MBR ) Reprodukce rostlin. a) Indukce kvetení. b) Vývoj květu - stručná morfologie. c) Genetická a molekulární analýza vývoje květu
|
|
- Bohuslav Sedláček
- před 6 lety
- Počet zobrazení:
Transkript
1 2015 2) Reprodukce rostlin 1 a) Indukce kvetení b) Vývoj květu - stručná morfologie c) Genetická a molekulární analýza vývoje květu
2 Životní cyklus rostliny 2
3 3 a) Indukce kvetení Indukce kvetení přeprogramování vegetativních meristémů: místo sekundárních výhonků se tvoří květní orgány Schopnost rostlin přepnout vývoj vegetativní na reprodukční ukazuje důležitý vývojový rozdíl mezi rostlinami a živočichy. Rostlina tímto přepnutím nastartuje svoje stárnutí a smrt Přeprogramování musí být přesně načasováno
4 4 Kvetení je indukováno fotoperiodou = poměrem mezi délkou dne a noci Krátkodenní rostliny kvetení je indukováno krátkým dnem a dlouhou nocí (např. chryzantémy, odrůdy jahod, špenát) Dlouhodenní rostliny kvetení je indukováno dlouhým dnem a krátkou nocí (např. pšenice, Arabidopsis) Neutrální rostliny kvetení není indukováno fotoperiodou (např. rajče)
5 5 List - vnímá fotoperiodický signál indukující přechod rostlin do fáze kvetení
6 6 Fytochromy = fotosensitivní pigmenty v cytoplazmě absorbují červené světlo; jsou zapojeny v indukci kvetení, klíčení a ve vnímání fotoperiody. Fytochromy jsou kódovány pěti geny: PHYA, PHYB, PHYC, PHYD, PHYE PHYA a PHYB regulují čas kvetení Mutant phyb kvete brzy Mutant phya kvete pozdě Mutant phyaphyb kvete dříve než phyb Kvetení je složitý proces + Kryptochromy vnímají modré světlo Fotosyntetické pigmenty
7 Světlo 7 Signál = florigen? Místo indukce kvetení Hormony: gibereliny cytokininy etylén?? Sacharóza Polyamidy Hypotéza multifaktoriálního spouštění: funkčnost jedné molekuly podmiňuje či ovlivňuje funkci jiné Pojem florigen Mikhail Chailakhyan, Rusko 1936 (experimenty ) Corbesier and Coupland (2005) hypotéza: Florigen je RNA či protein translokován z listů do meristému
8 8 Světlo (dlouhý den) AP1, AP3, etc. CO (CONSTANS) Světlo FT Huang T et al. (2005) Science 309: CO protein (transkripční faktor) CO mrna FT (FLOWERING LOCUS T) Abe M et al. (2005) Science 309: Wigge PA et al. (2005) Science 309: Exprese FT mrna of FT Indukce kvetení AP1 AP3 LFY CAL + FD FT FD (FLOWERING LOCUS D) Stonkový vrchol Jaeger KE, Wigge PA ( 2007) Cur Biol 17: 1-5 Mathieu J et al. ( 2007) Cur Biol 17: Protein FT transportovaný z listů postačuje k indukci kvetení
9 9 CONSTANS (CO) identifikován analýzou pozdě kvetoucího mutanta; Normální CO kóduje transkripční faktor a je up-regulován za dlouhého dne (LD = long day); CO aktivuje expresi květních genů Northern blot = množství RNA Konstrukt: silný promotor 35S + gen CO LD SD Kvetení indukováno i za krátkého dne Indukce kvetení CO funguje jako transkripční faktor i jako co-aktivátor
10 10 Liu L-J et al. (2008) Plant Cell 20: Krátký den (SD) CRY1 neaktivní => akumulace COP1 v jádře => ubiquitinuje CO => FT není exprimován => inhibice kvetení Dlouhý den (LD) CRY1 aktivní => translokace COP1 do cytoplazmy => akumulace CO v jádře => => FT je exprimován indukce kvetení
11 11 Geny určující identitu květních meristémů LEAFY (LFY) TERMINAL FLOWER1 (TFL1) APETALA1 (AP1) CAULIFLOWER (CAL) lfy LEAFY (LFY) mutant lfy produkuje více květních stvolů než WT; květy jsou zelené a mají pouze orgány podobné sepal a petals Ektopická (a konstitutivní) exprese LFY1 => předčasné kvetení; stonky se mění v květy 35S::LFY1 NEdeterminovaný růst Normální funkce LFY = přepíná nedeterminovaný růst na determinovaný Determinovaný růst
12 12 1 TFL1 mutant tfl1 kvete brzy; vytváří primární květní stvol, netvoří boční stvoly = fenotyp opačný k lfy; TFL1 exprimován v apikálním meristému, místo v květních primordiích WT tfl1 Normální funkce TFL1: udržuje Nedeterminovaný růst TFL1 řach LFY TFL1 a LFY produkty působí proti sobě
13 13 Indukce kvetení 5 vývojových drah 1. Fotoperiodická (fytochromy, kryptochromy, CO, FT, mrna FT, FT/FD protein, SOC1) SOC1 = Suppressor Of Constans1; transkripční faktor obsahující MADS box 2. Autonomní a vernalizační Autonomní Interní signály = počet listů redukuje expresi FLOWERING LOCUS C (FLC) => stimulace SOC1 Vernalizační: nízká teplota Redukce represoru FLOWERING LOCUS C (FLC) => stimulace SOC1
14 14 3. Karbohydrátová Odráží metabolický stav rostliny = cukr stimuluje kvetení indukcí SOC1 => exprese LFY 4. Giberelinová vyžadována pro předčasné kvetení a pro kvetení za krátkého dne - gibereliny indukuji transkripční faktor typu GAMYB => stimulace LFY - gibereliny interagují přímo se SOC1 => aktivace LFY - aktivním giberelinem je GA 4
15 15 1 UPDATE 2010 Fornava et al. ( 2010) Cell 14: e 5. Věková - odráží věk rostliny Mladá rostlina => vysoká hladina mir-156 SPL LFY SOC1 Indukce kvetení Dráhy 1 5 se soustřeďují v SOC1 Indukce LFY a AP1 Indukce květních homeotických genů (model ABC)
16 16 1 b) Vývoj květu stručná morfologie Modelová rostlina Arabidopsis => 1. přednáška MBR Struktura květu Arabidopsis a jeho vývoj Signál => indukce kvetení => apikální meristém produkuje květy Primární květenství Sekundární květenství Stonkový list Stamen
17 17 1 Květy se tvoří ve spirále kolem centrálního meristému Anther (prašník) Gynoecium (carpels = pestíky)
18 c) Genetická a molekulární analýza vývoje květu 18 1 Analýza genetických mutací, které mění specifikaci vývoje květu umožňuje definovat a odlišit základní procesy na molekulární úrovni ABC model Díky mutacím (knihovna T-DNA mutantů), které vedou k redukci, změně či změně polohy květních orgánů, byly nalezeny 4 geny, které hrají klíčovou roli ve vývoji květních orgánů: AP2, AP3, PI, AG. Izolace a charakterizace mutantů Klonování genů a návrh ABC modelu Bowman JL et al. (1991) Development 112: 1-20 Prof. M. Koornneef (Wageningen, Holandsko) Prof. John Bowman Prof. Elliot Meyerowitz
19 19 1 Geny hrající klíčovou roli ve vývoji květních orgánů (květní homeotické geny, flower homeotic genes): Květní fenotypy mutantů Mutant ap2 : sepals carpels petals stamens Mutant ap3 : Mutant pi : petals sepals stamens carpels Mutant ag : stamens petals carpels 2. ag květ AP2, AP3, PI, AG byly nazvány homeotické geny, protože byly nalezeny i u jiných rostlinných druhů. Na rozdíl od klasických homeotických genů však nekódují proteiny s homeodoménou.
20 20 1 ABC model vývoje květních orgánů Květní primordium jsou 3 koncentrické a překrývající se pole genové aktivity: A, B, C B A C AP2 řídí pole A = sepals + petals AP3 / PI řídí pole B = petals + stamens AG řídí pole C = stamens + carpels
21 211 ABC model vysvětluje vývoj jednotlivých orgánů v mutantech WT : všechny geny fungují normálně
22 22 1 ABC model vysvětluje vývoj jednotlivých orgánů v mutantech WT ag AG gen je off => AG nepůsobí proti AP2 => AP2 expanduje do části 3 a 4 => stamens petals carpels sepals
23 23 1 ABC model vysvětluje vývoj jednotlivých orgánů v mutantech WT ap2 AP2 gen je off => AP2 nepůsobí proti AG => AG expanduje do části 1 a 2 => sepals carpels petals stamens
24 24 1 ABC model vysvětluje vývoj jednotlivých orgánů v mutantech WT ap3 / pi AP3 / PI geny jsou off => AP3/PI nepůsobí v kombinaci s AP2 v 2 ani v kombinaci s AG v části 3: petals sepals stamens carpels
25 25 1 Pozorované fenotypy Fenotypy na základě ABC modelu Odchylka od pozorovaného fenotypu Odchylka od pozorovaného fenotypu ABC model dobře koresponduje z pozorovanými fenotypy mutantů. Ne však na 100%. Revize modelu
26 ABC model byl revidován na základě studie exprese genů pomocí in situ hybridizace v průběhu vývoje květu Exprese genů v orgánech WT rostlin Exprese AP2 v 1 a 2 OK. Ale, exprese v 3 a 4 nečekaná; model předpokládá potlačení vlivem AG Avšak, když je AP2 exprimován v 3 a 4, pak by měl v těchto částech potlačit expresi genu AG ale nepotlačuje! OK, AP3 / PI je exprimován ve 2 a 3 Revize modelu: neznámý gen X + gen AP1
27 27 1 Další revize ABC modelu Nalezen mutant sup (superman) exprese genu AP3 / PI je rozšířena do kruhu 4, kde se začaly tvořit stamens. Tzn., že gen SUP negativně reguluje AP3 / PI Revidovaný ABC model Původní ABC model Sakai H et al. (2000) Plant Cell 12: Nakagawa H et al. (2004) Plant Cell 16:
28 28 1 Produkty homeotických genů = proteiny AG, PI, AP1, AP3 skupina evolučně konzervovaných transkripčních faktorů. Každý z nich obsahuje konzervovanou DNA-binding doménu: MADS box. Tyto transkripční faktory kontrolují expresi jiných genů specifických pro květní orgány.
29 29 1 SUP transkripční faktor, který se váže specificky pomocí Cys2 His2 zinc-finger motiv, a tak kontroluje utváření rozhraní stamen carpel u Arabidopsis. SUPERMAN protein s Cys2-His2 zinc-finger motivem Dathan N et al. (2002) Nucleic Acids Research 15: AP2 není podobný žádnému ze známých proteinů. Patří k nové velké skupině proteinů schopných vázat se k DNA. Obsahuje serine-rich acidic doménu, která se váže k DNA. Okamuro JK et al. (1997) PNAS USA 94:
30 30 1 Základní principy kontroly vývoje květů na základě genetické a molekulární analýzy homeotických genů: 1) Geny, kódující transkripční faktory kontrolují celou řadu genů, které specifikují osud květů 2) Tyto geny fungují ve vzájemné kombinaci 3) Produkty některých z těchto genů (např. AP2 a AG; AP3/PI a AP1) kontrolují vzájemně svoji aktivitu
MBR ) Reprodukce rostlin. a) Indukce kvetení. b) Vývoj květu - stručná morfologie. c) Genetická a molekulární analýza vývoje květu
MBR1 2016 4) Reprodukce rostlin 1 a) Indukce kvetení b) Vývoj květu - stručná morfologie c) Genetická a molekulární analýza vývoje květu Životní cyklus rostliny 2 3 a) Indukce kvetení Indukce kvetení přeprogramování
2) Reprodukce rostlin
2010 1 2) Reprodukce rostlin a) Indukce kvetení b) Vývoj květu - stručná morfologie c) Genetická a molekulární analýza vývoje květu 2 Životní cyklus rostliny 3 a) Indukce kvetení Indukce kvetení přeprogramování
Životní cyklus rostliny. a) Indukce kvetení. b) Vývoj květu - stručná morfologie. c) Genetická a molekulární analýza vývoje květu. a) Indukce kvetení
MBRO 208 4) Reprodukce rostlin Životní cyklus rostliny 2 a) Indukce b) Vývoj květu - stručná morfologie c) Genetická a molekulární analýza vývoje květu Martin Fellner Laboratoř růstových regulátorů PřF
Detlef Weigel ( )
VORF-8 2015 Detlef Weigel (15. 12. 1961) 1 Max Planck Institute for Developmental Biology Department of Molecular Biology Spemannstrasse 37-39 D-72076 Tübingen Germany http://www.weigelworld.org/ Max Planck
Bi8240 GENETIKA ROSTLIN
Bi8240 GENETIKA ROSTLIN Prezentace 02 Reprodukční vývoj Indukce kvetení doc. RNDr. Jana Řepková, CSc. repkova@sci.muni.cz 1. Indukce kvetení a tvorba květů 2. Tvorba reprodukčních orgánů a gamet 3. Opylení,
3) Role světla a fytochromů ve vývoji a růstu rostlin
2014 3) Role světla a fytochromů ve vývoji a růstu rostlin a) Vlastnosti a lokalizace fytochromů b) Reakce rostlin zprostředkované fytochromy 1 Briggs WR, Spudich JL (eds) (2005) Handbook of Photosensory
Základy molekulární biologie KBC/MBIOZ
Základy molekulární biologie KBC/MBIOZ Mária Čudejková 2. Transkripce genu a její regulace Transkripce genetické informace z DNA na RNA Transkripce dvou genů zachycená na snímku z elektronového mikroskopu.
RŮST A VÝVOJ. Diferenciace rozlišování meristematických buněk na buňky specializované
RŮST A VÝVOJ Růst nevratný nárůst hmoty způsobený činností živé protoplasmy hmota a objem buněk, počet buněk, množství protoplasmy kvantitativní změny Diferenciace rozlišování meristematických buněk na
Univerzita Palackého v Olomouci. Bakalářská práce
Univerzita Palackého v Olomouci Bakalářská práce Olomouc 2013 Magda Sumarová Univerzita Palackého v Olomouci Přírodovědecká fakulta Katedra buněčné biologie a genetiky Identifikace genů indukujících kvetení
RŮST = nevratné přibývání hmoty či velikosti rostliny spojené s fyziologickými pochody v buňkách
RŮST = nevratné přibývání hmoty či velikosti rostliny spojené s fyziologickými pochody v buňkách Fáze růstu na buněčné úrovni: zárodečná (embryonální) dělení buněk meristematických pletiv prodlužovací
7) Dormance a klíčení semen
2015 7) Dormance a klíčení semen 1 a) Dozrávání embrya a dormance b) Klíčení semen 2 a) Dozrávání embrya a dormance Geny kontrolující pozdní fázi vývoje embrya - dozrávání ABI3 (abscisic acid insensitive
6) Interakce auxinů a světla ve vývoji a růstu rostlin
SFZR 1 2015 6) Interakce auxinů a světla ve vývoji a růstu rostlin Martin Fellner Laboratoř růstových regulátorů PřF UP v Olomouci a ÚEB AVČR SFZR 2 Vývoj organismu regulují signály (faktory) Vnitřní Vnější
Signalizace a komunikace. Rostlinná cytologie - signalizace, Katedra experimentální biologie rostlin PřF UK
Signalizace a komunikace Annu. Rev. Plant Biol. 2008.59:67-88 Development, 117 (1993), pp. 149 162 Meristémy trvale dělivá pletiva Periklinální dělení Antiklinální dělení http://www.mun.ca/biology/desmid/brian/biol3530/devo_07/ch07f05.jpg
4) Interakce auxinů a světla ve vývoji a růstu rostlin
SFR 1 2018 4) Interakce auxinů a světla ve vývoji a růstu rostlin Martin Fellner Laboratoř růstových regulátorů PřF UP v Olomouci a ÚEB AVČR 2 Vývoj organismu regulují signály (faktory) Vnitřní Vnější
2) Reprodukce rostlin
1 2015 2) Reprodukce rostlin g) Tvorba semen h) Dozrávání embrya i) Klíčení semen MBR 2 g) Tvorba semen Semeno krytosemenných: - embryo - endosperm - testa (obal) Vývoj embrya Globulární stádium 1 buňka
Buněčný cyklus. Replikace DNA a dělení buňky
Buněčný cyklus Replikace DNA a dělení buňky 2 Regulace buněčného dělení buněčný cyklus: buněčné dělení buněčný růst kontrola kvality potomstva (dceřinných buněk) bránípřenosu nekompletně zreplikovaných
Úloha genu COP1 v rostlinné fotomorfogenezi a tumorogenezi u živočichů
1 Úloha genu COP1 v rostlinné fotomorfogenezi a tumorogenezi u živočichů a) Fotomorfogeneze b) Úloha COP1 ve fotomorfogenezi rostlin c) COP1 a tumorogeneze Martin Fellner 2015 2 a) Fotomorfogeneze Briggs
Příběh pátý: Auxinová signalisace
Příběh pátý: Auxinová signalisace Co je auxin? Derivát tryptofanu Příbuzný serotoninu a melatoninu Všechny deriváty přítomny jak u živočichů, tak u rostlin IAA Serotonin Serotonin: antagonista auxinu Přítomen
12. ONTOGENEZE II : KVETENÍ, FOTOPERIODISMUS
12. ONTOGENEZE II : KVETENÍ, 12.1 REGULACE PŘECHODU Z VEGETATIVNÍ DO REPRODUKTIVNÍ FÁZE Přechod od vegetativního růstu ke kvetení je zásadní změnou růstu a organogeze. Představuje ukončení opakované tvorby
P1 AA BB CC DD ee ff gg hh x P2 aa bb cc dd EE FF GG HH Aa Bb Cc Dd Ee Ff Gg Hh
Heteroze jev, kdy v F1 po křížení geneticky rozdílných genotypů lze pozorovat zvětšení a mohutnost orgánů, zvýšení výnosu, životnosti, ranosti, odolnosti ve srovnání s lepším rodičem = heterózní efekt
Rostlinné hormony brasinosteroidy a jejich úloha ve vývoji a růstu rostlin
1 2014 Rostlinné hormony brasinosteroidy a jejich úloha ve vývoji a růstu rostlin Hayat S, Ahmad A (2011) Brassinosteroids: a class of plant hormone. Springer, Berlin 2 Vývoj organismu regulují signály
MFPSB 1. b) Úloha COP1 ve fotomorfogenezi rostlin c) COP1 a tumorogeneze
1 Úloha genu COP1 v rostlinné fotomorfogenezi a tumorogenezi u živočichů a) Fotomorfogeneze b) Úloha COP1 ve fotomorfogenezi rostlin c) COP1 a tumorogeneze Martin Fellner Martin Fellner 2010 2 a) Fotomorfogeneze
Regulace růstu a vývoje
Regulace růstu a vývoje REGULACE RŮSTU A VÝVOJE ROSTLINNÉHO ORGANISMU a) Regulace na vnitrobuněčné úrovni závislost na rychlosti a kvalitě metabolických drah, resp. enzymů a genů = regulace aktivity enzymů
Rostlinné hormony brasinosteroidy a jejich úloha ve vývoji a růstu rostlin
SFZR 1 2016 Rostlinné hormony brasinosteroidy a jejich úloha ve vývoji a růstu rostlin Hayat S, Ahmad A (2011) Brassinosteroids: a class of plant hormone. Springer, Berlin 2 Vývoj organismu regulují signály
Struktura a funkce biomakromolekul
Struktura a funkce biomakromolekul KBC/BPOL 10. Struktury signálních komplexů Ivo Frébort Typy hormonů Steroidní hormony deriváty cholesterolu, regulují metabolismus, osmotickou rovnováhu, sexuální funkce
3) Růst a vývoj. a) Embryogeneze a cytokineze b) Meristém a vývoj rostliny c) Vývoj listů a kořenů KFZR 1
1 2010 3) Růst a vývoj a) Embryogeneze a cytokineze b) Meristém a vývoj rostliny c) Vývoj listů a kořenů Raghavan V (2006) Double Fertilization. Embryo and Endosperm Development In Flowering Plants. Springer.
Rich Jorgensen a kolegové vložili gen produkující pigment do petunií (použili silný promotor)
RNAi Rich Jorgensen a kolegové vložili gen produkující pigment do petunií (použili silný promotor) Místo silné pigmentace se objevily rostliny variegované a dokonce bílé Jorgensen pojmenoval tento fenomén
6. Buňky a rostlina. Mají rostliny kmenové buňky?
6. Buňky a rostlina Mají rostliny kmenové buňky? Biotechnologické využití pluripotence rostlinných buněk: buněčné a tkáňové kultury rostlin in vitro, vegetativní množení rostlin Komunikace mezi buňkami
5. Příjem, asimilace a fyziologické dopady anorganického dusíku. 5. Příjem, asimilace a fyziologické dopady anorganického dusíku
5. Příjem, asimilace a fyziologické dopady anorganického dusíku Zdroje dusíku dostupné v půdě: Amonné ionty + Dusičnany = největší zdroj dusíku v půdě Organický dusík (aminokyseliny, aminy, ureidy) zpracování
4) Reprodukce rostlin
MBR 1 2015 4) Reprodukce rostlin g) Tvorba semen h) Dozrávání embrya 2 g) Tvorba semen Semeno krytosemenných: - embryo - endosperm - testa (obal) Vývoj embrya Globulární stádium 1 buňka 2 buňky Meristém
4) Reprodukce rostlin
MBR1 2016 4) Reprodukce rostlin g) Tvorba semen h) Dozrávání embrya i) Vývoj endospermu 1 2 g) Tvorba semen Semeno krytosemenných: - embryo - endosperm - testa (obal) Vývoj embrya Globulární stádium 1
Úloha protein-nekódujících transkriptů ve virulenci patogenních bakterií
Téma bakalářské práce: Úloha protein-nekódujících transkriptů ve virulenci patogenních bakterií Nové odvětví molekulární biologie se zabývá RNA molekulami, které se nepřekládají do proteinů, ale slouží
2) Reprodukce rostlin
1 2010 2) Reprodukce rostlin g) Tvorba semen h) Dozrávání embrya i) Klíčení semen Speciální číslo Plant Cell, vol. 216 (June 2004) Supplement, pp. S1 S245, zaměřené na Plant Reproduction (Reprodukce rostlin)
OBNOVA APIKÁLNÍ DOMINANCE NA KLÍČNÍCH ROSTLINÁCH HRACHU (Pisum sativum L.)
Úloha č. 18 Obnova apikální dominance na klíčních rostlinách hrachu - 1 - OBNOVA APIKÁLNÍ DOMINANCE NA KLÍČNÍCH ROSTLINÁCH HRACHU (Pisum sativum L.) OBECNÁ CHARAKTERISTIKA RŮSTOVÝCH KORELACÍ Jednotlivé
Přechod rostliny do generativní fáze. Fotomorfogeneze, fotoperiodismus, vernalizace, regulace kvetení, vývoj květu
Přechod rostliny do generativní fáze Fotomorfogeneze, fotoperiodismus, vernalizace, regulace kvetení, vývoj květu Vnímání světla Fotomorfogeneze Fotoperiodismus Přechod do generativní fáze Indukce kvetení
9) Fotomorfogeneze RVR. Schäfer E, Nagy F (eds) (2006) Photomorphogenesis in Plants and Bacteria, 3rd ed., Springer
2015 9) Fotomorfogeneze a) Vlastnosti a lokalizace fytochromů b) Reakce rostlin zprostředkované fytochromy c) Ekologické funkce fytochromů d) Buněčný a molekulární mechanismus funkce fytochromů 1 Briggs
Exprese genetického kódu Centrální dogma molekulární biologie DNA RNA proteinu transkripce DNA mrna translace proteosyntéza
Exprese genetického kódu Centrální dogma molekulární biologie - genetická informace v DNA -> RNA -> primárního řetězce proteinu 1) transkripce - přepis z DNA do mrna 2) translace - přeložení z kódu nukleových
Inovace studia molekulární a buněčné biologie reg. č. CZ.1.07/2.2.00/07.0354
Inovace studia molekulární a buněčné biologie reg. č. CZ.1.07/2.2.00/07.0354 LRR/OBBC LRR/OBB Obecná biologie Orgány rostlin II. Mgr. Lukáš Spíchal, Ph.D. Cíl přednášky Popis anatomie, morfologie a funkce
Inovace studia molekulární a buněčné biologie
Investice do rozvoje vzdělávání Inovace studia molekulární a buněčné biologie Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky. Investice do rozvoje vzdělávání
7. Regulace genové exprese, diferenciace buněk a epigenetika
7. Regulace genové exprese, diferenciace buněk a epigenetika Aby mohl mnohobuněčný organismus efektivně fungovat, je třeba, aby se jednotlivé buňky specializovaly na určité funkce. Nový jedinec přitom
1) Úloha světla a fytochromů ve vývoji a růstu rostlin
S 2018 1) Úloha světla a fytochromů ve vývoji a růstu rostlin a) Vlastnosti a lokalizace fytochromů b) eakce rostlin zprostředkované fytochromy c) Ekologické funkce fytochromů d) Buněčný a molekulární
Struktura a funkce biomakromolekul
Struktura a funkce biomakromolekul KBC/BPOL 7. Interakce DNA/RNA - protein Ivo Frébort Interakce DNA/RNA - proteiny v buňce Základní dogma molekulární biologie Replikace DNA v E. coli DNA polymerasa a
Mendelova genetika v příkladech. Transgenoze rostlin. Ing. Petra VESELÁ, Ústav lesnické botaniky, dendrologie a geobiocenologie LDF MENDELU Brno
Mendelova genetika v příkladech Transgenoze rostlin Ing. Petra VESELÁ, Ústav lesnické botaniky, dendrologie a geobiocenologie LDF MENDELU Brno Tento projekt je spolufinancován Evropským sociálním fondem
4) Reakce rostlin k modrému světlu
SFZR 1 2015 4) Reakce rostlin k modrému světlu a) Fotobiologie reakcí zprostředkovaných modrým světlem Whitelam GC, Halliday KJ (eds) (2007) Light and Plant Development Blackwell Publishing Briggs WR,
9. Evo-devo. Thomas Huxley ( )
9. Evo-devo Můžeme žasnout nad procesem, kterým se z vajíčka vyvine dospělý jedinec, ale bez problémů přijímáme tento proces jako každodenní fakt. Je to pouze nedostatek fantazie, který nám brání pochopit,
VÝZNAM REGULACE APOPTÓZY V MEDICÍNĚ
REGULACE APOPTÓZY 1 VÝZNAM REGULACE APOPTÓZY V MEDICÍNĚ Příklad: Regulace apoptózy: protein p53 je klíčová molekula regulace buněčného cyklu a regulace apoptózy Onemocnění: více než polovina (70-75%) nádorů
4) Role světla a fytochromů ve vývoji a růstu rostlin
1 2010 4) Role světla a fytochromů ve vývoji a růstu rostlin c) Ekologické funkce fytochromů d) Buněčný a molekulární mechanismus funkce fytochromů Briggs WR, Spudich JL (eds) (2005) Handbook of Photosensory
Svět RNA a bílkovin. Transkripce. Transkripce TRANSKRIPCE. Úrovně regulace genové exprese eukaryot
Úrovně regulace genové exprese eukaryot Svět RNA a bílkovin TRANSKRIPCE Transkripce Transkripce DNAvazebné bílkoviny DNAvazebné bílkoviny 1 DNA dependentní Katalyzuje chemicky téměř stejnou reakci jako
kvantitativní změna přirůstá hmota, zvětšuje se hmotnost a rozměry rostliny rostou celý život a rychleji než živočichové
Otázka: Růst a vývin rostlin Předmět: Biologie Přidal(a): Verunka kvantitativní změna přirůstá hmota, zvětšuje se hmotnost a rozměry rostliny rostou celý život a rychleji než živočichové FÁZE RŮSTU lze
VLIV SPEKTRÁLNÍHO SLOŽENÍ FOTOSYNTETICKY AKTIVNÍ RADIACE NA INDUKCI FOTOSYNTÉZY TERMOOPTICKÝ JEV
VLIV SPEKTRÁLNÍHO SLOŽENÍ FOTOSYNTETICKY AKTIVNÍ RADIACE NA INDUKCI FOTOSYNTÉZY TERMOOPTICKÝ JEV 1 Vladimír Špunda, 2 Otmar Urban, 1 Martin Navrátil 1 Přírodovědecká fakulta, Ostravská univerzita v Ostravě,
"Učení nás bude více bavit aneb moderní výuka oboru lesnictví prostřednictvím ICT ". Základy genetiky, základní pojmy
"Učení nás bude více bavit aneb moderní výuka oboru lesnictví prostřednictvím ICT ". Základy genetiky, základní pojmy 1/75 Genetika = věda o dědičnosti Studuje biologickou informaci. Organizmy uchovávají,
Rekapitulace. Rostlina vládne buňkám, ne(jen) buňky rostlině.
Rekapitulace Rostliny jsou od živočichů tak daleko, jak jen lze ( univerzální outgroup ). Mnohobuněčnost vznikla vícekrát tj. u rostlin a u živočichů nezávisle. Charakteristické rysy rostlinného organismu:
Modelov an ı biologick ych syst em u Radek Pel anek
Modelování biologických systémů Radek Pelánek Modelování v biologických vědách typický cíl: pomocí modelů se snažíme pochopit, jak biologické systémy fungují model zahrnuje naše chápání simulace ukazuje,
Dostupnost živin jako faktor utvářející morfologii kořenů (trofomorfogeneze) Vliv dusíkatých látek, fosfátů, síranů a iontů železa
Dostupnost živin jako faktor utvářející morfologii kořenů (trofomorfogeneze) Vliv dusíkatých látek, fosfátů, síranů a iontů železa Co je ovlivněno? Primární kořen Laterální kořen Kořenové vlásky (tvoří
Laboratoř růstových regulátorů Miroslav Strnad. ové kultury. Olomouc. Univerzita Palackého & Ústav experimentální botaniky AV CR
Laboratoř růstových regulátorů Miroslav Strnad Tkáňov ové kultury Olomouc Univerzita Palackého & Ústav experimentální botaniky AV CR DEFINICE - růst a vývoj rostlinných buněk, pletiv a orgánů lze účinně
11. Období dospělosti vznik další generaci sporofytu redukčně dělí megaspory mikrospory megagametofyty mikrogametofyty gametofyty gametám stárnutí
1 11. Období dospělosti V období dospělosti je rostlinný jedinec schopen dát vznik další generaci. Specializované buňky dospělého sporofytu se redukčně dělí a vznikají megaspory a mikrospory. Jejich mitotickým
ONTOGENETIC TRANSITIONS (Leyser and Day Chap.9B)
ONTOGENETIC TRANSITIONS (Leyser and Day Chap.9B) Often supported by the increase in GAs. EMF EMF embryonic embryonicflower Repression of many developmental programmes (often on the level of chromatin conformation)
RŮST A VÝVOJ ROSTLIN. Mgr. Alena Výborná Gymnázium, SOŠ a VOŠ Ledeč nad Sázavou VY_32_INOVACE_01_1_11_BI1
RŮST A VÝVOJ ROSTLIN Mgr. Alena Výborná Gymnázium, SOŠ a VOŠ Ledeč nad Sázavou VY_32_INOVACE_01_1_11_BI1 Růst = nezvratné zvětšování rozměrů a hmotnosti rostliny. Dochází ke změnám tvaru a vnitřního uspořádání
3) Role světla a fytochromů ve vývoji a růstu rostlin
1 2014 3) Role světla a fytochromů ve vývoji a růstu rostlin c) Ekologické funkce fytochromů d) Buněčný a molekulární mechanismus funkce fytochromů Whitelam GC, Halliday KJ (eds) (2007) Light and Plant
Exprese genetické informace
Exprese genetické informace Tok genetické informace DNA RNA Protein (výjimečně RNA DNA) DNA RNA : transkripce RNA protein : translace Gen jednotka dědičnosti sekvence DNA nutná k produkci funkčního produktu
AUG STOP AAAA S S. eukaryontní gen v genomové DNA. promotor exon 1 exon 2 exon 3 exon 4. kódující oblast. introny
eukaryontní gen v genomové DNA promotor exon 1 exon 2 exon 3 exon 4 kódující oblast introny primární transkript (hnrna, pre-mrna) postranskripční úpravy (vznik maturované mrna) syntéza čepičky AUG vyštěpení
ve srovnání s eukaryoty (životnost v řádu hodin) u prokaryot kratší (životnost v řádu minut) na životnost / stabilitu molekuly mají vliv
Urbanová Anna ve srovnání s eukaryoty (životnost v řádu hodin) u prokaryot kratší (životnost v řádu minut) na životnost / stabilitu molekuly mají vliv strukturní rysy mrna proces degradace každá mrna v
Nové přístupy v modifikaci funkce genů: CRISPR/Cas9 systém
Nové přístupy v modifikaci funkce genů: CRISPR/Cas9 systém Lesk a bída GM plodin Lesk a bída GM plodin Problémy konstrukce GM plodin: 1) nízká efektivita 2) náhodnost integrace transgenu 3) legislativa
Inovace studia molekulární a buněčné biologie
Inovace studia molekulární a buněčné biologie Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky. MBIO1/Molekulární biologie 1 Tento projekt je spolufinancován
Bi8240 GENETIKA ROSTLIN
Bi8240 GENETIKA ROSTLIN Prezentace 03 Reprodukční vývoj apomixie doc. RNDr. Jana Řepková, CSc. repkova@sci.muni.cz 1. Pohlavní amfimixis megasporogeneze megagametogeneze mikrosporogeneze mikrogametogeneze
Evoluce (nejen) rostlinné buňky Martin Potocký laboratoř buněčné biologie ÚEB AV ČR, v.v.i. potocky@ueb.cas.cz http://www.ueb.cas.cz Evoluce rostlinné buňky Vznik a evoluce eukaryotních organismů strom
Obecná a srovnávací odontologie. Vývojové souvislosti 1: vznik a vývoj zubu jako produkt genetických regulačních kaskád, odontogenní regulační kód
Obecná a srovnávací odontologie Vývojové souvislosti 1: vznik a vývoj zubu jako produkt genetických regulačních kaskád, odontogenní regulační kód Vývojové souvislosti 1: vznik a vývoj zubu jako produkt
Vznik dřeva přednáška
Vznik dřeva přednáška strana 2 2 Rostlinné tělo a růst strana 3 3 Růst - nejcharakterističtější projev živých organizmů - nevratné zvětšování hmoty či velikosti spojené s činností živé protoplazmy - u
TUBULIN-FOLDING COFACTOR A (TFC A) u Arabidopsis
TUBULIN-FOLDING COFACTOR A (TFC A) u Arabidopsis Mikrotubuly Formace heterodimerů α/βtubulinu Translace α a β -tubulin monomerů chaperonin c-cpn správný folding α-tubulin se váže na TFC B a β na TFC
Síra. Deficience síry: řepka. - 0,2-0,5% SH, nedostatek při poklesu obsahu síranů pod 0,01% SH
Síra řepka - 0,2-0,5% SH, nedostatek při poklesu obsahu síranů pod 0,01% SH - toxicita není příliščastá (nad 4000 mg SO 4 2- l -1 ), poškození může vyvolat SO 2 (nad 1-1,5 mg m 3 1 ) fazol Deficience síry:
Frideta Seidlová. Rostliny, obdivuhodné organismy naší planety. Přizpůsobení životu bez pohybu. 328 Vesmír 90, červen 2011
Frideta Seidlová Rostliny, obdivuhodné organismy naší planety Přizpůsobení životu bez pohybu 328 Vesmír 90, červen 2011 http://www.vesmir.cz Č ím to, že rostliny dokážou zaujmout každé místečko, které
Genetika zvířat - MENDELU
Genetika zvířat DNA - primární struktura Několik experimentů ve 40. a 50. letech 20. století poskytla důkaz, že genetický materiál je tvořen jedním ze dvou typů nukleových kyselin: DNA nebo RNA. DNA je
Bi8240 GENETIKA ROSTLIN
Bi8240 GENETIKA ROSTLIN Prezentace 04 Inkompatibilita doc. RNDr. Jana Řepková, CSc. repkova@sci.muni.cz Inkompatibilní systémy vyšších rostlin Neschopnost rostlin tvořit semena Funkční gamety zachovány
7) Senescence a programová smrt buňky (PCD)
MBRO2 1 2018 7) Senescence a programová smrt buňky (PCD) c) Senescence a rostlinné hormony d) Vývojová PCD e) PCD a reakce rostlin ke stresu Nejnovější review: Obecné: Kast DJ, Dominguez R (2017) Current
IV117: Úvod do systémové biologie
IV117: Úvod do systémové biologie David Šafránek 29.10.2008 Obsah Spojitý deterministický model transkripční regulace Obsah Spojitý deterministický model transkripční regulace Schema transkripční regulace
Co nás učí nádory? Prof. RNDr. Jana Šmardová, CSc. Ústav patologie FN Brno Přírodovědecká a Lékařská fakulta MU Brno
Co nás učí nádory? Prof. RNDr. Jana Šmardová, CSc. Ústav patologie FN Brno Přírodovědecká a Lékařská fakulta MU Brno Brno, 17.5.2011 Izidor (Easy Door) Osnova přednášky 1. Proč nás rakovina tolik zajímá?
Transport boru v rostlinách a živočiších. Jeho úloha v růstu a vývoji.
1 Transport boru v rostlinách a živočiších. Jeho úloha v růstu a vývoji. a) Úvod b) Funkce boru v rostlinách c) Mechanizmy transportu boru v rostlinách d) v živočišných tkáních Martin Fellner 2017 Xu F
Základní pojmy obecné genetiky, kvalitativní a kvantitativní znaky, vztahy mezi geny
Obecná genetika Základní pojmy obecné genetiky, kvalitativní a kvantitativní znaky, vztahy mezi geny Doc. RNDr. Ing. Eva PALÁTOVÁ, PhD. Ing. Roman LONGAUER, CSc. Ústav zakládání a pěstění lesů LDF MENDELU
Inovace studia molekulární a buněčné biologie
Inovace studia molekulární a buněčné biologie Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky. MBIO1/Molekulární biologie 1 Tento projekt je spolufinancován
Inovace studia molekulární a buněčné biologie
Investice do rozvoje vzdělávání Inovace studia molekulární a buněčné biologie Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky. Investice do rozvoje vzdělávání
Bakalářské práce. Magisterské práce. PhD práce
Bakalářské práce Magisterské práce PhD práce Témata bakalářských prací na školní rok 2017-2018 1 Název Fenotypová analýza vybraných dvojitých mutantů MAPK v podmínkách abiotického stresu. Školitel Mgr.
Ustavování polarity a os listu
Shrnutí 2. Podélná osa je determinována již na úrovni zygoty, u krytosemenných vajíčka (žádná buňka není sama). Klíčovou roli hraje polární transport auxinu a fixace tělního rozvrhu kombinatorikou transkripčních
3) Senescence a programová smrt buňky (PCD)
1 2010 3) Senescence a programová smrt buňky (PCD) c) Senescence a rostlinné hormony d) Vývojová PCD e) PCD a reakce rostlin ke stresu Gray J (2003) Programmed Cell Death in Plants. University of Toledo,
INTELIGENTNÍ KULTIVACE ROSTLIN
Grow Light 300 INTELIGENTNÍ KULTIVACE ROSTLIN Lightdrop Grow Light je unikátní osvětlovací LED systém s možností regulace spektrálního složení a intenzity světla umožňující indukci intenzivního růstu a
BIORYTMY. Rytmicita procesů. Délka periody CZ.1.07/2.2.00/ Modifikace profilu absolventa biologických studijních oborů na PřF UP
BIORYTMY EKO/EKŽO EKO/EKZSB Ivan H. Tuf Katedra ekologie a ŽP PřF UP v Olomouci Modifikace profilu absolventa : rozšíření praktické výuky a molekulárních, evolučních a cytogenetických oborů Rytmicita procesů
Úloha 5 k zápočtu z přednášky B130P16 (praktické základy vědecké práce)
Úloha 5 k zápočtu z přednášky B130P16 (praktické základy vědecké práce) Úkol: Sepište krátký rukopis vědeckého původního článku na téma "Směrovaný transport auxinu přes plazmatickou membránu hraje úlohu
BUNĚČNÁ TRANSFORMACE A NÁDOROVÉ BUŇKY
BUNĚČNÁ TRANSFORMACE A NÁDOROVÉ BUŇKY 1 VÝZNAM BUNĚČNÉ TRANSFORMACE V MEDICÍNĚ Příklad: Buněčná transformace: postupná kumulace genetických změn Nádorové onemocnění: kolorektální karcinom 2 3 BUNĚČNÁ TRANSFORMACE
1. Definice a historie oboru molekulární medicína. 3. Základní laboratorní techniky v molekulární medicíně
Obsah Předmluvy 1. Definice a historie oboru molekulární medicína 1.1. Historie molekulární medicíny 2. Základní principy molekulární biologie 2.1. Historie molekulární biologie 2.2. DNA a chromozomy 2.3.
MECHANIZMY EPIGENETICKÝCH PROCESŮ
MECHANIZMY EPIGENETICKÝCH PROCESŮ METYLACE DNA Metylace DNA Adice metylové skupiny (CH 3 ) na 5. uhlík cytosinu Obvykle probíhá pouze na cytosinech 5 vůči guanosinu (CpG) Cytosin NH 2 5-Metylcytosin NH
Krása TC. mé zkušenosti s technikami mikropropagace v obrazech.
Krása TC mé zkušenosti s technikami mikropropagace v obrazech. Kultivace stonkových segmentů. Meristémové kultury. Kultivace vzrostných vrcholků. Kultivace rostlin z axilárních pupenů. Hegemonie vrcholu.
CZ.1.07/1.1.00/
Petr Tarkowski Rostlinné hormony malé molekuly s velkým významem Vzdělávání středoškolských pedagogů a studentů středních škol jako nástroj ke zvyšování kvality výuky přírodovědných předmětů CZ.1.07/1.1.00/14.0016
Mgr. Veronika Peňásová vpenasova@fnbrno.cz Laboratoř molekulární diagnostiky, OLG FN Brno Klinika dětské onkologie, FN Brno
Retinoblastom Mgr. Veronika Peňásová vpenasova@fnbrno.cz Laboratoř molekulární diagnostiky, OLG FN Brno Klinika dětské onkologie, FN Brno Retinoblastom (RBL) zhoubný nádor oka, pocházející z primitivních
Auxin - nejdéle a nejlépe známý fytohormon
Auxin - nejdéle a nejlépe známý fytohormon Auxin je nejdéle známým fytohormonem s mnoha popsanými fyziologickými účinky Darwin 1880, Went 1928 pokusy s koleoptilemi trav a obilovin prokázali existenci
Vztah genotyp fenotyp
Evoluce fenotypu II Vztah genotyp fenotyp plán? počítačový program? knihovna? genotypová astrologie (Jablonka a Lamb) Modely RNA - různé vážení: A-U, G-C, G-U interakcí, penalizace za neodpovídající si
RŮST A VÝVOJ ROSTLIN
RŮST A VÝVOJ ROSTLIN růstové fáze vývojové fáze vnitřní činitelé růstu a vývoje fytohormony vnější činitelé růstu a vývoje celistvost rostlin životní cyklus rostlin Růst rostlin nevratné přibývání hmoty
Inovace studia molekulární a buněčné biologie reg. č. CZ.1.07/2.2.00/
Inovace studia molekulární a buněčné biologie reg. č. CZ.1.07/2.2.00/07.0354 LRR/OBBC LRR/OBB Obecná biologie Rostlinná pletiva II. Mgr. Lukáš Spíchal, Ph.D. Cíl přednášky Popis struktury a funkce rostlinných
19. století. b) Fotoreceptory c) Přenos signálu. b) Fotoreceptory modrého světla: Kryptochromy (cryptochromes) PHR
SFR 2018 2) Reakce rostlin k modrému světlu 1 19. století Charles a Francis Darwin Studium fototropismu koleoptile 2 b) Fotoreceptory c) Přenos signálu Počátek 90. let Identifikace fotoreceptorů Identifikace
2) Reakce rostlin k modrému světlu
SFR 1 2017 2) Reakce rostlin k modrému světlu b) Fotoreceptory c) Přenos signálu Whitelam GC, Halliday KJ (eds) (2007) Light and Plant Development Blackwell Publishing Briggs WR, Spudich JL (eds) (2005)
Molekulární biotechnologie č.12. Využití poznatků molekulární biotechnologie. Transgenní rostliny.
Molekulární biotechnologie č.12 Využití poznatků molekulární biotechnologie. Transgenní rostliny. Transgenní organismy Transgenní organismus: Organismus, jehož genom byl geneticky modifikován cizorodou
Molekulární základy dědičnosti. Ústřední dogma molekulární biologie Struktura DNA a RNA
Molekulární základy dědičnosti Ústřední dogma molekulární biologie Struktura DNA a RNA Ústřední dogma molekulární genetiky - vztah mezi nukleovými kyselinami a proteiny proteosyntéza replikace DNA RNA