7. SEMINÁŘ DESKRIPTIVNÍ STATISTIKA
|
|
- Václav Hruška
- před 6 lety
- Počet zobrazení:
Transkript
1 7. SEMINÁŘ DESKRIPTIVNÍ STATISTIKA
2 Oblasti využití statistiky v medicíně Zvládání variability Variabilita: biologická, podmínek, měřících přístrojů - hodnocení variability, variabilita náhodná x nenáhodná Diagnostika nemocí a identifikace zdravotních problémů společnosti Pravděpodobnostní závěry na základě mnoha údajů z předchozích obdobných případů (popis příznaků nemoci x počátek thalidomidové aféry) Prognóza léčby a odhad přínosu zdravotnických programů Pravděpodobnostní odhad dalšího průběhu léčby (vychází z minulých zkušeností podobnými případy) Také o aplikacích populačních zdr. opatřeních se vedou záznamy, které umoţňují odhadovat úspěšnost příštích opatření
3 Oblasti využití statistiky v medicíně Výběr vhodného medicínského postupu Dřívější zkušenosti + klinické zkoušky + další důleţité aspekty dané metody (ekon. náklady, riziko pro společnost) Řízení systému péče o zdraví Vyuţívání soustavy rutinních statistik doplňovaných o výběrová šetření velikost a struktura populace, informace o populačních procesech rození, umírání, migrace, zdravotní stav populace, ţivotní prostředí, ţivotní styl, zdravotnický systém
4 Počátky - popisná statistika Statistika jako popis státu: Popis a soupis zemědělského, hospodářského a politického stavu země a obyvatelstva Politická aritmetika zachycení vývoje obyvatelstva Vyčerpávající šetření zachycení veškerého obyvatelstva pomocí sčítání lidu a vedení podrobných záznamů o demografických, geografických a hospodářských jevech
5 Moderní (induktivní) statistika 30. léta 20. století rozvoj teorie pravděpodobnosti a revoluce ve statistice Výběrová šetření nové moţnosti: nezjišťuje se kaţdý jednotlivý detail rozvoj metod umoţňujících tvořit závěry o celku na základě výběrových šetření. hlubší analýza výběrového souboru, zkoumání mnoha dosud nezkoumaných jevů.
6 Statistika základní pojmy
7 Statistika jako vědní obor Jejím předmětem jsou hromadné jevy Vlastnosti, znaky a události, které se vyskytují ve velkém mnoţství. Zabývá se sběrem, popisem a analýzou dat. Data zjištěné (naměřené) hodnoty určitých vlastností hodnoty jednotlivých vlastností se vyznačují variabilitou Variabilita dat Důsledek působení velkého mnoţství drobných NÁHODNÝCH vlivů, z nichţ kaţdý výslednou hodnotu sledované vlastnosti ovlivňuje jen nepatrně.
8 Náhoda ve statistice Přirozený jev, který lze zkoumat exaktními metodami teorie pravděpodobnosti. Má svoje zákonitosti, jsou-li sledované vlastnosti určovány pouze náhodnými vlivy, podléhají zákonitostem náhody. Pokud zjištěné údaje neodpovídají těmto zákonitostem, nezpůsobuje rozdíly v hodnotách vlastnosti náhoda, ale systematické působení nějakého faktoru.
9 Induktivní a deduktivní úvaha Aplikace statistických metod se váţe ke dvěma typům uvaţování: Deduktivní úvaha: vyuţívání obecných znalostí k rozhodování v jednotlivých případech Obecný popis nemoci stanovení diagnózy u konkrétního pacienta Induktivní úvaha: zobecnění poznatků z jednotlivých případů na všechny moţné případy Sledovaní pacienti na lék reagovali příznivě - zobecnění - reakce všech pacientů budou příznivé Kaţdý závěr (rozhodnutí) je provázen určitou nejistotou, statistika umí tuto nejistotu vyčíslit.
10 Základní a výběrový soubor Základní soubor soubor jednotek, jejichţ vlastnosti chceme poznat Výběrový soubor ta část souboru, u které skutečně probíhá statistické šetření
11 Výběrový soubor Vypovídá jen o tom základním souboru, ze kterého byl odvozen. Reprezentativnost výběrového souboru (dobře reprezentuje všechny známé i neznámé charakteristiky základního souboru). Náhodný výběr je získán postupem, kdy kaţdý prvek základního souboru má na začátku výběru stejnou naději být vybrán.
12 Metody náhodného výběru 1. Prostý náhodný výběr losováním, pomocí tabulek (generátoru) náhodných čísel 2. Náhodný výběr mechanický (systematický) vytvoříme seznam jednotek, ze kterého vybereme např. kaţdou stou osobu, přičemţ první osobu vybereme metodou prostého náhodného výběru. 3. Náhodný výběr oblastní (stratifikovaný) rozdělení do oblastí (strat) např. rozdělíme soubor na muţe a ţeny a vybíráme prostým NV takový počet muţů a ţen, aby byl zachován poměr muţů a ţen v základním souboru.
13 Etapy statistického šetření 1) Plán šetření (cíl, studium literatury, statistická jednotka, základní soubor, sledované znaky, způsob a přesnost měření, forma záznamu, způsob a rozsah výběru, statistické zpracování, pracovní a testované hypotézy, přínos a náklady výzkumu, pilotní studie) 2) Sběr dat (dodrţování pravidel těmi, kdo sběr dat provádějí) 3) Popis a technické zpracování (deskriptivní statistika) 4) Rozbory a závěry (induktivní statistika)
14 Dvě základní oblasti statistiky Popisná statistika Induktivní statistika
15 Deskriptivní statistika - popis dat
16 Deskriptivní statistika 1. Statistické třídění 2. Prezentace (vizualizace) dat 3. Statistické charakteristiky
17 Statistické třídění
18 Třídění zpřehlednění souboru dat popis struktury souboru rozloţení četností Způsob třídění závisí na typu veličiny. Výsledky třídění uvádíme v tabulkách tzv. tabulky rozdělení četností.
19 Třídění: typy znaků (veličin) 50ti-letý muţ, měří 170 cm, váţí 90 kg, vitální kapacitu plic má 4,62 l, prodělal zánětlivé plicní onemocnění, má středoškolské vzdělání a je nekuřák. Charakteristika znak (veličina, proměnná) obor hodnot znaku Typy znaků: Kvalitativní (kategoriální) Kvantitativní (intervalové) - Nominální - Spojité Alternativní (test+, test-) Mnoţné - Diskrétní - Pořadové (ordinální)
20 Třídění kvalitativních veličin Kategorie třídění jsou předem dány. Jde o výčet všech hodnot, kterých můţe sledovaný znak nabývat (např. znak pohlaví - hodnoty znaku: muţ, ţena; vzdělání hodnoty znaku: ZŠ, SŠ, VŠ).
21 Třídění: jednostupňové a vícestupňové Třídění podle jednoho znaku. Třídění podle dvou a více znaků současně. Jednostup. třídění Nekuřák 120 Slabý kuřák 60 Silný kuřák 20 CELKEM 200 CELKEM Dvoustupňové třídění ZŠ SŠ VŠ CELKEM Nekuřák Slabý kuřák Silný kuřák CELKEM
22 Kvalitativní znaky Tab. 1.: Rozloţení souboru 200 muţů podle kuřáckých zvyklostí a vzdělání (absolutní počty a procenta) ZŠ SŠ VŠ CELKEM Nekuřák 20 16, , , ,0 Slabý kuřák 29,9 70,1 78,9 60, , , , ,0 52,2 17,5 19,7 30,0 Silný kuřák 12 60,0 7 35, ,0 17,9 12,3 1,4 10,0 CELKEM 67 33, , , ,0 100,0 100,0 100,0 100,0
23 Třídění kvantitativních veličin Třídy vytváříme teprve na základě získaných dat Dochází k redukci dat ve prospěch přehlednosti Vytváření intervalů: počet intervalů délka intervalů hranice intervalů Musíme brát v úvahu: počet dat (velikost souboru) přesnost měření cíl třídění
24 Prezentace dat v tabulkách Výsledky třídění uvádíme v tabulkách tzv. tabulky rozdělení četností. Četnosti: absolutní relativní kumulativní absolutní kumulativní relativní
25 Kvantitativní znaky Tab. 1.: Rozloţení vitální kapacity plic u 200 muţů ve věku let (v litrech) interval střed četnost kumulativní četnost absolut. relat. % absolut. relat. % 3,00 3, 39 3,20 6 3,0 6 3,0 3,40 3,79 3,60 9 4,5 15 7,5 3,80 4,19 4, , ,5 4,20 4,59 4, , ,5 4,60 4,99 4, , ,5 5,00 5,39 5, , ,5 5,40 5,79 5, , ,5 5,80 6,19 6, , ,0 6,20 6,59 6,40 4 2, ,0 celkem , ,0
26 Třídění kvantitativních veličin Stejně dlouhé intervaly Nestejně dlouhé intervaly Věk Abs. četnost Celkem 303
27 Prezentace (vizualizace) dat
28 Prezentace dat Prezentace dat v grafech 1. Četnost jednotlivých kategorií (tříd, intervalů) 2. Tvar rozloţení četností Symetrické x asymetrické Jednovrcholové x dvouvrcholové Výběr vhodných statistických ukazatelů Výběr vhodného teoretického rozloţení četností při odhadu parametrů a testování hypotéz
29 Prezentace dat v grafech Kvalitativní veličiny Sloupcový graf (sloupce oddělené mezerou) Výsečový graf (struktura) Kartogram (regionální srovnání)
30 Sloupcový graf
31 Výsečový graf
32 Kartogram
33 Prezentace dat v grafech Kvantitativní veličiny Sloupcový graf Histogram Polygon četností
34 Prezentace kvantitat. dat osa X : naměřené hodnoty sledováné veličiny (VKP v l) osa Y : četnost intervalů (abs. nebo v %) Tvar rozloţení četností: Symetrické x asymetrické Jednovrcholové x vícevrcholové Podoba s teoretickými modely rozloţení četností
35 Prezentace kvantitativních dat
36 Statistické ukazatele
37 Statistické ukazatele a) Relativní ukazatele - (viz rutinní statistiky: ukazatele frekvence, ukazatele struktury, indexy) b) Střední hodnoty (ukazatele polohy) c) Ukazatele variability VOLBA VHODNÝCH UKAZATELŮ POLOHY A VARIABILITY ZÁVISÍ NA TYPU SLEDOVANÉHO ZNAKU (nominální x ordinální x intervalový) A NA TVARU ROZLOŢENÍ ČETNOSTÍ (symetrické x asymetrické).
38 Ukazatele polohy
39 Ukazatele polohy Aritmetický průměr (m): sečteme pozorované hodnoty a vydělíme je počtem sledovaných jednotek Medián (m e ): hodnota, která je právě uprostřed všech pozorování, která jsme seřadili podle velikosti Modus (m o ): třída (kategorie) s nejvyšší četností Kvantil (percentil, decil, kvartil) pořadový ukazatel, obměna mediánu
40 Ukazatele polohy Typ znaku: nominální: modus ordinální: modus, medián, percentil (kvantil) intervalové: modus, medián, percentil (kvantil), průměr POZOR NA INTERPRETACI ARITMETICKÉHO PRŮMĚRU U ASYMETRICKÝCH ROZLOŢENÍ. ARITMETICKÝ PRŮMĚR JE CITLIVÝ NA VYCHÝLENÉ HODNOTY. VHODNĚJŠÍM UKAZATELEM POLOHY U ASYMETRICKÝCH ROZLOŢENÍ MŮŢE BÝT MEDIÁN.
41 Ukazatele polohy m = m o = m e =
42 Ukazatele polohy Ukazatele polohy u symetrického a asymetrického rozloţení symetrické pravostr. asym. levostr. asym. m = m o = m e m o < m e < m m < m e < m o
43 Ukazatele variability
44 Ukazatele variability Proč nestačí ukazatele polohy k výstiţnému popisu dat? Př. 1. sk.: 3,08 4,42 5,05 5,67 6,59 m = 4,96 2. sk.: 4,86 4,90 4,91 5,03 5,11 m = 4,96 Obě skupiny mají stejný průměr, liší se ale kolísáním hodnot, tj. VARIABILITOU.
45 Ukazatele variability Spolu se střední hodnotou by se měl vţdy udávat příslušný ukazatel variability! Rozpětí (u malých souborů, kde n 10) Rozptyl - směrodatná odchylka (nejč.) - variační koeficient - uvádějí se s aritmetickým průměrem ( u symetrických rozdělení) Kvantily (percentily, decily, kvartily) - uvádějí se s modem či medián (asymetrický rozdělení) - lze je ale samozřejmě pouţít i s aritmetickým průměrem
46 Ukazatele variability
47 Ukazatele variability
48 Ukazatele variability Variační koeficient (v.k.) Relativní ukazatel variability Udává, jaký podíl tvoří směrodatná odchylka z průměru.
49 Ukazatele variability Variační koeficient (v.k.) Slouţí ke srovnání variability 2 souborů, jejichţ průměry se značně liší Př.: VKP u muţů a u ţen M: m = 4, 80 s = 0,66 v.k. = 13,8% Ţ: m = 3, 90 s = 0,42 v.k. = 10,8% Slouţí ke srovnání variability znaků uváděných v různých jednotkách Př.: VKP (l), výška (cm) a hmotnost muţů (kg) VKP: m = 4,80 s = 0,66 v.k. = 13,8% Výška: m = 178 s = 4 v.k. = 2,2% Hmotnost: m = 82 s = 6 v.k. = 7,3%
50 Ukazatele variability Kvantily percentily, decily, kvartily Kvantily dělí soubor dat uspořádaných podle velikosti na části obsahující stejný podíl z celkového počtu jednotek Variabilita se určuje pomocí intervalu, ve kterém se pohybuje nejčastěji 80% (P 10 P 90 ) nebo 50% (P 25 P 75 ) pozorování. Postup výpočtu: 1. Určíme hodnotu pozorování, které představuje 10. percentil = dolní hranice intervalu 2. Určíme hodnotu pozorování, které představuje 90. percentil = horní hranice intervalu Vhodné ukazatele variability pro asymetrická rozloţení
51 Příklad Porodní délka 5 novorozenců v cm: 49, 50, 50, 51, 53 Vypočítejte: Aritmetický průměr Rozptyl Směrodatnou odchylku Variační koeficient
Statistika, Biostatistika pro kombinované studium Letní semestr 2011/2012. Tutoriál č. 4: Exploratorní analýza. Jan Kracík
Statistika, Biostatistika pro kombinované studium Letní semestr 2011/2012 Tutoriál č. 4: Exploratorní analýza Jan Kracík jan.kracik@vsb.cz Statistika věda o získávání znalostí z empirických dat empirická
Základy biostatistiky
Základy biostatistiky Veřejné zdravotnictví 3.LF UK Viktor Hynčica Úvod se statistikou se setkáváme denně ankety proč se statistika začala používat ve zdravotnictví skupinový přístup k léčení celé populace
Statistika. Diskrétní data. Spojitá data. Charakteristiky polohy. Charakteristiky variability
I Přednáška Statistika Diskrétní data Spojitá data Charakteristiky polohy Charakteristiky variability Statistika deskriptivní statistika ˆ induktivní statistika populace (základní soubor) ˆ výběr parametry
veličin, deskriptivní statistika Ing. Michael Rost, Ph.D.
Vybraná rozdělení spojitých náhodných veličin, deskriptivní statistika Ing. Michael Rost, Ph.D. Třídění Základním zpracováním dat je jejich třídění. Jde o uspořádání získaných dat, kde volba třídícího
23. Matematická statistika
Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/03.0009 23. Matematická statistika Statistika je věda, která se snaží zkoumat reálná data a s pomocí teorii pravděpodobnosti
Matematika III. 27. listopadu Vysoká škola báňská - Technická univerzita Ostrava. Matematika III
Vysoká škola báňská - Technická univerzita Ostrava 27. listopadu 2017 Typy statistických znaků (proměnných) Typy proměnných: Kvalitativní proměnná (kategoriální, slovní,... ) Kvantitativní proměnná (numerická,
Zpracování náhodného výběru. Ing. Michal Dorda, Ph.D.
Zpracování náhodného výběru popisná statistika Ing. Michal Dorda, Ph.D. Základní pojmy Úkolem statistiky je na základě vlastností výběrového souboru usuzovat o vlastnostech celé populace. Populace(základní
Základy popisné statistiky. Vytvořil Institut biostatistiky a analýz, Masarykova univerzita J. Jarkovský, L. Dušek
Základy popisné statistiky Anotace Realitu můžeme popisovat různými typy dat, každý z nich se specifickými vlastnostmi, výhodami, nevýhodami a vlastní sadou využitelných statistických metod -od binárních
Základy popisné statistiky
Základy popisné statistiky Michal Fusek Ústav matematiky FEKT VUT, fusekmi@feec.vutbr.cz 8. přednáška z ESMAT Michal Fusek (fusekmi@feec.vutbr.cz) 1 / 26 Obsah 1 Základy statistického zpracování dat 2
marek.pomp@vsb.cz http://homel.vsb.cz/~pom68
Statistika B (151-0303) Marek Pomp ZS 2014 marek.pomp@vsb.cz http://homel.vsb.cz/~pom68 Cvičení: Pavlína Kuráňová & Marek Pomp Podmínky pro úspěšné ukončení zápočet 45 bodů, min. 23 bodů, dvě zápočtové
2. Základní typy dat Spojitá a kategoriální data Základní popisné statistiky Frekvenční tabulky Grafický popis dat
2. Základní typy dat Spojitá a kategoriální data Základní popisné statistiky Frekvenční tabulky Grafický popis dat Anotace Realitu můžeme popisovat různými typy dat, každý z nich se specifickými vlastnostmi,
Statistika pro geografy
Statistika pro geografy 2. Popisná statistika Mgr. David Fiedor 23. února 2015 Osnova 1 2 3 Pojmy - Bodové rozdělení četností Absolutní četnost Absolutní četností hodnoty x j znaku x rozumíme počet statistických
Třídění statistických dat
2.1 Třídění statistických dat Všechny muže ve městě rozdělíme na 2 skupiny: A) muži, kteří chodí k holiči B) muži, kteří se holí sami Do které skupiny zařadíme holiče? prof. Raymond M. Smullyan, Dr. Math.
Analýza dat na PC I.
CENTRUM BIOSTATISTIKY A ANALÝZ Lékařská a Přírodovědecká fakulta, Masarykova univerzita Analýza dat na PC I. Popisná analýza v programu Statistica IBA výuka Základní popisná statistika Popisná statistika
Statistika. Základní pojmy a cíle statistiky. Roman Biskup. (zapálený) statistik ve výslužbě, aktuálně analytik v praxi ;-) roman.biskup(at) .
Statistika Základní pojmy a cíle statistiky Roman Biskup (zapálený) statistik ve výslužbě, aktuálně analytik v praxi ;-) roman.biskup(at)email.cz 12. února 2012 Statistika by Birom Statistika Pojmy a cíle
Číselné charakteristiky
. Číselné charakteristiky statistických dat Průměrný statistik se během svého života ožení s 1,75 ženami, které se ho snaží vytáhnout večer do společnosti,5 x týdně, ale pouze s 50% úspěchem. W. F. Miksch
ZÁKLADNÍ STATISTICKÉ CHARAKTERISTIKY
zhanel@fsps.muni.cz ZÁKLADNÍ STATISTICKÉ CHARAKTERISTIKY METODY DESKRIPTIVNÍ STATISTIKY 1. URČENÍ TYPU ŠKÁLY (nominální, ordinální, metrické) a) nominální + ordinální neparametrické stat. metody b) metrické
Statistika. cílem je zjednodušit nějaká data tak, abychom se v nich lépe vyznali důsledkem je ztráta informací!
Statistika aneb známe tři druhy lži: úmyslná neúmyslná statistika Statistika je metoda, jak vyjádřit nejistá data s přesností na setinu procenta. den..00..00 3..00..00..00..00..00..00..00..00..00..00 3..00..00..00..00..00..00..00
Základy pravděpodobnosti a statistiky. Popisná statistika
Základy pravděpodobnosti a statistiky Popisná statistika Josef Tvrdík Přírodovědecká fakulta, katedra informatiky josef.tvrdik@osu.cz konzultace v úterý 14.10 až 15.40 hod. Příklad ze života Cimrman, Smoljak/Svěrák,
Metodologie pro ISK II
Metodologie pro ISK II Všechny hodnoty z daného intervalu Zjišťujeme: Centrální míry Variabilitu Šikmost, špičatost Percentily (decily, kvantily ) Zobrazení: histogram MODUS je hodnota, která se v datech
MATEMATICKÁ STATISTIKA. Katedra matematiky a didaktiky matematiky Technická univerzita v Liberci
MATEMATICKÁ STATISTIKA Dana Černá http://www.fp.tul.cz/kmd/ Katedra matematiky a didaktiky matematiky Technická univerzita v Liberci Matematická statistika Matematická statistika se zabývá matematickým
Pojem a úkoly statistiky
Katedra ekonometrie FVL UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Pojem a úkoly statistiky Statistika je věda, která se zabývá získáváním, zpracováním a analýzou dat pro potřeby
Škály podle informace v datech:
Škály podle informace v datech: Různé typy dat znamenají různou informaci, resp. různé množství informace Data nominální Rovná se? x 1 = x 2 Data ordinální Větší, menší? x 1 < x 2 Data intervalová O kolik?
Zápočtová práce STATISTIKA I
Zápočtová práce STATISTIKA I Obsah: - úvodní stránka - charakteristika dat (původ dat, důvod zpracování,...) - výpis naměřených hodnot (v tabulce) - zpracování dat (buď bodové nebo intervalové, podle charakteru
Metody sociálních výzkumů. Velmi skromný úvod do statistiky. Motto: Jsou tři druhy lži-lež prostá, lež odsouzeníhodná a statistika.
Metody sociálních výzkumů Velmi skromný úvod do statistiky. Motto: Jsou tři druhy lži-lež prostá, lež odsouzeníhodná a statistika. Statistika Význam slova-vychází ze slova stát, s jeho administrativou
Renáta Bednárová STATISTIKA PRO EKONOMY
Renáta Bednárová STATISTIKA PRO EKONOMY ZÁKLADNÍ STATISTICKÉ POJMY Statistika Statistický soubor Statistická jednotky Statistický znak STATISTIKA Vědní obor, který se zabývá hromadnými jevy Hromadné jevy
Pracovní list č. 3 Charakteristiky variability
1. Při zjišťování počtu nezletilých dětí ve třiceti vybraných rodinách byly získány tyto výsledky: 1, 1, 0, 2, 3, 4, 2, 2, 3, 0, 1, 2, 2, 4, 3, 3, 0, 1, 1, 1, 2, 2, 0, 2, 1, 1, 2, 3, 3, 2. Uspořádejte
Tomáš Karel LS 2012/2013
Tomáš Karel LS 2012/2013 Doplňkový materiál ke cvičení ze 4ST201. Na případné faktické chyby v této prezentaci mě prosím upozorněte. Děkuji Tyto slidy berte pouze jako doplňkový materiál není v nich obsaženo
Náhodná veličina a rozdělení pravděpodobnosti
3.2 Náhodná veličina a rozdělení pravděpodobnosti Bůh hraje se světem hru v kostky. Jsou to ale falešné kostky. Naším hlavním úkolem je zjistit, podle jakých pravidel byly označeny, a pak toho využít pro
Popisná statistika. Statistika pro sociology
Popisná statistika Jitka Kühnová Statistika pro sociology 24. září 2014 Jitka Kühnová (GSTAT) Popisná statistika 24. září 2014 1 / 31 Outline 1 Základní pojmy 2 Typy statistických dat 3 Výběrové charakteristiky
TECHNICKÁ UNIVERZITA V LIBERCI SEMESTRÁLNÍ PRÁCE
TECHNICKÁ UNIVERZITA V LIBERCI Ekonomická fakulta Studentská 2 461 17 Liberec 1 SEMESTRÁLNÍ PRÁCE STATISTICKÝ ROZBOR DAT Z DOTAZNÍKOVÝCH ŠETŘENÍ Gabriela Dlasková, Veronika Bukovinská Sára Kroupová, Dagmar
Stručný úvod do vybraných zredukovaných základů statistické analýzy dat
Stručný úvod do vybraných zredukovaných základů statistické analýzy dat Statistika nuda je, má však cenné údaje. Neklesejme na mysli, ona nám to vyčíslí. Z pohádky Princové jsou na draka Populace (základní
Výrobní produkce divizí Ice Cream Po lo ha plane t Rozložený výse ový 3D graf Bublinový graf Histogram t s tn e ídy
Výrobní produkce divizí Ice Cream Polo ha planet Rozložený výsečový 3D graf Bublinový graf Ice Cream 1 15% Ice Cream 2 12% Ice Cream 3 18% Ice Cream 4 20% Statistika 40 30 20 Ice Cream 6 19% Ice Cream
Aplikovaná statistika v R
Aplikovaná statistika v R Filip Děchtěrenko Matematicko-fyzikální fakulta filip.dechterenko@gmail.com 15.5.2014 Filip Děchtěrenko (MFF UK) Aplikovaná statistika v R 15.5.2014 1 / 15 Co bude náplní našich
Statistika. pro žáky 8. ročníku. úterý, 26. března 13
Statistika pro žáky 8. ročníku Co je to statistika? Statistika je věda, která se snaží zkoumat reálná data a přibližuje nám zkoumaný jev a zákonitosti s ním spojené. Co nám statistika přináší? Co nám statistika
Praktická statistika. Petr Ponížil Eva Kutálková
Praktická statistika Petr Ponížil Eva Kutálková Zápis výsledků měření Předpokládejme, že známe hodnotu napětí U = 238,9 V i její chybu 3,3 V. Hodnotu veličiny zapíšeme na tolik míst, aby až poslední bylo
Popisná statistika. úvod rozdělení hodnot míry centrální tendence míry variability míry šikmosti a špičatosti grafy
Popisná statistika úvod rozdělení hodnot míry centrální tendence míry variability míry šikmosti a špičatosti grafy Úvod užívá se k popisu základních vlastností dat poskytuje jednoduché shrnutí hodnot proměnných
Základní statistické pojmy
POPISNÁ STATISTIKA Základní statistické pojmy Jev hromadný Hromadná pozorování výsledek hromadný jev soustředění se na určitou vlastnost(i) ukáže po více pokusech Zjistit souvislosti v prostoru a čase
STATISTIKA 1. Adam Čabla Katedra statistiky a pravděpodobnosti VŠE
STATISTIKA 1 Adam Čabla Katedra statistiky a pravděpodobnosti VŠE KONTAKTY WWW: sites.google.com/site/adamcabla E-mail: adam.cabla@vse.cz Telefon: 777 701 783 NB367 na VŠE, konzultační hodiny: Pondělí
Mnohorozměrná statistická data
Statistika II Katedra ekonometrie FVL UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Statistický znak, statistický soubor Jednotlivé objekty nebo subjekty, které jsou při statistickém
ANALÝZA DAT V R 3. POPISNÉ STATISTIKY, NÁHODNÁ VELIČINA. Mgr. Markéta Pavlíková Katedra pravděpodobnosti a matematické statistiky MFF UK
ANALÝZA DAT V R 3. POPISNÉ STATISTIKY, NÁHODNÁ VELIČINA Mgr. Markéta Pavlíková Katedra pravděpodobnosti a matematické statistiky MFF UK www.biostatisticka.cz POPISNÉ STATISTIKY - OPAKOVÁNÍ jedna kvalitativní
STATISTIKA S EXCELEM. Martina Litschmannová MODAM,
STATISTIKA S EXCELEM Martina Litschmannová MODAM, 8. 4. 216 Obsah Motivace aneb Máme data a co dál? Základní terminologie Analýza kvalitativního znaku rozdělení četnosti, vizualizace Analýza kvantitativního
INDUKTIVNÍ STATISTIKA
10. SEMINÁŘ INDUKTIVNÍ STATISTIKA 3. HODNOCENÍ ZÁVISLOSTÍ HODNOCENÍ ZÁVISLOSTÍ KVALITATIVNÍ VELIČINY - Vychází se z kombinační (kontingenční) tabulky, která je výsledkem třídění druhého stupně KVANTITATIVNÍ
Popisná statistika kvantitativní veličiny
StatSoft Popisná statistika kvantitativní veličiny Protože nám surová data obvykle žádnou smysluplnou informaci neposkytnou, je žádoucí vyjádřit tyto ve zhuštěnější formě. V předchozím dílu jsme začali
JEDNOVÝBĚROVÉ TESTY. Komentované řešení pomocí programu Statistica
JEDNOVÝBĚROVÉ TESTY Komentované řešení pomocí programu Statistica Vstupní data Data umístěná v excelovském souboru překopírujeme do tabulky ve Statistice a pojmenujeme proměnné, viz prezentace k tématu
Statistické metody - nástroj poznání a rozhodování anebo zdroj omylů a lží
Statistické metody - nástroj poznání a rozhodování anebo zdroj omylů a lží Zdeněk Karpíšek Jsou tři druhy lží: lži, odsouzeníhodné lži a statistiky. Statistika je logická a přesná metoda, jak nepřesně
Základy biostatistiky II. Veřejné zdravotnictví 3.LF UK - II
Základy biostatistiky II Veřejné zdravotnictví 3.LF UK - II Teoretické rozložení-matematické modely rozložení Naměřená data Výběrové rozložení Teoretické rozložení 1 e 2 x 2 Teoretické rozložení-matematické
Náhodná proměnná. Náhodná proměnná může mít rozdělení diskrétní (x 1. , x 2. ; x 2. spojité (<x 1
Náhodná proměnná Náhodná proměnná může mít rozdělení diskrétní (x 1, x 2,,x n ) spojité () Poznámky: 1. Fyzikální veličiny jsou zpravidla spojité, ale změřené hodnoty jsou diskrétní. 2. Pokud
Charakteristika datového souboru
Zápočtová práce z předmětu Statistika Vypracoval: 10. 11. 2014 Charakteristika datového souboru Zadání: Při kontrole dodržování hygienických norem v kuchyni se prováděl odběr vzduchu a pomocí filtru Pallflex
Statistika v současnosti
1. STATISTIKA z latin. Status (stav nebo stát) 1562 Benátky 17. stol. Německo Anglie 16.-17. st. tzv. politická aritmetika Ideální typ člověka - Adolphe QUETÉLET 18. a 19. st. pozorování a popis zákonitostí
Otázky k měření centrální tendence. 1. Je dáno rozložení, ve kterém průměr = medián. Co musí být pravdivé o tvaru tohoto rozložení?
Otázky k měření centrální tendence 1. Je dáno rozložení, ve kterém průměr = medián. Co musí být pravdivé o tvaru tohoto rozložení? 2. Určete průměr, medián a modus u prvních čtyř rozložení (sad dat): a.
Popisná statistika. Komentované řešení pomocí MS Excel
Popisná statistika Komentované řešení pomocí MS Excel Vstupní data Máme k dispozici data o počtech bodů z 1. a 2. zápočtového testu z Matematiky I v zimním semestru 2015/2016 a to za všech 762 studentů,
METODOLOGIE I - METODOLOGIE KVANTITATIVNÍHO VÝZKUMU
METODOLOGIE I - METODOLOGIE KVANTITATIVNÍHO VÝZKUMU vyučující doc. RNDr. Jiří Zháněl, Dr. M I 4 Metodologie I 7. ANALÝZA DAT (KVANTITATIVNÍ VÝZKUM) (MATEMATICKÁ) STATISTIKA DESKRIPTIVNÍ (popisná) ANALYTICKÁ
Mgr. Karla Hrbáčková, Ph.D. Základy kvantitativního výzkumu
Mgr. Karla Hrbáčková, Ph.D. Základy kvantitativního výzkumu K čemu slouží statistika Popisuje velké soubory dat pomocí charakteristických čísel (popisná statistika). Hledá skryté zákonitosti v souborech
Matematika III. 29. října Vysoká škola báňská - Technická univerzita Ostrava. Matematika III
Vysoká škola báňská - Technická univerzita Ostrava 29. října 2018 Statistika Statistika Statistika je jako bikini. Co odhaluje, je zajímavé, co skrývá, je podstatné. Aaron Levenstein Statistika Statistika
1.1 Dva základní typy statistiky Popisná statistika (descriptive statistics) Inferenční statistika (inferential statistics)
1. PODSTATA STATISTIKY Původní význam - pouhé sbírání čísel (název z latinského status = stát, použití k označení vědy zabývající se sběrem informací o státu - o počtu obyvatel, ekonomice,...) Dnešní pojetí
Popisná statistika. Jaroslav MAREK. Univerzita Palackého
Popisná statistika Jaroslav MAREK Univerzita Palackého Přírodovědecká fakulta Katedra matematické analýzy a aplikací matematiky Tomkova 40, 779 00 Olomouc Hejčín tel. 585634606 marek@inf.upol.cz pondělí
Mnohorozměrná statistická data
Mnohorozměrná statistická data Ekonometrie Jiří Neubauer Katedra ekonometrie FVL UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Jiří Neubauer (Katedra ekonometrie UO Brno) Mnohorozměrná
Statistické metody. Martin Schindler KAP, tel , budova G. naposledy upraveno: 9.
Statistické metody Matematika pro přírodní vědy přednášející: konzul. hodiny: e-mail: Martin Schindler KAP, tel. 48 535 2836, budova G po dohodě martin.schindler@tul.cz naposledy upraveno: 9. ledna 2015,
TECHNICKÁ UNIVERZITA V LIBERCI
TECHNICKÁ UNIVERZITA V LIBERCI Ekonomická fakulta Semestrální práce Statistický rozbor dat z dotazníkového šetření Počet stran: 10 Datum odevzdání: 13. 5. 2016 Pavel Kubát Obsah Úvod... 3 1 Charakterizujte
Statistická šetření - PROČ? Žádná věda není skutečnou vědou, není-li podložena matematickými principy. (L.da Vinci)
Statistická šetření - PROČ? Žádná věda není skutečnou vědou, není-li podložena matematickými principy. (L.da Vinci) Statistická šetření - na kom / čem? statistické jednotky (S.J.) 1 respondent (pacient,
Me neˇ nezˇ minimum ze statistiky Michaela S ˇ edova KPMS MFF UK Principy medicı ny zalozˇene na du kazech a za klady veˇdecke prˇı pravy 1 / 33
1 / 33 Méně než minimum ze statistiky Michaela Šedová KPMS MFF UK Principy medicíny založené na důkazech a základy vědecké přípravy Příklad Studie syndromu náhodného úmrtí dětí. Dvě skupiny: Děti, které
Kategorická data METODOLOGICKÝ PROSEMINÁŘ II TÝDEN 7 4. DUBNA dubna 2018 Lukáš Hájek, Karel Höfer Metodologický proseminář II 1
Kategorická data METODOLOGICKÝ PROSEMINÁŘ II TÝDEN 7 4. DUBNA 2018 4. dubna 2018 Lukáš Hájek, Karel Höfer Metodologický proseminář II 1 Typy proměnných nominální (nominal) o dvou hodnotách lze říci pouze
Statistika. Zpracování informací ze statistického šetření. Roman Biskup
Statistika Zpracování informací ze statistického šetření Třídění statistického souboru Roman Biskup (zapálený) statistik ve výslužbě, aktuálně analytik v praxi ;-) roman.biskup(at)email.cz 20. února 2012
Kontingenční tabulky v Excelu. Představení programu Statistica
ASTAc/01 Biostatistika 2. cvičení Kontingenční tabulky v Excelu Základní popisné statistiky Představení programu Statistica Import a základní popis dat ve Statistice, M. Cvanová I. Kontingenční tabulky
Statistika s Excelem aneb Máme data. A co dál? Martina Litschmannová Katedra aplikované matematiky, FEI, VŠB-TU Ostrava
Statistika s Excelem aneb Máme data. A co dál? Martina Litschmannová Katedra aplikované matematiky, FEI, VŠB-TU Ostrava ŠKOMAM 2016 Jak získat data? Primární zdroje dat Vlastní měření (fyzika, biologie,
STATISTIKA 1. RNDr. K. Hrach, Ph.D. Zápočet: 75% docházka na cvičení. + odevzdání seminární práce (úkoly na PC)
STATISTIKA 1 RNDr. K. Hrach, Ph.D. Zápočet: 75% docházka na cvičení + odevzdání seminární práce (úkoly na PC) Zkouška: písemná (bez kalkulačky, bez vzorců) KONZULTACE Není hanba, že nevíš, ale že se neptáš.
Zpracování náhodného výběru. Ing. Michal Dorda, Ph.D.
Př. : Stanovte jednotlivé četnosti a číselné charakteristiky zadaného statistického souboru a nakreslete krabicový graf:, 8, 7, 43, 9, 47, 4, 34, 34, 4, 35. Statistický soubor seřadíme vzestupně podle
STATISTIKA A INFORMATIKA - bc studium OZW, 1.roč. (zkušební otázky)
STATISTIKA A INFORMATIKA - bc studium OZW, 1.roč. (zkušební otázky) 1) Význam a využití statistiky v biologických vědách a veterinárním lékařství ) Rozdělení znaků (veličin) ve statistice 3) Základní a
Tabulka 1. Výběr z datové tabulky
1. Zadání domácího úkolu Vyberte si datový soubor obsahující alespoň jednu kvalitativní a jednu kvantitativní proměnnou s alespoň 30 statistickými jednotkami (alespoň 30 jednotlivých údajů). Zdroje dat
Sázíte-li v loterii, je to hazard. Hrajete-li poker, je to zábava. Obchodujete-li na burze, je to ekonomie. Vidíte ten rozdíl?
1.1 Základní statistické pojmy a metody Sázíte-li v loterii, je to hazard. Hrajete-li poker, je to zábava. Obchodujete-li na burze, je to ekonomie. Vidíte ten rozdíl? 1 Co se dozvíte Co je to statistika
ANALÝZA DAT V R 2. POPISNÉ STATISTIKY. Mgr. Markéta Pavlíková Katedra pravděpodobnosti a matematické statistiky MFF UK.
ANALÝZA DAT V R 2. POPISNÉ STATISTIKY Mgr. Markéta Pavlíková Katedra pravděpodobnosti a matematické statistiky MFF UK www.biostatisticka.cz CO SE SKRÝVÁ V DATECH data sbíráme proto, abychom porozuměli
Nejčastější chyby v explorační analýze
Nejčastější chyby v explorační analýze Obecně doporučuju přečíst přednášku 5: Výběrová šetření, Exploratorní analýza http://homel.vsb.cz/~lit40/sta1/materialy/io.pptx Použití nesprávných charakteristik
TEST Z TEORIE EXPLORAČNÍ ANALÝZA DAT
EXPLORAČNÍ ANALÝZA DAT TEST Z TEORIE 1. Test ze Statistiky píše velké množství studentů. Představte si, že každý z nich odpoví správně přesně na polovinu otázek. V tomto případě bude směrodatná odchylka
Informační technologie a statistika 1
Informační technologie a statistika 1 přednášející: konzul. hodiny: e-mail: Martin Schindler KAP, tel. 48 535 2836, budova G po dohodě martin.schindler@tul.cz naposledy upraveno: 21. září 2015, 1/33 Požadavek
MATEMATIKA III V PŘÍKLADECH
VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA FAKULTA STROJNÍ MATEMATIKA III V PŘÍKLADECH Cvičení 8 Statistický soubor s jedním argumentem Mgr. Petr Otipka Ostrava 2013 Mgr. Petr Otipka Vysoká škola
ANALÝZA DAT V R 7. KONTINGENČNÍ TABULKA. Mgr. Markéta Pavlíková Katedra pravděpodobnosti a matematické statistiky MFF UK.
ANALÝZA DAT V R 7. KONTINGENČNÍ TABULKA Mgr. Markéta Pavlíková Katedra pravděpodobnosti a matematické statistiky MFF UK www.biostatisticka.cz PŘEHLED TESTŮ rozdělení normální spojité alternativní / diskrétní
Metodologie pro Informační studia a knihovnictví 2
Metodologie pro Informační studia a knihovnictví 2 Modul 5: Popis nekategorizovaných dat Co se dozvíte v tomto modulu? Kdy používat modus, průměr a medián. Co je to směrodatná odchylka. Jak popsat distribuci
STATISTIKA jako vědní obor
STATISTIKA jako vědní obor Cílem statistického zpracování dat je podání informace o vlastnostech a zákonitostech hromadných jevů. Statistika se zabývá popisem hromadných jevů - deskriptivní, popisná statistika
31. 3. 2014, Brno Hanuš Vavrčík Základy statistiky ve vědě
31. 3. 2014, Brno Hanuš Vavrčík Základy statistiky ve vědě Motto Statistika nuda je, má však cenné údaje. strana 3 Statistické charakteristiky Charakteristiky polohy jsou kolem ní seskupeny ostatní hodnoty
Test z teorie VÝBĚROVÉ CHARAKTERISTIKY A INTERVALOVÉ ODHADY
VÝBĚROVÉ CHARAKTERISTIKY A INTERVALOVÉ ODHADY Test z teorie 1. Střední hodnota pevně zvolené náhodné veličiny je a) náhodná veličina, b) konstanta, c) náhodný jev, d) výběrová charakteristika. 2. Výběrový
Kartografické stupnice. Přednáška z předmětu Tematická kartografie (KMA/TKA) Otakar Čerba Západočeská univerzita
Kartografické stupnice Přednáška z předmětu Tematická kartografie (KMA/TKA) Otakar Čerba Západočeská univerzita Datum vytvoření dokumentu: 20. 9. 2004 Datum poslední aktualizace: 16. 10. 2012 Stupnice
Jevy a náhodná veličina
Jevy a náhodná veličina Výsledky některých jevů jsou vyjádřeny číselně -na hrací kostce padne číslo 1, 4, 6.., jiným jevům můžeme čísla přiřadit (stupeň školního vzdělání: ZŠ, SŠ, VŠ) Data jsme rozdělili
Obsah. Statistika Zpracování informací ze statistického šetření Charakteristiky úrovně, variability a koncentrace kvantitativního znaku
Obsah Statistika Zpracování informací ze statistického šetření Charakteristiky úrovně, variability a koncentrace kvantitativního znaku Roman Biskup (zapálený) statistik ve výslužbě, aktuálně analytik v
Charakteristiky kategoriálních veličin. Absolutní četnosti (FREQUENCY)
Charakteristiky kategoriálních veličin Absolutní četnosti (FREQUENCY) Charakteristiky kategoriálních veličin Relativní četnosti Charakteristiky kategoriálních veličin Relativní četnosti Charakteristiky
SAMOSTATNÁ STUDENTSKÁ PRÁCE ZE STATISTIKY
SAMOSTATÁ STUDETSKÁ PRÁCE ZE STATISTIKY Váha studentů Kučerová Eliška, Pazdeříková Jana septima červen 005 Zadání: My dvě studentky jsme si vylosovaly zjistit statistickým šetřením v celém ročníku septim
Číselné charakteristiky a jejich výpočet
Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz charakteristiky polohy charakteristiky variability charakteristiky koncetrace charakteristiky polohy charakteristiky
STATISTIKA VĚDA O USUZOVÁNÍ NA ZÁKLADĚ DAT. Patrícia Martinková Ústav informatiky AV ČR
STATISTIKA VĚDA O USUZOVÁNÍ NA ZÁKLADĚ DAT Patrícia Martinková Ústav informatiky AV ČR martinkova@cs.cas.cz www.cs.cas.cz/martinkova 1.LF UK, 22. a 30. března 2017 Motivace 1 Velké množství (medicínských
STATISTIKA. Inovace předmětu. Obsah. 1. Inovace předmětu STATISTIKA... 2 2. Sylabus pro předmět STATISTIKA... 3 3. Pomůcky... 7
Inovace předmětu STATISTIKA Obsah 1. Inovace předmětu STATISTIKA... 2 2. Sylabus pro předmět STATISTIKA... 3 3. Pomůcky... 7 1 1. Inovace předmětu STATISTIKA Předmět Statistika se na bakalářském oboru
Co je to statistika? Úvod statistické myšlení. Základy statistického hodnocení výsledků zkoušek. Petr Misák
Základy statistického hodnocení výsledků zkoušek Petr Misák misak.p@fce.vutbr.cz Co je to statistika? Statistika je jako bikiny. Odhalí téměř vše, ale to nejdůležitější nám zůstane skryto. (autor neznámý)
PRAVDĚPODOBNOST A STATISTIKA 1 Metodický list č 1.
Metodický list č 1. Název tématického celku: Elementární statistické zpracování 1 - Kolekce a interpretace statistických dat, základní pojmy deskriptivní statistiky. Cíl: Základním cílem tohoto tematického
MĚŘENÍ, TYPY VELIČIN a TYPY ŠKÁL
MĚŘENÍ, TYPY VELIČIN a TYPY ŠKÁL Matematika a stejně i matematická statistika a biometrie s námi hovoří řečí čísel. Musíme tedy vlastnosti nebo intenzitu vlastností jedinců změřit kvantifikovat. Měřením
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ. FAKULTA STROJNÍHO INŽENÝRSTVÍ Ústav materiálového inženýrství - odbor slévárenství
1 PŘÍLOHA KE KAPITOLE 11 2 Seznam příloh ke kapitole 11 Podkapitola 11.2. Přilité tyče: Graf 1 Graf 2 Graf 3 Graf 4 Graf 5 Graf 6 Graf 7 Graf 8 Graf 9 Graf 1 Graf 11 Rychlost šíření ultrazvuku vs. pořadí
Ranní úvahy o statistice
Ranní úvahy o statistice Neúplný návod ke čtení statistických výsledků Dušan Merta květen 2016 Co nás čeká 1 Základní pojmy 2 Testování hypotéz 3 Confidence interval 4 Odds ratio 2 / 26 Základní pojmy
TECHNICKÁ UNIVERZITA V LIBERCI. Ekonomická fakulta. Semestrální práce. Statistický rozbor dat z dotazníkového šetření školní zadání
TECHNICKÁ UNIVERZITA V LIBERCI Ekonomická fakulta Semestrální práce Statistický rozbor dat z dotazníkového šetření školní zadání Skupina: 51 Vypracovaly: Pavlína Horná, Nikola Loumová, Petra Mikešová,
Základy popisné statistiky
Základy popisné statistiky V této kapitole se seznámíme se základy popisné statistiky, představíme si základní pojmy a budeme si je ilustrovat na praktických příkladech. Kapitola je psána formou volného
Základní statistické charakteristiky
Základní statistické charakteristiky Základní statistické charakteristiky slouží pro vzájemné porovnávání statistických souborů charakteristiky = čísla, pomocí kterých porovnáváme Základní statistické
UNIVERZITA OBRANY Fakulta ekonomiky a managementu. Aplikace STAT1. Výsledek řešení projektu PRO HORR2011 a PRO GRAM2011 3. 11.
UNIVERZITA OBRANY Fakulta ekonomiky a managementu Aplikace STAT1 Výsledek řešení projektu PRO HORR2011 a PRO GRAM2011 Jiří Neubauer, Marek Sedlačík, Oldřich Kříž 3. 11. 2012 Popis a návod k použití aplikace