Obr. 1: Vizualizace dat pacientů, kontrolních subjektů a testovacího subjektu.
|
|
- František Bartoš
- před 5 lety
- Počet zobrazení:
Transkript
1 Řešení příkladu - klasifikace testovacího subjektu pomocí Bayesova klasifikátoru: ata si vizualizujeme (Obr. ). Objem mozkových komor pacienti kontroly testovací subjekt 5 6 Objem hipokampu Obr. : Vizualizace dat pacientů, kontrolních subjektů a testovacího subjektu. Nejprve vypočteme apriorní pravděpodobnosti třídy pacientů a kontrol: P(ω ) = n n P(ω H ) = n H = =,5. n 6 = 6 =,5 a ále vypočteme vícerozměrné průměry x, x H a kovarianční matice S, S H (předpokládáme, že data mají vícerozměrné normální rozdělení). Vícerozměrné průměry pro třídu pacientů a kontrol: x = x H = n x n i i= n H x n i H i= n x n i i= = ( + + ) ( + + 8) = [ ] n H x n i H i= = (5 + + ) ( ) = [ 7] Výběrové kovarianční matice: S = s s výběrových kovariančních matic: s s a S H = s H H s H H s s. ílčí výpočty jednotlivých prvků Rozptyl objemu hipokampu u pacientů: x s = x n ) = x x x x T x x x x x = x T = [ ] = ( + +
2 ruhý způsob výpočtu: s = ((x n x ) + (x x ) + (x x ) ) = (( ) + ( ) + ( ) ) = ( + + ) = Rozptyl objemu mozkových komor u pacientů: s = ((x n x ) + (x x ) + (x x ) ) = (( ) + ( ) + (8 ) ) = ( + + ) = Kovariance objemu hipokampu a objemu mozkových komor u pacientů: s = s = (x n x )(x x ) + (x x )(x x ) + (x x )(x x ) = ( )( ) + ( )( ) + ( )(8 ) = ( + + ) = Rozptyl objemu hipokampu u kontrol: s H = ((x n H H x H ) + (x H x H ) + (x H x H ) ) = ((5 ) + ( ) + ( ) ) = ( + + ) = Rozptyl objemu mozkových komor u kontrol: s H = ((x n H H x H ) + (x H x H ) + (x H x H ) ) = ((7 7) + (9 7) + (5 7) ) = ( + + ) = Kovariance objemu hipokampu a objemu mozkových komor u kontrol: s H = s H = (x n H H x H )(x H x H ) + (x H x H )(x H x H ) + (x H x H )(x H x H ) = (5 )(7 7) + ( )(9 7) + ( )(5 7) = ( + + ) = Výběrové kovarianční matice: S = s s = s s a S H = s H H s H H s s =. Pokud bychom kovarianční matici pacientů chtěli spočítat maticově: S = x x n x x [x x x x ] + x x x [x x x x ] + x x x x [x x x x ] = [ ] + [ ] + 8 [ 8 ] = [ ] + [ ] + [ ] = + + = x Na závěr vypočteme výběrový (Pearsonův) korelační koeficient objemu hipokampu a mozkových komor u pacientů (r ) a kontrolních subjektů (r H ): r = r = r H = r H = s s s s H sh sh = =.5 = =.5
3 Kritérium maximální aposteriorní pravděpodobnosti. Klasifikace podle objemu mozkových komor: Nejprve si znázorníme objem mozkových komor u jednotlivých subjektů (Obr. ) Objem mozkových komor pacienti kontroly testovací subjekt Obr. : Vizualizace objemu mozkových komor u jednotlivých subjektů. Spočteme aposteriorní pravděpodobnosti P(ω x ) a P(ω H x ) s využitím Bayesova vzorce, tedy P(ω x ) = p(x ω ) P(ω ) a P(ω p(x ) H x ) = p(x ω H ) P(ω H ), a zařadíme testovací subjekt do třídy s větší p(x ) aposteriorní pravděpodobností. Výpočet p(x ω ), podmíněné hustoty pravděpodobnosti výskytu obrazu x ve třídě ω, a p(x ω H ), podmíněné hustoty pravděpodobnosti výskytu obrazu x ve třídě ω H (grafické znázornění podmíněných hustot pravděpodobnosti viz. Obr. ): p(x ω ) = πs p(x ω H ) = πsh exp x x exp x x H s = π sh = π (9 ) exp =,76 (9 7) exp =, Výpočet celkové hustoty pravděpodobnosti: p(x ) = p(x ω ) P(ω ) + p(x ω H ) P(ω H ) =,76,5 +,,5 =,85 Aposteriorní pravděpodobnosti jsou pak rovny: P(ω x ) =,76,5,85 =,59 a P(ω H x ) =,,5,85 =,7 (tzn. s pravděpodobností 59,% bude subjekt zařazen do třídy pacientů a s pravděpodobností,7% do třídy kontrolních subjektů). Protože P(ω x ) > P(ω H x ), zařadíme testovací subjekt do třídy pacientů. Poznámka : Součet aposteriorních pravděpodobností je roven.
4 ,,,8,6,, Objem mozkových komor Obr. : Vizualizace hustoty pravděpodobnosti pacientů (znázorněna červeně) a kontrolních subjektů (znázorněna černě). Podmíněné hustoty pravděpodobnosti výskytu testovacího subjektu x v jednotlivých třídách jsou znázorněny modře. Je patrné, že subjekt bude zařazen do třídy pacientů.. Klasifikace podle objemu hipokampu: Nejprve si znázorníme objem hipokampu u jednotlivých subjektů (Obr. ). 5 6 Objem hipokampu pacienti kontroly testovací subjekt Obr. : Vizualizace objemu hipokampu u jednotlivých subjektů. Spočteme aposteriorní pravděpodobnosti P(ω x ) a P(ω H x ) s využitím Bayesova vzorce, tedy P(ω x ) = p(x ω ) P(ω ) a P(ω p(x ) H x ) = p(x ω H ) P(ω H ), a zařadíme testovací subjekt do třídy s větší p(x ) aposteriorní pravděpodobností. Výpočet podmíněné hustoty pravděpodobnosti výskytu obrazu x ve třídě ω : p(x ω ) = πs exp x x s = π (,5 ) exp =,5 Výpočet podmíněné hustoty pravděpodobnosti výskytu obrazu x ve třídě ω H :
5 p(x ω H ) = πsh exp x x H sh = π (,5 ) exp =,5 Grafické znázornění podmíněných hustot pravděpodobnosti je znázorněno na Obr. 5. Výpočet celkové hustoty pravděpodobnosti: p(x ) = p(x ω ) P(ω ) + p(x ω H ) P(ω H ) =,5,5 +,5,5 =,5 Aposteriorní pravděpodobnosti jsou pak rovny: P(ω x ) =,5,5,5 =,5 a P(ω H x ) =,5,5,5,5. Protože P(ω x ) = P(ω H x ), nelze jednoznačně určit, do které třídy máme testovací subjekt zařadit. V takovém případě často klasifikační algoritmy náhodně zvolí jednu ze skupin. =,,5,,5-6 8 Objem hipokampu Obr. 5: Vizualizace hustoty pravděpodobnosti pacientů (znázorněna červeně) a kontrolních subjektů (znázorněna černě). Podmíněné hustoty pravděpodobnosti výskytu testovacího obrazu x v jednotlivých třídách jsou znázorněny modře. Je patrné, že nelze rozhodnout, do jaké třídy máme testovací subjekt zařadit.. Klasifikace podle obou proměnných: Spočteme aposteriorní pravděpodobnosti P(ω x) a P(ω H x), přičemž P(ω x) = p(x ω ) P(ω ) p(x) a P(ω H x) = p(x ω H ) P(ω H ), p(x) a zařadíme testovací subjekt do třídy s větší aposteriorní pravděpodobností. Výpočet podmíněné hustoty pravděpodobnosti výskytu obrazu x ve třídě ω : 5
6 p(x ω ) = π s s r exp exp π ( (,5) ) ( (,5) ) (,5 ) + (9 ) r x x s + x x s r x x x x s s (,5)(,5 )(9 ) =,78 Výpočet podmíněné hustoty pravděpodobnosti výskytu obrazu x ve třídě ω H : = p(x ω H ) = π s H s H r H exp exp π ( (,5) ) ( (,5) ) (,5 ) + (9 7) r H x x H sh + x x H sh r H x x H x x H s H sh (,5)(,5 )(9 7) =,56 Grafické znázornění podmíněných hustot pravděpodobnosti je znázorněno na Obr. 6. = Výpočet celkové hustoty pravděpodobnosti: p(x) = p(x ω ) P(ω ) + p(x ω H ) P(ω H ) =,78,5 +,56,5 =,67 Aposteriorní pravděpodobnosti jsou pak rovny: P(ω x) =,78,5 =,58 a P(ω,67 H x) =,56,5 =,67,8. Protože P(ω x) > P(ω H x), zařadíme testovací subjekt do třídy pacientů..5 x 8 6 x Obr. 6: Vizualizace hustoty pravděpodobnosti pacientů (znázorněna červenou plochou) a kontrolních subjektů (znázorněna šedou plochou). Podmíněná hustota pravděpodobnosti výskytu testovacího obrazu x v jednotlivých třídách je znázorněna modře. Je patrné, že subjekt bude zařazen do třídy pacientů. 6
7 Poznámka: Klasifikace pomocí věrohodnostního poměru P(ω x) P(ω H x) = : Levá strana je rovna P(ω x) =,58 =, a pravá strana rovna. Protože věrohodnostní poměr (na P(ω H x),8 levé straně) je větší než výraz na pravé straně, subjekt zařadíme do třídy pacientů. Kritérium minimální pravděpodobnosti chybného rozhodnutí Kritérium je ve tvaru: p(x ω ) = P(ω H ) p(x ω H ) P(ω ). Po dosazení konkrétních hodnot vypočítaných výše je levá strana rovna p(x ω ) =,78 =, a pravá strana rovna P(ω H ) =,5 =. Protože věrohodnostní p(x ω H ),56 P(ω ),5 poměr (na levé straně) je větší než výraz na pravé straně, subjekt zařadíme do třídy pacientů. = 6 9 P(ω ) 9 Poznámka: Kdyby byly apriorní pravděpodobnosti jiné, např. P(ω H ) byl testovací subjekt zařazen do třídy kontrolních subjektů. =, v takovém případě by Kritérium minimální střední ztráty Kritérium je ve tvaru: p(x ω ) p(x ω H ) = λ(ω ω H ) λ(ω H ω H ) P(ω H ) λ(ω H ω ) λ(ω ω ) P(ω ). Levá strana je rovna p(x ω ) p(x ω H ) =,78,56 =,. Pravá strana je při různém nastavení vah rovna: A) λ = (tzn., více penalizujeme, pokud je pacient nesprávně zařazen do třídy kontrolních subjektů, než když je kontrolní subjekt nesprávně zařazen do třídy pacientů), pak pravá strana je rovna ( ),5 =,5 a subjekt zařadíme do třídy pacientů. ( ),5 B) λ = (penalizujeme shodně nesprávné zařazení do třídy kontrolních subjektů i pacientů kritérium minimální pravděpodobnosti chybného rozhodnutí), pak pravá strana je rovna ( ),5 = a subjekt zařadíme do třídy pacientů. ( ),5 C) λ = (tzn., více penalizujeme, pokud je kontrolní subjekt nesprávně zařazen do třídy pacientů, než když je pacient nesprávně zařazen do třídy kontrolních subjektů), pak pravá strana je rovna ( ),5 = a subjekt zařadíme do třídy kontrolních subjektů. ( ),5 7
8 Kritérium maximální pravděpodobnosti Kritérium je ve tvaru: p(x ω ) = λ(ω ω H ). Levá strana je rovna p(x ω ) =,78 =,. Pravá strana je p(x ω H ) λ(ω H ω ) p(x ω H ),56 při různém nastavení vah rovna: A) λ = (tzn., více penalizujeme, pokud je pacient nesprávně zařazen do třídy kontrolních subjektů, než když je kontrolní subjekt nesprávně zařazen do třídy pacientů), pak pravá strana je rovna =,5 a subjekt zařadíme do třídy pacientů. B) λ = (penalizujeme shodně nesprávné zařazení do třídy kontrolních subjektů i pacientů), pak pravá strana je rovna = a subjekt zařadíme do třídy pacientů. C) λ = (tzn., více penalizujeme, pokud je kontrolní subjekt nesprávně zařazen do třídy pacientů, než když je pacient nesprávně zařazen do třídy kontrolních subjektů), pak pravá strana je rovna = a subjekt zařadíme do třídy kontrolních subjektů. 8
AVDAT Mnohorozměrné metody, metody klasifikace
AVDAT Mnohorozměrné metody, metody klasifikace Josef Tvrdík Katedra informatiky Přírodovědecká fakulta Ostravská univerzita Mnohorozměrné metody Regrese jedna náhodná veličina je vysvětlována pomocí jiných
Implementace Bayesova kasifikátoru
Implementace Bayesova kasifikátoru a diskriminačních funkcí v prostředí Matlab J. Havlík Katedra teorie obvodů Fakulta elektrotechnická České vysoké učení technické v Praze Technická 2, 166 27 Praha 6
Řešení příkladu - klasifikace testovacího subjektu podle minimální vzdálenosti:
Řešení příkladu - klasifikace testovacího subjektu podle minimální vzdálenosti: Postup: I) zvolení metriky pro výpočet vzdáleností dvou bodů II) zvolení metriky pro určení vzdálenosti mezi dvěma množinami
AVDAT Náhodný vektor, mnohorozměrné rozdělení
AVDAT Náhodný vektor, mnohorozměrné rozdělení Josef Tvrdík Katedra informatiky Přírodovědecká fakulta Ostravská univerzita Opakování, náhodná veličina, rozdělení Náhodná veličina zobrazuje elementární
oddělení Inteligentní Datové Analýzy (IDA)
Vytěžování dat Filip Železný Katedra počítačů oddělení Inteligentní Datové Analýzy (IDA) 22. září 2014 Filip Železný (ČVUT) Vytěžování dat 22. září 2014 1 / 25 Odhad rozdělení Úloha: Vstup: data D = {
Zpracování náhodného vektoru. Ing. Michal Dorda, Ph.D.
Ing. Michal Dorda, Ph.D. 1 Př. 1: Cestující na vybraném spoji linky MHD byli dotazováni za účelem zjištění spokojenosti s kvalitou MHD. Legenda 1 Velmi spokojen Spokojen 3 Nespokojen 4 Velmi nespokojen
cv3.tex. Vzorec pro úplnou pravděpodobnost
3 cvičení - pravděpodobnost 2102018 18cv3tex n i=1 Vzorec pro úplnou pravděpodobnost Systém náhodných jevů nazýváme úplným, jestliže pro něj platí: B i = 1 a pro i k je B i B k = 0 Jestliže je (Ω, A, P
Náhodné vektory a matice
Náhodné vektory a matice Jiří Militký Katedra textilních materiálů Technická Universita Liberec, Červeně označené slide jsou jen pro doplnění informací a nezkouší se. Symbolika A B Jev jistý S (nastane
n = 2 Sdružená distribuční funkce (joint d.f.) n. vektoru F (x, y) = P (X x, Y y)
5. NÁHODNÝ VEKTOR 5.1. Rozdělení náhodného vektoru Náhodný vektor X = (X 1, X 2,..., X n ) T n-rozměrný vektor, složky X i, i = 1,..., n náhodné veličiny. Vícerozměrná (n-rozměrná) náhodná veličina n =
Náhodný vektor a jeho charakteristiky
Náhodný vektor a jeho číselné charakteristiky 1 Náhodný vektor a jeho charakteristiky V následující kapitole budeme věnovat pozornost pouze dvourozměřnému náhodnému vektoru, i když uvedené pojmy a jejich
Diskriminační analýza hodnocení rozdílů mezi 2 nebo více skupinami objektů charakterizovanými více znaky
Diskriminační analýza hodnocení rozdílů mezi 2 nebo více skupinami objektů charakterizovanými více znaky Interpretují rozdíly mezi předem stanovenými třídami Cílem je klasifikace objektů do skupin Hledáme
Pravděpodobnost a statistika, Biostatistika pro kombinované studium. Jan Kracík
Pravděpodobnost a statistika, Biostatistika pro kombinované studium Letní semestr 2017/2018 Tutoriál č. 2:, náhodný vektor Jan Kracík jan.kracik@vsb.cz náhodná veličina rozdělení pravděpodobnosti náhodné
Příklady ke čtvrtému testu - Pravděpodobnost
Příklady ke čtvrtému testu - Pravděpodobnost 6. dubna 0 Instrukce: Projděte si všechny příklady. Každý příklad se snažte pochopit. Pak vymyslete a vyřešte příklad podobný. Tím se ujistíte, že příkladu
TECHNICKÁ UNIVERZITA V LIBERCI
TECHNICKÁ UNIVERZITA V LIBERCI Fakulta mechatroniky, informatiky a mezioborových studií Základní pojmy diagnostiky a statistických metod vyhodnocení Učební text Ivan Jaksch Liberec 2012 Materiál vznikl
Vícerozměrná rozdělení
Vícerozměrná rozdělení 7. září 0 Učivo: Práce s vícerozměrnými rozděleními. Sdružené, marginální, podmíněné rozdělení pravděpodobnosti. Vektorová střední hodnota. Kovariance, korelace, kovarianční matice.
Stavový model a Kalmanův filtr
Stavový model a Kalmanův filtr 2 prosince 23 Stav je veličina, kterou neznáme, ale chtěli bychom znát Dozvídáme se o ní zprostředkovaně prostřednictvím výstupů Příkladem může býapř nějaký zašuměný signál,
Příklad 1. Korelační pole. Řešení 1 ŘEŠENÉ PŘÍKLADY Z MV2 ČÁST 13
Příklad 1 Máme k dispozici výsledky prvního a druhého testu deseti sportovců. Na hladině významnosti 0,05 prověřte, zda jsou výsledky testů kladně korelované. 1.test : 7, 8, 10, 4, 14, 9, 6, 2, 13, 5 2.test
Úvodem Dříve les než stromy 3 Operace s maticemi
Obsah 1 Úvodem 13 2 Dříve les než stromy 17 2.1 Nejednoznačnost terminologie 17 2.2 Volba metody analýzy dat 23 2.3 Přehled vybraných vícerozměrných metod 25 2.3.1 Metoda hlavních komponent 26 2.3.2 Faktorová
Definice spojité náhodné veličiny zjednodušená verze
Definice spojité náhodné veličiny zjednodušená verze Náhodná veličina X se nazývá spojitá, jestliže existuje nezáporná funkce f : R R taková, že pro každé a, b R { }, a < b, platí P(a < X < b) = b a f
Poznámky k předmětu Aplikovaná statistika, 4. téma
Poznámky k předmětu Aplikovaná statistika, 4. téma 4. Náhodné vektory V praxi se nám může hodit postihnout více vlastností jednoho objektu najednou, např. výšku, váhu a pohlaví člověka; rychlost chemické
správně - A, jeden celý příklad správně - B, jinak - C. Pro postup k ústní části zkoušky je potřeba dosáhnout stupně A nebo B.
Zkouška z předmětu KMA/PST. Anotace předmětu Náhodné jevy, pravděpodobnost, podmíněná pravděpodobnost. Nezávislé náhodné jevy. Náhodná veličina, distribuční funkce. Diskrétní a absolutně spojitá náhodná
Poznámky k předmětu Aplikovaná statistika, 4. téma
Poznámky k předmětu Aplikovaná statistika, 4. téma 4. Náhodné vektory V praxi se nám může hodit postihnout více vlastností jednoho objektu najednou, např. výšku, váhu a pohlaví člověka; rychlost chemické
PRAVDĚPODOBNOST A STATISTIKA. Bayesovské odhady
PRAVDĚPODOBNOST A STATISTIKA Bayesovské odhady Bayesovské odhady - úvod Klasický bayesovský přístup: Klasický přístup je založen na opakování pokusech sledujeme rekvenci nastoupení zvolených jevů Bayesovský
NÁHODNÝ VEKTOR. 4. cvičení
NÁHODNÝ VEKTOR 4. cvičení Náhodný vektor Náhodným vektorem rozumíme sloupcový vektor X=(X, X,, X n ) složený z náhodných veličin X, X,, X n, který je charakterizován sdruženým rozdělením pravděpodobnosti.
X = x, y = h(x) Y = y. hodnotám x a jedné hodnotě y. Dostaneme tabulku hodnot pravděpodobnostní
..08 8cv7.tex 7. cvičení - transformace náhodné veličiny Definice pojmů a základní vzorce Je-li X náhodná veličina a h : R R je měřitelná funkce, pak náhodnou veličinu Y, která je definovaná vztahem X
Zápočtová písemka z Matematiky III (BA04) skupina A
skupina A 0 pro x < 1, ae x pro x 1, ), Pravděpodobnost P (X ) a P (X =.). E (X) a E ( X 1). Hustotu transformované náhodné veličiny Y = (X + 1). F(x) = x 3 pro x (0, 9), Hustotu f(x). Pravděpodobnost
9. T r a n s f o r m a c e n á h o d n é v e l i č i n y
9. T r a n s f o r m a c e n á h o d n é v e l i č i n y Při popisu procesů zpracováváme vstupní údaj, hodnotu x tak, že výstupní hodnota y závisí nějakým způsobem na vstupní, je její funkcí y = f(x).
12. cvičení z PSI prosince (Test střední hodnoty dvou normálních rozdělení se stejným neznámým rozptylem)
cvičení z PSI 0-4 prosince 06 Test střední hodnoty dvou normálních rozdělení se stejným neznámým rozptylem) Z realizací náhodných veličin X a Y s normálním rozdělením) jsme z výběrů daného rozsahu obdrželi
Náhodná veličina a její charakteristiky. Před provedením pokusu jeho výsledek a tedy ani sledovanou hodnotu neznáte. Proto je proměnná, která
Náhodná veličina a její charakteristiky Náhodná veličina a její charakteristiky Představte si, že provádíte náhodný pokus, jehož výsledek jste schopni ohodnotit nějakým číslem. Před provedením pokusu jeho
Téma 22. Ondřej Nývlt
Téma 22 Ondřej Nývlt nyvlto1@fel.cvut.cz Náhodná veličina a náhodný vektor. Distribuční funkce, hustota a pravděpodobnostní funkce náhodné veličiny. Střední hodnota a rozptyl náhodné veličiny. Sdružené
Pravděpodobnost a aplikovaná statistika
Pravděpodobnost a aplikovaná statistika MGR. JANA SEKNIČKOVÁ, PH.D. 2. KAPITOLA PODMÍNĚNÁ PRAVDĚPODOBNOST 3. KAPITOLA NÁHODNÁ VELIČINA 9.11.2017 Opakování Uveďte příklad aplikace geometrické definice pravděpodobnosti
MATEMATICKÉ PRINCIPY VÍCEROZMĚRNÉ ANALÝZY DAT
8. licenční studium Univerzita Pardubice Fakulta chemicko-technologická Katedra analytické chemie MATEMATICKÉ PRINCIPY VÍCEROZMĚRNÉ ANALÝZY DAT Příklady: ) Najděte vlastní (charakteristická) čísla a vlastní
RNDr. Eva Janoušová doc. RNDr. Ladislav Dušek, Dr.
Analýza dat pro Neurovědy RNDr. Eva Janoušová doc. RNDr. Ladislav Dušek, Dr. Jaro 2014 Institut biostatistiky Janoušová, a analýz Dušek: Analýza dat pro neurovědy Blok 7 Jak hodnotit vztah spojitých proměnných
a způsoby jejího popisu Ing. Michael Rost, Ph.D.
Podmíněná pravděpodobnost, náhodná veličina a způsoby jejího popisu Ing. Michael Rost, Ph.D. Podmíněná pravděpodobnost Pokud je jev A vázán na uskutečnění jevu B, pak tento jev nazýváme jevem podmíněným
Klasifikace a rozpoznávání. Bayesovská rozhodovací teorie
Klasifikace a rozpoznávání Bayesovská rozhodovací teorie Extrakce p íznaků Granáty Četnost Jablka Váha [dkg] Pravděpodobnosti - diskrétní p íznaky Uvažujme diskrétní p íznaky váhové kategorie Nechť tabulka
Praktická statistika. Petr Ponížil Eva Kutálková
Praktická statistika Petr Ponížil Eva Kutálková Zápis výsledků měření Předpokládejme, že známe hodnotu napětí U = 238,9 V i její chybu 3,3 V. Hodnotu veličiny zapíšeme na tolik míst, aby až poslední bylo
Odhady - Sdružené rozdělení pravděpodobnosti
Odhady - Sdružené rozdělení pravděpodobnosti 4. listopadu 203 Kdybych chtěl znát maximum informací o náhodné veličině, musel bych znát všechny hodnoty, které mohou padnout, a jejich pravděpodobnosti. Tedy
STANOVENÍ SPOLEHLIVOSTI GEOTECHNICKÝCH KONSTRUKCÍ. J. Pruška, T. Parák
STANOVENÍ SPOLEHLIVOSTI GEOTECHNICKÝCH KONSTRUKCÍ J. Pruška, T. Parák OBSAH: 1. Co je to spolehlivost, pravděpodobnost poruchy, riziko. 2. Deterministický a pravděpodobnostní přístup k řešení problémů.
BAYESOVSKÉ ODHADY. Michal Friesl V NĚKTERÝCH MODELECH. Katedra matematiky Fakulta aplikovaných věd Západočeská univerzita v Plzni
BAYESOVSKÉ ODHADY V NĚKTERÝCH MODELECH Michal Friesl Katedra matematiky Fakulta aplikovaných věd Západočeská univerzita v Plzni Slunce Řidiči IQ Regrese Přežití Obvyklý model Pozorování X = (X 1,..., X
Úloha č. 2 - Kvantil a typická hodnota. (bodově tříděná data): (intervalově tříděná data): Zadání úlohy: Zadání úlohy:
Úloha č. 1 - Kvantily a typická hodnota (bodově tříděná data): Určete typickou hodnotu, 40% a 80% kvantil. Tabulka hodnot: Varianta Četnost 0 4 1 14 2 17 3 37 4 20 5 14 6 7 7 11 8 20 Typická hodnota je
Minikurz aplikované statistiky. Minikurz aplikované statistiky p.1
Minikurz aplikované statistiky Marie Šimečková, Petr Šimeček Minikurz aplikované statistiky p.1 Program kurzu základy statistiky a pravděpodobnosti regrese (klasická, robustní, s náhodnými efekty, ev.
Příklad 2: Obsah PCB v játrech zemřelých lidí. Zadání: Data: Program:
Příklad 2: Obsah PCB v játrech zemřelých lidí Zadání: V rámci Monitoringu zdraví byly měřeny koncentrace polychlorovaných bifenylů vjátrech lidí zemřelých náhodnou smrtí ve věku 40 let a více. Sedm vybraných
Základy počtu pravděpodobnosti a metod matematické statistiky
Errata ke skriptu Základy počtu pravděpodobnosti a metod matematické statistiky K. Hron a P. Kunderová Autoři prosí čtenáře uvedeného studijního textu, aby případné další odhalené chyby nad rámec tohoto
Profilování vzorků heroinu s využitím vícerozměrné statistické analýzy
Profilování vzorků heroinu s využitím vícerozměrné statistické analýzy Autor práce : RNDr. Ivo Beroun,CSc. Vedoucí práce: prof. RNDr. Milan Meloun, DrSc. PROFILOVÁNÍ Profilování = klasifikace a rozlišování
ANALÝZA A KLASIFIKACE DAT
ANALÝZA A KLASIFIKACE DAT RNDr. Eva Janoušová INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ HODNOCENÍ ÚSPĚŠNOSTI KLASIFIKACE A SROVNÁNÍ KLASIFIKÁTORŮ ÚVOD Vstupní data Subjekt Objem hipokampu Objem komor Skutečnost
Normální (Gaussovo) rozdělení
Normální (Gaussovo) rozdělení Normální (Gaussovo) rozdělení popisuje vlastnosti náhodné spojité veličiny, která vzniká složením různých náhodných vlivů, které jsou navzájem nezávislé, kterých je velký
Statistická analýza dat
Statistická analýza dat Jméno: Podpis: Cvičení Zkouška (písemná + ústní) 25 Celkem 50 Známka Pokyny k vypracování: doba řešení je 120min, jasně zodpovězte pokud možno všechny otázky ze zadání, pracujte
Příklady na testy hypotéz o parametrech normálního rozdělení
Příklady na testy hypotéz o parametrech normálního rozdělení. O životnosti 75W žárovky (v hodinách) je známo, že má normální rozdělení s = 5h. Pro náhodný výběr 0 žárovek byla stanovena průměrná životnost
You created this PDF from an application that is not licensed to print to novapdf printer (http://www.novapdf.com)
Závislost náhodných veličin Úvod Předchozí přednášky: - statistické charakteristiky jednoho výběrového nebo základního souboru - vztahy mezi výběrovým a základním souborem - vztahy statistických charakteristik
Fakulta chemicko-technologická Katedra analytické chemie. 3.2 Metody s latentními proměnnými a klasifikační metody
Fakulta chemicko-technologická Katedra analytické chemie 3.2 Metody s latentními proměnnými a klasifikační metody Vypracoval: Ing. Tomáš Nekola Studium: licenční Datum: 21. 1. 2008 Otázka 1. Vypočtěte
Dobývání znalostí. Doc. RNDr. Iveta Mrázová, CSc. Katedra teoretické informatiky Matematicko-fyzikální fakulta Univerzity Karlovy v Praze
Dobývání znalostí Doc. RNDr. Iveta Mrázová, CSc. Katedra teoretické informatiky Matematicko-fyzikální fakulta Univerzity Karlovy v Praze Dobývání znalostí Pravděpodobnost a učení Doc. RNDr. Iveta Mrázová,
Bayesovské metody. Mnohorozměrná analýza dat
Mnohorozměrná analýza dat Podmíněná pravděpodobnost Definice: Uvažujme náhodné jevy A a B takové, že P(B) > 0. Podmíněnou pravěpodobností jevu A za podmínky, že nastal jev B, nazýváme podíl P(A B) P(A
Matematika III. 4. října Vysoká škola báňská - Technická univerzita Ostrava. Matematika III
Vysoká škola báňská - Technická univerzita Ostrava 4. října 2018 Podmíněná pravděpodobnost Při počítání pravděpodobnosti můžeme k náhodnému pokusu přidat i nějakou dodatečnou podmínku. Podmíněná pravděpodobnost
Základy teorie pravděpodobnosti
Základy teorie pravděpodobnosti Náhodná veličina Roman Biskup (zapálený) statistik ve výslužbě, aktuálně analytik v praxi ;-) roman.biskup(at)email.cz 12. února 2012 Statistika by Birom Základy teorie
Odhad stavu matematického modelu křižovatek
Odhad stavu matematického modelu křižovatek Miroslav Šimandl, Miroslav Flídr a Jindřich Duník Katedra kybernetiky & Výzkumné centrum Data-Algoritmy-Rozhodování Fakulta aplikovaných věd Západočeská univerzita
5 Vícerozměrná data - kontingenční tabulky, testy nezávislosti, regresní analýza
5 Vícerozměrná data - kontingenční tabulky, testy nezávislosti, regresní analýza 5.1 Vícerozměrná data a vícerozměrná rozdělení Při zpracování vícerozměrných dat se hledají souvislosti mezi dvěma, případně
prof. RNDr. Roman Kotecký DrSc., Dr. Rudolf Blažek, PhD Pravděpodobnost a statistika Katedra teoretické informatiky Fakulta informačních technologií
prof. RNDr. Roman Kotecký DrSc., Dr. Rudolf Blažek, PhD Katedra teoretické informatiky Fakulta informačních technologií České vysoké učení technické v Praze c Rudolf Blažek, Roman Kotecký, 2011 Pravděpodobnost
Náhodná proměnná. Náhodná proměnná může mít rozdělení diskrétní (x 1. , x 2. ; x 2. spojité (<x 1
Náhodná proměnná Náhodná proměnná může mít rozdělení diskrétní (x 1, x 2,,x n ) spojité () Poznámky: 1. Fyzikální veličiny jsou zpravidla spojité, ale změřené hodnoty jsou diskrétní. 2. Pokud
Odhad - Problémy se sdruženým rozdělením pravděpodobnosti
Odhad - Problémy se sdruženým rozdělením pravděpodobnosti 20. listopadu 203 V minulém materiálu jsme si ukázali, jak získat sdružené rozdělení pravděpodobnosti. Bylo to celkem jednoduché: Věrohodnostní
ANALÝZA A KLASIFIKACE DAT
ANALÝZA A KLASIFIKACE DAT prof. Ing. Jiří Holčík, CSc. INVESTICE Institut DO biostatistiky ROZVOJE VZDĚLÁVÁNÍ a analýz IV. LINEÁRNÍ KLASIFIKACE PRINCIPY KLASIFIKACE pomocí diskriminačních funkcí funkcí,
Motivace. Náhodný pokus, náhodný n jev. Pravděpodobnostn. podobnostní charakteristiky diagnostických testů, Bayesův vzorec
Pravděpodobnostn podobnostní charakteristiky diagnostických testů, Bayesův vzorec Prof.RND.Jana Zvárov rová,, DrSc. Motivace V medicíně má mnoho problémů pravěpodobnostní charakter prognóza diagnoza účinnost
UČENÍ BEZ UČITELE. Václav Hlaváč
UČENÍ BEZ UČITELE Václav Hlaváč Fakulta elektrotechnická ČVUT v Praze katedra kybernetiky, Centrum strojového vnímání hlavac@fel.cvut.cz, http://cmp.felk.cvut.cz/~hlavac 1/22 OBSAH PŘEDNÁŠKY ÚVOD Učení
15. T e s t o v á n í h y p o t é z
15. T e s t o v á n í h y p o t é z Na základě hodnot náhodného výběru činíme rozhodnutí o platnosti hypotézy o hodnotách parametrů rozdělení nebo o jeho vlastnostech. Rozeznáváme dva základní typy testů:
9. T r a n s f o r m a c e n á h o d n é v e l i č i n y
9. T r a n s f o r m a c e n á h o d n é v e l i č i n Při popisu procesů zpracováváme vstupní údaj, hodnotu x tak, že výstupní hodnota závisí nějakým způsobem na vstupní, je její funkcí = f(x). Pokud
SRE 03 - Statistické rozpoznávání
SRE 03 - Statistické rozpoznávání vzorů II Lukáš Burget ÚPGM FIT VUT Brno, burget@fit.vutbr.cz FIT VUT Brno SRE 03 - Statistické rozpoznávání vzorů II Lukáš Burget, ÚPGM FIT VUT Brno, 2006/07 1/29 Opakování
VLIV STATISTICKÉ ZÁVISLOSTI NÁHODNÝCH VELIČIN NA SPOLEHLIVOST KONSTRUKCE
IV. ročník celostátní konference SPOLEHLIVOST KONSTRUKCÍ Téma: Posudek - poruchy - havárie 25 23.až 24.4.2003 Dům techniky Ostrava ISBN 80-02-055-7 VLIV STATISTICKÉ ZÁVISLOSTI NÁHODNÝCH VELIČIN NA SPOLEHLIVOST
Vytyčení polohy bodu polární metodou
Obsah Vytyčení polohy bodu polární metodou... 2 1 Vliv měření na přesnost souřadnic... 3 2 Vliv měření na polohovou a souřadnicovou směrodatnou odchylku... 4 3 Vliv podkladu na přesnost souřadnic... 5
VYUŽITÍ PRAVDĚPODOBNOSTNÍ METODY MONTE CARLO V SOUDNÍM INŽENÝRSTVÍ
VYUŽITÍ PRAVDĚPODOBNOSTNÍ METODY MONTE CARLO V SOUDNÍM INŽENÝRSTVÍ Michal Kořenář 1 Abstrakt Rozvoj výpočetní techniky v poslední době umožnil také rozvoj výpočetních metod, které nejsou založeny na bázi
Testování hypotéz testy o tvaru rozdělení. Jiří Neubauer. Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel
Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Statistickou hypotézou se rozumí určité tvrzení o parametrech rozdělení zkoumané náhodné veličiny (µ, σ 2, π,
MĚŘENÍ STATISTICKÝCH ZÁVISLOSTÍ
MĚŘENÍ STATISTICKÝCH ZÁVISLOSTÍ v praxi u jednoho prvku souboru se často zkoumá více veličin, které mohou na sobě různě záviset jednorozměrný výběrový soubor VSS X vícerozměrným výběrovým souborem VSS
I. D i s k r é t n í r o z d ě l e n í
6. T y p y r o z d ě l e n í Poznámka: V odst. 5.5-5.10 jsme uvedli příklady náhodných veličin a jejich distribučních funkcí. Poznali jsme, že se od sebe liší svým typem. V příkladech 5.5, 5.6 a 5.8 jsme
Usuzování za neurčitosti
Usuzování za neurčitosti 25.11.2014 8-1 Usuzování za neurčitosti Hypotetické usuzování a zpětná indukce Míry postačitelnosti a nezbytnosti Kombinace důkazů Šíření pravděpodobnosti v inferenčních sítích
Náhodné chyby přímých měření
Náhodné chyby přímých měření Hodnoty náhodných chyb se nedají stanovit předem, ale na základě počtu pravděpodobnosti lze zjistit, která z možných naměřených hodnot je více a která je méně pravděpodobná.
Statistika a spolehlivost v lékařství Charakteristiky spolehlivosti prvků I
Statistika a spolehlivost v lékařství Charakteristiky spolehlivosti prvků I Příklad Tahová síla papíru používaného pro výrobu potravinových sáčků je důležitá charakteristika kvality. Je známo, že síla
p(x) = P (X = x), x R,
6. T y p y r o z d ě l e n í Poznámka: V odst. 5.5-5.10 jsme uvedli příklady náhodných veličin a jejich distribučních funkcí. Poznali jsme, že se od sebe liší svým typem. V příkladech 5.5, 5.6 a 5.8 jsme
Value at Risk. Karolína Maňáková
Value at Risk Karolína Maňáková Value at risk Historická metoda Model-Building přístup Lineární model variance a kovariance Metoda Monte Carlo Stress testing a Back testing Potenciální ztráta s danou pravděpodobností
Dobývání znalostí. Doc. RNDr. Iveta Mrázová, CSc. Katedra teoretické informatiky Matematicko-fyzikální fakulta Univerzity Karlovy v Praze
Dobývání znalostí Doc. RNDr. Iveta Mrázová, CSc. Katedra teoretické informatiky Matematicko-fyzikální fakulta Univerzity Karlovy v Praze Dobývání znalostí Bayesovské modely Doc. RNDr. Iveta Mrázová, CSc.
Vlastnosti a modelování aditivního
Vlastnosti a modelování aditivního bílého šumu s normálním rozdělením kacmarp@fel.cvut.cz verze: 0090913 1 Bílý šum s normálním rozdělením V této kapitole se budeme zabývat reálným gaussovským šumem n(t),
Klasifikace podzemních vod diskriminační analýzou
Klasifikace podzemních vod diskriminační analýzou Prof. RNDr. Milan Meloun, DrSc., Katedra analytické chemie, Univerzita Pardubice, 532 10 Pardubice, milan.meloun@upce.cz, a Jindřich Freisleben Český hydrometeorologický
Statistika II. Jiří Neubauer
Statistika II Katedra ekonometrie FVL UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Zaměříme se především na popis dvourozměrných náhodných veličin (vektorů). Definice Nechť X a Y jsou
Státnice odborné č. 20
Státnice odborné č. 20 Shlukování dat Shlukování dat. Metoda k-středů, hierarchické (aglomerativní) shlukování, Kohonenova mapa SOM Shlukování dat Shluková analýza je snaha o seskupení objektů do skupin
Normální (Gaussovo) rozdělení
Normální (Gaussovo) rozdělení f x = 1 2 exp x 2 2 2 f(x) je funkce hustoty pravděpodobnosti, symetrická vůči poloze maxima x = μ μ střední hodnota σ směrodatná odchylka (tzv. pološířka křivky mezi inflexními
Simulace. Simulace dat. Parametry
Simulace Simulace dat Menu: QCExpert Simulace Simulace dat Tento modul je určen pro generování pseudonáhodných dat s danými statistickými vlastnostmi. Nabízí čtyři typy rozdělení: normální, logaritmicko-normální,
Mnohorozměrná statistická data
Mnohorozměrná statistická data Ekonometrie Jiří Neubauer Katedra ekonometrie FVL UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Jiří Neubauer (Katedra ekonometrie UO Brno) Mnohorozměrná
Statistická analýza jednorozměrných dat
Statistická analýza jednorozměrných dat Prof. RNDr. Milan Meloun, DrSc. Univerzita Pardubice, Pardubice 31.ledna 2011 Tato prezentace je spolufinancována Evropským sociálním fondem a státním rozpočtem
PRAVDĚPODOBNOST A STATISTIKA
PRAVDĚPODOBNOST A STATISTIKA Náhodný výběr Nechť X je náhodná proměnná, která má distribuční funkci F(x, ϑ). Předpokládejme, že známe tvar distribuční funkce (víme jaké má rozdělení) a neznáme parametr
KGG/STG Statistika pro geografy
KGG/STG Statistika pro geografy 9. Korelační analýza Mgr. David Fiedor 20. dubna 2015 Analýza závislostí v řadě geografických disciplín studujeme jevy, u kterých vyšetřujeme nikoliv pouze jednu vlastnost
Univerzita Pardubice 8. licenční studium chemometrie
Univerzita Pardubice 8. licenční studium chemometrie Statistické zpracování dat při managementu jakosti Semestrální práce Metody s latentními proměnnými a klasifikační metody Ing. Jan Balcárek, Ph.D. vedoucí
Testování hypotéz. 1 Jednovýběrové testy. 90/2 odhad času
Testování hypotéz 1 Jednovýběrové testy 90/ odhad času V podmínkách naprostého odloučení má voák prokázat schopnost orientace v čase. Úkolem voáka e provést odhad časového intervalu 1 hodiny bez hodinek
3 Bodové odhady a jejich vlastnosti
3 Bodové odhady a jejich vlastnosti 3.1 Statistika (Skripta str. 77) Výběr pořizujeme proto, abychom se (více) dověděli o souboru, ze kterého jsme výběr pořídili. Zde se soustředíme na situaci, kdy známe
Náhodná veličina a rozdělení pravděpodobnosti
3.2 Náhodná veličina a rozdělení pravděpodobnosti Bůh hraje se světem hru v kostky. Jsou to ale falešné kostky. Naším hlavním úkolem je zjistit, podle jakých pravidel byly označeny, a pak toho využít pro
Charakterizace rozdělení
Charakterizace rozdělení Momenty f(x) f(x) f(x) μ >μ 1 σ 1 σ >σ 1 g 1 g σ μ 1 μ x μ x x N K MK = x f( x) dx 1 M K = x N CK = ( x M ) f( x) dx ( xi M 1 C = 1 K 1) N i= 1 K i K N i= 1 K μ = E ( X ) = xf
Fyzikální korespondenční seminář MFF UK
Úloha I.S... náhodná 10 bodů; průměr 7,04; řešilo 45 studentů a) Zkuste vlastními slovy popsat, co je to náhodná veličina a jaké má vlastnosti (postačí vlastními slovy objasnit následující pojmy: náhodná
1. Náhodný vektor (X, Y ) má diskrétní rozdělení s pravděpodobnostní funkcí p, kde. p(x, y) = a(x + y + 1), x, y {0, 1, 2}.
VIII. Náhodný vektor. Náhodný vektor (X, Y má diskrétní rozdělení s pravděpodobnostní funkcí p, kde p(x, y a(x + y +, x, y {,, }. a Určete číslo a a napište tabulku pravděpodobnostní funkce p. Řešení:
Všechno, co jste chtěli vědět z teorie pravděpodobnosti, z teorie informace a
Všechno, co jste chtěli vědět z teorie pravděpodobnosti, z teorie informace a báli jste se zeptat Jedinečnou funkcí statistiky je, že umožňuje vědci číselně vyjádřit nejistotu v jeho závěrech. (G. W. Snedecor)
1. Přednáška. Ing. Miroslav Šulai, MBA
N_OFI_2 1. Přednáška Počet pravděpodobnosti Statistický aparát používaný ve financích Ing. Miroslav Šulai, MBA 1 Počet pravděpodobnosti -náhodné veličiny 2 Počet pravděpodobnosti -náhodné veličiny 3 Jevy