STATISTIKA 1. Adam Čabla Katedra statistiky a pravděpodobnosti VŠE
|
|
- Milena Pospíšilová
- před 8 lety
- Počet zobrazení:
Transkript
1 STATISTIKA 1 Adam Čabla Katedra statistiky a pravděpodobnosti VŠE
2 KONTAKTY WWW: sites.google.com/site/adamcabla Telefon: NB367 na VŠE, konzultační hodiny: Pondělí 13:25 14:25 Čtvrtek 9:05 10:05 Možnost dohody
3 NÁPLŇ KURZU STATISTIKA 1 Základní pojmy Četnosti Tabulky a grafy Míry polohy Míry variability Indexní analýza
4 ZKOUŠKA Písemná forma 1 test za 100 bodů 60 bodů příklady 20 bodů teoretické otázky typu a,b,c,d (5x4) 20 bodů tvrzení ano x ne (5x4) Literatura: Hindls, Hronová Statistika pro ekonomy
5 STATISTIKA Statistics is the study of the collection, organization, analysis, and interpretation of data. It deals with all aspects of this, including the planning of data collection in terms of the design of surveys and experiments. [wiki] Popisná statistika je základem poznání dat shrnuje zjištěné poznatky, popisuje nasbíraná data.
6 STATISTICKÁ JEDNOTKA Prvek, jehož vlastnosti zkoumáme Př.: lidé, podniky, státy, psi, studenti.. Statistika se obvykle zabývá souhrnným zkoumáním vlastností vícero statistických jednotek.
7 STATISTICKÝ ZNAK Vlastnost, kterou zkoumáme Př.: národnost, zisk, HDP, rasa, spotřeba alkoholu.. Statistické znaky mají různé vlastnosti, podle kterých se dělí. Nazývá se též statistickou proměnnou
8 KVALITATIVNÍ STATISTICKÉ ZNAKY Kvalitativní je takový znak (vlastnost), kterou lze vyjádřit slovně Nominální: takové vlastnosti, které jsou u prvků buď stejné nebo odlišné (př.: národnost) Ordinální: takové vlastnosti, které můžeme seřadit logicky vzestupně či sestupně (př.: pořadí, známka(!))
9 KVANTITATIVNÍ STATISTICKÉ ZNAKY Kvantitativní je takový znak, který lze vyjádřit číselně. Spojité jsou takové znaky, které můžou nabýt teoreticky libovolnou číselnou hodnotu (Př.: teplota) Diskrétní jsou takové znaky, které můžou nabýt pouze omezené (byť nekonečné) množství hodnot (Př.: počet dětí)
10 STATISTICKÝ SOUBOR Statistický soubor je souhrnem statistických jednotek Základní soubor je souborem všech jednotek, o kterých chceme činit závěry (Př.: obyvatelstvo ČR) Výběrový soubor je vybranou částí základního souboru, kterou většinou prakticky zkoumáme (Př.: vybraní respondenti průzkumu)
11 ŠETŘENÍ Úplné šetření je zkoumáním celého základního souboru (Př.: SLDB) Výběrové šetření je zkoumáním části základního souboru tzv. výběrového souboru (Př.: průzkum veřejného mínění) Vždy je dobré si uvědomit, co přesně je základním souborem (např. chci zkoumat životní podmínky důchodců, tak nebudu chodit s dotazníkem po středních školách)
12 STATISTICKÉ TABULKY Výsledky výzkumu se obvykle shrnují do statistický tabulek, ve kterých je úzus: Ve sloupcích psát statistické znaky V řádcích psát statistické jednotky V průsečíku řádku a sloupce psát hodnotu daného znaku u dané jednotky
13 domac STATISTICKÁ osob vek_p TABULKA vek_m pohl_p PŘ.: vzd_p vzd_m prac_prij soc_prij cp_prij , , , , , , , , , , , , , , ,
14 ČETNOST Má smysl u všech proměnných s výjimkou spojitých Absolutní četnost je počet výskytů varianty sledovaného znaku Relativní četnost je podíl zastoupení varianty sledovaného znaku
15 ČETNOST - ZNAČENÍ Varianty značíme obvykle x i pro i = 1, 2,, k Máme tedy k variant daného znaku Absolutní četnosti značíme obvykle n i Součet všech četností všech znaků je n, což je zároveň počet zkoumaných jednotek Relativní četnosti značíme obvykle p i Relativní četnost je podíl absolutní četnosti a počtu zkoumaných jednotek Součet všech relativních četnosti se rovná 1.
16 TABULKA ČETNOSTÍ Tabulka četností je shrnutím četnosti zastoupení variant daného znaku. Jedná se o shrnutí poznatku o zastoupení jednotlivých variant. i n i p i 1 n 1 p 1 2 n 2 p 2 k-1 n k-1 p k-1 k n k p k Součet n 1
17 PŘÍKLAD Domácnost Počet členů A 2 B 3 C 1 D 2 E 2 F 3 G 5 H 3 I 2 J 1 K 2 L 3 Vytvořte tabulku absolutních a relativních četností
18 PŘÍKLAD - VÝSLEDEK Počet členů n i p i 1 2 0, , , ,08 Součet 12 1
19 KUMULATIVNÍ ČETNOSTI Kumulativní četnosti jsou četnosti daného znaku, které nabyly hodnoty menší nebo rovné té variantě znaku, pro kterou se počítá Kumulativní četnosti jsou absolutní i relativní Kumulativní četnosti (logicky) lze počítat pouze tam, kde lze varianty seřadit podle velikosti
20 KUMULATIVNÍ ČETNOSTI i n i Kumulativní n i 1 n 1 n 1 2 n 2 n 1 + n 2.. k n k n 1 + n n k = n Příklad: z výsledku předchozího příkladu zjistěte kumulativní četnosti absolutní i relativní
21 PŘÍKLAD - VÝSLEDEK Počet členů n i Kumul n i p i kumul p i ,17 0, ,42 0, ,33 0, ,08 1 Součet 12 xxx 1 xxx
22 INTERVALOVÉ ROZDĚLENÍ ČETNOSTÍ Používá se u spojitých znaků nebo u diskrétních znaků, které nabývají příliš mnoha obměn (např. platy) Hodnoty znaku rozdělíme do počtu k intervalů o ideálně jednotné délce takové, aby pokryly všechny hodnoty
23 POČET INTERVALŮ Neexistuje jednotné pravidlo na vytvoření počtu a délky intervalů. Nemělo by jich být málo, ale v jednotlivých intervalech by mělo být dost pozorování. Existují ovšem některá návodná pravidla, z nich zde budeme používat Sturgessovo: Pro daný počet intervalů se pak vytvoří vhodná délka tak, aby byla jednotná a obsáhla všechny varianty znaku. V případě extrému můžou být krajní intervaly jiné (obvykle delší typu do plus nekonečna )
24 PŘÍKLAD Domácnost Příjem A B C D E F G H I J Vytvořte tabulku intervalových četností absolutních i relativních včetně kumulativních
25 PŘÍKLAD ŘEŠENÍ 1 Počet intervalů: k = 1+3,3 * log 10 = 4,3; tedy 4 Min = 7 853, Max = ; Rozdíl = Délka intervalu: /4 = 8 523; zaokrouhleno nahoru (!) Intervaly n i kumul. n i p i kumul. p i < ) 4 4 0,4 0,4 < ) 2 6 0,2 0,6 < ) 3 9 0,3 0,9 < ) ,1 1
26 PŘÍKLAD Pro statistické znaky Počet členů a Automobil vytvořte tabulku rozdělení absolutních a relativních četností. Pokud to dává smysl, vytvořte i sloupec kumulativních četností. Pro statistický znak Měsíční příjem vytvořte tabulku intervalových četností Č Počet členů Měsíční příjem Automobil n a a a a a a a n n
27 PŘÍKLAD - VÝSLEDEK Automobil n i p i ano 7 0,7 ne 3 0,3 Počet členů n i kumul. n i p i kumul. p i ,1 0, ,2 0, ,3 0, ,2 0, ,2 1 Celkem 10 xxx 10 xxx
28 PŘÍKLAD - VÝSLEDEK Intervaly n i kumul. n i p i kumul. p i < ) 4 4 0,4 0,4 < ) 3 7 0,3 0,7 < ) 2 9 0,2 0,9 < ) ,1 1
29 GRAFY Grafy v popisné statistice jsou shrnutím informací z tabulek četností v (ideálně) přehledné formě. Základní typy grafů: Sloupcový graf Polygon četností Histogram četností Výsečový graf
30 SLOUPCOVÝ GRAF Ve sloupcovém grafu znázorňuje každý sloupec variantu daného znaku a jeho výška četnost výskytu. Stupnice může být absolutní i relativní 3,5 3 2,5 2 1,5 1 0,5 0 Porsche Škoda Trabant Ferrari Řada 1
31 POLYGON ČETNOSTÍ Polygon četností spojuje body v grafu, kde výška bodu určuje četnost zastoupení varianty a vzdálenost od nuly číselnou hodnotu znaku. Použitelné pouze pro kvantitativní znaky. 3,5 3 2,5 2 1,5 1 0, Řada 1
32 HISTOGRAM ČETNOSTÍ Obdoba sloupcového grafu užívána pro intervalové rozdělení četností. Sloupce na sebe naléhají, což naznačuje spojitost intervalů. 3,5 3 2,5 2 1,5 1 0,5 0 Řada 1
33 VÝSEČOVÝ GRAF Prodej 1. čtvrt. 2. čtvrt. 3. čtvrt. 4. čtvrt. 10% 9% 23% 58%
34 PŘÍKLAD U předchozího příkladu nakreslete vhodné grafy
35 VÝSLEDKY 3,5 3 2,5 2 1,5 Řada 1 1 0,
36 VÝSLEDKY Automobil ne 30% ano 70%
37 VÝSLEDKY 4,5 4 3,5 3 2,5 2 1,5 1 0,5 0 Řada 1
38 MÍRY POLOHY Míra polohy je pokusem shrnout údaje o zkoumaném znaku do jednoho čísla Míra polohy má určit úroveň, typickou hodnotu daného znaku Existují v zásadě tří míry polohy: Průměry Modus Medián
39 PRŮMĚRY Průměr je míra polohy počítaná zahrnutím všech hodnot daného znaku. Pro smysluplný výpočet průměru je tedy nutné, aby znak byl kvantitativní. Průměry užíváme: Aritmetický Harmonický Geometrický
40 ARITMETICKÝ PRŮMĚR Aritmetický průměr se získá vydělením součtu všech hodnot daného znaku počtem těchto hodnot. Tzv. vážený tvar se používá pro výpočet z četnostních tabulek. Jedná se pouze o jiný zápis téhož (viz. následující příklad). Vážený tvar v horním součtu násobí četnost varianty její hodnotou (znak je kvantitativní(!)).
41 VLASTNOSTI ARITMETICKÉHO PRŮMĚRU Součet jednotlivých odchylek od průměru je nulový Aritmetický průměr konstanty je roven konstantě Přičteme-li k jednotlivým hodnotám konstantu, průměr se zvýší o tuto konstantu Vynásobíme-li jednotlivé hodnoty konstantou, průměr se znásobí touto konstantou
42 PŘÍKLAD Z následujících čísel spočítejte průměr: 3, 5, 6, 3, 3, 3, 5, 3, 5, 6, 2, 4 Tato čísla zapište do tabulky absolutních četností a s její pomocí vypočtěte aritmetický průměr váženým tvarem.
43 VÝSLEDEK Průměr = 48/12 = 4 x i n i x i *n i Součet Průměr = 48/12 = 4
44 HARMONICKÝ PRŮMĚR Používá se k průměrování v případě, kdy je znakem poměrné číslo (např. km/hod, obyv/km 2 ) a váhou (četností) je jednotka v čitateli. Př.: jaká je průměrná rychlost, jestliže na dané dráze byly změřeny dané průměrné rychlosti.
45 PŘÍKLAD Následující tabulka udává hustoty obyvatel a počty obyvatel zemí Visegrádské čtyřky. Určete průměrnou hustotu obyvatel celku. Země Hustota obyvatel na km 2 Počet obyvatel ČR SR Polsko Maďarsko
46 VÝSLEDEK x i n i n i /x i , , , ,59 Součet Průměr: / = 119,94
47 GEOMETRICKÝ PRŮMĚR Používá se k průměrování hodnot indexů bude součástí indexní analýzy
48 MODUS Modus je nejčastější varianta sledovaného znaku Lze ho použít pro popis míry polohy všech typů znaků Modální interval je interval s největší četností zastoupení Příklad: Jaký byl modus v příkladě na aritmetický průměr?
49 MEDIÁN Výsledek příkladu: 3 Medián je prostřední hodnota souboru seřazeného podle hodnot sledovaného znaku Má-li soubor sudý počet jednotek, je medián průměrem dvou prostředních hodnot Medián je tzv. 50% kvantil. Příklad: určete medián v příkladě na aritmetický průměr a modus
50 KVANTILY Výsledek: 3,5 (6. hodnota je 3 a 7. hodnota je 4) Kvantil je hodnota, která rozděluje soubor hodnot určitého znaku seřazených dle velikosti na dvě části tu, kde jsou hodnoty menší nebo stejné, a tu, kde jsou větší. Kolik procent hodnot je pod hodnotou kvantilu určuje kolikaprocentní daný kvantil je 50% kvantil znamená, že právě polovina hodnot je pod hodnotou kvantilu Další užívané kvantily: 25% a 75% (dolní a horní kvartil), 10% a 90% (dolní a horní decil) 1% a 99% (dolní a horní percentil)
51 URČENÍ KVANTILU U mála hodnot stačí jednoduše hodnoty seřadit a vybrat z nich tu nejnižší, která splňuje podmínku daného kvantilu (% hodnot nižších nebo rovných než kvantil) U více hodnot se kvantil určí z tabulky kumulovaných relativních četností tam kde kumulovaná relativní četnost vyrovná překročí požadované procento. Je-li kumulovaná četnost rovna % kvantilu, leží ten mezi danou hodnotou a hodnotou další x i n i p i kumul p i 2 1 0,08 0, ,42 0, ,08 0, ,25 0, ,17 1
Statistika pro geografy
Statistika pro geografy 2. Popisná statistika Mgr. David Fiedor 23. února 2015 Osnova 1 2 3 Pojmy - Bodové rozdělení četností Absolutní četnost Absolutní četností hodnoty x j znaku x rozumíme počet statistických
Popisná statistika. Statistika pro sociology
Popisná statistika Jitka Kühnová Statistika pro sociology 24. září 2014 Jitka Kühnová (GSTAT) Popisná statistika 24. září 2014 1 / 31 Outline 1 Základní pojmy 2 Typy statistických dat 3 Výběrové charakteristiky
Matematika III. 27. listopadu Vysoká škola báňská - Technická univerzita Ostrava. Matematika III
Vysoká škola báňská - Technická univerzita Ostrava 27. listopadu 2017 Typy statistických znaků (proměnných) Typy proměnných: Kvalitativní proměnná (kategoriální, slovní,... ) Kvantitativní proměnná (numerická,
Statistika, Biostatistika pro kombinované studium Letní semestr 2011/2012. Tutoriál č. 4: Exploratorní analýza. Jan Kracík
Statistika, Biostatistika pro kombinované studium Letní semestr 2011/2012 Tutoriál č. 4: Exploratorní analýza Jan Kracík jan.kracik@vsb.cz Statistika věda o získávání znalostí z empirických dat empirická
Statistika I (KMI/PSTAT)
Statistika I (KMI/PSTAT) Cvičení druhé aneb Kvantily, distribuční funkce Statistika I (KMI/PSTAT) 1 / 1 Co se dnes naučíme Po absolvování této hodiny byste měli být schopni: rozumět pojmu modus (modální
Základy popisné statistiky
Základy popisné statistiky Michal Fusek Ústav matematiky FEKT VUT, fusekmi@feec.vutbr.cz 8. přednáška z ESMAT Michal Fusek (fusekmi@feec.vutbr.cz) 1 / 26 Obsah 1 Základy statistického zpracování dat 2
Zpracování náhodného výběru. Ing. Michal Dorda, Ph.D.
Zpracování náhodného výběru popisná statistika Ing. Michal Dorda, Ph.D. Základní pojmy Úkolem statistiky je na základě vlastností výběrového souboru usuzovat o vlastnostech celé populace. Populace(základní
Číselné charakteristiky a jejich výpočet
Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz charakteristiky polohy charakteristiky variability charakteristiky koncetrace charakteristiky polohy charakteristiky
23. Matematická statistika
Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/03.0009 23. Matematická statistika Statistika je věda, která se snaží zkoumat reálná data a s pomocí teorii pravděpodobnosti
veličin, deskriptivní statistika Ing. Michael Rost, Ph.D.
Vybraná rozdělení spojitých náhodných veličin, deskriptivní statistika Ing. Michael Rost, Ph.D. Třídění Základním zpracováním dat je jejich třídění. Jde o uspořádání získaných dat, kde volba třídícího
Tomáš Karel LS 2012/2013
Tomáš Karel LS 2012/2013 Doplňkový materiál ke cvičení ze 4ST201. Na případné faktické chyby v této prezentaci mě prosím upozorněte. Děkuji Tyto slidy berte pouze jako doplňkový materiál není v nich obsaženo
Základy popisné statistiky. Vytvořil Institut biostatistiky a analýz, Masarykova univerzita J. Jarkovský, L. Dušek
Základy popisné statistiky Anotace Realitu můžeme popisovat různými typy dat, každý z nich se specifickými vlastnostmi, výhodami, nevýhodami a vlastní sadou využitelných statistických metod -od binárních
Popisná statistika. Jaroslav MAREK. Univerzita Palackého
Popisná statistika Jaroslav MAREK Univerzita Palackého Přírodovědecká fakulta Katedra matematické analýzy a aplikací matematiky Tomkova 40, 779 00 Olomouc Hejčín tel. 585634606 marek@inf.upol.cz pondělí
Renáta Bednárová STATISTIKA PRO EKONOMY
Renáta Bednárová STATISTIKA PRO EKONOMY ZÁKLADNÍ STATISTICKÉ POJMY Statistika Statistický soubor Statistická jednotky Statistický znak STATISTIKA Vědní obor, který se zabývá hromadnými jevy Hromadné jevy
MATEMATICKÁ STATISTIKA. Katedra matematiky a didaktiky matematiky Technická univerzita v Liberci
MATEMATICKÁ STATISTIKA Dana Černá http://www.fp.tul.cz/kmd/ Katedra matematiky a didaktiky matematiky Technická univerzita v Liberci Matematická statistika Matematická statistika se zabývá matematickým
1. cvičení 4ST201. Základní informace: Vyučující: Obsah: Informace o kurzu Popisná statistika Úvod do SASu
cvičící 1. cvičení 4ST201 Informace o kurzu Popisná statistika Úvod do SASu Obsah: Vysoká škola ekonomická 1 Vyučující: Základní informace:» Konzultační hodiny: pátek 9:00 11:00» Místnost: JM317» Email:
Mnohorozměrná statistická data
Mnohorozměrná statistická data Ekonometrie Jiří Neubauer Katedra ekonometrie FVL UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Jiří Neubauer (Katedra ekonometrie UO Brno) Mnohorozměrná
Statistika. Diskrétní data. Spojitá data. Charakteristiky polohy. Charakteristiky variability
I Přednáška Statistika Diskrétní data Spojitá data Charakteristiky polohy Charakteristiky variability Statistika deskriptivní statistika ˆ induktivní statistika populace (základní soubor) ˆ výběr parametry
Náhodná proměnná. Náhodná proměnná může mít rozdělení diskrétní (x 1. , x 2. ; x 2. spojité (<x 1
Náhodná proměnná Náhodná proměnná může mít rozdělení diskrétní (x 1, x 2,,x n ) spojité () Poznámky: 1. Fyzikální veličiny jsou zpravidla spojité, ale změřené hodnoty jsou diskrétní. 2. Pokud
Třídění statistických dat
2.1 Třídění statistických dat Všechny muže ve městě rozdělíme na 2 skupiny: A) muži, kteří chodí k holiči B) muži, kteří se holí sami Do které skupiny zařadíme holiče? prof. Raymond M. Smullyan, Dr. Math.
3. Základní statistické charakteristiky. KGG/STG Zimní semestr Základní statistické charakteristiky 1
3. charakteristiky charakteristiky 1 charakteristiky slouží pro vzájemné porovnávání statistických souborů charakteristiky = čísla, pomocí kterých porovnáváme charakteristiky 2 charakteristiky Dva hlavní
Popisná statistika kvantitativní veličiny
StatSoft Popisná statistika kvantitativní veličiny Protože nám surová data obvykle žádnou smysluplnou informaci neposkytnou, je žádoucí vyjádřit tyto ve zhuštěnější formě. V předchozím dílu jsme začali
Číselné charakteristiky
. Číselné charakteristiky statistických dat Průměrný statistik se během svého života ožení s 1,75 ženami, které se ho snaží vytáhnout večer do společnosti,5 x týdně, ale pouze s 50% úspěchem. W. F. Miksch
Úloha č. 2 - Kvantil a typická hodnota. (bodově tříděná data): (intervalově tříděná data): Zadání úlohy: Zadání úlohy:
Úloha č. 1 - Kvantily a typická hodnota (bodově tříděná data): Určete typickou hodnotu, 40% a 80% kvantil. Tabulka hodnot: Varianta Četnost 0 4 1 14 2 17 3 37 4 20 5 14 6 7 7 11 8 20 Typická hodnota je
Mnohorozměrná statistická data
Statistika II Katedra ekonometrie FVL UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Statistický znak, statistický soubor Jednotlivé objekty nebo subjekty, které jsou při statistickém
Statistika. cílem je zjednodušit nějaká data tak, abychom se v nich lépe vyznali důsledkem je ztráta informací!
Statistika aneb známe tři druhy lži: úmyslná neúmyslná statistika Statistika je metoda, jak vyjádřit nejistá data s přesností na setinu procenta. den..00..00 3..00..00..00..00..00..00..00..00..00..00 3..00..00..00..00..00..00..00
Praktická statistika. Petr Ponížil Eva Kutálková
Praktická statistika Petr Ponížil Eva Kutálková Zápis výsledků měření Předpokládejme, že známe hodnotu napětí U = 238,9 V i její chybu 3,3 V. Hodnotu veličiny zapíšeme na tolik míst, aby až poslední bylo
Výrobní produkce divizí Ice Cream Po lo ha plane t Rozložený výse ový 3D graf Bublinový graf Histogram t s tn e ídy
Výrobní produkce divizí Ice Cream Polo ha planet Rozložený výsečový 3D graf Bublinový graf Ice Cream 1 15% Ice Cream 2 12% Ice Cream 3 18% Ice Cream 4 20% Statistika 40 30 20 Ice Cream 6 19% Ice Cream
Statistika. zpracování statistického souboru
Statistika zpracování statistického souboru statistický soubor zkoumaná skupina znaky zkoumané informace 1 vyjádřen číslem a jednotkou = kvantitativní znak 2 není = kvalitativní znak statistická jednotka
Statistika pro gymnázia
Statistika pro gymnázia Pracovní verze učebního textu ZÁKLADNÍ POJMY Statistika zkoumá jevy (společenské, přírodní, technické) ve velkých statistických souborech. Prvky statistických souborů se nazývají
Metodologie pro ISK II
Metodologie pro ISK II Všechny hodnoty z daného intervalu Zjišťujeme: Centrální míry Variabilitu Šikmost, špičatost Percentily (decily, kvantily ) Zobrazení: histogram MODUS je hodnota, která se v datech
Základní statistické charakteristiky
Základní statistické charakteristiky Základní statistické charakteristiky slouží pro vzájemné porovnávání statistických souborů charakteristiky = čísla, pomocí kterých porovnáváme Základní statistické
Matematika III. 29. října Vysoká škola báňská - Technická univerzita Ostrava. Matematika III
Vysoká škola báňská - Technická univerzita Ostrava 29. října 2018 Statistika Statistika Statistika je jako bikini. Co odhaluje, je zajímavé, co skrývá, je podstatné. Aaron Levenstein Statistika Statistika
Aplikovaná statistika v R
Aplikovaná statistika v R Filip Děchtěrenko Matematicko-fyzikální fakulta filip.dechterenko@gmail.com 15.5.2014 Filip Děchtěrenko (MFF UK) Aplikovaná statistika v R 15.5.2014 1 / 15 Co bude náplní našich
Náhodná veličina a rozdělení pravděpodobnosti
3.2 Náhodná veličina a rozdělení pravděpodobnosti Bůh hraje se světem hru v kostky. Jsou to ale falešné kostky. Naším hlavním úkolem je zjistit, podle jakých pravidel byly označeny, a pak toho využít pro
Základy pravděpodobnosti a statistiky. Popisná statistika
Základy pravděpodobnosti a statistiky Popisná statistika Josef Tvrdík Přírodovědecká fakulta, katedra informatiky josef.tvrdik@osu.cz konzultace v úterý 14.10 až 15.40 hod. Příklad ze života Cimrman, Smoljak/Svěrák,
Metody sociálních výzkumů. Velmi skromný úvod do statistiky. Motto: Jsou tři druhy lži-lež prostá, lež odsouzeníhodná a statistika.
Metody sociálních výzkumů Velmi skromný úvod do statistiky. Motto: Jsou tři druhy lži-lež prostá, lež odsouzeníhodná a statistika. Statistika Význam slova-vychází ze slova stát, s jeho administrativou
Základy statistiky. pracovní list. Základní škola Zaječí, okres Břeclav Školní 402, , příspěvková organizace
Základy statistiky pracovní list Název školy: Číslo projektu: Autor: Základní škola Zaječí, okres Břeclav Školní 402, 691 05, příspěvková organizace CZ.1.07/1.4.00/21.1131 Mgr. Lenka Němetzová Datum vytvoření:
Zápočtová práce STATISTIKA I
Zápočtová práce STATISTIKA I Obsah: - úvodní stránka - charakteristika dat (původ dat, důvod zpracování,...) - výpis naměřených hodnot (v tabulce) - zpracování dat (buď bodové nebo intervalové, podle charakteru
marek.pomp@vsb.cz http://homel.vsb.cz/~pom68
Statistika B (151-0303) Marek Pomp ZS 2014 marek.pomp@vsb.cz http://homel.vsb.cz/~pom68 Cvičení: Pavlína Kuráňová & Marek Pomp Podmínky pro úspěšné ukončení zápočet 45 bodů, min. 23 bodů, dvě zápočtové
TECHNICKÁ UNIVERZITA V LIBERCI SEMESTRÁLNÍ PRÁCE
TECHNICKÁ UNIVERZITA V LIBERCI Ekonomická fakulta Studentská 2 461 17 Liberec 1 SEMESTRÁLNÍ PRÁCE STATISTICKÝ ROZBOR DAT Z DOTAZNÍKOVÝCH ŠETŘENÍ Gabriela Dlasková, Veronika Bukovinská Sára Kroupová, Dagmar
Statistika s Excelem aneb Máme data. A co dál? Martina Litschmannová Katedra aplikované matematiky, FEI, VŠB-TU Ostrava
Statistika s Excelem aneb Máme data. A co dál? Martina Litschmannová Katedra aplikované matematiky, FEI, VŠB-TU Ostrava ŠKOMAM 2016 Jak získat data? Primární zdroje dat Vlastní měření (fyzika, biologie,
ZÁKLADNÍ STATISTICKÉ CHARAKTERISTIKY
zhanel@fsps.muni.cz ZÁKLADNÍ STATISTICKÉ CHARAKTERISTIKY METODY DESKRIPTIVNÍ STATISTIKY 1. URČENÍ TYPU ŠKÁLY (nominální, ordinální, metrické) a) nominální + ordinální neparametrické stat. metody b) metrické
Předmět studia: Ekonomická statistika a analytické metody I, II
Předmět studia: Ekonomická statistika a analytické metody I, II Typ a zařazení předmětu: povinný předmět bakalářského studia, 1. ročník Rozsah předmětu: 2 semestry, celkem 24/0 hodin v kombinované formě
7. Rozdělení pravděpodobnosti ve statistice
7. Rozdělení pravděpodobnosti ve statistice Statistika nuda je, má však cenné údaje, neklesejte na mysli, ona nám to vyčíslí Jednou z úloh statistiky je odhad (výpočet) hodnot statistického znaku x i,
Statistické metody. Martin Schindler KAP, tel , budova G. naposledy upraveno: 9.
Statistické metody Matematika pro přírodní vědy přednášející: konzul. hodiny: e-mail: Martin Schindler KAP, tel. 48 535 2836, budova G po dohodě martin.schindler@tul.cz naposledy upraveno: 9. ledna 2015,
Statistika I (KMI/PSTAT)
Statistika I (KMI/PSTAT) Cvičení první aneb Sumační symbolika, úvod do popisné statistiky Statistika I (KMI/PSTAT) 1 / 15 Obsah hodiny Po dnešní hodině byste měli být schopni: správně používat sumační
Pojem a úkoly statistiky
Katedra ekonometrie FVL UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Pojem a úkoly statistiky Statistika je věda, která se zabývá získáváním, zpracováním a analýzou dat pro potřeby
TEST Z TEORIE EXPLORAČNÍ ANALÝZA DAT
EXPLORAČNÍ ANALÝZA DAT TEST Z TEORIE 1. Test ze Statistiky píše velké množství studentů. Představte si, že každý z nich odpoví správně přesně na polovinu otázek. V tomto případě bude směrodatná odchylka
Písemná práce k modulu Statistika
The Nottingham Trent University B.I.B.S., a. s. Brno BA (Hons) in Business Management Písemná práce k modulu Statistika Číslo zadání: 144 Autor: Zdeněk Fekar Ročník: II., 2005/2006 1 Prohlašuji, že jsem
Úvod do kurzu. Moodle kurz. (a) https://dl1.cuni.cz/course/view.php?id=2022 (b) heslo pro hosty: statistika (c) skripta na pravděpodobnost
Úvod do kurzu Moodle kurz (a) https://dl1.cuni.cz/course/view.php?id=2022 (b) heslo pro hosty: statistika (c) skripta na pravděpodobnost Výpočty online: www.statisticsonweb.tf.czu.cz Začátek výuky posunut
STATISTIKA S EXCELEM. Martina Litschmannová MODAM,
STATISTIKA S EXCELEM Martina Litschmannová MODAM, 8. 4. 216 Obsah Motivace aneb Máme data a co dál? Základní terminologie Analýza kvalitativního znaku rozdělení četnosti, vizualizace Analýza kvantitativního
Analýza dat na PC I.
CENTRUM BIOSTATISTIKY A ANALÝZ Lékařská a Přírodovědecká fakulta, Masarykova univerzita Analýza dat na PC I. Popisná analýza v programu Statistica IBA výuka Základní popisná statistika Popisná statistika
Obecné momenty prosté tvary
Obecné momenty prosté tvary První obecný moment: (Σy i )/n, i=1 n aritmetický průměr, těžiště dat y Druhý obecný moment: (Σy i2 )/n, i=1 n y 2 Obecné momenty prosté tvary Příklad 1 pokračování: y = (3+4+2+3+2+3+3+3)/8
STATISTIKA 1. RNDr. K. Hrach, Ph.D. Zápočet: odevzdání seminární práce (úkoly na PC) Zkouška: písemná (bez kalkulačky, bez vzorců)
STATISTIKA 1 RNDr. K. Hrach, Ph.D. Zápočet: odevzdání seminární práce (úkoly na PC) Zkouška: písemná (bez kalkulačky, bez vzorců) STATISTIKA Činnost vedoucí k získávání dat Instituce zajišťující tuto činnost
zcela převažující druh průměru, který má uplatnění při řešení téměř všech úloh statistiky široké využití: v ekonomických
STŘEDNÍ HODNOTY VÝZNAM Rozdělení četností poskytuje užitečnou informaci a přehled o zkoumaném statistickém souboru. Porovnávat několik souborů pomocí tabulek rozděleni četností by však bylo.a. Proto se
ANALÝZA DAT V R 2. POPISNÉ STATISTIKY. Mgr. Markéta Pavlíková Katedra pravděpodobnosti a matematické statistiky MFF UK.
ANALÝZA DAT V R 2. POPISNÉ STATISTIKY Mgr. Markéta Pavlíková Katedra pravděpodobnosti a matematické statistiky MFF UK www.biostatisticka.cz CO SE SKRÝVÁ V DATECH data sbíráme proto, abychom porozuměli
Seminarni prace. 2 3 stranky staci, dat nema byt 3 a nema jich byt pul milionu. k te seminarce
Seminarni prace Popisná statistika, data nesmí být časovou řadou Zkoumat můžeme třeba mzdy, obraty atd. (takže možná QA?) Formát pdf, poslat nejpozději den před zkouškou. Podrobnější informace jsou na
MATEMATIKA III V PŘÍKLADECH
VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA FAKULTA STROJNÍ MATEMATIKA III V PŘÍKLADECH Cvičení 8 Statistický soubor s jedním argumentem Mgr. Petr Otipka Ostrava 2013 Mgr. Petr Otipka Vysoká škola
Informační technologie a statistika 1
Informační technologie a statistika 1 přednášející: konzul. hodiny: e-mail: Martin Schindler KAP, tel. 48 535 2836, budova G po dohodě martin.schindler@tul.cz naposledy upraveno: 21. září 2015, 1/33 Požadavek
Popisná statistika v praxi aneb Je statistika nuda? Martina Litschmannová Katedra aplikované matematiky, FEI, VŠB-TU Ostrava
Popisná statistika v praxi aneb Je statistika nuda? Martina Litschmannová Katedra aplikované matematiky, FEI, VŠB-TU Ostrava Co je to statistika? Google 196.10 6 odkazů (čeština), 2,88.10 9 odkazů (angličtina)
Statistika. pro žáky 8. ročníku. úterý, 26. března 13
Statistika pro žáky 8. ročníku Co je to statistika? Statistika je věda, která se snaží zkoumat reálná data a přibližuje nám zkoumaný jev a zákonitosti s ním spojené. Co nám statistika přináší? Co nám statistika
Otázky k měření centrální tendence. 1. Je dáno rozložení, ve kterém průměr = medián. Co musí být pravdivé o tvaru tohoto rozložení?
Otázky k měření centrální tendence 1. Je dáno rozložení, ve kterém průměr = medián. Co musí být pravdivé o tvaru tohoto rozložení? 2. Určete průměr, medián a modus u prvních čtyř rozložení (sad dat): a.
TECHNICKÁ UNIVERZITA V LIBERCI. Ekonomická fakulta. Semestrální práce. Statistický rozbor dat z dotazníkového šetření školní zadání
TECHNICKÁ UNIVERZITA V LIBERCI Ekonomická fakulta Semestrální práce Statistický rozbor dat z dotazníkového šetření školní zadání Skupina: 51 Vypracovaly: Pavlína Horná, Nikola Loumová, Petra Mikešová,
STATISTIKA. Inovace předmětu. Obsah. 1. Inovace předmětu STATISTIKA... 2 2. Sylabus pro předmět STATISTIKA... 3 3. Pomůcky... 7
Inovace předmětu STATISTIKA Obsah 1. Inovace předmětu STATISTIKA... 2 2. Sylabus pro předmět STATISTIKA... 3 3. Pomůcky... 7 1 1. Inovace předmětu STATISTIKA Předmět Statistika se na bakalářském oboru
Mgr. Karla Hrbáčková, Ph.D. Základy kvantitativního výzkumu
Mgr. Karla Hrbáčková, Ph.D. Základy kvantitativního výzkumu K čemu slouží statistika Popisuje velké soubory dat pomocí charakteristických čísel (popisná statistika). Hledá skryté zákonitosti v souborech
Charakteristika datového souboru
Zápočtová práce z předmětu Statistika Vypracoval: 10. 11. 2014 Charakteristika datového souboru Zadání: Při kontrole dodržování hygienických norem v kuchyni se prováděl odběr vzduchu a pomocí filtru Pallflex
Zpracování náhodného výběru. Ing. Michal Dorda, Ph.D.
Př. : Stanovte jednotlivé četnosti a číselné charakteristiky zadaného statistického souboru a nakreslete krabicový graf:, 8, 7, 43, 9, 47, 4, 34, 34, 4, 35. Statistický soubor seřadíme vzestupně podle
Charakteristiky kategoriálních veličin. Absolutní četnosti (FREQUENCY)
Charakteristiky kategoriálních veličin Absolutní četnosti (FREQUENCY) Charakteristiky kategoriálních veličin Relativní četnosti Charakteristiky kategoriálních veličin Relativní četnosti Charakteristiky
EXPLORATORNÍ ANALÝZA DAT. 7. cvičení
EXPLORATORNÍ ANALÝZA DAT 7. cvičení Teorie pravděpodobnosti x Statistika Teorie pravděpodobnosti popisuje zákonitosti týkající se náhodných jevů, používá se k modelování náhodností a neurčitostí, které
Základy štatistiky. Charakteristiky štatistického znaku
Základy štatistiky Základy štatistiky Úvod Základné pojmy Popisná štatistika Triedenie Tabuľky rozdelenia početností Grafické znázornenie Charakteristiky štatistického znaku charakteristiky polohy (priemer,
Jak nelhat se statistikou? Martina Litschmannová Katedra aplikované matematiky, FEI, VŠB-TU Ostrava
Jak nelhat se statistikou? Martina Litschmannová Katedra aplikované matematiky, FEI, VŠB-TU Ostrava Co je to statistika? teoretická disciplína, která se zabývá metodami sběru a analýzy dat Jak získat data?
Základy biostatistiky
Základy biostatistiky Veřejné zdravotnictví 3.LF UK Viktor Hynčica Úvod se statistikou se setkáváme denně ankety proč se statistika začala používat ve zdravotnictví skupinový přístup k léčení celé populace
Cvičení ze statistiky. Filip Děchtěrenko ZS 2012/2013
Cvičení ze statistiky Filip Děchtěrenko ZS 2012/2013 Cvičení ze statistiky Pondělí 16:40, C328 http://www.ms.mff.cuni.cz/~dechf7am Praktické zaměření Proč potřebuji statistiku, když chci dělat (doplň)?
Základní statistické pojmy
POPISNÁ STATISTIKA Základní statistické pojmy Jev hromadný Hromadná pozorování výsledek hromadný jev soustředění se na určitou vlastnost(i) ukáže po více pokusech Zjistit souvislosti v prostoru a čase
2. Základní typy dat Spojitá a kategoriální data Základní popisné statistiky Frekvenční tabulky Grafický popis dat
2. Základní typy dat Spojitá a kategoriální data Základní popisné statistiky Frekvenční tabulky Grafický popis dat Anotace Realitu můžeme popisovat různými typy dat, každý z nich se specifickými vlastnostmi,
Pravděpodobnost a statistika
Pravděpodobnost a statistika Teorie pravděpodobnosti popisuje vznik náhodných dat, zatímco matematická statistika usuzuje z dat na charakter procesů, jimiž data vznikla. NÁHODNOST - forma existence látky,
7. SEMINÁŘ DESKRIPTIVNÍ STATISTIKA
7. SEMINÁŘ DESKRIPTIVNÍ STATISTIKA Oblasti využití statistiky v medicíně Zvládání variability Variabilita: biologická, podmínek, měřících přístrojů - hodnocení variability, variabilita náhodná x nenáhodná
2. Statistická terminologie a vyjadřovací prostředky. 2.1. Statistická terminologie. Statistická jednotka
2. Statistická terminologie a vyjadřovací prostředky 2.1. Statistická terminologie Statistická jednotka Statistická jednotka = nositel statistické informace, elementární prvek hromadného jevu. Příklady:
Škály podle informace v datech:
Škály podle informace v datech: Různé typy dat znamenají různou informaci, resp. různé množství informace Data nominální Rovná se? x 1 = x 2 Data ordinální Větší, menší? x 1 < x 2 Data intervalová O kolik?
1.1 Dva základní typy statistiky Popisná statistika (descriptive statistics) Inferenční statistika (inferential statistics)
1. PODSTATA STATISTIKY Původní význam - pouhé sbírání čísel (název z latinského status = stát, použití k označení vědy zabývající se sběrem informací o státu - o počtu obyvatel, ekonomice,...) Dnešní pojetí
Přípravný kurz - Matematika
Přípravný kurz - Matematika Téma: Základy statistiky, kombinační úsudek v úlohách Klíčová slova: tabulky, grafy, diagramy Autor: Mlynářová 12 19 9:02 Základy statistiky Statistika je vědní obor, který
POPISNÁ STATISTIKA Komentované řešení pomocí programu Statistica
POPISNÁ STATISTIKA Komentované řešení pomocí programu Statistica Program Statistica I Statistica je velmi podobná Excelu. Na základní úrovni je to klikací program určený ke statistickému zpracování dat.
Jevy a náhodná veličina
Jevy a náhodná veličina Výsledky některých jevů jsou vyjádřeny číselně -na hrací kostce padne číslo 1, 4, 6.., jiným jevům můžeme čísla přiřadit (stupeň školního vzdělání: ZŠ, SŠ, VŠ) Data jsme rozdělili
Cvičení 12: Binární logistická regrese
Cvičení 12: Binární logistická regrese Příklad: V roce 2014 konalo státní závěrečné zkoušky bakalářského studia na jisté fakultě 167 studentů. U každého studenta bylo zaznamenáno jeho pohlaví (0 žena,
Co je to statistika? Úvod statistické myšlení. Základy statistického hodnocení výsledků zkoušek. Petr Misák
Základy statistického hodnocení výsledků zkoušek Petr Misák misak.p@fce.vutbr.cz Co je to statistika? Statistika je jako bikiny. Odhalí téměř vše, ale to nejdůležitější nám zůstane skryto. (autor neznámý)
Analýza dat z dotazníkových šetření. Zdrojová data: dotazník http://www.vyplnto.cz/realizovane-pruzkumy/konzumace-ryb-a-rybich-vyrob/
Analýza dat z dotazníkových šetření Cvičení 3. - Jednorozměrné třídění Zdrojová data: dotazník http://www.vyplnto.cz/realizovane-pruzkumy/konzumace-ryb-a-rybich-vyrob/ - Seznamte se s dotazníkem a strukturou
Statistika v současnosti
1. STATISTIKA z latin. Status (stav nebo stát) 1562 Benátky 17. stol. Německo Anglie 16.-17. st. tzv. politická aritmetika Ideální typ člověka - Adolphe QUETÉLET 18. a 19. st. pozorování a popis zákonitostí
Kontingenční tabulky v Excelu. Představení programu Statistica
ASTAc/01 Biostatistika 2. cvičení Kontingenční tabulky v Excelu Základní popisné statistiky Představení programu Statistica Import a základní popis dat ve Statistice, M. Cvanová I. Kontingenční tabulky
Jiří Neubauer. Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel
Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Výsledky některých náhodných pokusů jsou přímo vyjádřeny číselně (např. při hodu kostkou padne 6). Náhodnou veličinou
Deskriptivní statistika (kategorizované proměnné)
Deskriptivní statistika (kategorizované proměnné) Nejprve malé opakování: - Deskriptivní statistika se zabývá popisem dat, jejich sumarizaci a prezentací. - Kategorizované proměnné jsou všechny proměnné,
Statistika - charakteristiky variability
Škola: Gymnázium, Brno, Slovanské náměstí 7 Šablona: III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Název projektu: Inovace výuky na GSN prostřednictvím ICT Číslo projektu: CZ.1.07/1.5.00/34.0940
Nejčastější chyby v explorační analýze
Nejčastější chyby v explorační analýze Obecně doporučuju přečíst přednášku 5: Výběrová šetření, Exploratorní analýza http://homel.vsb.cz/~lit40/sta1/materialy/io.pptx Použití nesprávných charakteristik
UNIVERZITA OBRANY Fakulta ekonomiky a managementu. Aplikace STAT1. Výsledek řešení projektu PRO HORR2011 a PRO GRAM2011 3. 11.
UNIVERZITA OBRANY Fakulta ekonomiky a managementu Aplikace STAT1 Výsledek řešení projektu PRO HORR2011 a PRO GRAM2011 Jiří Neubauer, Marek Sedlačík, Oldřich Kříž 3. 11. 2012 Popis a návod k použití aplikace
10. cvičení z PST. 5. prosince T = (n 1) S2 X. (n 1) s2 x σ 2 q χ 2 (n 1) (1 α 2 ). q χ 2 (n 1) 2. 2 x. (n 1) s. x = 1 6. x i = 457.
0 cvičení z PST 5 prosince 208 0 (intervalový odhad pro rozptyl) Soubor (70, 84, 89, 70, 74, 70) je náhodným výběrem z normálního rozdělení N(µ, σ 2 ) Určete oboustranný symetrický 95% interval spolehlivosti
Kombinatorika, pravděpodobnost a statistika, Posloupnosti a řady
Předmět: Náplň: Třída: Počet hodin: Pomůcky: Matematika Kombinatorika, pravděpodobnost a statistika, Posloupnosti a řady 4. ročník 3 hodiny týdně PC a dataprojektor Kombinatorika Řeší jednoduché úlohy
Tabulka 1. Výběr z datové tabulky
1. Zadání domácího úkolu Vyberte si datový soubor obsahující alespoň jednu kvalitativní a jednu kvantitativní proměnnou s alespoň 30 statistickými jednotkami (alespoň 30 jednotlivých údajů). Zdroje dat
Přípravný kurz - Matematika
Přípravný kurz - Matematika Téma: Základy statistiky, kombinační úsudek v úlohách Klíčová slova: tabulky, grafy, diagramy Autor: Mlynářová 1 Základy statistiky Statistika je vědní obor, který se zabývá