Lineární algebra : Skalární součin a ortogonalita

Save this PDF as:
 WORD  PNG  TXT  JPG

Rozměr: px
Začít zobrazení ze stránky:

Download "Lineární algebra : Skalární součin a ortogonalita"

Transkript

1 Lineární algebra : Skalární součin a ortogonalita (15. přednáška) František Štampach, Karel Klouda LS 2013/2014 vytvořeno: 30. dubna 2014, 09:00 1

2 Prehilhertovy prostory Definice 1. Buď V LP nad T. Zobrazení (.,.) : V V T nazýváme skalární součin, platí-li pro x, y, z V a α T axiomy: Axiomatická definice skalárního součinu 1. (x, αy + z) = α(x, y) + (x, z), (linearita v druhém argumentu) 2. (x, y) = (y, x), (hermitovská symetrie) 3. (x, x) 0 ( (x, x) = 0 x = 0 ). (pozitivní definitnost) Dvojici (V, (.,.)) nazýváme prostorem se skalárním součinem (prehilbertův prostor) a značíme H. Poznámka 2. Je-li T = R v axiomu 2. je vlastnost (x, y) = (y, x) (symetrie), opruhování je v R nadbytečné. Cvičení: Pro libovolné x, y, x H a α T ověřte následující vlastnosti skalárního součinu: (αx + y, z) = α(x, z) + (y, z), (x, θ) = (θ, x) = 0. Příklady skalárních součinů Na T n definujeme (x, y) := ξ j η j, kde x = (ξ 1,..., ξ n ), y = (η 1,..., η n ). Snadno ověříme, že jse o skalární součin na T n. Tento skalární součin nazýváme standardním skalárním součinem. Pro f, g C( 0, 1 ) je zobrazení definované vztahem (f, g) := 1 skalárním součinem na LP C( 0, 1 ). 0 f(x)g(x)dx

3 3 Další příklad skalárního součinu je např. zobrazení definované na prostoru matic C n,n, (A, B) := a j,i b j,i. Buďte x, y R n sloupcové vektory a A R n,n. Zobrazení Další příklady skalárních součinů (x, y) := x T Ay splňuje axiom 1. Budeme-li navíc požadovat, aby A = A T, bude splněn i axiom 2. Platí-li tedy ješte 3. aximom je uvedené zobrazení skalárním součinem na R n. Vezměme např. n = 2, potom pro matici ( ) 1 2 A = 2 5 je ( ) ( ) 1 2 y1 (x, y) = (x 1, x 2 ) = x 2 5 y 1 y 1 + 2x 1 y 2 + 2x 2 y 1 + 5x 2 y 2 2 skalární součin na R 2. Ovšem např. pro volbu A = ( ) axiom 3. splněný není a uvedené zobrazení skalární součin není. Skalární součin zadává normu Definice 3. Buď H prostor se skalárním součinem. Zobrazení. : H T definované vztahem ( x H)( x := (x, x) ) nazýváme normou na H.

4 4 Poznámka 4. Máme-li R 3 se standardním skalárním součinem je x velikost vektoru x, tj. (euklidovská) vzdálenost bodu x = (x 1, x 2, x 3 ) od počátku θ. Z tohoto pohledu lze normu vektoru chápat jako zobecněnou velikost vektoru. Podobně je číslo x y zobecněnou vzdáleností vektorů x a y. Cvičení: Ukažte, že pro x H a α T platí: x 0 x = 0 x = θ, αx = α x. Věta 5. Buď H prehilbertův prostor. Potom pro x, y H platí: 1. (x, y) x y, (Schwarzova nerovnost) Vlastnosti normy skalárního součinu a x + y x + y, (trojúhelníková nerovnost) x + y 2 + x y 2 = 2( x 2 + y 2 ). (rovnoběžníková rovnost) Důkaz. 1. Pro x = θ platí ve Schwarzově nerovnosti rovnost. Uvažujme x θ. Nechť λ T. Potom platí 0 (λx y, λx y) = λx 2 (λx, y) (y, λx) + y 2 = λ 2 x 2 + y 2 2Re λ(x, y) pro všechna λ T. Nyní volme speciálně Pro takto zvolené λ máme λ := (x, y) x 2, (x, y) 2 x 4 x 2 + y 2 (x, y) 2 2Re x 2 0, a tedy y 2 (x, y) 2 x 2 0, z čehož vyplývá Schwarzova nerovnost.

5 5 2. Máme x + y 2 = (x + y, x + y) = (x, x) + (x, y) + (y, x) + (y, y) = x + (x, y) + (x, y) + y 2 = x 2 + 2Re (x, y) + y 2 Nyní stačí na člen Re (x, y) použít odhad Re z z, který platí pro z C, a poté Schwarzovu nerovnost, tj. Celkem dostáváme Re (x, y) (x, y) x y. x + y 2 x x y + y 2 = ( x + y ) 2, což po odmocnění levé a pravé strany dává trojúhelníkovou nerovnost. 3. Platí x + y 2 + x y 2 = (x + y, x + y) + (x y, x y) = x 2 + (x, y) + (y, x) + y 2 + x 2 (x, y) (y, x) + y 2 = 2( x 2 + y 2 ) Ortogonalita Ortogonalita Definice 6. Nechť H je prostor se skalárním součinem. Vektory x, y H nazýváme ortogonální (kolmé), právě když (x, y) = 0. Soubor vektorů (x 1,..., x n ) z H nazveme ortogonální (OG), právě když ( i, j ˆn, i j )( (x i, x j ) = 0 ). Soubor vektorů (x 1,..., x n ) nazveme ortonormální (ON), právě když ( i, j ˆn )( (x i, x j ) = δ ij ). Poznámka 7. Máme-li R 2 se standardním skalárním součinem je klasická geometrická kolmost vektorů x a y ekvivalentí rovnosti (x, y) = 0. (Rozmyslete si!) Proto je ortogonalita zobecněním pojmu kolmost z Euklidovské geometrie.

6 6 Dvě věty Věta 8 (Pythagorova věta). Nechť (x, y) je OG soubor vektorů z H. Potom x + y 2 = x 2 + y 2. Důkaz. Platí x + y 2 = (x + y, x + y) = x 2 + (x, y) + (y, x) + y 2. Nyní stačí využít, že dle předpokladu je 0 = (x, y) = (y, x). Věta 9. OG soubor nenulových vektorů je LN. Speciálně, každý ON soubor vektorů je LN. Důkaz. Buď (x 1,..., x k ) OG soubor nenulových vektorů. Uvažujme lineární kombinaci α j x j = θ, potom pro i ˆk platí 0 = (x i, θ) = x i, α j x j = α j (x i, x j ) = α i x i 2, kde jsme využili, že (x i, x j ) = 0 pro i j. Protože je podle předpokladu x i θ, je x i 0 a dostáváme α i = 0 pro všechna i ˆk. Soubor (x 1,..., x k ) je proto LN. Besselova nerovnost Definice 10. Nechť (x 1,..., x k ) je ON soubor vektorů z H, x H. Číslo (x i, x), i ˆk, nazýváme i-tý Fourierův koeficient vektoru x vzhledem k souboru (x 1,..., x k ). Pozorování: Nechť (x 1,..., x k ) je ON soubor vektorů z H, x H. Potom vektor x (x j, x)x j je kolmý na všechny vektory souboru (x 1,..., x k ). (Ověřte!)

7 7 Věta 11 (Besselova nerovnost). Nechť (x 1,..., x k ) je ON soubor vektorů z H, x H. Potom platí (x j, x) 2 x 2. Důkaz. Protože je (x 1,..., x k ) ON a s přihlédnutím k předchozímu pozorování platí 0 x (x j, x)x j, x (x j, x)x j = x, x (x j, x)x j x 2 (x j, x)(x, x j ) = x 2 (x j, x) 2. ON báze Definice 12. Je-li ON soubor (x 1,..., x n ) vektorů z H navíc báze H, nazýváme jej ortnormální báze prostoru H. Věta 13. Nechť (x 1,..., x n ) je ON soubor vektorů z H. Potom (x 1,..., x n ) je ON báze právě tehdy, když neexistuje nenulový vektor, který by byl kolmý na všechny vektory souboru (x 1,..., x n ), tzn. ( x H)( ( i ˆn)((x i, x) = 0) x = θ ). Důkaz. ( ) : Tvrzení dokážeme sporem: nechť (x 1,..., x n ) je ON báze a současně nechť x θ kolmý na všechny vektory souboru (x 1,..., x n ). Protože (x 1,..., x n ) generuje H, je x = α i x i pro nějaká α 1,..., α n T. Potom pro libovolné j ˆn platí ( ) 0 = (x j, x) = x j, α i x i = α i (x j, x i ) = α j. }{{} =δ ij Tedy x = θ, což je spor s předpokladem.

8 8 ( ) : Víme, že ON soubor (x 1,..., x n ) musí být LN. K tomu, aby to byla báze, stačí ukázat, že navíc generuje H. Vezměme x H. Vektor x (x j, x)x j je kolmý na každý vektor souboru (x 1,..., x n ), a proto podle předpokladu je x (x j, x)x j = θ, nebo-li a proto x x 1,..., x n. x = (x j, x)x j, Prostor s ON bází Věta 14. Nechť X = (x 1,..., x n ) je ON báze H. Potom platí ( ( x H) x = ) (x i, x)x i (i-tá souřadnice x v bázi X je rovna i-tému Fourierovu koeficientu (x i, x)) ( ( x, y H) (x, y) = ) (x i, x)(x i, y) ( Skalární součin počítaný v souřadnicích vypadá jako standardní s. s. ) 3. Důkaz. ( ( x H) x 2 = ) (x i, x) 2 (Parsevalova rovnost) 1. Buď x H. Protože vektor x (x i, x)x i

9 9 je kolmý na každý vektor souboru (x 1,..., x n ), musí podle předchozí věty být roven nulovému vektoru. Tedy x = (x i, x)x i. 2. S využítím již dokázané části máme pro x, y H rovnosti x = (x i, x)x i, y = (x i, y)x i. Potom platí (x, y) = (x i, x)x i, (x j, y)x j = (x i, x)(x, x j ) (x i, x j ) }{{} =δ ij = (x i, x)(x i, y). 3. Stačí v druhé části tvrzení položit y = x. Ukážeme si metodu, jak lze každý LN soubor zortnormalizovat, tj. udělat z něj ON soubor, který generuje stejný podprostor. Gramův- Schmidtův ortogonalizační proces Speciálně z každé báze lze v prehilbetově prostoru zkonstruovat ON bázi. Tedy v každém prehilbetově prostoru existuje ON báze. Věta 15 (Gramův-Schmidtův ortogonalizační proces). Buď (x 1,..., x k ) LN soubor vektorů z H. Potom existuje ON soubor (y 1,..., y k ) vektorů z H takový, že ( l ˆk)( x 1,..., x l = y 1,..., y l ). Důkaz. Budeme postupovat neúplnou matematickou indukcí v l ˆk. Pro l = 1 stačí položit y 1 := x 1 / x 1. Zde nedělíme nulou protože soubor (x 1 ) je dle předpokladu LN, a tedy x 1 θ.

10 10 Nechť tvrzení věty platí pro l < k. Ukážeme, že potom také platí i pro l + 1. Definujme pomocný vektor l z l+1 := x l+1 (y j, x l+1 )y j a normujme ho y l+1 := z l+1 z l+1. Z indukčního předpokladu víme, že x 1,..., x l = y 1,..., y l a z definice y l+1 pak zřejmě x 1,..., x l+1 = y 1,..., y l+1. Dále je dle indukčního předpokladu (y 1,..., y l ) ON soubor. Abychom ukázali, že (y 1,..., y l ) je také ON soubor, stačí ukázat (y l+1, y i ) = 0, i ˆl. To bude pravda, pokud (z l+1, y i ) = 0, i ˆl. To ale platí, neboť (z l+1, y i ) = x l+1 l l (y j, x l+1 )y j, y i = (x l+1, y i ) = (x l+1, y i ) (x l+1, y i ) = 0. (y j, x l+1 ) (y j, y i ) }{{} =δ ij Uvažujte R 4 se standardním sk. součinem. Nalezněte ON bázi podprostoru P = x 1, x 2, x 3 R 4, je-li Příklad G.-S. OG proces 1/2 x 1 = (1, 2, 2, 1), x 2 = (1, 1, 5, 3), x 3 = (3, 2, 8, 7). Soubor (x 1, x 2, x 3 ) je LN, zortnormalizujeme ho G.-S. procesem. y 1 := x 1 x 1 = 1 10 (1, 2, 2, 1). z 2 := x 2 (y 1, x 2 )y 1 = (1, 1, 5, 3) 10 (1, 2, 2, 1) = (2, 3, 3, 2) 10 y 2 := z 2 z 2 = 1 26 (2, 3, 3, 2)

11 11 Příklad G.-S. OG proces 2/2 Konečně z 3 := x 3 (y 1, x 3 )y 1 (y 2, x 3 )y 2 = (3, 2, 8, 7) (1, 2, 2, 1) (2, 3, 3, 2) = (2, 1, 1, 2) y 3 := z 3 z 3 = 1 10 (2, 1, 1, 2) Soubor (y 1, y 2, y 3 ) je ON báze podprostoru P. Ortogonální doplněk Definice 16. Buď H prehilbertův prostor, M H. Množinu M = {x H ( y M)((x, y) = 0)} nazýváme ortogonální doplněk množiny M do prostoru H. Věta 17 (o ortogonálním rozkladu). Nechť P H, dim P <, potom 1. H = P P, 2. (P ) = P. Důkaz. 1. Je-li dim P = 0 je P = H a věta platí. Nechť dim P = k N a nechť (x 1,..., x k ) je ON báze P. Nejprve ukážeme H = P + P. Libovolný vektor x H lze zapsat ve tvaru x = (x j, x)x j + x (x j, x)x j. Protože vektor x (x j, x)x j

12 12 je kolmý na každý vektor souboru (x 1,..., x k ), je x (x j, x)x j P. Našli jsem tak hledaný rozklad vektoru x. Dál dokážeme, že H = P P. Pokud x P P, musí (x, x) = 0, odkud x = 0. Tedy P P = {θ}. 2. Ukážeme nejprve inkluzi P (P ). Je-li x P, potom ( y P )((x, y) = 0). Vektor x je tedy kolmý na všechny vektory z P, proto x (P ). Naopak nechť x (P ). Podle už dokázané první části tvrzení lze x vyjádřit ve tvaru x = y + z, kde y P a z P. Protže je x (P ) a z P, platí (x, z) = 0. Potom 0 = (x, z) = (y, z) + z 2 = z 2, odkud plyne z = θ a tedy x = y P. Příklad Uvažujme R 3 se standardním skalárním součinem a P = (1, 1, 1). Množina řešení rovnice je podprostorem P. Dostáváme ((1, 1, 1), (x, y, x)) = x + y + z = 0 P = ( 1, 0, 1), ( 1, 1, 0). Rovnost R 3 = P P nám říká, že každý vektor x R 3 lze jediným způsobem rozložit na dva kolmé vektory u a v, kde vektor u leží v přímce P, vektor v leží v rovině P a x = u + v.

13 Sdružená matice Sdružená matice Ve zbylé části bude těleso T = R, nebo T = C. Definice 18. Buď (α ij ) = A T n,n. Matici (α i,j ) = A T n,n, jejíž prvky jsou definované vztahem ( i, j ˆn)(α i,j = α j,i ), nazýváme sdruženou maticí k matici A (tedy A = A T ). Cvičení: Pro A, B T n,n, α T, ověřte následující vlastnosti: 1. (A + B) = A + B, 2. (αa) = αa, 3. (AB) = B A, 4. (A ) = A, 5. E = E, Θ = Θ, 6. je-li A regulární, je i A regulární a platí (A ) 1 = (A 1 ). 7. ( x, y T n )((x, Ay) = (A x, y)) ((.,.) je standardní skal. souč. na T n ) Speciální matice Definice 19. Buď A T n,n. Říkáme, že matice A je 1. samosdružená, právě když A = A. Pro T = C nazýváme A hermitovskou. Pro T = R nazýváme A symetrickou. 2. izometrická, právě když AA = E(= A A). Pro T = C nazýváme A unitární. Pro T = R nazýváme A ortogonální. Poznámka 20. Tedy izometrická matice A je vždy regulární a platí A 1 = A.

14 14 Následují věty vyslovíme pro unitární matice (T = C), analogická tvrzení platí pro matice ortogonální (T = R). Vlastnosti unitárních matic Věta 21. Uvažujme C n prostor se standardním skalárním součinem, A C n,n. Následující tvzení jsou ekvivalentní: 1. A je unitární. 2. A je unitární. 3. Sloupce matice A tvoří ON bázi C n. 4. Řádky matice A tvoří ON bázi C n. Důkaz. Ekvivalence je zřejmá z definice unitarity. Nechť dále A A = E, potom pro i, j ˆn platí (A,i, A,j ) = (Ae i, Ae j ) = (e i, A Ae j ) = (e i, e j ) = δ ij. Tedy sloupce A tvoří ON soubor a jelikož je jich n, musí to být báze C n. Naopak z ortonormality souboru sloupců plyne (A A) ij = (e i, A Ae j ) = (A,i, A,j ) = δ ij, a tedy A A = E. Máme tedy Nakonec snadno ukážeme, že A je unitární A T je unitární. (Proveďte jako cvičení!) Odtud a z již dokázané ekvivalence (1. 3.) máme: sloupce A tvoří ON soubor A je unitární A T je unitární sloupce A T tvoří ON soubor řádky A tvoří ON soubor. Dokázali jsme a věta je dokázána. Věta 22. Buď A C n,n unitární a C n prostor se standardním skalárním součinem. Potom platí Další vlastnosti unitárních matic 1. det A = 1, 2. ( x C n )( Ax = x ), 3. λ σ(a) λ = 1. Důkaz.

15 15 1. Stačí si uvědomit, že z definice sdružené matice a determinantu plyne det A = det A T = det A = det A, kde jsme použili vlastnost det B T = det B, B T n,n. Potom 2. Platí det A 2 = det Adet A = det A det A = det(aa ) = det E = 1. Ax 2 = (Ax, Ax) = (x, A Ax) = (x, Ex) = (x, x) = x Buď λ σ(a) a x C n příslušný vlastní vektor, tedy x θ a Ax = λx. Z již dokázané vlastnosti 2. potom máme Protože x 0, je λ = 1. x = Ax = λx = λ x. Cvičení: Ukažte, že součin unitárních matic je unitární matice Diagonalizace a spektrální vlastnosti samosdružených matic Věta 23. Buď A T n,n samosdružená matice a T n prostor se standardním skalárním součinem. Potom Reálná vlastní čísla a kolmost vlastních vektorů 1. σ(a) R, 2. vlastní vektory A příslušející dvěma různým vlastním číslům jsou kolmé. Důkaz. 1. Nechť λ σ(a) a x C n příslušný vlastní vektor, tedy x θ a Ax = λx. Potom λ x 2 = (x, λx) = (x, Ax) = (A x, x) = (Ax, x) = (λx, x) = λ x 2. Protože x 0, je λ = λ, odkud plyne λ R.

16 16 2. Nechť λ, µ R jsou dvě různá vlastní čísla A s odpovídajícími vlastními vektory x, y, tedy Ax = λx a Ay = µy. Potom µ(x, y) = (x, µy) = (x, Ay) = (Ax, y) = (λx, y) = λ(x, y), odkud máme Protože µ λ, musí (x, y) = 0. (µ λ)(x, y) = 0. Věta 24 (Spektrální teorém). Buď A C n,n hermitovská matice. Potom je A podobná diagonální matici D a regulární matici P z relace podobnosti lze volit izometrickou. Tedy platí A = P DP. (Protože pro izometrickou P je P 1 = P.) Důkaz: Neuvedeme. Poznámka 25. Pro hermitovskou matici A tedy platí ( λ σ(a))(ν g (λ) = ν a (λ)). Dále pro f : C C umíme definovat f(a). Diagonalizace samosdružené matice

1 Linearní prostory nad komplexními čísly

1 Linearní prostory nad komplexními čísly 1 Linearní prostory nad komplexními čísly V této přednášce budeme hledat kořeny polynomů, které se dále budou moci vyskytovat jako složky vektorů nebo matic Vzhledem k tomu, že kořeny polynomu (i reálného)

Více

Vlastní číslo, vektor

Vlastní číslo, vektor [1] Vlastní číslo, vektor motivace: směr přímky, kterou lin. transformace nezmění invariantní podprostory charakteristický polynom báze, vzhledem ke které je matice transformace nejjednodušší podobnost

Více

19 Hilbertovy prostory

19 Hilbertovy prostory M. Rokyta, MFF UK: Aplikovaná matematika III kap. 19: Hilbertovy prostory 34 19 Hilbertovy prostory 19.1 Úvod, základní pojmy Poznámka (připomenutí). Necht (X,(, )) je vektorový prostor se skalárním součinem

Více

Euklidovský prostor. Euklides. Euklidovy postuláty (axiomy)

Euklidovský prostor. Euklides. Euklidovy postuláty (axiomy) Euklidovský prostor Euklidovy Základy (pohled do historie) dnešní definice kartézský souřadnicový systém vlastnosti rovin v E n speciální vlastnosti v E 3 (vektorový součin) a) eprostor, 16, b) P. Olšák,

Více

Základní vlastnosti eukleidovského prostoru

Základní vlastnosti eukleidovského prostoru Kapitola 2 Základní vlastnosti eukleidovského prostoru 2.1 Eukleidovský prostor Eukleidovský prostor a jeho podprostory. Metrické vlastnosti, jako např. kolmost, odchylka, vzdálenost, obsah, objem apod.

Více

12. Determinanty. 12. Determinanty p. 1/25

12. Determinanty. 12. Determinanty p. 1/25 12. Determinanty 12. Determinanty p. 1/25 12. Determinanty p. 2/25 Determinanty 1. Induktivní definice determinantu 2. Determinant a antisymetrické formy 3. Výpočet hodnoty determinantu 4. Determinant

Více

2 Vektory a vektorové prostory 23 2.1 Lineární závislost a nezávislost vektorů... 25 2.2 Souřadná soustava a báze... 26

2 Vektory a vektorové prostory 23 2.1 Lineární závislost a nezávislost vektorů... 25 2.2 Souřadná soustava a báze... 26 Obsah 1 Matice 3 11 Operace s maticemi 4 12 Soustavy lineárních rovnic 11 13 Maticové rovnice a výpočet inverzní matice 15 14 Elementární matice 19 15 Cvičení 21 16 Řešení 22 2 Vektory a vektorové prostory

Více

METRICKÉ A NORMOVANÉ PROSTORY

METRICKÉ A NORMOVANÉ PROSTORY PŘEDNÁŠKA 1 METRICKÉ A NORMOVANÉ PROSTORY 1.1 Prostor R n a jeho podmnožiny Připomeňme, že prostorem R n rozumíme množinu uspořádaných n tic reálných čísel, tj. R n = R } R {{ R }. n krát Prvky R n budeme

Více

Řešení. Hledaná dimenze je (podle definice) rovna hodnosti matice. a 1 2. 1 + a 2 2 1

Řešení. Hledaná dimenze je (podle definice) rovna hodnosti matice. a 1 2. 1 + a 2 2 1 Příklad 1. Určete všechna řešení následující soustavy rovnic nad Z 2 : 0 0 0 1 1 1 0 1 0 1 1 1 1 1 0 1 0 1 0 1 1 Gaussovou eliminací převedeme zadanou soustavu na ekvivalentní soustavu v odstupňovaném

Více

Všechno, co jste kdy chtěli vědět o maticích, ale báli jste se zeptat

Všechno, co jste kdy chtěli vědět o maticích, ale báli jste se zeptat Všechno, co jste kdy chtěli vědět o maticích, ale báli jste se zeptat Čtvercová matice n n, např. může reprezentovat: A = A A 2 A 3 A 2 A 22 A 23 A 3 A 32 A 33 matici koeficientů soustavy n lineárních

Více

(ne)závislost. α 1 x 1 + α 2 x 2 + + α n x n. x + ( 1) x Vektoru y = ( 1) y říkáme opačný vektor k vektoru y. x x = 1. x = x = 0.

(ne)závislost. α 1 x 1 + α 2 x 2 + + α n x n. x + ( 1) x Vektoru y = ( 1) y říkáme opačný vektor k vektoru y. x x = 1. x = x = 0. Lineární (ne)závislost [1] Odečítání vektorů, asociativita BI-LIN, zavislost, 3, P. Olšák [2] Místo, abychom psali zdlouhavě: x + ( 1) y, píšeme stručněji x y. Vektoru y = ( 1) y říkáme opačný vektor k

Více

Definice. Vektorový prostor V nad tělesem T je množina s operacemi + : V V V, tj. u, v V : u + v V : T V V, tj. ( u V )( a T ) : a u V které splňují

Definice. Vektorový prostor V nad tělesem T je množina s operacemi + : V V V, tj. u, v V : u + v V : T V V, tj. ( u V )( a T ) : a u V které splňují Definice. Vektorový prostor V nad tělesem T je množina s operacemi + : V V V, tj. u, v V : u + v V : T V V, tj. ( u V )( a T ) : a u V které splňují 1. u + v = v + u, u, v V 2. (u + v) + w = u + (v + w),

Více

[1] Vzhledem ke zvolené bázi určujeme souřadnice vektorů...

[1] Vzhledem ke zvolené bázi určujeme souřadnice vektorů... [1] Báze Každý lineární (pod)prostor má svou bázi Vzhledem ke zvolené bázi určujeme souřadnice vektorů... a) base, 4, b) P. Olšák, FEL ČVUT, c) P. Olšák 2010, d) BI-LIN, e) L, f) 2009/2010, g)l. Viz p.

Více

15. Moduly. a platí (p + q)(x) = p(x) + q(x), 1(X) = id. Vzniká tak struktura P [x]-modulu na V.

15. Moduly. a platí (p + q)(x) = p(x) + q(x), 1(X) = id. Vzniká tak struktura P [x]-modulu na V. Učební texty k přednášce ALGEBRAICKÉ STRUKTURY Michal Marvan, Matematický ústav Slezská univerzita v Opavě 15. Moduly Definice. Bud R okruh, bud M množina na níž jsou zadány binární operace + : M M M,

Více

Matematický ústav Slezské univerzity v Opavě Učební texty k přednášce ALGEBRA II, letní semestr 2000/2001 Michal Marvan

Matematický ústav Slezské univerzity v Opavě Učební texty k přednášce ALGEBRA II, letní semestr 2000/2001 Michal Marvan Matematický ústav Slezské univerzity v Opavě Učební texty k přednášce ALGEBRA II, letní semestr 2000/2001 Michal Marvan 11. Lineární zobrazení V celé přednášce pojednáváme o vektorových prostorech nad

Více

FAKULTA STAVEBNÍ MATEMATIKA I MODUL GA01 M01 STUDIJNÍ OPORY PRO STUDIJNÍ PROGRAM GEODÉZIE A KARTOGRAFIE S KOMBINOVANOU FORMOU STUDIA

FAKULTA STAVEBNÍ MATEMATIKA I MODUL GA01 M01 STUDIJNÍ OPORY PRO STUDIJNÍ PROGRAM GEODÉZIE A KARTOGRAFIE S KOMBINOVANOU FORMOU STUDIA VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA STAVEBNÍ MATEMATIKA I MODUL GA01 M01 VYBRANÉ ČÁSTI A APLIKACE VEKTOROVÉHO POČTU STUDIJNÍ OPORY PRO STUDIJNÍ PROGRAM GEODÉZIE A KARTOGRAFIE S KOMBINOVANOU FORMOU STUDIA

Více

Matematika. Kamila Hasilová. Matematika 1/34

Matematika. Kamila Hasilová. Matematika 1/34 Matematika Kamila Hasilová Matematika 1/34 Obsah 1 Úvod 2 GEM 3 Lineární algebra 4 Vektory Matematika 2/34 Úvod Zkouška písemná, termíny budou včas vypsány na Intranetu UO obsah: teoretická a praktická

Více

Pojem binární relace patří mezi nejzákladnější matematické pojmy. Binární relace

Pojem binární relace patří mezi nejzákladnější matematické pojmy. Binární relace RELACE Pojem binární relace patří mezi nejzákladnější matematické pojmy. Binární relace slouží k vyjádření vztahů mezi prvky nějakých množin. Vztahy mohou být různé povahy. Patří sem vztah býti potomkem,

Více

8 Věta o Fourierově transformaci funkcí, které lze na sebe transformovat regulární lineární transformací souřadnic

8 Věta o Fourierově transformaci funkcí, které lze na sebe transformovat regulární lineární transformací souřadnic 8 REGULÁRNÍ LINEÁRNÍ TRANSFORMACE SOUŘADNIC 8 Věta o Fourierově transformaci funkcí, které lze na sebe transformovat regulární lineární transformací souřadnic Ze zkušenosti s Fraunhoferovými difrakčními

Více

Nechť M je množina. Zobrazení z M M do M se nazývá (binární) operace

Nechť M je množina. Zobrazení z M M do M se nazývá (binární) operace Kapitola 2 Algebraické struktury Řada algebraických objektů má podobu množiny s nějakou dodatečnou strukturou. Například vektorový prostor je množina vektorů, ty však nejsou jeden jako druhý : jeden z

Více

Matematika pro studenty ekonomie. Doc. RNDr. Jiří Moučka, Ph.D. RNDr. Petr Rádl

Matematika pro studenty ekonomie. Doc. RNDr. Jiří Moučka, Ph.D. RNDr. Petr Rádl Doc. RNDr. Jiří Moučka, Ph.D. RNDr. Petr Rádl Matematika pro studenty ekonomie Vydala Grada Publishing, a.s. U Průhonu 22, 70 00 Praha 7 tel.: +420 234 264 40, fax: +420 234 264 400 www.grada.cz jako svou

Více

MATURITNÍ TÉMATA Z MATEMATIKY

MATURITNÍ TÉMATA Z MATEMATIKY MATURITNÍ TÉMATA Z MATEMATIKY 1. Základní poznatky z logiky a teorie množin Pojem konstanty a proměnné. Obor proměnné. Pojem výroku a jeho pravdivostní hodnota. Operace s výroky, složené výroky, logické

Více

Co byste měl/a zvládnout po 6. týdnu

Co byste měl/a zvládnout po 6. týdnu Co byste měl/a zvládnout po 6. týdnu Zde je uveden naprostý základ. Nejde o úplný výčet všech dovedností. Jiří Velebil: A7B01LAG Zvládnutá látka po 6. týdnu 1/8 Slovník základních pojmů Monomorfismus,

Více

4. Topologické vlastnosti množiny reálných

4. Topologické vlastnosti množiny reálných Matematická analýza I přednášky M. Málka cvičení A. Hakové a R. Otáhalové Zimní semestr 2004/05 4. Topologické vlastnosti množiny reálných čísel V této kapitole definujeme přirozenou topologii na množině

Více

Odpřednesenou látku naleznete v kapitole 3.3 skript Diskrétní matematika.

Odpřednesenou látku naleznete v kapitole 3.3 skript Diskrétní matematika. Lineární kódy, část 2 Odpřednesenou látku naleznete v kapitole 3.3 skript Diskrétní matematika. Jiří Velebil: A7B01LAG 22.12.2014: Lineární kódy, část 2 1/12 Dnešní přednáška 1 Analýza Hammingova (7, 4)-kódu.

Více

MATEMATIKA STUDIJNÍ POŽADAVKY PRO JEDNOTLIVÉ ROČNÍKY STUDIA

MATEMATIKA STUDIJNÍ POŽADAVKY PRO JEDNOTLIVÉ ROČNÍKY STUDIA MATEMATIKA STUDIJNÍ POŽADAVKY PRO JEDNOTLIVÉ ROČNÍKY STUDIA Osmileté studium 1. ročník 1. Opakování a prohloubení učiva 1. 5. ročníku Číslo, číslice, množiny, přirozená čísla, desetinná čísla, číselné

Více

y 10 20 Obrázek 1.26: Průměrová rovina válcové plochy

y 10 20 Obrázek 1.26: Průměrová rovina válcové plochy 36 KAPITOLA 1. KVADRIKY JAKO PLOCHY 2. STUPNĚ 2 1 2 1 1 y 1 2 Obráek 1.26: Průměrová rovina válcové plochy Věta: Je-li definována průměrová rovina sdružená s asymptotickým směrem, potom je s tímto směrem

Více

11 Analýza hlavních komponet

11 Analýza hlavních komponet 11 Analýza hlavních komponet Tato úloha provádí transformaci měřených dat na menší počet tzv. fiktivních dat tak, aby většina informace obsažená v původních datech zůstala zachována. Jedná se tedy o úlohu

Více

2.6. Vlastní čísla a vlastní vektory matice

2.6. Vlastní čísla a vlastní vektory matice 26 Cíle V této části se budeme zabývat hledáním čísla λ které je řešením rovnice A x = λ x (1) kde A je matice řádu n Znalost řešení takové rovnice má řadu aplikací nejen v matematice Definice 261 Nechť

Více

Požadavky na konkrétní dovednosti a znalosti z jednotlivých tematických celků

Požadavky na konkrétní dovednosti a znalosti z jednotlivých tematických celků Maturitní zkouška z matematiky 2012 požadované znalosti Zkouška z matematiky ověřuje matematické základy formou didaktického testu. Test obsahuje uzavřené i otevřené úlohy. V uzavřených úlohách je vždy

Více

MATEMATIKA Maturitní témata společná část MZ základní úroveň (vychází z Katalogu požadavků MŠMT)

MATEMATIKA Maturitní témata společná část MZ základní úroveň (vychází z Katalogu požadavků MŠMT) MATEMATIKA Maturitní témata společná část MZ základní úroveň (vychází z Katalogu požadavků MŠMT) 1. Číselné obory 1.1 Přirozená čísla provádět aritmetické operace s přirozenými čísly rozlišit prvočíslo

Více

Lineární algebra nad obecným Z m, lineární kódy

Lineární algebra nad obecným Z m, lineární kódy Lineární algebra nad obecným Z m, lineární kódy Jiří Velebil: X01DML 19. listopadu 2010: Lineární algebra a kódy 1/19 Minule: soustavy lineárních rovnic nad Z p, p prvočíslo, stejně jako nad R. Dále nad

Více

1. Několik základních pojmů ze středoškolské matematiky. Na začátku si připomeneme následující pojmy:

1. Několik základních pojmů ze středoškolské matematiky. Na začátku si připomeneme následující pojmy: Opakování středoškolské matematiky Slovo úvodem: Tato pomůcka je určena zejména těm studentům presenčního i kombinovaného studia na VŠFS, kteří na středních školách neprošli dostatečnou průpravou z matematiky

Více

množinu definujeme axiomaticky: nesnažíme se ji zkonstruovat (dokonce se ani nezabýváme otázkou,

množinu definujeme axiomaticky: nesnažíme se ji zkonstruovat (dokonce se ani nezabýváme otázkou, Matematická analýza I přednášky M. Málka cvičení A. Hakové a R. Otáhalové Zimní semestr 2004/05 2. Reálná čísla, funkce reálné proměnné V této kapitole zavádíme množinu, na níž stojí celá matematická analýza:

Více

1. Jordanův kanonický tvar

1. Jordanův kanonický tvar . Jordanův kanonický tvar Obecně nelze pro zadaný lineární operátor ϕ : U U najít bázi α takovou, že (ϕ) α,α by byla diagonální. Obecně však platí, že pro každý lineární operátor ϕ : U U nad komplexními

Více

Maturitní témata od 2013

Maturitní témata od 2013 1 Maturitní témata od 2013 1. Úvod do matematické logiky 2. Množiny a operace s nimi, číselné obory 3. Algebraické výrazy, výrazy s mocninami a odmocninami 4. Lineární rovnice a nerovnice a jejich soustavy

Více

opravdu považovat za lepší aproximaci. Snížení odchylky o necelá dvě procenta

opravdu považovat za lepší aproximaci. Snížení odchylky o necelá dvě procenta Řetězové zlomky a dobré aproximace Motivace Chceme-li znát přibližnou hodnotu nějakého iracionálního čísla, obvykle používáme jeho (nekonečný) desetinný rozvoj Z takového rozvoje, řekněme z rozvoje 345926535897932384626433832795028849769399375

Více

analytické geometrie v prostoru s počátkem 18. stol.

analytické geometrie v prostoru s počátkem 18. stol. 4.. Funkce více proměnných, definice, vlastnosti Funkce více proměnných Funkce více proměnných se v matematice začal používat v rámci rozvoje analtické geometrie v prostoru s počátkem 8. stol. I v sami

Více

[1] Důkaz: Necht p(x) = a n x n +... + a 1 x + a 0 = 0 pro všechna x C,

[1] Důkaz: Necht p(x) = a n x n +... + a 1 x + a 0 = 0 pro všechna x C, Výsledky operací jsou tedy popsány pomocí svých koeficientů algoritmicky. Na vstupu do algoritmu jsou koeficienty polynomů, které sčítáme resp. násobíme. S proměnnou x algoritmy nepracují. Polynomy Polynom

Více

POLYNOMY 1 Jan Malý UK v Praze a UJEP v Ústí n. L.

POLYNOMY 1 Jan Malý UK v Praze a UJEP v Ústí n. L. Soustavy o jedné rovnici neboli rovnice. Algebraické rovnice: Polynom= 0. POLYNOMY 1 Jan Malý UK v Praze a UJEP v Ústí n. L. Rovnice 1. stupně: lineární, ax + b = 0, a 0. Řešení: x = b a. Rovnice 2. stupně:

Více

7.2.12 Vektorový součin I

7.2.12 Vektorový součin I 7 Vektorový součin I Předpoklad: 708, 7 Při násobení dvou čísel získáváme opět číslo Skalární násobení vektorů je zcela odlišné, protože vnásobením dvou vektorů dostaneme číslo, ted něco jiného Je možné

Více

Fibonacciho čísla na střední škole

Fibonacciho čísla na střední škole Fibonacciho čísla na střední škole Martina Jarošová Abstract In this contribution we introduce some interesting facts about Fibonacci nunbers We will prove some identities using different proof methods

Více

Požadavky k opravným zkouškám z matematiky školní rok 2013-2014

Požadavky k opravným zkouškám z matematiky školní rok 2013-2014 Požadavky k opravným zkouškám z matematiky školní rok 2013-2014 1. ročník (první pololetí, druhé pololetí) 1) Množiny. Číselné obory N, Z, Q, I, R. 2) Absolutní hodnota reálného čísla, intervaly. 3) Procenta,

Více

MATEMATIKA Tematické okruhy ke státní maturitní zkoušce Obor: mechanik elektronik

MATEMATIKA Tematické okruhy ke státní maturitní zkoušce Obor: mechanik elektronik MATEMATIKA Tematické okruhy ke státní maturitní zkoušce Obor: mechanik elektronik R4 1. ČÍSELNÉ VÝRAZY 1.1. Přirozená čísla počítání s přirozenými čísly, rozlišit prvočíslo a číslo složené, rozložit složené

Více

Vzdálenosti. Copyright c 2006 Helena Říhová

Vzdálenosti. Copyright c 2006 Helena Říhová Vzdálenosti Copyright c 2006 Helena Říhová Obsah 1 Vzdálenosti 3 1.1 Vzdálenostivrovině... 3 1.1.1 Vzdálenostdvoubodů..... 3 1.1.2 Vzdálenostboduodpřímky..... 4 1.1.3 Vzdálenostdvourovnoběžek.... 5 1.2

Více

5. Interpolace a aproximace funkcí

5. Interpolace a aproximace funkcí 5. Interpolace a aproximace funkcí Průvodce studiem Často je potřeba složitou funkci f nahradit funkcí jednodušší. V této kapitole budeme předpokládat, že u funkce f známe její funkční hodnoty f i = f(x

Více

Oproti definici ekvivalence jsme tedy pouze zaměnili symetričnost za antisymetričnost.

Oproti definici ekvivalence jsme tedy pouze zaměnili symetričnost za antisymetričnost. Kapitola 3 Uspořádání a svazy Pojem uspořádání, který je tématem této kapitoly, představuje (vedle zobrazení a ekvivalence) další zajímavý a důležitý speciální případ pojmu relace. 3.1 Uspořádání Definice

Více

Limita a spojitost funkce

Limita a spojitost funkce Limita a spojitost funkce Základ všší matematik Dana Říhová Mendelu Brno Průřezová inovace studijních programů Lesnické a dřevařské fakult MENDELU v Brně (LDF) s ohledem na disciplin společného základu

Více

10. Afinní a euklidovský prostor

10. Afinní a euklidovský prostor 10. Afinní a euklidovský prostor Definice 10.1. Afinním prostorem A = AV nad vektorovým prostorem V rozumíme trojici A, V,+,kde Ajemnožina,jejížprvkynazývámebody, V jevektorovýprostor,+jeoperace,která

Více

Učební texty k státní bakalářské zkoušce Matematika Algebra. študenti MFF 15. augusta 2008

Učební texty k státní bakalářské zkoušce Matematika Algebra. študenti MFF 15. augusta 2008 Učební texty k státní bakalářské zkoušce Matematika Algebra študenti MFF 15. augusta 2008 1 8 Algebra Požadavky Grupa, okruh, těleso definice a příklady Podgrupa, normální podgrupa, faktorgrupa, ideál

Více

Teoretická informatika Tomáš Foltýnek foltynek@pef.mendelu.cz. Algebra Struktury s jednou operací

Teoretická informatika Tomáš Foltýnek foltynek@pef.mendelu.cz. Algebra Struktury s jednou operací Teoretická informatika Tomáš Foltýnek foltynek@pef.mendelu.cz Algebra Struktury s jednou operací Teoretická informatika 2 Proč zavádíme algebru hledáme nástroj pro popis objektů reálného světa (zejména

Více

Vlastnosti regulárních jazyků

Vlastnosti regulárních jazyků Vlastnosti regulárních jazyků Podobně jako u dalších tříd jazyků budeme nyní zkoumat následující vlastnosti regulárních jazyků: vlastnosti strukturální, vlastnosti uzávěrové a rozhodnutelné problémy pro

Více

2 Zpracování naměřených dat. 2.1 Gaussův zákon chyb. 2.2 Náhodná veličina a její rozdělení

2 Zpracování naměřených dat. 2.1 Gaussův zákon chyb. 2.2 Náhodná veličina a její rozdělení 2 Zpracování naměřených dat Důležitou součástí každé experimentální práce je statistické zpracování naměřených dat. V této krátké kapitole se budeme věnovat určení intervalů spolehlivosti získaných výsledků

Více

9.4. Rovnice se speciální pravou stranou

9.4. Rovnice se speciální pravou stranou Cíle V řadě případů lze poměrně pracný výpočet metodou variace konstant nahradit jednodušším postupem, kterému je věnována tato kapitola. Výklad Při pozorném studiu předchozího textu pozornějšího studenta

Více

1. Množiny, zobrazení, relace

1. Množiny, zobrazení, relace Matematická analýza I přednášky M. Málka cvičení A. Hakové a R. Otáhalové Zimní semestr 2004/05 1. Množiny, zobrazení, relace První kapitola je věnována základním pojmům teorie množin. Pojednává o množinách

Více

1 Mnohočleny a algebraické rovnice

1 Mnohočleny a algebraické rovnice 1 Mnohočleny a algebraické rovnice 1.1 Pojem mnohočlenu (polynomu) Připomeňme, že výrazům typu a 2 x 2 + a 1 x + a 0 říkáme kvadratický trojčlen, když a 2 0. Číslům a 0, a 1, a 2 říkáme koeficienty a písmenem

Více

MINISTERSTVO ŠKOLSTVÍ, MLÁDEŽE A TĚLOVÝCHOVY. Učební osnova předmětu MATEMATIKA. pro studijní obory SOŠ a SOU (8 10 hodin týdně celkem)

MINISTERSTVO ŠKOLSTVÍ, MLÁDEŽE A TĚLOVÝCHOVY. Učební osnova předmětu MATEMATIKA. pro studijní obory SOŠ a SOU (8 10 hodin týdně celkem) MINISTERSTVO ŠKOLSTVÍ, MLÁDEŽE A TĚLOVÝCHOVY Učební osnova předmětu MATEMATIKA pro studijní obory SOŠ a SOU (8 10 hodin týdně celkem) Schválilo Ministerstvo školství, mládeže a tělovýchovy dne 14. 6. 2000,

Více

Ve srovnání s křivkami, kterými jsme se zabývali v Kapitole 5, je plocha matematicky

Ve srovnání s křivkami, kterými jsme se zabývali v Kapitole 5, je plocha matematicky Kapitola 8 Plocha a její obsah 1 efinice plochy Plochu intuitivně chápeme jako útvar v prostoru, který vznikne spojitou deformací části roviny Z geometrického pohledu je plochu možno interpretovat jako

Více

MATEMATIKA Maturitní témata společná část MZ vyšší úroveň (vychází z Katalogu požadavků MŠMT)

MATEMATIKA Maturitní témata společná část MZ vyšší úroveň (vychází z Katalogu požadavků MŠMT) MATEMATIKA Maturitní témata společná část MZ vyšší úroveň (vychází z Katalogu požadavků MŠMT) 1. Číselné obory 1.1 Přirozená čísla provádět aritmetické operace s přirozenými čísly rozlišit prvočíslo a

Více

Úlohy k procvičování textu o univerzální algebře

Úlohy k procvičování textu o univerzální algebře Úlohy k procvičování textu o univerzální algebře Číslo za pomlčkou v označení úlohy je číslo kapitoly textu, která je úlohou procvičovaná. Každá úloha je vyřešena o několik stránek později. Kontrolní otázky

Více

CZ 1.07/1.1.32/02.0006

CZ 1.07/1.1.32/02.0006 PO ŠKOLE DO ŠKOLY CZ 1.07/1.1.32/02.0006 Číslo projektu: CZ.1.07/1.1.32/02.0006 Název projektu: Po škole do školy Příjemce grantu: Gymnázium, Kladno Název výstupu: Prohlubující semináře Matematika (MI

Více

Práce, energie a další mechanické veličiny

Práce, energie a další mechanické veličiny Práce, energie a další mechanické veličiny Úvod V předchozích přednáškách jsme zavedli základní mechanické veličiny (rychlost, zrychlení, síla, ) Popis fyzikálních dějů usnadňuje zavedení dalších fyzikálních

Více

Spolehlivost soustav

Spolehlivost soustav 1 Spolehlivost soustav Spolehlivost soustav 1.1 Koherentní systémy a strukturní funkce Budeme se zabývat modelováním spolehlivosti zřízení s ohledem na spolehlivost jeho komponent. Jedním z hlavních cílů

Více

ALGEBRA LINEÁRNÍ, KVADRATICKÉ ROVNICE

ALGEBRA LINEÁRNÍ, KVADRATICKÉ ROVNICE ALGEBRA LINEÁRNÍ, KVADRATICKÉ ROVNICE A NEROVNICE, SOUSTAVY ROVNIC A NEROVNIC Gymnázium Jiřího Wolkera v Prostějově Výukové materiály z matematiky pro vyšší gymnázia Autoři projektu Student na prahu 21.

Více

Matematika I, část I Vzájemná poloha lineárních útvarů v E 3

Matematika I, část I Vzájemná poloha lineárních útvarů v E 3 3.6. Vzájemná poloha lineárních útvarů v E 3 Výklad A. Vzájemná poloha dvou přímek Uvažujme v E 3 přímky p, q: p: X = A + ru q: X = B + sv a hledejme jejich společné body, tj. hledejme takové hodnoty parametrů

Více

Požadavky k opravným zkouškám z matematiky školní rok 2014-2015

Požadavky k opravným zkouškám z matematiky školní rok 2014-2015 Požadavky k opravným zkouškám z matematiky školní rok 2014-2015 1. ročník (první pololetí, druhé pololetí) 1) Množiny. Číselné obory N, Z, Q, I, R. 2) Absolutní hodnota reálného čísla, intervaly. 3) Procenta,

Více

Diferenciální počet 1 1. f(x) = ln arcsin 1 + x 1 x. 1 x 1 a x 1 0. f(x) = (cos x) cosh x + 3x. x 0 je derivace funkce f(x) v bodě x0.

Diferenciální počet 1 1. f(x) = ln arcsin 1 + x 1 x. 1 x 1 a x 1 0. f(x) = (cos x) cosh x + 3x. x 0 je derivace funkce f(x) v bodě x0. Nalezněte definiční obor funkce Diferenciální počet f = ln arcsin + Definiční obor funkce f je určen vztahy Z těchto nerovností plyne < + ln arcsin + je tedy D f =, Určete definiční obor funkce arcsin

Více

Využití programu MS Excel při výuce vlastností kvadratické funkce

Využití programu MS Excel při výuce vlastností kvadratické funkce Využití programu MS Excel při výuce vlastností kvadratické funkce Martin Mikuláš Tabulkové kalkulátory lze ve škole velmi dobře využít při výuce matematiky. Lze v nich totiž snadno naprogramovat aplikace,

Více

Posloupnosti a jejich konvergence POSLOUPNOSTI

Posloupnosti a jejich konvergence POSLOUPNOSTI Posloupnosti a jejich konvergence Pojem konvergence je velmi důležitý pro nediskrétní matematiku. Je nezbytný všude, kde je potřeba aproximovat nějaké hodnoty, řešit rovnice přibližně, používat derivace,

Více

Samoopravné kódy. Katedra matematiky a Institut teoretické informatiky Západočeská univerzita

Samoopravné kódy. Katedra matematiky a Institut teoretické informatiky Západočeská univerzita Katedra matematiky a Institut teoretické informatiky Západočeská univerzita Seminář pro učitele středních a vysokých škol, Plzeň, 30. března 2012 jsou všude Některé oblasti využití: CD přehrávače mobilní

Více

Cyklickékódy. MI-AAK(Aritmetika a kódy)

Cyklickékódy. MI-AAK(Aritmetika a kódy) MI-AAK(Aritmetika a kódy) Cyklickékódy c doc. Ing. Alois Pluháček, CSc., 2011 Katedra číslicového návrhu Fakulta informačních technologií České vysoké učení technické v Praze Evropský sociální fond Praha&

Více

LINEÁRNÍ DIFERENCIÁLNÍ ROVNICE 2.ŘÁDU

LINEÁRNÍ DIFERENCIÁLNÍ ROVNICE 2.ŘÁDU LINEÁRNÍ DIFERENCIÁLNÍ ROVNICE 2.ŘÁDU ZDENĚK ŠIBRAVA 1. Obecné řešení lin. dif. rovnice 2.řádu s konstntními koeficienty 1.1. Vrice konstnt. Příkld 1.1. Njděme obecné řešení diferenciální rovnice (1) y

Více

Kapitola 1: Lineární prostor

Kapitola 1: Lineární prostor Lineární prostor Kapitola 1: Lineární prostor Chcete-li ukončit prohlížení stiskněte klávesu Esc. Chcete-li pokračovat stiskněte klávesu Enter.. p.1/15 Lineární prostor Lineární prostoralineární podprostor

Více

JčU - Cvičení z matematiky pro zemědělské obory (doc. RNDr. Nýdl, CSc & spol.) Minitest MT4

JčU - Cvičení z matematiky pro zemědělské obory (doc. RNDr. Nýdl, CSc & spol.) Minitest MT4 ŘEŠENÍ MINITESTŮ JčU - Cvičení z matematiky pro zemědělské obory (doc. RNDr. Nýdl, CSc & spol.) Minitest MT4. Z daných tří soustav rovnic o neznámých x, x vyberte právě všechny ty, které jsou regulární.

Více

Fuzzy logika a reálný svět, aneb jsou všechny hromady skutečně malé?

Fuzzy logika a reálný svět, aneb jsou všechny hromady skutečně malé? Fuzzy logika a reálný svět, aneb jsou všechny hromady skutečně malé? Jiří Močkoř University of Ostrava Department of Mathematics Institute for Research and Applications of Fuzzy Modeling 30. dubna 22,

Více

Kapitola 2: Lineární zobrazení

Kapitola 2: Lineární zobrazení Sbírka příkladů Matematika II pro strukturované studium Kapitola 2: Lineární zobrazení Chcete-li ukončit prohlížení stiskněte klávesuesc. Chcete-li pokračovat stiskněte klávesuenter.. p.1/11 Lineární zobrazení

Více

Determinanty a matice v theorii a praxi

Determinanty a matice v theorii a praxi Determinanty a matice v theorii a praxi 1. Lineární závislost číselných soustav In: Václav Vodička (author): Determinanty a matice v theorii a praxi. Část druhá. (Czech). Praha: Jednota československých

Více

Aproximace funkcí. x je systém m 1 jednoduchých, LN a dostatečně hladkých funkcí. x c m. g 1. g m. a 1. x a 2. x 2 a k. x k b 1. x b 2.

Aproximace funkcí. x je systém m 1 jednoduchých, LN a dostatečně hladkých funkcí. x c m. g 1. g m. a 1. x a 2. x 2 a k. x k b 1. x b 2. Aproximace funkcí Aproximace je výpočet funkčních hodnot funkce z nějaké třídy funkcí, která je v určitém smyslu nejbližší funkci nebo datům, která chceme aproximovat. Třída funkcí, ze které volíme aproximace

Více

NUMERICKÉ METODY. Josef Dalík

NUMERICKÉ METODY. Josef Dalík NUMERICKÉ METODY Josef Dalík Zdroje chyb Při řešení daného technického problému numerickými metodami jde zpravidla o zjištění některých kvantitativních charakteristik daného procesu probíhajícího v přírodě

Více

Teorie kódování se zabývá tím, jak rychle a spolehlivě přenášet informace z jednoho místa na druhé. Mezi její aplikace patří například minimalizace

Teorie kódování se zabývá tím, jak rychle a spolehlivě přenášet informace z jednoho místa na druhé. Mezi její aplikace patří například minimalizace Kapitola 8 Samoopravné kódy Teorie kódování se zabývá tím, jak rychle a spolehlivě přenášet informace z jednoho místa na druhé. Mezi její aplikace patří například minimalizace šumu při přehrávání kompaktních

Více

PRIMA Přirozená čísla Celá čísla Desetinná čísla Číselná osa Pravidla pro násobení a dělení 10, 100, 1000..a 0,1, 0,01, 0,001.. Čísla navzájem opačná

PRIMA Přirozená čísla Celá čísla Desetinná čísla Číselná osa Pravidla pro násobení a dělení 10, 100, 1000..a 0,1, 0,01, 0,001.. Čísla navzájem opačná PRIMA Přirozená čísla Celá čísla Desetinná čísla Číselná osa Pravidla pro násobení a dělení 10, 100, 1000..a 0,1, 0,01, 0,001.. Čísla navzájem opačná Racionální čísla Zlomky Rozšiřování a krácení zlomků

Více

Numerace. Numerace je nauka, jejímž cílem je osvojení pojmu přirozené číslo.

Numerace. Numerace je nauka, jejímž cílem je osvojení pojmu přirozené číslo. Numerace Numerace je nauka, jejímž cílem je osvojení pojmu přirozené číslo. Numerace má tyto dílčí úkoly: 1) Naučit žáky číst číslice a správně vyslovovat názvy čísel. 2) Naučit žáky zapisovat čísla v

Více

Katedra matematiky Fakulty jaderné a fyzikálně inženýrské ČVUT v Praze. Zápočtová písemná práce č. 1 z předmětu 01MAB3 varianta A

Katedra matematiky Fakulty jaderné a fyzikálně inženýrské ČVUT v Praze. Zápočtová písemná práce č. 1 z předmětu 01MAB3 varianta A Zápočtová písemná práce č. 1 z předmětu 01MAB3 varianta A středa 19. listopadu 2014, 11:20 13:20 ➊ (8 bodů) Rozhodněte o stejnoměrné konvergenci řady n 3 n ( ) 1 e xn2 x 2 +n 2 na množině A = 0, + ). ➋

Více

Co byste měl/a zvládnout po 4. týdnu

Co byste měl/a zvládnout po 4. týdnu Co byste měl/a zvládnout po 4. týdnu Zde je uveden naprostý základ. Nejde o úplný výčet všech dovedností. Jiří Velebil: A7B0LAG Zvládnutá látka po 4. týdnu /9 Slovník základních pojmů Množina generátorů

Více

FOURIEROVA ANAL YZA 2D TER ENN ICH DAT Karel Segeth

FOURIEROVA ANAL YZA 2D TER ENN ICH DAT Karel Segeth FOURIEROVA ANALÝZA 2D TERÉNNÍCH DAT Karel Segeth Motto: The faster the computer, the more important the speed of algorithms. přírodní jev fyzikální model matematický model numerický model řešení numerického

Více

Mimo samotné správnosti výsledku vypočteného zapsaným algoritmem je ještě jedno

Mimo samotné správnosti výsledku vypočteného zapsaným algoritmem je ještě jedno 12 Délka výpočtu algoritmu Mimo samotné správnosti výsledku vypočteného zapsaným algoritmem je ještě jedno neméně důležité hledisko k posouzení vhodnosti algoritmu k řešení zadané úlohy. Jedná se o čas,

Více

ANALYTICKÁ GEOMETRIE INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ

ANALYTICKÁ GEOMETRIE INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ ANALYTICKÁ GEOMETRIE Gymnázium Jiřího Wolkera v Prostějově Výukové materiály z matematiky pro vyšší gymnázia Autoři projektu Student na prahu 21. století - využití ICT ve vyučování matematiky na gymnáziu

Více

Žák plní standard v průběhu primy a sekundy, učivo absolutní hodnota v kvartě.

Žák plní standard v průběhu primy a sekundy, učivo absolutní hodnota v kvartě. STANDARDY MATEMATIKA 2. stupeň ČÍSLO A PROMĚNNÁ 1. M-9-1-01 Žák provádí početní operace v oboru celých a racionálních čísel; užívá ve výpočtech druhou mocninu a odmocninu 1. žák provádí základní početní

Více

Kapitola 2. o a paprsek sil lze ztotožnit s osou x (obr.2.1). sil a velikost rovnou algebraickému součtu sil podle vztahu R = F i, (2.

Kapitola 2. o a paprsek sil lze ztotožnit s osou x (obr.2.1). sil a velikost rovnou algebraickému součtu sil podle vztahu R = F i, (2. Kapitola 2 Přímková a rovinná soustava sil 2.1 Přímková soustava sil Soustava sil ležící ve společném paprsku se nazývá přímková soustava sil [2]. Působiště všech sil m i lze posunout do společného bodu

Více

Bezkontextové jazyky 3/3. Bezkontextové jazyky 3 p.1/27

Bezkontextové jazyky 3/3. Bezkontextové jazyky 3 p.1/27 Bezkontextové jazyky 3/3 Bezkontextové jazyky 3 p.1/27 Vlastnosti bezkontextových jazyků Bezkontextové jazyky 3 p.2/27 Pumping teorém pro BJ Věta 6.1 Necht L je bezkontextový jazyk. Pak existuje konstanta

Více

10 Důkazové postupy pro algoritmy

10 Důkazové postupy pro algoritmy 10 Důkazové postupy pro algoritmy Nyní si ukážeme, jak formální deklarativní jazyk z Lekce 9 využít k formálně přesným induktivním důkazům vybraných algoritmů. Dá se říci, že tato lekce je vrcholem v naší

Více

Projekt IMPLEMENTACE ŠVP. pořadí početních operací, dělitelnost, společný dělitel a násobek, základní početní operace

Projekt IMPLEMENTACE ŠVP. pořadí početních operací, dělitelnost, společný dělitel a násobek, základní početní operace Střední škola umělecká a řemeslná Evropský sociální fond "Praha a EU: Investujeme do vaší budoucnosti" Projekt IMPLEMENTACE ŠVP Evaluace a aktualizace metodiky předmětu Matematika Výrazy Obory nástavbového

Více

Základy analytické geometrie. I

Základy analytické geometrie. I Základy analytické geometrie. I Prostory vnořené do Em In: Eduard Čech (author): Základy analytické geometrie. I. (Czech). Praha: Přírodovědecké vydavatelství, 1951. pp. 50 67. Persistent URL: http://dml.cz/dmlcz/402523

Více

DIGITÁLNÍ ARCHIV VZDĚLÁVACÍCH MATERIÁLŮ

DIGITÁLNÍ ARCHIV VZDĚLÁVACÍCH MATERIÁLŮ DIGITÁLNÍ ARCHIV VZDĚLÁVACÍCH MATERIÁLŮ Číslo projektu Číslo a název šablony klíčové aktivity Tematická oblast CZ.1.07/1.5.00/34.0963 IV/2 Inovace a zkvalitnění výuky směřující k rozvoji matematické gramotnosti

Více

Funkce, funkční závislosti Lineární funkce

Funkce, funkční závislosti Lineární funkce Funkce, funkční závislosti Lineární funkce Obsah: Definice funkce Grafické znázornění funkce Konstantní funkce Lineární funkce Vlastnosti lineárních funkcí Lineární funkce - příklady Zdroje Z Návrat na

Více

MINISTERSTVO ŠKOLSTVÍ, MLÁDEŽE A TĚLOVÝCHOVY. Učební osnova předmětu MATEMATIKA

MINISTERSTVO ŠKOLSTVÍ, MLÁDEŽE A TĚLOVÝCHOVY. Učební osnova předmětu MATEMATIKA MINISTERSTVO ŠKOLSTVÍ, MLÁDEŽE A TĚLOVÝCHOVY Učební osnova předmětu MATEMATIKA pro střední odborné školy s humanitním zaměřením (6 8 hodin týdně celkem) Schválilo Ministerstvo školství, mládeže a tělovýchovy

Více

Diskrétní matematika. Martin Kovár

Diskrétní matematika. Martin Kovár Diskrétní matematika Martin Kovár Tento text byl vytvořen v rámci realizace projektu CZ.1.07/2.2.00/15.0156, Inovace výuky matematických předmětů v rámci studijních programů FEKT a FIT VUT v Brně, realizovaném

Více

v z t sin ψ = Po úpravě dostaneme: sin ψ = v z v p v p v p 0 sin ϕ 1, 0 < v z sin ϕ < 1.

v z t sin ψ = Po úpravě dostaneme: sin ψ = v z v p v p v p 0 sin ϕ 1, 0 < v z sin ϕ < 1. Řešení S-I-4-1 Hledáme vlastně místo, kde se setkají. A to tak, aby nemusel pes na zajíce čekat nebo ho dohánět. X...místo setkání P...místo, kde vybíhá pes Z...místo, kde vybíhá zajíc ZX = v z t P X =

Více

Řešení 1. série. Řešení S-I-1-1 Nejdříve si uvědomme, že platí následující vztahy. h = 1 2 v d, h = 1 2 s k,

Řešení 1. série. Řešení S-I-1-1 Nejdříve si uvědomme, že platí následující vztahy. h = 1 2 v d, h = 1 2 s k, Řešení 1. série Řešení S-I-1-1 Nejdříve si uvědomme, že platí následující vztahy h = 1 2 v d, h = 1 2 s k, kde h je počet hran, v je počet vrcholů, d je stupeň vrcholu, s je počet stěn a k je počet úhlů

Více