ZPĚTNÁ TRANSFORMACE RACIONÁLNĚ LOMENÉ FUNKCE
|
|
- Blanka Marková
- před 6 lety
- Počet zobrazení:
Transkript
1 Tor řízí I Zěá lcov rformc TEHNIKÁ UNIVERZIT V IBERI Hálkov brc Z Fkul mchroky mzoborových žýrkých udí Tor uomckého řízí I ZPĚTNÁ TRNSFORE RIONÁNĚ OENÉ FUNKE Sudjí mrály Doc Ig Ovld odrlák Sc Kdr řídcí chky Doc Ig Ovld odrlák Sc
2 Tor řízí I Zěá lcov rformc Obh Zěá rformc rcoálě lomé fukc rur 0 Doc Ig Ovld odrlák Sc 7000
3 Tor řízí I Zěá lcov rformc ZPĚTNÁ TRNSFORE RIONÁNĚ OENÉ FUNKE Zěou rformc lcov obrzu dál j -obrz j možo rové Podl dfčího grálu zěé lcovy rformc π c { Y } Y d y c c kd c j římk ro krou lí y ro 0 Rozkldm rcoálě lomé fukc Y rcálí zlomky Př lýz rgulčích obvodů mjí -obrzy zrvdl vr rcoálě lomé fukc vru B Y kd - - m m 0 m B bm b b b0 jou obcě růzé komlxí bo rálé kořy jmovl m jou uě olyomů B m < Kždou rcoálí lomou fukc jjíž čl j žšího uě ž jmovl j možo rozlož ouč kočého oču zlomků yu kd B k Bk k jou obcě rálé bo komlxě družé kořy jmovl jou koy Uvdé rcálí zlomky jou všk -obrzy zámých řdměů { } Bk k B k k k! Rozkldm rcálí zlomky rozložím -obrz ouč dílčích obrzů Y Y Y Y řdmě j k rov ouču dílčích řdměů { Y } { Y } { Y } { Y } ˆ y y y y Doc Ig Ovld odrlák Sc 7000
4 Tor řízí I Zěá lcov rformc Kořy rálé růzé Uvžujm lcův obrz dál j -obrz v vru Y B B P - m m kd - 0 B bm bm b b0 jou obcě růzé komlxí bo rálé kořy jmovl m jou uě olyomů B m < Rcoálí lomou fukc Y j možo rozlož ouč rcoálích zlomků Y B B P kd jou koy Koy j možo urč k ž lvá rvá r rovo vyáobí kořovým člm - ro dom B Po vykrácí dom B B P Příkld P Nlzě řdmě k -obrzu Y Řší: Rozkld rcálí zlomky -obrzu Y 0 zíšm do vru Y koy určím odl P : 0 0 Přdmě y j rov y { Y } [ 05 5 ] kd j jdokový kok Koc říkldu Doc Ig Ovld odrlák Sc 7000
5 Tor řízí I Zěá lcov rformc Kořy áobé Uvžujm ž koř j áobo k -obrz j možo z v vru Y B B Rozkld rcálí zlomky k muí mí vr Y B r r B B Br P 4 Kofcy rcálích zlomků B k odovídjící áobým kořům určím z rovc r r Br B d r Br d B d r Br! d B P 5 r d r B r r! d B Příkld P Nlzě řdmě k -obrzu Y Řší: Kořy jmovl jou: 0 jdoáobý 4 rojáobý rozkld rcálí zlomky má vr B B B Y Kofcy budou vyočy odl P - kofcy B B B odl P 5 B 0 Doc Ig Ovld odrlák Sc
6 Tor řízí I Zěá lcov rformc Doc Ig Ovld odrlák Sc d d d d B d d d d B Přdmě j dá oučm dílčích řdměů kré říluší jdolvým rcálím zlomkům [ ] 05 y Kořy komlxí Rozkld rcálí zlomky odl P Uvžujm -obrz krý obhuj v olyomu jmovl jd rálý koř jd komlxí koř ro krý lí kd koř j koř komlxě družý Rcoálí lomou fukc Y j k možo rozlož ouč rcoálích zlomků B B Y P 6 kd j komlxí ko j komlxě družá kré určí odl P Komlxí koy j možo vyjádř v vru b b rcg b kd b P 7 Přdměu y j k rov x x x y Čl { x x } krý rkuj účk komlxích kořů můžm urv do vru co x x x x Koc říkldu
7 Tor řízí I Zěá lcov rformc Doc Ig Ovld odrlák Sc co : Pozámk Plí dy co x x P 8 Přdmě j k rov co x y Nlzě řdmě k -obrzu Y Řší: Rálé kořy jmovl jou: 0 komlxí komlxě družý 4 Rozkld rcálí zlomky má vr Y kd ro 0 j 0 j j j Podl P 7 lí π b rcg b rcg b kd b Dozím do P 8 dom řdmě ro rcálí zlomky komlxím kořy v vru [ ] [ ] 4 / co 05 x x ˆ π Výldý řdmě j k rov j k dá oučm { } [ ] 4 / co Y π Příkld P Koc říkldu
8 Tor řízí I Zěá lcov rformc N b Rozkld zlomky yu q Jou-l komlxě družé kořy áobé k v rozkldu mohou objv zlomky yu N N bo ro r-áobý komlxí koř r q q P 9b N zákldě zloí -obrzu fukcí co } { } můžm urč řdmě k zlomku rvího yu omocí jdoduchých úrv kd N N q q 4 K ˆ 4 q K N q 4 co K P 0 Výrz P 0 j možo vyjádř v vru co Njdřív urvím P 0 do vru co K co K P 0 Kou ouču dvou úhlů j rov co co co vyáobím-l uo rovo hldou mludou dom co co co P 0b Ozčím-l orovám-l čly v P 0 P 0b dom rovc ro výoč úhlu co rcg K K Podl obrp- ro mludu lí K β co ObrP-Určí mludy Doc Ig Ovld odrlák Sc
9 Tor řízí I Zěá lcov rformc co K Dymcké účky komlxího družého koř v čové obl j možo vyjádř čly co K kd rcg K co K K co P Příkld P4 Nlzě řdmě k -obrzu Y rozkldm rcálí zlomky Pro komlxí kořy uvžuj rozkld rcálí zlomky k by v jmovl byl kvdrcký dvojčl Řší: Kořy jmovl jou: 0 komlxí komlxě družý 4 Kvdrcký dvojčl j rov Rozkld rcálí zlomky má vr N Y P Hldé kofcy N určím modou určých kofců k ž lvou rvou ru rovo P vyáobím olyomm dom rovo v vru N Rozáobím dom 4 N P Porovám-l kofcy u moc lvé rvé rě rovo P dom ouvu rovc ro kofcy N v vru j možo očí odl P j rovo - oc oc oc oc 0 : : 0 4 : 0 : 0 N N N 4 0 N 4 Dozím kofců do rovo P dom -obrz v vru Doc Ig Ovld odrlák Sc
10 Tor řízí I Zěá lcov rformc Doc Ig Ovld odrlák Sc Y Tří zlomk urvím odl P 0 do vru co ˆ Přdmě y j dy rov { } [ ] co Y Pomocí P můžm jšě ro ří čl vyjádř mludu fázový ou ohoo řdměu J zřjmé ž lí 4 / co co co co K rcg K rcg kd K K π Výldý řdmě j k možo vyjádř v vru: [ ] 4 / co y π rur [] Pírko Z V J: lcov rformc Zákldy or uží v lkrochc SNT Prh 970 [] čák K Tumjr F Zlk B: mk III mcká lýz Skr VŠST brc 978 [] rmovč I G uc G Elgolz E: Fukc komlxj rmj Oráorový oč ór bly F Brlv SNT Prh 97 Koc říkldu
É ú ě Ž ě Ú ě ě ě Ř Ř ž ž Č ú ů ů ě ě ě Ó ú ú š Č ú Ž ě ú ě š Ž ú ě Ý ě Č úě ě Ú š ž ů Ú ú Č ě ÓŘ Č ě Č Ú ě ů ú š Ú ě Ú ě ě ů Ž Ť Ť ó š š Ú ó Ú ě Ť ó ů ů Ú ě ú Ú ě ú ě ě Č Ž ě Č Ú ú ě Ú ň ě Ú ě ů ú ň ě
Kopie z www.dsagro.cz
ó š š ú š ó ú š Á ó ú ě Ť ú ě ó ěž ú ú ěž ú ó ď ú É úó ě ě ž ř ť ž ó š Ý š Á Ú š É óň ú ú ř ď š ó ď ď Ň ň Ťž ó ě ú ž ž ó Ů ó ř ž óú ú Á ž ž ž ó ť ž ě ě ž Ř ó ř ě š š ÉÚ š ě ě ž ř ž ž š ě ř ň ě ř ě ě ú
ď ě č č č ř ě č úě ň ú ď Ď Ť Ú ř ř Ň ě É ř ř ú č Ó É š Í ě ó ř ě úč Ú ó č ó ř ř É ř É É É ě É ú ě č ť ó É ď ť ú ě Ď É š úó ť úč Í Ý Á š ě ě ě š ť ř Ňů č ú Č č úč č ř Č ř Á Á ř ř ř ť š ě š ě ě ň č ň ě ú
Z-TRANSFORMACE. TECHNICKÁ UNIVERZITA V LIBERCI Hálkova 6, 461 17 Liberec 1, CZ. Teorie automatického řízení II. Katedra řídicí techniky
Čílcové říí Příloh EHNIKÁ UNIVERIA V LIBERI Hálov 6, 46 7 Lbrc, Fult mchtro moborových žýrých tudí or utomtcého říí II -RANSFORMAE Studí mtrál oc Ig Ovld Modrlá, Sc Ktdr řídcí tch oc Ig Ovld Modrlá, Sc
Ě É ÝÚ Č š Ť Á ť Í ř ů ů ú ů Ú Ž ú ů ů ů ř ř ú ů ů ř ř ř ř ř ň ú Ě Ř Ú Í Í ň ř ň ř ř ř ř Ž ř Í Í ř Ž ů ř ř ú ů ř ř ř ř ř Í ř ř ň ř ř ň ř ň ř ň ř ř ř ř ř ř ř ř ú ř ú Í ř ř ů ř ú ú ř úč ů ř ů ř ř ů ř ř ř
ů Č Č Ú ě ě ě Ž ě ě š Č ě Č Č ě ě ť ě ú ě Ž ú ú ě ě ž ú ě ě ě ž ó ú ě š ě ě Ž ě ě ú ú ě ě ú ě ú ě ž ú ě ů ň ú ě ě ú ú š ú ě ě ě ě ú ě Ž ů Č ě Ž Ž ě ž ú ů ú ě ú ě ů ú ú ů ú ů ě ú ě ú ě ě ú ů ú Ž ú ě Ž Č
ř ů ž ěř ř ů ř ý ý ř ů ů Č Č ú Í ř ř ě ř ě ý ž ě ěř ř ú ý ý Č ě ř ěř ú ě ý ý ř úč ě Á Á É ř Í ů ů ř ž ú ě ř ř ů ý Í ř ú Ž ý ú š ě Č ř ů Í ě ř ú ě ě ú ú ě ř ů ě ý ú ě ě ý ý Í ý ú Ť ý ř Ú ž ý ř ú ě ý ů ě
ě úč ě úč č Á Á Č ě úč úč č Á Á Č Č Š ů č ž č Č č ě ž Č ů č ě ž ě č ů Č č ě š ě č ů č ě ě úč Č Á Á úč ú ě úč Č Á Á Č š ú ě úč ě č ž ě Ž úč ě ě ů ě ú č úč ě Ž ž úč ů úč úč ě ě č Ž ě č úč ě úč ě úč š úč
Ř ú Á É É Á Ů Ž č Ě ě ň řé ě č č ř ě Ň úó č úě é č Š ě ě č úč ě ě é ě ř ů úč ě š úč ČÚ č ň ý ý ý ř ě č ý ý ť ý ř ě č ě ů ů ň Ó Ž č úč ť ě é ů úč ď ě ň úč ý úč Ú ř Č é ř ň č é č ě č úč ů ý úč ů Ě É ď č
Ý Č Ý ú ů ů ú ň ú Ú ó é Ý ŘÉ É ÚČ ú Ú Ó ú Ů Ú š ú é é š š é Ú Ú ú Ú Č ž Č ň ú Ú Ú ž Ž ú é Ů Ů Ž Č Ž ď ú Á Ů ů é ž é Ú Ú ú š ž Č Ú š Č é ž Č ú Ú ú é š Ú Ú Ú Ú Č é Ú Ú Ú ú Ú Ú Č š ú š é ž é é é Ú ú š Ú ň
VÝPOČET INVERZNÍ TRANSFORMACE D POMOCÍ ALGORITMU ILT
VÝPOČE INVERZNÍ RANSFORMACE D POMOCÍ ALGORIMU IL Do. Ig. Dbor Boe CS. VA Bro er eeroehy eeroy 4 Ig. Ver Boová FEI VU Bro Úv roeeroy rfore D ( J. Her ÚRE ČAV Prh) řeváí ogový gá oouo že jou roí o ého vorováí
é ěř ř ž ěř ř ž řů ěř é ě Á ř ž é ě š é ě é é š ě ř Á é ď Ú ň é É ž ó é ě ď é ň ě ó Ů é řů Á ř ř ž é ř ž ó é ř é ř ž ú š ě ě ú ř ě ě ú ř ř é ď ž é ů é ě š ě ř ě é é Ž ů é ě ř ž é é ř ěř ž é ů ž ů ě ů ú
í Ý í í í ž ú í š š é í í í š ě ú ť í š š ě é íťě é É š ě ž í ě ó ó ú í ěž ó é í Č é š íí ž óí ě ž é í ó í é í ř í řě í ěž é úé í í í ú ě ř ó í ž í úé ó ú ú í í í š í í š Ý š é ř Á ú ó í í é úé íé ě í
POLYNOM. 1) Základní pojmy. Polynomem stupně n nazveme funkci tvaru. a se nazývají koeficienty polynomu. 0, n N. Čísla. kde
POLYNOM Zákldí pojmy Polyomem stupě zveme fukci tvru y ( L +, P + + + + kde,,, R,, N Čísl,,, se zývjí koeficiety polyomu Číslo c zveme kořeem polyomu P(, je-li P(c výrz (-c pk zýváme kořeový čiitel Vlstosti
Cílem kapitoly je zvládnutí řešení determinantů čtvercových matic.
temtk I část I Determty mtc řádu Determty mtc řádu Cíle Cílem ktoly je zvládutí řešeí ermtů čtvercových mtc Defce Determtem (řádu ) čtvercové mtce řádu jejímž rvky j jsou reálá (oř komlexí) čísl zýváme
š Č ú ř úó ď ů ř ř ř ů ů š ů ů ů řš ř ů ř ů ř ó ř ú ů ů ů ú ů ů ů ů ř ů ů ú ú ř ů ř ů ř ň ř ů ř ř ř ř ň ř ů ř ř ř ř ř ů ř ú ř ř ř ř ř ř ř ř ú ř Ů ř ř Ó š ů š úó Č ó ř ú ú ř ů ř ó ň ú ů ú ř ř úó ů ř ů ó
ú ř ř ú ř ú Ň ú Ú ř ú ú ú ú ú ř ř ú ů ó ň ú ř ř ú ú ú ů Č ř ř ř ú ů ů ú ú ú Á Ů ř ř ú ř ú ř ú Čň ř ř ú ů ú ů ř ř Ý ú ú ř ú ř š Č ť ú Č Č ú ú ú ř ó ó ů ř ň ď ú ó ů ú ř ů ď ř ů ř ť ú ň ť ů ú Ž š ň ú Ú ř
Okruhy z učiva středoškolské matematiky pro přípravu ke studiu na Fakultě bezpečnostního inženýrství VŠB TU Ostrava
Okruhy z učiv sředoškolské memiky pro příprvu ke sudiu Fkulě ezpečosího ižeýrsví VŠB TU Osrv I Úprvy lgerických výrzů, zlomky, rozkld kvdrického rojčleu, mociy se záporým epoeem, mociy s rcioálím epoeem,
Ú Í Ě Ž ř ř ř Ú Í Ě Í ů ú Ž Ú Č ů ú ř Í Ú ú ú Ž ú ú Ž ř š ž ů ř š ž š ř ů š ř ž ř š ř Ž ř Ž Ž ř š ú ú ř ř ž š ž ž ř Ú ř Ž ř Ú Ž š š Ž Ž Ú Ě š ž š ú Č ú Š ú ř ř ř ř Š ř ů š ř Č ř ú ř ř Š ř Ž ř ř ú Ž ů ř
11.1 Úvod. Definice : [MA1-18:P11.1] definujeme pro a C: nedefinujeme: Posloupnosti komplexních čísel
KAPITOLA : Číselé řdy MA-8:P.] Ozčeí: R {, +} R R C {} C rozšířeá komplexí rovi evlstí hodot, číslo, bod U ε {x C x < ε } pro C, ε > 0 U K {x C x > K } pro K 0 defiujeme pro C: ±, je pro 0, edefiujeme:
č ú č ů ř é č č ú Úč ř š ř Šč š ř š č Š č ř č ř ř ů č ů é č é ř é č č č ů š ř ů ů é é č ř ř éč ž ř č š č ů š ř č ů č é č ř ř é č é š é ř é ř č Ž ř Š ř š ř é é ř š ř ř ř Ž ř š ř š é é č ů é Ž č č ř ř é
Technická kybernetika. Obsah. Laplaceova transformace. Akademický rok 2017/2018. Připravil: Radim Farana
8..8 kdemický rok 7/8 Připrvil: Rdim Fr Techická kyereik Lplceov rformce Oh Lplceov rformce Lplceov rformce Lplceov rformce L-rformce převuje velmi účiý ároj při popiu, lýze yéze pojiých lieárích yémů
Předmět: SM 01 Rovinné příhradové konstrukce
Přdmět: SM 0 Rovié říhrdové kostrukc rof. Ig. Michl POÁK, CSc. Fkult stvbí, ČVUT v Prz Rovié říhrdové kostrukc: Kostrukc j vytvoř z římých rutů, Pruty jsou vzájm osojováy v bodch styčících, Vzájmé sojí
ř ř ý š ř ů š Í ř Š š ř Ž úř ý ý ř Č š ř ý ý ě ř š ú Ý ý ú š ř ý ů ě Ú ě ý ů š š ě ý ř š ý ě ý Ř Ě Ě ř ě šť ě ý ř ě ě š ý ů ě š ú š ř ř ř ý ý ú š ě ě ó ě ý ý ý ý š ě ě ý ý ý ó ý š ě ó ě ý ý ý š ý ý ů ě
Ý č ÝÚč č Č š č ů Í ů č ž č ů ů ů ř ř č Í č ů Í č ů Í ř ř č ř ř ň Í Íč ď ň ř ň ř ř ř ř ň ř Ó Ž ň ří Č ň ř ů ř ů ň ř ů ř ů ř ů ů ň ň Ž Ž Ž Ž ž ÚŽ Ž ř ů ž ř Í č Ž č ž ň ř Ž ř ž Ž č ř ří č řú ů ří č ř ř Ú
Kopie z www.dsagro-kostalov.cz
é š š é ó ú Č é ř ěž é ú ó ó ú é ě ó ÚČ Ý éž é ú ň é ú é ě ě ž š Ý Á š é šť úě ó Ý É úě ž řé š ěž ó óš ú š řé é ě ě ž Ý éž ř ó ú Á Ě Éú é šť š š ř ě š ř ó š ň ó Ý š ě ě ž é ř ž ž é ř Ů ě ě ů ě ú š ů é
1.2. MOCNINA A ODMOCNINA
.. MOCNINA A ODMOCNINA V této kpitole se dozvíte: jk je defiová oci s přirozeý, celý, rcioálí oecý reálý epoete jké jsou její vlstosti; jk je defiová přirozeá odoci, jké jsou její vlstosti jk se dá vyjádřit
Ř ú Á Ě ň ú Ý Ů ú ú Ý Ú ň óň ó Ř ú Á Ě ú ú ó Ý Ý Ý ú Ř ú Á Ě ň ň Ý ú ň Ý ú ň ň ň ň ň Ů ň ň ú ň Ý Ý ú ň ú Ů Ý ň ň ú š ň š ú ú ú š Ů ň Ř ú Á Ě ú Ú Ů ú ú ú ú Ř ó ó š ó ť š ú ú ó ú ú Ú š ú ó ó Ř ú Á Ě š ň
ž Č ž ú ú Č š ú ž ě ě ě ú ů Ú ú ě ň ú ů ě ě ě ú ú Ú ú š ž ě š ž š ě ě ň ě ů ň ů š ě ú ž ú ú ě ě ú ú ě ů š ž ž ž ů ž ů ú ěž ú ž ú ů ě ě ú ú ú ú ú š ů ž ú ě š ú ě ě š ň ň Ú ž Č ž š ž ú ěž ú ě š ú ě š ů ž
č Č ó Č ě ó č ý ý č ř é č č é Ž é ř é ý č č ý ý Ž ř ě ň ú č Ž č č ř é č č ý Úč ě é úč ěř úč ě ý č ď č č Ú Č Č č č Ž ý ě Ž ž č č Ž ý č Č é é ě ý ř š ý ý ú ý ř é ř ě Ž š ý ř č ř ý Ž é ř ž Ž é ý ý ů ř ů ý
ř ř č č ú č ů ě ě ŠÍ ř Ů č é č ř ě ě š ř ů č č č č úč ě é ř č úč ř ě é é ě ř č ě ř ě č ě č ú č Ů é ě úč é ě č č ř ů ě é é é č Š č É é č š ě š ě č š ě č ů úč ř ů ě č ŘÍ ř ě ě ř ě é č ě ř ů ř é ř ě č é ě
Á É É ě ě ů ě Č Ú Í ě Ž ě Í ě Í š ú ě ě Ú ě ě Í Ž ů Č Ž ě ě Ž Ž ě Í Ž Ž ě ú Í ě š Í Í Š ú ě ě Č Ž ě ě ú Š ě š Í Š ě ě ň ě ě Č ď ě Č ů ú ě ú ě Ž ě Č ě ě ů ě Ž ě ů ě ě ě ě ěž Ž Ž ě Ž ě ě ň ú Ž ů ě ě Ž Ž
í á á ě č é úč í á á ě č é úč ý á č á íí Ž á Ž á í í í ú á č é ř í ě ě í č ý ří ů ů ů ý ří ů ý ů ě í í ě íč í č í ř ů á í í í úč ů á í ří ů ý ů ří ů ý
ě ú ě ú Ž Ž ú ř ě ě ř ů ů ů ř ů ů ě ě ř ů ú ů ř ů ů ř ů ů ř ě ú ř ě ě úř ř ě ÚČ Č ě ě ř Ž Č ě ú ř ř ě Ř ř Ň É ŘÍ ň ř ň ů ř ú ř ě ř ú ů ř Ů ř ř ě Ý ř Ě É ě ř š ě ú š ě ě š ě ú ů š ě ů ň ř Ý ř ř ě Á Í ě
č č č č Č č Č ž ž č ď č Č Č č č č Š š Ž Š ň š ž š č č Č č Č č Ž č š Ý š ž č Š ó č š ť ť ť š č č ž č ó Ž ž ó Ž č ó žš ó ŘÓ Ó Ó Č č Ť ó Ž Ž č É Ř Ž ž č č č Č Ž Č č š š š Ž č č č č Š š š č š č č š Ť Š š č
Í ř Á Á Č Č ř Š ó ř Č ř š ř ů ř ň ň ň ř Ž Ž Ž ň ř ť ň Ť ř ř ů ř ř Ž ř š ň É ó Ť š š ř ř ř š ř ř ř ř š ř š ř ř š ř š š ř ť ř ň š ř ř ť ř ř š Ť ř ř ř š ř Ť š ř ř ř š ř š ř ř ř š ů ř š ř ř š ř ř š ř ř ť š
Ě Á Í ř ř é č č ř ů ě ě ž ů Š č ř ý ě č č ě č ú Í Í š č Ě é ř ě é é č ř č ř Í ý Š Í Á Ž Ě Ý ť ř ě ú ň Ě Á Í Í š ě ř č č ú ř Ě ř Š Í Č ě é ř ř ě ý ý ř ě ý ř é ř ě ř ě ů ý ř ě ý ů ř ý ů ř ý Š Á Ž Ě Ý ř žé
ú é ů ú ť ů ú š ň é ň é é é ž é Ý é Ý Ý é ú ů ú ů Ý ú é é ú ú Ú ů ů š é é ž é ú Ú Í ů ů é é é ú ú ó é é é é ú é ž é é ž ž ň é é é é é é É Š é ů é Š Š ú é ž ú ú é ú é é Ú ú ú Ý ů ó Š ú ú ň ů ň š ň š é é
ýú é ě Ú Č ý ý ď ě č é ě ě ý ě é é ě ď ě ě é č ď ú ý ů ý ů ú Ř ě ý ů ě ě ď ď é ú é č úč ě ě ú é ě ý ě ý ů ý č ě ý ú ů ě ů ý č ě ú Ý ě é č ě ů ž ě ě ě ů ě ý ú ě č č Íě é ó ě č ýúč Ř ý č č ý č ů č ó ý Ř
Ý úř Á ý ě č ý ý Č č ě ž ž č ě ě š ů ě č ě ú ý ů ý ů ý ý ě Š ě Ú č úě ě ý ě ý ů ý ž ž ý č č ý š č Ú č č ž úč č ý ž ě ů ý ě ý š č ý ý č č ě ý ú č ů ý ů ě š č č č č č č č ý ý ý č č ý ý Ť ýš č ě č ý úč č
4.KMITÁNÍ VOLNÉ. Rozlišujeme: 1. nepoddajné vazby - nedovolující pohyb 2. pružně poddajné vazby - dovolují pohyb
4.MITÁNÍ VOLNÉ 4. Lárí ktáí (harocký osclátor v fyzc) Vl časý pohy hotého odu j ktavý pohy. táí ud lárí, jstlž síla, ktrá př výchylc x vrací hotý od do rovovážé polohy, j úěrá výchylc F x (4..) kostata
č ť ě ž Í é Ž č ě é ě č č Á Ý Á ý Ž é ž ý ě ý Á ž é ž ý ý ě éúč č ě ž é č ý úč č ě č ý č ě ú č é č č ý ě ě č Ě ý ď ž ě ž ě ž ě č Ž ě ě ě é č č č ě ž ě ó ě é ě č é ě ž č č úé ě ě é č č č Ž é č ž Í é ž ý
ď ř š ř š ř š ř ř ů ř š ž ó š ř ě Ž Í č ř ó ó ž ó Ž Ž ě ó ó š ř ž š ó š ě ó č š ř Ó ó Ž ó Č č ř ě Ž ř ě Ó š ě č ř ň ě Ž ó č ř čó ř Ů ěž ě Ó ó ó Č č ř š ů č ř ř ó ó ř Ó Ú č š Ž óš č Ó ó š š ř ř Ž ě č č
ý ú Ú Ú ý ý ý Ž ý ý ý ý ý ý ý ý ý ý ý ý ý ý ý Ž ř Á ý ý ý ů Ž ř ý ý ý ý ý ý ý ý ý ý ý ý Ž ý ř ý ý Ž Ů ž Ů ý ř ý ý ó ó Ú Ú Ž ý ý Ů ý ý Ů Á ý ý ý Ú Ý Ý ý Ů ý ů Ž ý ř Ů ý Ž ý ý ý ř ž Ž Ž ř š ň ř ů ř ň ř ř
Ó Š ÚČ č ÚČ Í Č Č ň ř ň ř ů ř š č ř š Í č úč š úč š š Č ř úč úč Č č Š č ř úč úč Í ř ř úč ú Š Ó ó ř č Š č Ú č č ň ř ň ř ř š Č úř Ý š č Á úč š úč Š š č Í Č ř č úč Í ř ř ú ř Ů ř Í Ů ř ů ů č Č č ř Ú ů č Č
ě Ť ě Š Š šš š š ě Č Č š ě š ú ě Č Č ú ě ě ě ě š ě Ť ě ž ě ě ě ž Ř Á ó ě ě Ň ž ž Í ž ů ě ž š ě ž ť ť ě ě ů Ž Ý ě ě ě Š š ž ů ť ě ě ů ů ů ůž ů ě ť ť ň ú š ž ů ú ú ť ť š ť ě ěž š ě š ů ů Ť ě ů ž š ě š ě
ř ý ý é é ú ř ř é ů Ž é ř é ř ř ž ů ů ž ů č ů č é é š é ů Ž ů ó ž ý ů é ů ž š ť ř č ř é ó ú ž ý ů ý č ř č ř é é é ř ř ř é ů ř š ř ů č ý č č č š ý ř ů ř ř ů š š ř ž ý ů ř ů š ř ý ř É ů ž ž ř ž ž č š ů ř
elektrické filtry Jiří Petržela základní pojmy
Jiří Petržela základí ojmy základí ojmy z oblati elektrických filtrů základí ojmy elektrický filtr je lieárí dvojbra, který bez útlumu roouští je určité kmitočtové ložky, které obahuje vtuí igál rouštěé
ř ř ř ů ř ř ř ř ň řú ó ó ř ř ů ř ů Ž Á Č ČÍŽ ř ů ř ů ó řó ř Íř ů Ť ř Í ó ú ů ř ř ř ú ú ú ř ř ř Í ď ů ú ů ů ř ř ř ůř ů ó ó ú ří ř ů ř ó ř ó ř řó Í ť ř ř ů ř ř ř Á Č ČÍŽ ř ů ř Č Í ů ř ů ř ř Í ř ú ř ř ř ů
Ť É Á í ý ý ě í í š ě í ý č ě í í ě ý é é ě ě í ý ý ý í ď é ť é é Ú í ř í Ž Ž ý ý í Ž ý í é ý Ž é í š í Ů é í í č ý ý í í ž ý í í í ě ž č í í ě ší č ě ší é í č čí ý ý í Ú č ž í Úč ř í í ší č ý Ú í ř é
ěý í č Č Ě í í í č Č ě¾ í ú č á ř č í ú č Áí í í í í ú ří ř ¾ ó ř¹ í ¾ í é á áů á í ě á ú í ř í ú řě á í ú ě řýý Ě Ýč É Ř č č í
ř Ň ť ť ř ť ó ú č í í á č í í í ó ó áí í í č í č á ú č Í ť ř á ý ¾ ěé ě ú č ¾ ý ú í ěý í č Č Ě í í í č Č ě¾ í ú č á ř č í ú č Áí í í í í ú ří ř ¾ ó ř¹ í ¾ í é á áů á í ě á ú í ř í ú řě á í ú ě řýý Ě Ýč
Ž É Ú Ě ú Ú č é č ů ú Ž é Ž é é Ú é ů č é ý éč ý éč é ú ý ž é č é ý é ý é Ž ý ů Ž Ú ú ů é úč ž é ž Ý ú Ú Ž Ř Ú Ž ú č Ž ú ý ý č Ž é ý ú ú ú Ž ý ů ú ů é č ž é ůž ý ž é é ý ý é é é Ú ň é ů é é é ý ý ž ý ý
ú é é č žé é é ě é é ž ř ž é ě ů Ř ň ž é é řď ú é Á ř é č ř ž ó ř ě ú ů é ě ě ř é č ž é ě ř ě Č ď ř ř č ž ě ě ů ě ř č ě é ž ů ř ó é ř č ř ě ě ř č é é
Č é Č Í č č Á é č č ě ř ě ř é č č č ř ž ěř č č ř ě č č é ě é ě ž ů č Ý Ť é ř ě é ť ě ů ě é é ť ř ů ě ř ě ů č Š ě ó ó ž ť č ř ž ř ž ě č ž ř Š ž ě ó ž ě ž ě č Šř ú é é č žé é é ě é é ž ř ž é ě ů Ř ň ž é
Ť č č ó ó č č č ý č ď ý ď š ě ý ň ě ý ú Ó ý ě č ě č Š ě Ž ý ý ě č č Ú č ý Č ě ě Š ř ěťž ě č É ť Č č ř Ž ě š č č ě ě ú č ó ó č č ů ě ř ě š Ž š ě Ž č š ď č ěž ž č ň š ň ň ř č ň č ý š ě ý Č Ó č É Á Ý Š č
ýú é Č Ř ů ý ý ě é ě ý ě é ě ě ž ú ý ů ý Ů ú é ě ý ě é ú é š Š ú ý ý é Ě š ě ě ě ú é ě ý ě ý ů ý ý ě ě ý ú ů ě ů ý ě ú ě é ě ů ý ů ě ěž ý ý ů ý Ž ěž Ů ý é ú ěž ý Ž ý ů ů ý š é ý ě úě ů ě ů ů ů ý ů ů š
Obr. DI-1. K principu reverzibility (obrácení chodu paprsků).
Učebí text k předášce UFY8 Dvojvzková tererece teké vrtvě Dvojvzková tererece teké vrtvě Předpokládejme, vl o mpltudě dvou delektrk tk, že mpltud održeé vly bude o dexu lomu bude t (vz obr. DI-1). v protředí
ť ň š é ó é Ž Č ď Č Č Č ů ó ů ó ů É ň š š ň š ň é Ó š ú é ú ú é é é ó ó úé ú ú ž š Š é ů š ť ť ť ú š Č é ž Ř ĚŘ É ž ů Č ó Ž é ů é éž ď š š š ž š é ž š é é ů ů é ž š ó Ý š š ů é é ňř É ů Ýó ú ž ů ó Ý Č
Ě ú Š ú ú ů ž ůž ž ů ů ů ž ž ž ž ú ů ů ů ž ú ž ž ž ú Á ž ž ž ž ž ž ž ž É ů ů Á É Ď ó ť Ň Ú ť ó ó ó ÚÚ Ú ó ň ó óú ó Ě ú ť ŇŇ É Ň Ě ÓŇ Ň Ň Ť ó ť Ť ť ť É úě Ě ň Ň Ž Ó ť É ú Ě Ť ú Ť ň É Í ú ňé ťž ž ž ť ť ť
Í ď ď É Ú ď ď ď ť č ů ú č ň ř ň ě ř ď č č Ř ě ž ž ů č ě ž ř ž ř č ě ň žá ě ď ě ů ů óů ž ů č Ř ň č ů ž č ů ů ě ú ě ě ř ě č ů Č ň ň ř ů úř ž ž ů ě ř ů ž ě ž ů č ů ů ž Č ř ř č ž ů ž ř ě č ú ě ě ž ě ě ž Č
č ý ó É Č é ú ř ý É ú ý é ž ú ú ú ý é ú ý é ů Č Ť ú ů ů é Ó Č é é é é ú ř ů Č ř é ř é ř č ý ý ý ů ý é ó ý ú Č Č Č ý č é ý é ý úč ý é é ů ý é ý é é ů č řů ý ň ý é ž ž Ť é ý ů é ý é ž ý Č ž ž ů ů é ž ů
LAPLACEOVA TRANSFORMACE
or říí I Příloha P ECHNICKÁ UNIVERZIA V IBERCI Hálkova 6, 46 7 br, CZ Fakula mharok a moborovýh žýrkýh uí or auomakého říí I APACEOVA RANSFORMACE Sují marál o Ig Oval Morlák, CS Kara říí hk o Ig Oval Morlák,
Ř ó Í é Í ž ú Í Č Ú ň Š ň é é é Í ó Š ů é ů é é é é é é Š é ú ů é Ž é é Ž é Ž é ů Ž Č é ď Š Ž Ú ž ů Ž ů Ž é ď ž ž ž é é é é é ů ó é é Ž ů ů Í ž Ž ú Ž é ž Ž ú ů É Á Ú Í Ř É Á ó é ů Č Ť Í ů ů ú ú Í é Š Ř
é ú Ú ě ř ů ů ú ů ř é ů ř ó ů ř ů ř ůú ú ě ř é é ř ě ě é Ú ř ř ú ě ú ů ů ř ů ú ď š ř š ř ě ř ř ř ě é ú ř ř
Á É Ý ú é ú Ú ě ř ů ů ú ů ř é ů ř ó ů ř ů ř ůú ú ě ř é é ř ě ě é Ú ř ř ú ě ú ů ů ř ů ú ď š ř š ř ě ř ř ř ě é ú ř ř Á Ě Ýú é ě ú ě ě ř ů Ú ě ř ů ů ú ě ř ě ř ň é ř ř ň é ř ř é ř ř ř é ř ů ř ěž é ř é ů ř
Univerzita Karlova v Praze Pedagogická fakulta
Uivrzit Krlov v Prz Pdgogická fkult SEMINÁRNÍ PRÁCE Z MATEMATICKÉ ANALÝZY KONVERGENCE ŘAD. přprcové vydáí / Cifrik, M-ZT Zdáí: Vyštřt kovrgci řdy, jstliž. ( ).!.. l ( ). 7.!. ( ). 8..! 4. 9. cos.. Vyprcováí:
ůř Í ý Í Ť ý Á Ž Í Á ť Í ť ý ť Ť ě č ě Š ř ú ý š Č ř č ď ř Á Í Í ě ě ř ó ě č ř č ě ř š ě Á Í č ě Í Í Č É ě Š Í Č ě Í ě ů ů ů Č ý ú Ž ří Á Ý Í Á ÍČ ŽÍ Ý Ů ě č ě ě ě ř ě ě ó ž ž ě ýš ě ě ó ě ř ú ě ďý ě Ú
8.2.7 Geometrická posloupnost
87 Geometrická posloupost Předpokldy: 80, 80, 80, 807 Pedgogická pozámk: V hodiě rozdělím třídu dvě skupiy kždá z ich dělá jede z prvích dvou příkldů Větši studetů obou skupi potřebuje pomoc u tbule Ob
12. MOCNINY A ODMOCNINY
. MOCIY A ODMOCIY.. Vypoči: ( 0 8 8 6 6 0 ( 8 9 7 7 d 8 6 0 ( 0 ( 6 00 ŘEŠEÍ: ( 0 8 ( 0 8+ 6 8 7 6 6 8 ( ( 8 8 6 6 8 96 08 0 8 8 8+ 96+ 08088 6 ( 6 ( ( 6 6 0 ( 0 ( ( ( 6 00 8+ 8+ 87 6 8+ 6+ 6 0 6 ( ( 9
Č Úř ě ý Ú š ě ř š ě é ú Ž úř ě ý Úř ž ó Č é ě ě š ř ů ř š ř ž ý ó š ř Ž ě ě š ř Ů ě Š ý š ř ý ě é ř éž Ř ý ý ě Č é é é ě ý ěř ě ř ž ý ů é ý ěř ě ě ý
úř Á Á Ě Ý š Á Ř ž ú š Ě É š Ě É š Ě Á Á É š Ě š ÚŘ ž ž ů ě ž ž Áš Ř š Č Ř Ú ě ř š ý ě é ř š ě ú ž ž ř ě úř ž ý ž Úř ě ý ú š ě š ý ě é ř Š ě ů ě ř ž ě ý ů ě ě ě ý Ů ú ž ž ú š š ž ý Ů é ž ř ě ř ž é ý ě
ý óň ú Ú Ú ó ř Ú ý ú ú ú Ú ů ú Ó
ý ř é ě ě č č ý é ó é ž ó é ě é ě ř ě ř ř é š ý ý ž ě ý ž ě ý ř ž é ě ú ř é ě ř ý č š é ý ž ý ž é Ž ě ú é ň ř ř ě ý ý ě ý š ř é ž š é ž ř ý ý š é ě ě ý ě ó é é š ř ř ý é ů ě ě ě ě ě ý č é š ř é ů é ů č
je daná vztahem v 0 Ve fyzice bývá zvykem značit derivaci podle proměnné t (podle času) tečkou, proto píšeme
DERIVACE FUNKCE Má zásadí výzam při vyštřováí fukčích závislostí j v matmatic, al také v aplikacích, apř v chmii, fyzic, koomii a jiých vědích oborch Pricip drivováí formulovali v 7 stoltí závisl a sobě
( t) ( t) ( ( )) ( ) ( ) ( ) Vzdálenost bodu od přímky I. Předpoklady: 7308
731 Vzdálenost odu od římky I Předokldy: 7308 Pedgogiká oznámk: Pokud máte málo čsu, můžete odvodit vzore ez smosttné ráe studentů oužít některý z říkldů z dlší hodiny Tím jednu ze dvou hodin ro vzdálenost
ď ň Á Ř Č É ř ě ř Ú Č č ě Ž ě ř ě ň ň ř ů ň Ž ě ň š Ň ě ř ř ř č Ž Ž č ř ř ň Ž ň ň ž Í ě š ř ř Č ř š Í ř Ž ó ř ě ů ž ň ř Č ě ř ř Í č ň ů č ř Í ů ů ě ň ů ů ě ň Á Á ů ů ě ň č Ž č ň ů č Ž ň ú Ž ň Ň ň Ž č š
=, kde P(x) a Q(x) jsou polynomy. Rozklad na parciální zlomky Parciální zlomky jsou speciální racionální lomené funkce. Rozlišujeme 2 typy:
3 předáš INTEGRAE RAIONÁLNÍ LOMENÉ FUNKE Důležiou supiu fucí, eré můžeme (spoň eoreicy) iegrov v možiě elemeárích fucí, voří rcioálí lomeé fuce Kždou rcioálí lomeou fuci vru P( ) f ( ) =, de P() Q() jsou
š ě ě ú ď ě š Ů ú Ř ú Á Ě ÉÚ ú Č ú ě ů ů ě ě ě ů ě ů š ů ů ě ú ě ž ú ě Ý ú ě ú ú ž Á ú Ý Í Í Ú ž ú š š š ú ě ž ú Ě Á Ě Ů Ě Á Á ů Á Á Ý Ř ČÍ Ů Á Ů ú ě ú Éú Á ú ú Ů ě Ů Ů ž ň ě ě Ň Í Í Ú Ý Á ě ú ěž ě ň ů
14/10/2015 Z Á K L A D N Í C E N Í K Z B O Ž Í Strana: 1
14/10/2015 Z Á K L A D N Í C E N Í K Z B O Ž Í Strana: 1 S Á ČK Y NA PS Í E XK RE ME N TY SÁ ČK Y e xk re m en t. p o ti sk P ES C Sá čk y P ES C č er né,/ p ot is k/ 12 m y, 20 x2 7 +3 c m 8.8 10 bl ok
ř ú ě ř ě ú ň ý ž ú ě ú ž ř š ě ú ě ú ř ú ě ú ř ř ř ř ř ý ú ý ú Č Ů ř ř ú ú ý šš ž
ř ú ř š ú ú ú ý ňě ů ú ě ě ů ů ž ú ú ů ň ň ú ý ž ú ž ý ř š ž ř ý ř ě ě É ú ě ž ž ý ů ž ěž ř ú ě ř ě ú ň ý ž ú ě ú ž ř š ě ú ě ú ř ú ě ú ř ř ř ř ř ý ú ý ú Č Ů ř ř ú ú ý šš ž ř ú ě ýš ýš ýšú ř ř ý ě ů ě
Exponenciální funkce a jejich "využití" - A (Tato doplňková pomůcka nemůže v žádném případě nahradit systematickou matematickou přípravu.
Josf PUNČOCHÁŘ: Epociálí fukc a ich "využití" ld Epociálí fukc a ich "využití" - A (Tato doplňková pomůcka můž v žádém případě ahradit systmatickou matmatickou přípravu. Epociálí fukc dfiováa obcě vztahm
É Ě Á Á Ú ť ň Ť ú ú ň ň ú ú ň ú Š ó Š ó ú ú ú Č ň ó ň Š Č ó Ř Š ú Ž Š ú Á É Č ú ť ó ó ó ó ó ó ó ú ú ú ú ú ň Ů ú ó ú ň ň ú úó ó ú ť ú ú ú ň Ý ť ó ó ó ó ď ň ó ó ú ó ó ó ň ó ú ó ó ó Š ú ó Š Á É Č ť ú Č ň
Nakloněná rovina II
1215 Nkloněná rovin II Předokldy: 1214 Pomůcky: siloměr 2,5 N, sd n měření řecí síly Pedoická oznámk: V éo následující hodině se nerobírá žádná nová lák Přeso jde o oměrně důležié hodiny, roože žáci se
šš úř ú ý ř é ř ě é ž é Ž ěř ě éř ÓÍ Č ěř ó ěř ó Í é ě Í ě š ě é ě ř ř ó ý Š Ž ě ý Š ř ě é Ž Č é Ó ě Ž ý ří ě ě ý é Ž óí ě ř ř ý
Ě ř é ř ě é Ž Č é šš úř ú ý ř é ř ě é ž é Ž ěř ě éř ÓÍ Č ěř ó ěř ó Í é ě Í ě š ě é ě ř ř ó ý Š Ž ě ý Š ř ě é Ž Č é Ó ě Ž ý ří ě ě ý é Ž óí ě ř ř ý ž ý ý ů é ý ý ř ů ú ů ý ž úě Í ř é Í ú Í ě Ó ý ří ě ě
Ž Ě Č ÝÚ Ú ž Č š Í Í ň Í Ú ř Ů ů Ž Í Ú ů ů Ů ů ř ř Í Ů Í ů ř ř ř ř ř ň Í Í É ň ů Ú ň Ě Í Č ŘÍ Ů Í Ř ň Ž ů ň ů ř ř ř ň ř ř ň ř ř ň ř ř ň ř É ř ň š Ž ř Ť ř ř ř ř ř ř ř ů ř ř ů Ů ř ň ů ř ř ř ř ř ř ř Ž Ž ó
Í Á Ř É Á Š Ž ř č ě ě š ř ů Č Č Ú Č ě č ě ž č ř č Žš Ž č ě ě Ž úč É Á ř ě Č úč Č úč ý ř ě Ž Ž ě ý Ž Úč ě ý ř ě ř š Í ý č Č ť č ě Ž š č Í ť Ř Ě ř ě ú ň š ě Í Ž ú č ě č Úř Č ř ě ž ě Úč č ě ř š ř ž š Ž ě
Í é É í ó ž á ó ý Ž á á ó ý í š ú Ó ř Ýí č ý Ó ř Ú í Ť ř č Ó ý Č ý Ó Ó ý ě Ž á Ž Ú ř Ž š á ýě š ě š š í í ě š ř ě š Ó ě úč ě š ě é óř ř Ó Ř Ó ý ř ý Ó ú Ó ý í éř ř ř é řč ň šé á é ěřé ý Ó Ó ý Ó ří é š á
ý ů ří ý ý ř š ž š ý ž Í ů čýř ý ý č ý š ý ž č šř š š š ž ý ž ř ý ý č č ý ž ř š ý č ž ů ý š ý ť č č ř š ž ý ý ž ž ž ý ř ý ř ú ž ý ů č ý ř ř š ý č ů š Í š ý č ř č ř ú š ž Í š ř ú ř ý č Č ř Č š č č ý Č ř
Matematika NÁRODNÍ SROVNÁVACÍ ZKOUŠKY BŘEZNA 2018
NÁRODNÍ SROVNÁVACÍ ZKOUŠKY Mtemtik T BŘEZNA 08 : 9. břez 08 D : 897 P P P : 0 M. M. M. :, % S : 0 : 0 : -7,5 M. P : -, : 0, Zopkujte si zákldí iformce ke zkoušce: Test obshuje 0 úloh jeho řešeí máte 90
Repetitorium z matematiky
Rovnie, nerovnie jejih soustvy (lineární, kvdrtiké, irionální) Reetitorium z mtemtiky Podzim Ivn Vulová A) Rovnie jejih řešení Mnoho fyzikálníh, tehnikýh jinýh úloh lze mtemtiky formulovt jko úlohu tyu:
Í ř ří ý ř ř Č Č Ó Č ý ř ý Í ř Č ř Ó Ó ř ř ř ů ň ů řů ý ů ř ř ř ý Í š ř š ú Á ó š ř šř ů š Í ř Í Č ýš ó ó ů ó ř ó ň ý ů ř ř ý ř ř ý ř ř ř ř ř š ř ř š ů ů ř ýš ř š ó ú ř š ó ú ó ř ú ý ň ý úó ř ř ý ýš ó
( s) ( ) ( ) ( ) Stabilizace systému pomocí PID regulátoru. Řešený příklad: Zadání: Uvažujme řízený systém daný přenosovou funkcí
tbilizce ytému pomocí regulátoru Řešený příld: Zdání: Uvžujme řízený ytém dný přenoovou funcí ) ožte, že je ytém netbilní. ) Nvrhněte dnému ytému regulátor, terý bude ytém tbilizovt. ) Úpěšnot vého nárhu
Ú Í Á É Í Á Í Ů Ž ř Á É Í ř Ú ř Í ů ř ú ú ú ů ř ú ů ů Ú Í Á É Í Á Í Ů Ž ř ř ř Í Ú ů Ú Í š ň ř ů ř ň ř Ú ř Ú š ů ů řš řú řš ú Í ú Ú ú Ú ů ú ů Ú ů Ú Ú Í Á É Í Á Í ů Ž ř Í ú úč ř ň ř ň Í ú ř ř Ú Í ř ř ř ú
ů Í ď Í í Č ó š Í á ť ř ú í é á é á ááý á Í Ú í ý ý á á Í ť ď ď á á Í í ý á ě é é ď á řá Í ň á Í č íí Í ý í í í á ť í č í Í á á í ř ř á ě č á á í é ó
ů Í ď Í í Č ó š Í á ť ř ú í é á é á ááý á Í Ú í ý ý á á Í ť ď ď á á Í í ý á ě é é ď á řá Í ň á Í č íí Í ý í í í á ť í č í Í á á í ř ř á ě č á á í é ó ř í í í í á ř Ť ří Í č á ě á ť ř řá ý á í í á ď Í Ě
é ů é ž é ž ž Č é é ů é ů ě ů ů ů ů ú ě Ž é ý ď ý ů é ů ů ě ž Ž ů ý ů ž ž é é ů ěž ů ý ů é é ý ý ýě ž ýů ý ů é ý ů Ú ď ú ý ě ů é ů ý é ě é ů ú ě ý ě ů ý ě ě Ť é é Ů ž ú ů Ž ů Ž ů é Ž ú ě ů é ý ě ů ě é
Ž ÚČ ť ň ž Ž Č ň Ť Š ě ěž ó š ěňž Ú ňť ť ň Č š ě š ě Č ň š ě ů ť ů ň ě ěž Ž ě š ž ě ě ě ú Ó Ó š ž ž
Ů ú ě ě š Ú ú ů ú Ž ú ž ě Ž ě ě ú ě ů ě ň ú ú ú ě ě ů ú š ň Ž ň ž Ž ú ž ň ěž Ž ň Ú š ě ě ž ě š ů š ň ž ň Ž ě Ž ÚČ ť ň ž Ž Č ň Ť Š ě ěž ó š ěňž Ú ňť ť ň Č š ě š ě Č ň š ě ů ť ů ň ě ěž Ž ě š ž ě ě ě ú Ó
Í Í Ř ď Í Á É Á Í Í Ě Í Í Á Í Á Ú Ť É Ě Í É Í ť Ě ŠÍ Í É ř ř ů ř ý ý é é ý ý é ý ý ř ů ý ý ý ř ý ů é ř ý řďů ý é é ř é ř ř ů ď ů ů ů ů é ý ý ť é ř Ť é é ý é é é é ď ď ňů ý ů ů é ř ř é ý ý ř é ď ý ý ů
2.3. Fázové rovnováhy
.3. Fázové rovováhy Buee e zabývat heterogeíi outavai obahujícíi jeu či více ložek, které olu cheicky ereagují. takové říaě očet ložek oovíá očtu cheických iiviuí (látek), kterýi je outava tvořea. Fázová
PRACOVNÍ SEŠIT ALGEBRAICKÉ VÝRAZY. 2. tematický okruh: Připrav se na státní maturitní zkoušku z MATEMATIKY důkladně, z pohodlí domova a online
Připrv se státí mturití zkoušku z MATEMATIKY důkldě, z pohodlí domov olie PRACOVNÍ SEŠIT. temtický okruh: ALGEBRAICKÉ VÝRAZY vtvořil: RNDr. Věr Effeberger epertk olie příprvu SMZ z mtemtik školí rok 04/05
é Ú é úč ú Ú ě Č Ú é Ú ě é Ú é č é ě é ú ě ž ť Ó Á Í Ú Ě č ě č é é Č Č Č Í Ú é é ú ě ó é ě č Ú Ó ě óř ě Č ý é ó ňř ě ú ě ňě ý ů ů č é Č ů č č ú é č é
ú ě č č Čé ř Č ř é ě ý č ě ň ň ú ě ž Ú ě Ú ě ú š ě Í Í ů é ý ý é č é ž é č úč é ú ě ý účéť ěž ý úč úč ú ě č ěž ý é ě ů š ž ú ě é ú ě ž ú ý Č é ř š ý ž ř ý é ž é ě ř ň ý ý ý é Č ž ý ý ř č ř ů é ú ě é ě
1.1.11 Rovnoměrný pohyb VI
1.1.11 onoměrný pohyb VI ředpokldy: 11 edgogická poznámk: Náledující příkld je dokončení z minulé hodiny. Sudeni by měli mí grf polohy nkrelený z minulé hodiny nebo z domo. ř. 1: er yjede edm hodin ráno
8. Laplaceova transformace
8 748 :9 Josef Hekrdl Llceov rsformce 8 Llceov rsformce Defiice 8 (Llceov rsformce) Nechť f je komlexí fukce jedé reálé roměé j f Zobrzeí L keré éo fukci řiřdí komlexí fukci komlexí roměé F j F vzhem L
Mocniny, odmocniny, úpravy. Repetitorium z matematiky
Mociy, odmociy, úpvy lgeických výzů epetitoium z mtemtiky Podzim Iv culová . Mociy přiozeým celým mocitelem Po kždé eálé čílo kždé přiozeé čílo pltí:... čiitelů moci Zákld mociy (mocěec) mocitel (expoet)
Univerzita Karlova v Praze Pedagogická fakulta
Uverzt Krlov v Prze Pedgogcká kult SEMINÁRNÍ PRÁCE Z POLYNOMICKÉ ALGEBRY POLYNOM / CIFRIK Zdáí: Vyšetřete všem probrým prostředky polyom Vyprcováí: Rcoálí kořey Podle věty: Nechť p Q je koře polyomu q