky pro zemědělské obory (doc. RNDr. Nýdl, CSc & spol.) Minitest MT4. Z daných tří soustav rovnic o neznámých x, x vyberte právě všechny ty, které jsou regulární.

Více

5. Interpolace a aproximace funkcí

5. Interpolace a aproximace funkcí 5. Interpolace a aproximace funkcí Průvodce studiem Často je potřeba složitou funkci f nahradit funkcí jednodušší. V této kapitole budeme předpokládat, že u funkce f známe její funkční hodnoty f i = f(x

Více

Několik poznámek na téma lineární algebry pro studenty fyzikální chemie

Několik poznámek na téma lineární algebry pro studenty fyzikální chemie Několik poznámek na téma lineární algebry pro studenty fyzikální chemie Jiří Kolafa Vektory. Vektorový prostor Vektor je často zaveden jako n-tice čísel, (v,..., v n ), v i R (pro reálný vektorový prostor);

Více

Komutativní a nekomutativní polookruhy ve školské matematice. Commutative and non-commutative semi-rings in educational mathematics

Komutativní a nekomutativní polookruhy ve školské matematice. Commutative and non-commutative semi-rings in educational mathematics Komutativní a nekomutativní polookruhy ve školské matematice Drahomíra Holubová Resume Polookruhy, které nejsou okruhy, mají významné zastoupení ve školské matematice. Tento příspěvek uvádí příklady komutativních

Více

Základní vlastnosti eukleidovského prostoru

Základní vlastnosti eukleidovského prostoru Kapitola 2 Základní vlastnosti eukleidovského prostoru 2.1 Eukleidovský prostor Eukleidovský prostor a jeho podprostory. Metrické vlastnosti, jako např. kolmost, odchylka, vzdálenost, obsah, objem apod.

Více

KOMPLEXNÍ ČÍSLA INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ

KOMPLEXNÍ ČÍSLA INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ KOMPLEXNÍ ČÍSLA Gymnázium Jiřího Wolkera v Prostějově Výukové materiály z matematiky pro vyšší gymnázia Autoři projektu Student na prahu 21. století - využití ICT ve vyučování matematiky na gymnáziu INVESTICE

Více

MATURITNÍ TÉMATA Z MATEMATIKY

MATURITNÍ TÉMATA Z MATEMATIKY MATURITNÍ TÉMATA Z MATEMATIKY 1. Základní poznatky z logiky a teorie množin Pojem konstanty a proměnné. Obor proměnné. Pojem výroku a jeho pravdivostní hodnota. Operace s výroky, složené výroky, logické

Více

Matematika I. dvouletý volitelný předmět

Matematika I. dvouletý volitelný předmět Název předmětu: Zařazení v učebním plánu: Matematika I O7A, C3A, O8A, C4A dvouletý volitelný předmět Cíle předmětu Tento předmět je koncipován s cílem usnadnit absolventům gymnázia přechod na vysoké školy

Více

Euklidovský prostor. Funkce dvou proměnných: základní pojmy, limita a spojitost.

Euklidovský prostor. Funkce dvou proměnných: základní pojmy, limita a spojitost. Euklidovský prostor. Funkce dvou proměnných: základní pojmy, limita a spojitost. Vyšší matematika, Inženýrská matematika LDF MENDELU Podpořeno projektem Průřezová inovace studijních programů Lesnické a

Více

2 Zpracování naměřených dat. 2.1 Gaussův zákon chyb. 2.2 Náhodná veličina a její rozdělení

2 Zpracování naměřených dat. 2.1 Gaussův zákon chyb. 2.2 Náhodná veličina a její rozdělení 2 Zpracování naměřených dat Důležitou součástí každé experimentální práce je statistické zpracování naměřených dat. V této krátké kapitole se budeme věnovat určení intervalů spolehlivosti získaných výsledků

Více

ANTAGONISTICKE HRY 172

ANTAGONISTICKE HRY 172 5 ANTAGONISTICKÉ HRY 172 Antagonistický konflikt je rozhodovací situace, v níž vystupují dva inteligentní rozhodovatelé, kteří se po volbě svých rozhodnutí rozdělí o pevnou částku, jejíž výše nezávisí

Více

POSLOUPNOSTI A ŘADY INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ

POSLOUPNOSTI A ŘADY INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ POSLOUPNOSTI A ŘADY Gymnázium Jiřího Wolkera v Prostějově Výukové materiály z matematiky pro vyšší gymnázia Autoři projektu Student na prahu 21. století - využití ICT ve vyučování matematiky na gymnáziu

Více

POLYNOMY 1 Jan Malý UK v Praze a UJEP v Ústí n. L. 1. Přehled teorie

POLYNOMY 1 Jan Malý UK v Praze a UJEP v Ústí n. L. 1. Přehled teorie POLYNOMY 1 Jan Malý UK v Praze a UJEP v Ústí n. L. 1. Přehled teorie Komplexní čísla. Komplexní čísla jsou objekty tvaru α+iβ, kde α, β R. Množina všech komplexních čísel se značí C. Rovnost komplexních

Více

Euklidovský prostor. Euklides. Euklidovy postuláty (axiomy)

Euklidovský prostor. Euklides. Euklidovy postuláty (axiomy) Euklidovský prostor Euklidovy Základy (pohled do historie) dnešní definice kartézský souřadnicový systém vlastnosti rovin v E n speciální vlastnosti v E 3 (vektorový součin) a) eprostor, 16, b) P. Olšák,

Více

Matematika pro studenty ekonomie

Matematika pro studenty ekonomie w w w g r a d a c z vydání upravené a doplněné vydání Armstrong Grada Publishing as U Průhonu 7 Praha 7 tel: + fax: + e-mail: obchod@gradacz wwwgradacz Matematika pro studenty ekonomie MATEMATIKA PRO STUDENTY

Více

15. KubickÈ rovnice a rovnice vyööìho stupnï

15. KubickÈ rovnice a rovnice vyööìho stupnï 15. KubickÈ rovnice a rovnice vyööìho stupnï Čas od času je možné slyšet v pořadech o počasí jména jako Andrew, Mitch, El Ňiňo. otom následuje zpráva o katastrofálních vichřicích, uragánech a jiných mimořádných

Více

předmětu MATEMATIKA B 1

předmětu MATEMATIKA B 1 Metodický list pro první soustředění kombinovaného studia předmětu MATEMATIKA B 1 Název tématického celku: Vektorový prostor Cíl: Základním cílem tohoto tematického celku je pochopit, co jsou to vektory

Více

ZŠ ÚnO, Bratří Čapků 1332

ZŠ ÚnO, Bratří Čapků 1332 Úvodní obrazovka Menu (vlevo nahoře) Návrat na hlavní stránku Obsah Výsledky Poznámky Záložky edunet Konec Matematika 1 (pro 12-16 let) LangMaster Obsah (střední část) výběr tématu - dvojklikem v seznamu

Více

Učební texty k státní bakalářské zkoušce Matematika Základy teorie funkcí více proměnných. študenti MFF 15. augusta 2008

Učební texty k státní bakalářské zkoušce Matematika Základy teorie funkcí více proměnných. študenti MFF 15. augusta 2008 Učební texty k státní bakalářské zkoušce Matematika Základy teorie funkcí více proměnných študenti MFF 15. augusta 2008 1 5 Základy teorie funkcí více proměnných Požadavky Parciální derivace a totální

Více

11 Analýza hlavních komponet

11 Analýza hlavních komponet 11 Analýza hlavních komponet Tato úloha provádí transformaci měřených dat na menší počet tzv. fiktivních dat tak, aby většina informace obsažená v původních datech zůstala zachována. Jedná se tedy o úlohu

Více

Řešení soustav lineárních rovnic

Řešení soustav lineárních rovnic Řešení soustav lineárních rovnic Matematické algoritmy (11MAG) Jan Přikryl 11. přednáška 11MAG pondělí 9. prosince 2013 verze:2013-12-10 15:33 Obsah 1 Soustavy 2 1.1 Formulace úlohy....................................

Více

opravdu považovat za lepší aproximaci. Snížení odchylky o necelá dvě procenta

opravdu považovat za lepší aproximaci. Snížení odchylky o necelá dvě procenta Řetězové zlomky a dobré aproximace Motivace Chceme-li znát přibližnou hodnotu nějakého iracionálního čísla, obvykle používáme jeho (nekonečný) desetinný rozvoj Z takového rozvoje, řekněme z rozvoje 345926535897932384626433832795028849769399375

Více

Učební plán 4. letého studia předmětu matematiky. Učební plán 6. letého studia předmětu matematiky

Učební plán 4. letého studia předmětu matematiky. Učební plán 6. letého studia předmětu matematiky Učební plán 4. letého studia předmětu matematiky Ročník I II III IV Dotace 3 3+1 2+1 2+2 Povinnost povinný povinný povinný povinný Učební plán 6. letého studia předmětu matematiky Ročník 1 2 3 4 5 6 Dotace

Více

Vybrané problémy lineární algebry v programu Maple

Vybrané problémy lineární algebry v programu Maple UNIVERZITA PALACKÉHO V OLOMOUCI PŘÍRODOVĚDECKÁ FAKULTA Katedra matematické analýzy a aplikací matematiky BAKALÁŘSKÁ PRÁCE Vybrané problémy lineární algebry v programu Maple Vedoucí bakalářské práce: RNDr.

Více

0. Lineární rekurence Martin Mareš, 2010-07-04

0. Lineární rekurence Martin Mareš, 2010-07-04 0 Lineární rekurence Martin Mareš, 2010-07-04 V tomto krátkém textu se budeme zabývat lineárními rekurencemi, tj posloupnostmi definovanými rekurentní rovnicí typu A n+k = c 0 A n + c 1 A n+1 + + c k 1

Více

Matematika Kvadratická rovnice. Kvadratická rovnice je matematický zápis, který můžeme (za pomoci ekvivalentních úprav) upravit na tvar

Matematika Kvadratická rovnice. Kvadratická rovnice je matematický zápis, který můžeme (za pomoci ekvivalentních úprav) upravit na tvar Kvadratická rovnice Kvadratická rovnice je matematický zápis, který můžeme (za pomoci ekvivalentních úprav) upravit na tvar ax 2 + bx + c = 0. x neznámá; v kvadratické rovnici se vyskytuje umocněná na

Více

8 Věta o Fourierově transformaci funkcí, které lze na sebe transformovat regulární lineární transformací souřadnic

8 Věta o Fourierově transformaci funkcí, které lze na sebe transformovat regulární lineární transformací souřadnic 8 REGULÁRNÍ LINEÁRNÍ TRANSFORMACE SOUŘADNIC 8 Věta o Fourierově transformaci funkcí, které lze na sebe transformovat regulární lineární transformací souřadnic Ze zkušenosti s Fraunhoferovými difrakčními

Více

2.2. SČÍTÁNÍ A NÁSOBENÍ MATIC

2.2. SČÍTÁNÍ A NÁSOBENÍ MATIC 22 SČÍTÁNÍ A NÁSOBENÍ MATIC V této kapitole se dozvíte: jak je definováno sčítání matic a jaké má základní vlastnosti jak je definováno násobení matic číslem a jaké má základní vlastnosti zda a proč se

Více

(ne)závislost. α 1 x 1 + α 2 x 2 + + α n x n. x + ( 1) x Vektoru y = ( 1) y říkáme opačný vektor k vektoru y. x x = 1. x = x = 0.

(ne)závislost. α 1 x 1 + α 2 x 2 + + α n x n. x + ( 1) x Vektoru y = ( 1) y říkáme opačný vektor k vektoru y. x x = 1. x = x = 0. Lineární (ne)závislost [1] Odečítání vektorů, asociativita BI-LIN, zavislost, 3, P. Olšák [2] Místo, abychom psali zdlouhavě: x + ( 1) y, píšeme stručněji x y. Vektoru y = ( 1) y říkáme opačný vektor k

Více

DIGITÁLNÍ UČEBNÍ MATERIÁL. Název školy SOUpotravinářské, Jílové u Prahy, Šenflukova 220. Název materiálu VY_32_INOVACE / Matematika / 03/01 / 17

DIGITÁLNÍ UČEBNÍ MATERIÁL. Název školy SOUpotravinářské, Jílové u Prahy, Šenflukova 220. Název materiálu VY_32_INOVACE / Matematika / 03/01 / 17 DIGITÁLNÍ UČEBNÍ MATERIÁL Číslo projektu CZ.1.07/1.5.00/34.0763 Název školy SOUpotravinářské, Jílové u Prahy, Šenflukova 220 Název materiálu VY_32_INOVACE / Matematika / 03/01 / 17 Autor Ing. Antonín Kučera

Více

Řetězové zlomky. již čtenář obeznámen. Důraz bude kladen na implementační stránku, protože ta je ve

Řetězové zlomky. již čtenář obeznámen. Důraz bude kladen na implementační stránku, protože ta je ve Faktorizace čísel pomocí řetězových zlomků Tento text se zabývá algoritmem CFRAC (continued fractions algorithm) pro rozkládání velkých čísel (typicky součinů dvou velkých prvočísel). Nebudeme se zde zabývat

Více

Historie matematiky a informatiky Cvičení 2

Historie matematiky a informatiky Cvičení 2 Historie matematiky a informatiky Cvičení 2 Doc. RNDr. Alena Šolcová, Ph. D., KAM, FIT ČVUT v Praze 2014 Evropský sociální fond Investujeme do vaší budoucnosti Alena Šolcová Číselně teoretické funkce (Number-Theoretic

Více

B) výchovné a vzdělávací strategie jsou totožné se strategiemi vyučovacího předmětu Matematika.

B) výchovné a vzdělávací strategie jsou totožné se strategiemi vyučovacího předmětu Matematika. 4.8.3. Cvičení z matematiky Předmět Cvičení z matematiky je vyučován v sextě a v septimě jako volitelný předmět. Vzdělávací obsah vyučovacího předmětu Cvičení z matematiky vychází ze vzdělávací oblasti

Více

Operace s maticemi Sčítání matic: u matic stejného typu sečteme prvky na stejných pozicích: A+B=(a ij ) m n +(b ij ) m n =(a ij +b ij ) m n.

Operace s maticemi Sčítání matic: u matic stejného typu sečteme prvky na stejných pozicích: A+B=(a ij ) m n +(b ij ) m n =(a ij +b ij ) m n. 1 Sylvestrova věta Platí: Nechť A je symetrická matice řádu n, označme a 11 a 12... a 1i a D i = 21 a 22... a 2i.... a i1 a i2... a ii Pak A(a příslušná KF) je pozitivně definitní, právěkdyž D i >0provšechna

Více