Laboratoř růstových regulátorů Miroslav Strnad. ové kultury. Olomouc. Univerzita Palackého & Ústav experimentální botaniky AV CR
|
|
- Miloslava Zuzana Němcová
- před 9 lety
- Počet zobrazení:
Transkript
1 Laboratoř růstových regulátorů Miroslav Strnad Tkáňov ové kultury Olomouc Univerzita Palackého & Ústav experimentální botaniky AV CR
2 DEFINICE - růst a vývoj rostlinných buněk, pletiv a orgánů lze účinně řídit (regulovat) in vitro v aseptických podmínkách - dáno totipotencí rostlina (orgán, buňky) je schopna dediferencovat, dělit se a zahájit nové směry vývoje různými směry, včetně vzniku nových rostlinných jedinců - důležitý experimentální objekt + základem rostlinných biotechnologií - tkáňová kultura: u nás explantátové kultury, není správné, neboť explantát je pouze primární pletivo nebo orgán, ale ne třeba kalusová kultura či jiná in vitro kultura - ve světě: plant tissue, tkaněvaja kultura, die Gewebekultur (nerozlišují pletivo a tkáň česká zvláštnost) a proto lepší používat tkáňové kultury než pletivové kultury
3 Založení explantátové kultury a tvorba kalusu - přenesení primárního rostlinného orgánu či pletiva (explantát) do aseptických (in vitro) podmínek na agar nebo do tekutého média v kultivační nádobě je explantátová kultura (viz. obr) - medium obsahuje min. prvky, cukr, vitaminy, auxiny a cytokininy - na povrchu explantátu se během několika dní začnou dělit buňky, tvoříse kalus amorfní, histologicky neorganizované pletivo podobné nádorům, dediferenciace buněk explantátu a neorganizované dělení ovlivňují hormony, ale i vlivem poranění, když bez hormonů tak mají pletiva vysoký endogenní obsah, nebo po transformaci A. tumefaciens
4 Založení explantátové kultury a tvorba kalusu Tkáňová (kalusová) kultura - část kalusu se pravidelně přenáší pasážování, kultura je nesmrtelná, ale mění se cytogeneticky ( ploidie a aneuploidie a morfogenetický potenciál regenerační schopnost diferencovat orgány či embrya), vznikají klony, které se liší somaklonální variabilita i u regenerovaných rostlin Buněčná suspenzní kultura - kalus lze převést v suspenzi buněk třepáním v tek. médiu směs buněk a jejich agregátů, lze udržovat ve stálém růstu a dělení, ale i synchronizovat bun. dělení BY-2 pro studium bun. cyklu
5 Morfogeneze in vitro Model morfogeneze podle Miller a Skoog lze regenerovat orgány či embrya cestou diferenciace z tkáňové kultury, explantátu, bun. suspenze, kultury pylových zrn, působí hlavně fytohormony, tvoříse meristemoidy, ty se mohou vyvíjet těmito směry: 1) Organogeneze tvorba orgánů kořeny, pupeny, prýty, listy, květy, hlízky, 1 i více 2) Somatická embryogeneze tvorba somatických embryí či embryoidů stadia vývoje stejná jako u zygotických embryí (globulární, srdčitá a torpédovitá), z nich je možné regenerovat celou rostlinu 3) Pylová embryogeneze z kultur izolovaných pylových zrn
6 KULTURY IZOLOVANÝCH ORGÁNŮ - vývoj založen na histologicky organizovaném růstu a dělení meristematických nebo pohlavních buněk Meristémové kultury k vegetativnímu množení z apikálních nebo laterálních meristémů + regenerace rostliny (lupa), bez RR, někdy AUX k zakořenění říká se tomu mikropropagace (10000/m 2 ), bez somaklonální variability, eliminace virů, naklonování nejhezčí a nej. rostliny Prašníkové kultury kultivace nezralých prašníků in vitro vede k tvorbě embryoidů, androgeneze z pylových zrn, organogeneze - z haploidního kalusu, může se tvořit i diploidní kalus z obalových pletiv, lze získat haploidní rostliny či embry a kolchicinem převést na dihaploidní homozygotní linie (probíhá i spontánně) ke šlechtění Kultury pylových zrn a láček izolované mikrospory a nezralá pylová zrna (lupa) pylová embryogeneze (=androgeneze), indukce často stresem (hladovění, teplota) zastavuje normální gametofytický vývoj pylu, přenos do podmínek indukujících sporofytický vývoj embrya, většinou bez RR Kultivace pylových láček klíčení zralého pylu na médiu se sacharosou a H 3 BO 3 posléze další složky, slouží ke studiím vývojové biologie pylu Kultury izolovaných vajíček a vaječníků gynogeneze (embryonální vývoj neoplozeného zárodečného vaku), haploidní z buněk vajíčka či dalších haploidních buněk zárodečného vaku Kultury izolovaných embryí nezralá embrya po extirpaci a kultivaci vytváří sekundární embrya množení dřevin, důležité pro udržení rostlin, kde dochází k aborci endospermu Kultury izolovaných kořenů isolované kořeny na jednoduchých mediích (glukosa, glycin, min. živiny a thiamin), koř. špičky (5 mm), tvoří hustou síť kořenů
7 KULTURY IZOLOVANÝCH ORGÁNŮ
8 KULTURY IZOLOVANÝCH PROTOPLASTŮ - izolace z listového mezofylu, kalusu nebo bun. suspenze - působení pektinasy a celulasy, bez buněčné stěny, ke studium transportu látek přes membránu, reg. bun. stěny, isolace organel, DNA a bílkovin - Protoplasty mohou fúzovat vznik somatických hybridů napřed kalus a potom regenerace rostlin tak lze křížit nekřižitelné druhy, brukev + rajče Rostlinné nádory viz. A. tumefaciens nadprodukce RR Habituace při kultivaci se mohou kalusy stát nezávislými na exogenních RR, mají vlastní syntézu
9 Laboratoř růstových regulátorů Miroslav Strnad Biorytmy Olomouc Univerzita Palackého & Ústav experimentální botaniky AV CR
10 DEFINICE - mnohé procesy v rostlinách mají charakter rytmů pravidelně se opakují - rytmy exogenní (vliv vnějšího prostředí) a endogenní (biorytmy generovány zvláštním oscilátorem biologickými hodinami) adaptace na střídání dne a noci, ročních období, měsíc, odliv, - Biorytmus pravidelně se opakující změna v živé soustavě - Biologický cyklus je základní jednotkou biorytmů; opakuje se ve stejném pořadí a ve stejné době - Endogenní rytmus (spontánní) probíhá i v neperiodickém prostředí = biorytmus - Perioda doba trvání cyklu, dělení na: Biorytmus Perioda Cirkadiální v rozmezí hod Ultradiální kratší než 20 hod (cirkumnutace) Infradiální delší než 28 hod Semilunární 14 dní Lunární 28 dní (mezi úplňky) Annuální jednoroční (klíčivost semen) Amplituda je polovina z rozdílu mezi maximální a minimální amplitudou měnící se veličiny Frekvence počet cyklů za jednotku času Synchronizátor signál z vnějšího prostředí, který seřizuje endogenní rytmus s vnějším, např. stmívání a svítání Seřízení rytmu synchronizace rytmu s jiným Biologické hodiny nebo-li oscilátor mechanismus, který je zdrojem časové informace v biol. rytmu Fáze libovolná část rytmu Historie starověk listy mění polohu ve dne a v noci, rytmické (spánkové) pohyby, 1929 francouzský astronom de Marian, mimóza několik dní ve tmě - dále Darwin Sachs, Pfeffer cirkadiální rytmy, rytmus je dědičný klíčení semen 6/6 hod podle toho rytmy, když se předělali na 24 hod světlo, přešli na střídání dne a noci spánkové pohyby Erwin Bünning definoval biologické hodiny a postuloval jejich úloha ve fotoperiodické regulaci kvetení
11 Cirkadiální rytmy Spánkové pohyby listů (nyktinastie) fazol, mimóza, stromy Samanea a Albizzia; funguje i u uříznutých listů ve tmě v roztoku sacharosy, dáno vstupen K + (také H + a Cl -, podobně jako u svěracích buněk), v buňkách pulvinu, ne jedné straně extensorové buňky (zvětšují se ve dne, list jde nahoru), na druhé flexorové (pokles listu, zvětšení v noci) Obr. Registrace spánkových pohybů fazolu termohydrograf.
12 Cirkadiální rytmy Spákové pohyby květů u Kalanchoe,v noci korunní lístky vzhůru, uzavření květu, ve dne dolů otvíráníkvětu, finguje i u uříznutého květu (v cukru) Eksudace vlivem kořenového vztlaku např. u slunečnice Fotosyntéza CAM a zavírání a otvírání průduchů Buněčné dělení a fotosyntéza u řas Euglena gracilis, Obr. Záznam spánkových pohybů listu fazolu šarlatového. Rytmus přetrvává i v trvalé tmě, ale amplituda výchylky se postupně, s klesající zásobou energie zmenšuje.
13 Cirkadiální rytmy a světlo-fázový skok Obecným znakem cirkadiálních rytmů je citlivost ke světlu, patrná z časového posunu fáze rytmu působením jediného světelného impulsu, pulsy na počátku noci cyklus zpožďují, po půlnoci posouvají cyklus dopředu Pozoruhodný je fázový skok (přefázování), podobné u řady organismů
14 Seřízení rytmů v přirozených podmínkách - Za seřízení zodpovědny fytochromy a kryptochromy (fotoreceptory) důležitá je změna ozářenosti a spektra při svítání a stmívání, intenzivní světlo urychluje synchronizaci - Biologické hodiny žádný z biorytmů není zatím primárním zdrojem časové informace pouze ručičkami, s cirkadiálními rytmy souvisí syntéza bílkovin - Oscilátor u rostlin (u A. thaliana) je to transkripční-zpětnovazebný obvod TF kódovaný genem TOC1 (timing of CAB, tj. chlorophyll A/B binding protein). Při mutaci jedné alely jsou zkráceny periody všech cyklických dějů v rostlině včetně cyklické exprese TOC1. Partnery TOC1 jsou protein Myb kódované lokusy CCA1 (circadian clock associated) a LHY (late elongated hypocotyl). Zatímco TOC1 aktivuje jejich expresi, CCA a LHY inhibují expresi TOC1. maxima genové exprese těchto vzájemně se regulujících jednotek oscilátoru jsou posunuta o 12 hod. Oscilátor je rovněž propojen s fotoreceptory. Micorarray analýzy ukázaly, že více jak 500 genů je v rostlinách exprimováno cyklicky.
15 Oscilátor Oscilátor u rostlin (u A. thaliana) je to transkripční zpětno-vazebný obvod TF kódovaný genem TOC1 (timing of CAB, tj. chlorophyll A/B binding protein). Při mutaci jedné alely jsou zkráceny periody všech cyklických dějů v rostlině včetně cyklické exprese TOC1. Partnery TOC1 jsou protein Myb kódované lokusy CCA1 (circadian clock associated) a LHY (late elongated hypocotyl). Zatímco TOC1 aktivuje jejich expresi, CCA a LHY inhibují expresi TOC1. maxima genové exprese těchto vzájemně se regulujících jednotek oscilátoru jsou posunuta o 12 hod. Oscilátor je rovněž propojen s fotoreceptory. Micorarray analýzy ukázaly, že více jak 500 genů je v rostlinách exprimováno cyklicky.
AUTOTROFNÍ A HETEROTROFNÍ VÝŽIVA ROSTLIN, VODNÍ REŽIM ROSTLIN, RŮST A POHYB ROSTLIN
Otázka: Výživa rostlin, vodní režim rostlin, růst a pohyb rostlin Předmět: Biologie Přidal(a): Cougee AUTOTROFNÍ A HETEROTROFNÍ VÝŽIVA ROSTLIN, VODNÍ REŽIM ROSTLIN, RŮST A POHYB ROSTLIN 1. autotrofní způsob
RŮST A VÝVOJ ROSTLIN. Mgr. Alena Výborná Gymnázium, SOŠ a VOŠ Ledeč nad Sázavou VY_32_INOVACE_01_1_11_BI1
RŮST A VÝVOJ ROSTLIN Mgr. Alena Výborná Gymnázium, SOŠ a VOŠ Ledeč nad Sázavou VY_32_INOVACE_01_1_11_BI1 Růst = nezvratné zvětšování rozměrů a hmotnosti rostliny. Dochází ke změnám tvaru a vnitřního uspořádání
Krása TC. mé zkušenosti s technikami mikropropagace v obrazech. Nepřímá organogeneze, nepřímá somatická embryogeneze.
Krása TC mé zkušenosti s technikami mikropropagace v obrazech. Nepřímá organogeneze, nepřímá somatická embryogeneze. Kalusové kultury, protokormy. I když kalusové kultury nejsou metodou běžnou při rozmnožování
Regulace růstu a vývoje
Regulace růstu a vývoje REGULACE RŮSTU A VÝVOJE ROSTLINNÉHO ORGANISMU a) Regulace na vnitrobuněčné úrovni závislost na rychlosti a kvalitě metabolických drah, resp. enzymů a genů = regulace aktivity enzymů
Inovace studia molekulární a buněčné biologie reg. č. CZ.1.07/2.2.00/07.0354
Inovace studia molekulární a buněčné biologie reg. č. CZ.1.07/2.2.00/07.0354 LRR/OBBC LRR/OBB Obecná biologie Orgány rostlin II. Mgr. Lukáš Spíchal, Ph.D. Cíl přednášky Popis anatomie, morfologie a funkce
Rostlinné explantáty (kultury in vitro)
Rostlinné explantáty (kultury in vitro) Jaroslava Dubová Ústav experimentální biologie Oddělení fyziologie a anatomie rostlin a Laboratoř molekulární fyziologie rostlin Přírodovědecká fakulta Masarykova
BUNĚČNÁ STĚNA - struktura a role v rostlinné buňce
BUNĚČNÁ STĚNA - struktura a role v rostlinné buňce Buněčná stěna O buněčné stěně: Buněčná stěna je nedílnou součástí každé rostlinné buňky a je jednou z charakteristických struktur odlišujících buňku rostlinnou
7) Dormance a klíčení semen
2015 7) Dormance a klíčení semen 1 a) Dozrávání embrya a dormance b) Klíčení semen 2 a) Dozrávání embrya a dormance Geny kontrolující pozdní fázi vývoje embrya - dozrávání ABI3 (abscisic acid insensitive
Zvyšování konkurenceschopnosti studentů oboru botanika a učitelství biologie CZ.1.07/2.2.00/15.0316
Zvyšování konkurenceschopnosti studentů oboru botanika a učitelství biologie CZ.1.07/2.2.00/15.0316 Tradice šlechtění šlechtění zlepšování pěstitelsky, technologicky a spotřebitelsky významných vlastností
Obsah vody v rostlinách
Transpirace 1/39 Obsah vody v rostlinách Obsah vody v protoplazmě (její hydratace) je nezbytný pro normální průběh životních funkcí buňky. Snížení obsahu vody má za následek i omezení životních dějů (pozorovatelné
UNIVERZITA KARLOVA V PRAZE 3. LÉKAŘSKÁ FAKULTA (tématické okruhy požadavků pro přijímací zkoušku)
UNIVERZITA KARLOVA V PRAZE 3. LÉKAŘSKÁ FAKULTA (tématické okruhy požadavků pro přijímací zkoušku) B I O L O G I E 1. Definice a obory biologie. Obecné vlastnosti organismů. Základní klasifikace organismů.
Tento projekt je spolufinancován Evropským sociálním fondem a Státním rozpočtem ČR InoBio CZ.1.07/2.2.00/28.0018
Tento projekt je spolufinancován Evropským sociálním fondem a Státním rozpočtem ČR InoBio CZ.1.07/2.2.00/28.0018 2.4 GENETICKÉ MANIPULACE in vitro - nekonvenční techniky, kterými lze modifikovat rostlinný
Hematologie. Nauka o krvi Klinická hematologie Laboratorní hematologie. -Transfuzní lékařství - imunohematologie. Vladimír Divoký
Hematologie Nauka o krvi Klinická hematologie Laboratorní hematologie -Transfuzní lékařství - imunohematologie Vladimír Divoký Fyzikální vlastnosti krve 3-4 X více viskózní než voda ph : 7.35 7.45 4-6
Vliv různých druhů cytokininů na zakořeňování moruše černé in vitro
STŘEDOŠKOLSKÁ ODBORNÁ ČINNOST Vliv různých druhů cytokininů na zakořeňování moruše černé in vitro Michaela Medková Tišnov 2013 STŘEDOŠKOLSKÁ ODBORNÁ ČINNOST Obor SOČ: Zemědělství, potravinářství, lesní
Rostlinné explantáty. Co jsou to rostlinné explantáty? Jaké specifické vlastnosti rostlin umožňují jejich kultivaci in vitro?
Rostliny in vitro Rostlinné explantáty Co jsou to rostlinné explantáty? G. Haberlandt Jaké specifické vlastnosti rostlin umožňují jejich kultivaci in vitro? Jaké podmínky zajistit, aby kultivace byla úspěšná?
Genetická kontrola prenatáln. lního vývoje
Genetická kontrola prenatáln lního vývoje Stádia prenatáln lního vývoje Preembryonální stádium do 6. dne po oplození zygota až blastocysta polární organizace cytoplasmatických struktur zygoty Embryonální
ŠKOLNÍ VZDĚLÁVACÍ PROGRAM. D. Kvasničková a kol.: Ekologický přírodopis pro 7. ročník ZŠ a nižší ročníky víceletých gymnázií, 1. a 2.
Vyučovací předmět : Období ročník : Učební texty : Přírodopis 3. období 7. ročník D. Kvasničková a kol.: Ekologický přírodopis pro 7. ročník ZŠ a nižší ročníky víceletých gymnázií, 1. a 2. část Očekávané
Molekulární biotechnologie č.12. Využití poznatků molekulární biotechnologie. Transgenní rostliny.
Molekulární biotechnologie č.12 Využití poznatků molekulární biotechnologie. Transgenní rostliny. Transgenní organismy Transgenní organismus: Organismus, jehož genom byl geneticky modifikován cizorodou
Molekulární mechanismy diferenciace a programované buněčné smrti - vztah k patologickým procesům buněk. Aleš Hampl
Molekulární mechanismy diferenciace a programované buněčné smrti - vztah k patologickým procesům buněk Aleš Hampl Tkáně Orgány Živé buňky, které plní různé funkce (podpora struktury, přijímání živin, lokomoce,
Úvod do biologie rostlin Úvod PŘEHLED UČIVA
Slide 1a Slide 1b Systém Slide 1c Systém Anatomie Slide 1d Systém Anatomie rostlinná buňka stavba a funkce Slide 1e Systém Anatomie rostlinná buňka stavba a funkce buněčná stěna, buněčné membrány, membránové
REPRODUKCE A ONTOGENEZE Od spermie s vajíčkem až po zralého jedince. Co bylo dřív? Slepice nebo vejce?
REPRODUKCE A ONTOGENEZE Od spermie s vajíčkem až po zralého jedince Co bylo dřív? Slepice nebo vejce? Rozmnožování Rozmnožování (reprodukce) může být nepohlavní (vegetativní, asexuální) pohlavní (sexuální;
Rostlinné orgány. Kořen (radix)
- jsou tvořeny soubory pletiv - vyznačují se určitou funkcí a stavbou Rostlinné orgány Rostlinné orgány vegetativní (vyživovací) kořen, stonek, list - funkce : zajištění výživy, růstu a výměny látek s
ZDRAVÝ SPÁNEK Ing. Vladimír Jelínek
ZDRAVÝ SPÁNEK Ing. Vladimír Jelínek ZDRAVÝ SPÁNEK Spánek byl po celá tisíciletí považován za pasivní jev blízký bezesné smrti. Shakespeare ve svém Hamletovi považuje smrt za sestru spánku 2 ZDRAVÝ SPÁNEK
Vodní režim rostlin. Úvod Adaptace, aklimace: rostliny vodní, poikilohydrické (řasy, mechy, lišejníky, kapradiny, vyšší rostliny) a homoiohydrické.
Vodní režim rostlin Úvod Adaptace, aklimace: rostliny vodní, poikilohydrické (řasy, mechy, lišejníky, kapradiny, vyšší rostliny) a homoiohydrické. Obsah vody, RWC, vodní potenciál a jeho komponenty: charakteristika,
,,Škola nás baví CZ. 1.07/1.4.00/21.1342
,,Škola nás baví CZ. 1.07/1.4.00/21.1342 VY_52_INOVACE_Př.Ma.15 AutoSave 1 Základní škola a Mateřská škola Dolní Hbity, okres Příbram PŘÍRODOPIS 7. ročník KVĚT A KVĚTENSTVÍ Vypracovala: Ing. Miroslava
Tkáňové kultury rostlin. Mikropropagace
Tkáňové kultury rostlin Mikropropagace IN VITRO KULTURY (EXPLANTÁTOVÉ KUTLURY, ROSTLINNÉ EXPLANTÁTY) Izolované rostliny, jejich orgány, pletiva či buňky pěstované in vitro ve sterilních podmínkách Na kultivačních
orientuje se v přehledu vývoje organismů a rozliší základní projevy a podmínky života
Přírodopis ZŠ Heřmánek vnímá ztrátu zájmu o přírodopis na úkor pragmatického rozhodování o budoucí profesi. Náš názor je, že přírodopis je nedílnou součástí všeobecného vzdělání, především protože vytváří
Vodní režim rostlin. Obsah vody, RWC, vodní potenciál a jeho komponenty: Adaptace, aklimace: rostliny vodní, poikilohydrické (řasy, mechy,
Vodní režim rostlin Úvod Klima, mikroklima Adaptace, aklimace: rostliny vodní, poikilohydrické (řasy, mechy, lišejníky, kapradiny, vyšší rostliny) a homoiohydrické. Obsah vody, RWC, vodní potenciál a jeho
Zvyšování kvality výuky technických oborů
Zvyšování kvality výuky technických oborů Klíčová aktivita V.2 Inovace a zkvalitnění výuky směřující k rozvoji odborných kompetencí žáků středních škol Téma V.2.18 Dřeviny Kapitola 2 Rozmnožování rostlin
OBOROVÁ RADA Fyziologie a patofyziologie člověka
OBOROVÁ RADA Fyziologie a patofyziologie člověka Předseda Prof. MUDr. Jaroslav Pokorný, DrSc. Fyziologický ústav 1. LF UK, Albertov 5, 128 00 Praha 2 e-mail: jaroslav.pokorny@lf1.cuni.cz Členové Prof.
Mendelova genetika v příkladech. Transgenoze rostlin. Ing. Petra VESELÁ, Ústav lesnické botaniky, dendrologie a geobiocenologie LDF MENDELU Brno
Mendelova genetika v příkladech Transgenoze rostlin Ing. Petra VESELÁ, Ústav lesnické botaniky, dendrologie a geobiocenologie LDF MENDELU Brno Tento projekt je spolufinancován Evropským sociálním fondem
ontogeneze listu zpočátku všechny buňky mají meristematický charakter, růst všemi směry (bazální, marginální a apikální meristémy listu)
Anatomie listu ontogeneze listu epidermis mezofyl vaskularizace vliv ekologických podmínek na stavbu listů listy jehličnanů listy suchomilných rostlin listy vlhkomilných rostlin listy vodních rostlin opadávání
2012/2013. Fyziologie rostlin: MB130P14, kolektiv přednášejících Albrechtová a kol.
2012/2013 Fyziologie rostlin: MB130P14, kolektiv přednášejících Albrechtová a kol. Místo konání: Viničná 7, 2. patro, B7, Zoologická posluchárna, 14:50-17:15 No. Téma: Přednášející CZ: Datum 1 Formování
"Učení nás bude více bavit aneb moderní výuka oboru lesnictví prostřednictvím ICT ". Oplození
"Učení nás bude více bavit aneb moderní výuka oboru lesnictví prostřednictvím ICT ". Oplození 1/66 Oplození = splynutí samčí pohlavní buňky s pohlavní buňkou samičí, při čemž vzniká diploidní zygota středa,
RŮST A VÝVOJ. Diferenciace rozlišování meristematických buněk na buňky specializované
RŮST A VÝVOJ Růst nevratný nárůst hmoty způsobený činností živé protoplasmy hmota a objem buněk, počet buněk, množství protoplasmy kvantitativní změny Diferenciace rozlišování meristematických buněk na
ŠKOLNÍ VZDĚLÁVACÍ PROGRAM
Vyučovací předmět : Období ročník : Učební texty : Přírodopis 3. období 9. ročník Danuše Kvasničková, Ekologický přírodopis pro 9. ročník ZŠ a nižší ročníky víceletých gymnázií, nakl. Fortuna Praha 1998
Základní škola Fr. Kupky, ul. Fr. Kupky 350, 518 01 Dobruška 5.6 ČLOVĚK A PŘÍRODA - 5.6.3 PŘÍRODOPIS - Přírodopis - 7. ročník
OBECNÁ BIOLOGIE A GENETIKA RVP ZV Obsah 5.6 ČLOVĚK A PŘÍRODA 5.6.3 PŘÍRODOPIS Přírodopis 7. ročník RVP ZV Kód RVP ZV Očekávané výstupy ŠVP Školní očekávané výstupy ŠVP Učivo P9101 rozliší základní projevy
Anotace: Materiál je určen k výuce přírodopisu v 7. ročníku ZŠ. Seznamuje žáky se základy obecné botaniky. Materiál je plně funkční pouze s použitím
Anotace: Materiál je určen k výuce přírodopisu v 7. ročníku ZŠ. Seznamuje žáky se základy obecné botaniky. Materiál je plně funkční pouze s použitím internetu. kormus rinyofyty pletivo tkáň kořen stonek
Škola: Střední škola obchodní, České Budějovice, Husova 9. Inovace a zkvalitnění výuky prostřednictvím ICT
Škola: Střední škola obchodní, České Budějovice, Husova 9 Projekt MŠMT ČR: EU PENÍZE ŠKOLÁM Číslo projektu: CZ.1.07/1.5.00/34.0536 Název projektu školy: Výuka s ICT na SŠ obchodní České Budějovice Šablona
Mikropropagace klonů lesních dřevin termíny a důležité fenomény na fotografických dokumentech.
Mikropropagace klonů lesních dřevin termíny a důležité fenomény na fotografických dokumentech. Řešitel: Ing. Hana Prknová Spoluřešitelé: Prof. Ing. Jaroslav Kobliha, CSc. Ing. Jaroslav Klápště ČZU FLD
Stavba těla rostlin. VY_32_Inovace_05_10_stavba_těla_rostlin_2.notebook. March 23, 2013. Škola. Vzdělávací oblast. Anotace.
Pořadové číslo a název projektu: CZ.1.07/1.4.00/21.2671 "Učení nás baví" Stavba těla rostlin Škola Základní škola praktická, Liberecká 31, Jablonec nad Nisou, příspěvková organizace Autor Mgr. Zuzana Drahotová
inženýrství rostlin U3V
BIOTECHNOLOGIE a genové inženýrství rostlin U3V Zdeněk OPATRNÝ Katedra experimentální biologie rostlin, Přírodovědecká fakulta UK Praha Letní semestr 2014 Teoretické a metodické základy biotechnologického
Bakalářské práce. Magisterské práce. PhD práce
Bakalářské práce Magisterské práce PhD práce Témata bakalářských prací na školní rok 2015-2016 1 Název Funkční analýza jaderných proteinů fosforylovaných pomocí mitogenaktivovaných proteinkináz. Školitel
FYTOREMEDIACE LÉČIV A JEJICH REZIDUÍ
FYTOREMEDIACE LÉČIV A JEJICH REZIDUÍ Petr Soudek Ústav experimentální botaniky Akademie věd ČR Centralizovaný rozvojový projekt MŠMT č. C29: Integrovaný systém vzdělávání v oblasti výskytu a eliminace
Prezentace je využitelná i při přípravě studentů na MZ, u příslušného maturitního okruhu Pohlavní soustava.
Digitální učební materiál Projekt CZ.1.07/1.5.00/34.0415 Inovujeme, inovujeme Šablona III/2 Inovace a zkvalitnění výuky prostřednictvím ICT (DUM) Tematická Vylučovací soustava Společná pro celou sadu oblast
Učební osnovy předmětu Biologie
(kvinta a sexta) Učební osnovy předmětu Biologie Charakteristika předmětu Vyučovací předmět vychází ze vzdělávací oblasti Člověk a příroda, vzdělávacích oborů Biologie a Geologie. Integruje část vzdělávacího
Země živá planeta Vznik Země. Vývoj Země. Organické a anorganické látky. Atmosféra Člověk mění složení atmosféry. Člověk mění podnebí planety
Vyučovací předmět Přídopis Týdenní hodinová dotace 2 hodiny Ročník Prima Roční hodinová dotace 72 hodin Výstupy Učivo Průřezová témata, mezipředmětové vztahy Žák porozumí rozdělení nebeských těles ve vesmíru
Dědičnost pohlaví Genetické principy základních způsobů rozmnožování
Dědičnost pohlaví Vznik pohlaví (pohlavnost), tj. komplexu znaků, vlastností a funkcí, které vymezují exteriérové i funkční diference mezi příslušníky téhož druhu, je výsledkem velmi komplikované série
Je-li rostlinné společenstvo tvořeno pouze jedinci jedné populace, mluvíme o monocenóze nebo také o čistém prostoru.
EKOLOGIE SPOLEČENSTVA (SYNEKOLOGIE) Rostlinné společenstvo (fytocenózu) můžeme definovat jako soubor jedinců a populací rostlin rostoucích společně na určitém stanovišti, které jsou ovlivňovány svým prostředím,
2 PLETIVA 2.1 PLETIVA DĚLIVÁ (MERISTÉMY)
2 PLETIVA Buňky v tělech vyšších rostlin vytvářejí pravá pletiva. Jsou to soubory buněk přibližně stejného tvaru a stejné funkce, které vznikají činností jedné nebo více dělivých buněk, tzv. iniciál. Buňky
Tematický plán učiva BIOLOGIE
Tematický plán učiva BIOLOGIE Třída: Prima Počet hodin za školní rok: 66 h 1. POZNÁVÁME PŘÍRODU 2. LES 2.1 Rostliny a houby našich lesů 2.2 Lesní patra 2.3 Živočichové v lesích 2.4 Vztahy živočichů a rostlin
5. Příjem, asimilace a fyziologické dopady anorganického dusíku. 5. Příjem, asimilace a fyziologické dopady anorganického dusíku
5. Příjem, asimilace a fyziologické dopady anorganického dusíku Zdroje dusíku dostupné v půdě: Amonné ionty + Dusičnany = největší zdroj dusíku v půdě Organický dusík (aminokyseliny, aminy, ureidy) zpracování
M A T U R I T N Í T É M A T A
M A T U R I T N Í T É M A T A BIOLOGIE ŠKOLNÍ ROK 2017 2018 1. BUŇKA Buňka základní strukturální a funkční jednotka. Chemické složení buňky. Srovnání prokaryotické a eukaryotické buňky. Funkční struktury
Téma KULTIVACE IN VITRO. Praktikum fyziologie rostlin
Téma KULTIVACE IN VITRO Praktikum fyziologie rostlin Teoretický úvod: KULTIVACE IN VITRO Rostlinný materiál lze krom pirozených podmínek pstovat také v rzných umlých podmínkách. Jednou z tchto možností
10. Minerální výživa rostlin na extrémních půdách
10. Minerální výživa rostlin na extrémních půdách Extrémní půdy: Kyselé Alkalické Zasolené Kontaminované těžkými kovy Kyselé půdy Procesy vedoucí k acidifikaci (abnormálnímu okyselení): Zvětrávání hornin
ONKOGENETIKA. Spojuje: - lékařskou genetiku. - buněčnou biologii. - molekulární biologii. - cytogenetiku. - virologii
ONKOGENETIKA Spojuje: - lékařskou genetiku - buněčnou biologii - molekulární biologii - cytogenetiku - virologii Důležitost spolupráce různých specialistů při detekci hereditárních forem nádorů - (onkologů,internistů,chirurgů,kožních
umožňují enzymatické systémy živé protoplazmy, nezbytný je kyslík,
DÝCHÁNÍ ROSTLIN systém postupných oxidoredukčních reakcí v živých buňkách, při kterých se z organických látek uvolňuje energie, která je zachycena jako krátkodobá energetická zásoba v ATP, umožňují enzymatické
Autor: Katka www.nasprtej.cz Téma: pletiva Ročník: 1.
Histologie pletiva - soubory buněk v rostlinách Pletiva = trvalé soubory buněk, které konají stejnou funkci a mají přibliţně stejný tvar a stavbu rozdělení podle vzniku: - pravá kdyţ se 1 buňka dělí dceřiné
Radiobiologický účinek záření. Helena Uhrová
Radiobiologický účinek záření Helena Uhrová Fáze účinku fyzikální fyzikálně chemická chemická biologická Fyzikální fáze Přenos energie na e Excitace molekul, ionizace Doba trvání 10-16 - 10-13 s Fyzikálně-chemická
Bakalářské práce. Magisterské práce. PhD práce
Bakalářské práce Magisterské práce PhD práce Témata bakalářských prací na školní rok 2017-2018 1 Název Fenotypová analýza vybraných dvojitých mutantů MAPK v podmínkách abiotického stresu. Školitel Mgr.
Autorem materiálu a všech jeho částí, není-li uvedeno jinak, je L. Sinkulová
1/7 3.2.08.9 pokračování rodu - rozeznáváme pohlavní a nepohlavní /střídají se v průběhu života každé rostliny/ - samčí a samičí buňky splynou /oplození/ = zygota, vzniká nová rostlina uložená v semeni
6. Kde v DNA nalézáme rozdíly, zodpovědné za obrovskou diverzitu života?
6. Kde v DNA nalézáme rozdíly, zodpovědné za obrovskou diverzitu života? Pamatujete na to, co se objevilo v pracích Charlese Darwina a Alfreda Wallace ohledně vývoje druhů? Aby mohl mechanismus přírodního
Propojení výuky oborů Molekulární a buněčné biologie a Ochrany a tvorby životního prostředí. Reg. č.: CZ.1.07/2.2.00/28.0032
Propojení výuky oborů Molekulární a buněčné biologie a Ochrany a tvorby životního prostředí Reg. č.: CZ.1.07/2.2.00/28.0032 Seminář Rostlinné biotechnologie kolem nás Božena Navrátilová LS 2014/2015 Seminář
Růst a vývoj rostlin - praktikum MB130C78
Růst a vývoj rostlin - praktikum MB130C78 Blok 3 Role aktinového cytoskeletu v morfogenezi rostlinných buněk - analýza fenotypu Úlohy: 1. Kvantifikace počtu zkroucených a správně tvarovaných trichomů u
Moravské gymnázium Brno s.r.o. RNDr. Monika Jörková. Tematická oblast. Biologie 22 Pletiva. Ročník 1. Datum tvorby 26.12.2012
Číslo projektu CZ.1.07/1.5.00/34.0743 Název školy Autor Tematická oblast Moravské gymnázium Brno s.r.o. RNDr. Monika Jörková Biologie 22 Pletiva Ročník 1. Datum tvorby 26.12.2012 Anotace -pro učitele -stavba
Cílová skupina žáci středních odborných škol (nezdravotnického zaměření)
Autor Mgr. Monika Kamenářová Tematický celek Pohlavní soustava Cílová skupina žáci středních odborných škol (nezdravotnického zaměření) Anotace Materiál má podobu pracovního listu s úlohami, s jeho pomocí
Rozvoj vzdělávání žáků karvinských základních škol v oblasti cizích jazyků Registrační číslo projektu: CZ.1.07/1.1.07/02.0162
ZŠ Určeno pro Sekce Předmět Rozvoj vzdělávání žáků karvinských základních škol v oblasti cizích jazyků Registrační číslo projektu: CZ.1.07/1.1.07/02.0162 Téma / kapitola Dělnická 6. 7. třídy ZŠ základní
- oddělení Rhyniofyta (+protracheophyta, zosterophyllophyta, trimerophyta)
Otázka: Vyšší rostliny Předmět: Biologie Přidal(a): Lucka J. SYSTÉM - Vývojová větev vyšší rostliny (není to taxon): 1. Vývojový stupeň psilofytní rostliny - oddělení Rhyniofyta (+protracheophyta, zosterophyllophyta,
ŠVP ZŠ Luštěnice, okres Mladá Boleslav verze 2012/2013
5.6.3 Přírodopis Charakteristika vyučovacího předmětu PŘÍRODOPIS I. Obsahové vymezení Vyučovací předmět Přírodopis vychází z obsahu vzdělávacího oboru Člověk a příroda a je v některých ročnících částečně
BIOLOGIE. Gymnázium Nový PORG
BIOLOGIE Gymnázium Nový PORG Biologii vyučujeme na gymnáziu Nový PORG jako samostatný předmět od primy do tercie a v kvintě a sextě. Biologii vyučujeme v češtině a rozvíjíme v ní a doplňujeme témata probíraná
ROSTLINNÉ ORGÁNY - LIST
Gymnázium a Střední odborná škola pedagogická, Čáslav, Masarykova 248 M o d e r n í b i o l o g i e reg. č.: CZ.1.07/1.1.32/02.0048 TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM
Z Buchanan et al. 2000
Průběh buněčného cyklu Z Buchanan et al. 2000 Změny v uspořádání mikrotubulů v průběhu buněčného cyklu A interfáze, kortikální mikrotubuly uspořádané v cytoplasmě pod plasmalemou B konec G2 fáze, mikrotubuly
RŮST = nevratné přibývání hmoty či velikosti rostliny spojené s fyziologickými pochody v buňkách
RŮST = nevratné přibývání hmoty či velikosti rostliny spojené s fyziologickými pochody v buňkách Fáze růstu na buněčné úrovni: zárodečná (embryonální) dělení buněk meristematických pletiv prodlužovací
Digitální učební materiál
Digitální učební materiál Projekt CZ.1.07/1.5.00/34.0415 Inovujeme, inovujeme Šablona III/2 Inovace a zkvalitnění výuky prostřednictvím ICT (DUM) Tématická Odborná biologie, část biologie Společná pro
Cukry (Sacharidy) Sacharidy a jejich metabolismus. Co to je?
Sacharidy a jejich metabolismus Co to je? Cukry (Sacharidy) Organické látky, které obsahují karbonylovou skupinu (C=O) a hydroxylové skupiny (-O) vázané na uhlících Aldosy: karbonylová skupina na konci
Anotace: Materiál je určen k výuce přírodopisu v 6. ročníku ZŠ. Seznamuje žáky se základní stavbou rostlinné a živočišné buňky.
Anotace: Materiál je určen k výuce přírodopisu v 6. ročníku ZŠ. Seznamuje žáky se základní stavbou rostlinné a živočišné buňky. Materiál je plně funkční pouze s použitím internetu. základní projevy života
Pletiva krycí, vodivá, zpevňovací a základní. 2/27
Pletiva krycí, vodivá, zpevňovací a 1. Pletiva krycí (pokožková) rostlinné tělo vyšších rostlin kryje pokožka (epidermis) je tvořená dlaždicovitými buňkami těsně k sobě přiléhajícími, bez chlorofylu vnější
Přírodopis - 6. ročník Vzdělávací obsah
Přírodopis - 6. ročník Časový Téma Učivo Ročníkové výstupy žák podle svých schopností: Poznámka Září Příroda živá a neživá Úvod do předmětu Vysvětlí pojem příroda Příroda, přírodniny Rozliší přírodniny
Zemědělská botanika. Vít Joza joza@zf.jcu.cz
Zemědělská botanika Vít Joza joza@zf.jcu.cz Botanika: její hlavní obory systematická botanika popisuje, pojmenovává a třídí rostliny podle jejich příbuznosti do botanického systému anatomie zabývá se vnitřní
Generativní rozmnožování ovocných dřevin
Generativní rozmnožování ovocných dřevin Generativní množení představuje množení rostlin semenem. V rámci ovocnářství se tímto způsobem množí některé podnože pro jádroviny, červené a modré peckoviny. Generativní
Sešit pro laboratorní práci z biologie
Sešit pro laboratorní práci z biologie téma: Kořen morfologie autor: MVDr. Alexandra Gajová vytvořeno při realizaci projektu: Inovace školního vzdělávacího programu biologie a chemie registrační číslo
Biologické základy rostlinné produkce
Zemědělství Biologické základy rostlinné produkce C3 C4 CAM Typy fotosyntézy C3-C4 Účinnost fotosyntézy ze 100% slunečního světla je 47% mimo použitelné vlnové délky ze zbylých 53% (400--700nm) -30%-fotonů
Botanika - bezcévné rostliny PRAKTICKÉ CVIČENÍ
Botanika - bezcévné rostliny PRAKTICKÉ CVIČENÍ Program cvičení byl vytvořen za podpory grantu FRVŠ v roce 2004 na oddělení bezcévných rostlin katedry botaniky Přírodovědecké fakulty UK Praha. Na přípravě
doc. RNDr. Vít Gloser, Ph.D. Studijní směr Experimentální biologie rostlin
doc. RNDr. Vít Gloser, Ph.D. Studijní směr Experimentální biologie rostlin Představení studijního směru Experimentální biologie rostlin Vít Gloser Oddělení fyziologie a anatomie rostlin (OFAR) Ústav experimentální
Sešit pro laboratorní práci z biologie
Sešit pro laboratorní práci z biologie téma: Stonek morfologie autor: MVDr. Alexandra Gajová vytvořeno při realizaci projektu: Inovace školního vzdělávacího programu biologie a chemie registrační číslo
Biologie - Kvinta, 1. ročník
- Kvinta, 1. ročník Biologie Výchovné a vzdělávací strategie Kompetence k řešení problémů Kompetence komunikativní Kompetence sociální a personální Kompetence občanská Kompetence k podnikavosti Kompetence
Příběh pátý: Auxinová signalisace
Příběh pátý: Auxinová signalisace Co je auxin? Derivát tryptofanu Příbuzný serotoninu a melatoninu Všechny deriváty přítomny jak u živočichů, tak u rostlin IAA Serotonin Serotonin: antagonista auxinu Přítomen
Bolševník velkolepý mýty a fakta o ekologii invazního druhu
Bolševník velkolepý mýty a fakta o ekologii invazního druhu Irena Perglová, Jan Pergl, Petr Pyšek, Lenka Moravcová Autoři věnují honorář Nadaci Živa Bolševník velkolepý (Heracleum mantegazzianum) je pravděpodobně
Biologie I. Buňka II. Campbell, Reece: Biology 6 th edition Pearson Education, Inc, publishing as Benjamin Cummings
Biologie I Buňka II Campbell, Reece: Biology 6 th edition Pearson Education, Inc, publishing as Benjamin Cummings BUŇKA II centrioly, ribosomy, jádro endomembránový systém semiautonomní organely peroxisomy
Digitální učební materiál
Digitální učební materiál Projekt CZ.1.07/1.5.00/34.0415 Inovujeme, inovujeme Šablona III/2 Inovace a zkvalitnění výuky prostřednictvím ICT (DUM) Tematická Odborná biologie, část biologie Společná pro
3. D/A a A/D převodníky
3. D/A a A/D převodníky 3.1 D/A převodníky Digitálně/analogové (D/A) převodníky slouží k převodu číslicově vyjádřené hodnoty (např. v úrovních TTL) ve dvojkové soustavě na hodnotu nějaké analogové veličiny.
Semenné sady systém reprodukce a efektivita
Genetika a šlechtění lesních dřevin Semenné sady systém reprodukce a efektivita Doc. Ing. RNDr. Eva Palátová, PhD. Ústav zakládání a pěstění lesů LDF MENDELU Brno Tento projekt je spolufinancován Evropským
Člověk a příroda přírodopis volitelný předmět
Vyučovací předmět : Období ročník : Učební texty : Člověk a příroda přírodopis volitelný předmět 3. období 9. ročník Jan Stoklasa a kol. : Organismy, prostředí, člověk /učebnice přírodopisu pro 9. roč.
Auxin - nejdéle a nejlépe známý fytohormon
Auxin - nejdéle a nejlépe známý fytohormon Auxin je nejdéle známým fytohormonem s mnoha popsanými fyziologickými účinky Darwin 1880, Went 1928 pokusy s koleoptilemi trav a obilovin prokázali existenci
Fyziologie člověka. Aplikovaná tělesná výchova a sport. UNIVERZITA KARLOVA V PRAZE Fakulta tělesné výchovy a sportu
UNIVERZITA KARLOVA V PRAZE Fakulta tělesné výchovy a sportu Fyziologie člověka studijní opora pro kombinovanou formu studia Aplikovaná tělesná výchova a sport Doc.MUDr.Staša Bartůňková, CSc. Praha 2011
BIOLOGIE-2015-03 Univerzita Hradec Králové Přírodovědecká fakulta katedra BIOLOGIE Ř E Š E N Í. Příjmení a jméno uchazeče:..
Ř E Š E N Í Zadání písemné části přijímací zkoušky z BIOLOGIE Katedra BIOLOGIE Datum zkoušky:. Varianta: 03 Příjmení a jméno uchazeče:.. Datum narození: Číslo přihlášky: Předchozí studium:.. Bydliště:..