KAN ( ) Nanostruktury na bázi uhlíku a polymerů pro využití v bioelektronice a medicíně

Rozměr: px
Začít zobrazení ze stránky:

Download "KAN ( ) Nanostruktury na bázi uhlíku a polymerů pro využití v bioelektronice a medicíně"

Transkript

1 Akademie věd České republiky Nanotechnologie pro společnost Ústav jaderné fyziky AV ČR Jiří Vacík KAN ( ) Nanostruktury na bázi uhlíku a polymerů pro využití v bioelektronice a medicíně

2 Fyzikální ústav AV ČR MW PECVD příprava a vlastnosti nanokrystalických diamantových vrstev pro aplikace v bioelektronice a medicíně Řešitelský tým FZÚ AV ČR František Fendrych * Jindřich Musil Martin Crhán Ladislav Peksa Petra Bílková Miloš Jirsa David Vokoun Miloš Nesládek Milan Vaněček Štěpán Potocký Alexander Kromka Zdeněk Remeš

3 Plazmo-chemické depoziční reaktory Magnetronové naprašovací zařízení MW ECR plazmová depoziční aparatura Pulsní laserová depoziční aparatura Plazmová tryska s výbojem v duté katodě

4 Plazmo-chemicky připravené tvrdé vrstvy CN x Mikrotvrdost DIAMANTU H = 90 GPa Hypotetická supertvrdá struktura β-c 3 N 4 CN x, x = N/C = 4/3 = 1.33, H = GPa? DC magnetron N s vazbami v a-b C N C se sklopenými vazbami H = 41,6 GPa x = 0,37 RF plasma jet A.Y.Liu, M.L.Cohen, Phys.Rev.B41(15)(1990)10727 Opoziční teorie Nestabilita sklopených vazeb hypotetické supertvrdé struktury β-c 3 N 4 v objemech nad cca 10 4 nm 3 H = 22,1 GPa x = 1,25 C.A.Davis, Y.Yin, D.R.McKenzie, J.Non.-Cryst.Solids 170(1994)46

5 CN x, π-plazmonový rezonanční pík (1) depozice řízené tlakem dusíku DC magnetron [F1] F.Fendrych, L.Jastrabík, L.Pajasová, D.Chvostová, L.Soukup, K.Rusňák, Diamond Rel.Mater. 7 (1998) 417.

6 CN x, π-plazmonový rezonanční pík (2) depozice řízené proudem magnetronu DC magnetron [F2] F.Fendrych, L.Pajasová, T.Wagner, L.Jastrabík, D.Chvostová, L.Soukup, K.Rusňák, Diamond Rel.Mater. 8 (1999) 1711.

7 RF plazmová dvoutryska při depozici vrstvy ZrCN x C / N 2 +Ar ZrCN x Zr / Ar Depozice vrstvy ZrCN x na vnitřní plochu prstence kuličkového ložiska Optimalizované chemické složení vrstvy (at.%): Zr 8%, C 55%, N 37% x = N/C = 0,67 COST-516 Tribology, Project OC pla z m o v é ka ná ly t ry s k a 1 t ry s k a o b la s t s t a c io n á rn í h o po v rc h s ub s t rá t u b o du re la t iv ní a b s o lut n í h o d no t a g ra d ie n t u k o n c e n t ra c e n e ut rá ln í h o p ly n u:

8 Plazmovou dvoutryskou na ložisko deponované ZrCN x měření koeficientu tření a otěruvzdornosti ( vliv DC předpětí ) F t f = F t / F n COST-516 Tribology OC Final Report, 2000

9 Plazmové polymery Polyethylene IR absorption bands [cm -1 ] 2960 (CH 3 ) as A 2925 (CH 2 ) as 2900 (CH) 2875 (CH 3 ) s 2855 (CH 2 ) s H.Biederman, přednáška na LŠVT 2005, Malá Morávka 2900 cm -1 FTIR spectra

10 Vrstvy CN x H y, deponované v MW ECR plazmovém reaktoru MW ECR plasma reactor H = 7,3 GPa x = 23% y = 34%? [F3] L.R.Shaginyan, F.Fendrych, L.Jastrabík, L.Soukup, V.Yu.Kulikovsky, J.Musil, Surf.Coat.Technol (1999) 65. [F4] L.R.Shaginyan, A.A.Onoprienko, V.M.Vereschaka, F.Fendrych, V.G.Vysotsky, Surf.Coat.Technol. 113 (1999) 134.

11 CN x H y, chemické složení, obsah vodíku (RBS) Rutherford Back Scattering

12 DC magnetronem deponované tribologické vrstvy Ti x C:H y chemické složení a struktura vrstev Rutherford Back Scattering Gradient TiC:H coating Ti-buffer (50 nm) HS Steel Substrate

13 DC magnetronem deponované Ti x C:H y adheze, otěruvzdornost F t load F n = 20 N TiC:H coating koeficient tření f = F t / F n = (2-4 N) / 20 N = 0,1-0,2 po více než 3000 sec. (50 min.) 100 µm Steel Substrate

14 CN x H y IR spektroskopie Ti x C:H y 2900 cm cm -1

15 Plazmově připravené Ti x C:H y porovnání chemického složení a mechanických vlastností DC magnetron RF plasma jet H = 15,1 GPa x = 9,8% y = 17% H = 10,8 GPa x = 2,3% y = 30% [F5] V.Yu.Kulikovsky, F.Fendrych, L.Jastrabík, D.Chvostová, Surf.Coat.Technol. 91 (1997) 122. [F6] V.Yu.Kulikovsky, F.Fendrych, L.Jastrabík, D.Chvostová, L.Soukup, J.Přidal, F.Franc, Surf.Coat.Technol. 102 (1998) 81. [F7] V.Yu.Kulikovsky, A.Tarasenko, F.Fendrych, L.Jastrabík, D.Chvostová, F.Franc, L.Soukup, Diamond Rel.Mater. 7 (1998) 774.

16 Hlavní požadavky na novou plazmovou depoziční aparaturu 1. Vypékatelná UHV komora primárně čerpaná na mezní tlak ~ 10-8 Pa, aby se zabránilo nežádoucí a nekontrolovatelné oxidaci připravovaných vrstev ze zbytkové atmosféry. 2. Čerpací systém musí umožňovat nezávislé nastavování průtoků pracovních plynů a tlaků během depozice v předem definované oblasti Q-p diagramu (viz návrh čerpacího systému), což je nezbytné k dosažení určeného složení a struktury deponovaných magnetických vrstev. 3. Přesné dávkování reakčních plynů (N 2, O 2, v řádu 0,02 sccm!) vzhledem k vysoké reaktivitě složek ve výboji. 4. Nutná nízkoteplotní depozice (teplotní fázové transformace), řízené a stabilní chlazení nebo ohřívání podložek při depozici k dosažení vhodné struktury vrstev (amorfní matrice, velikosti 3-d kovových zrn, atp.) či rychlosti růstu. [F16] F.Fendrych, Čes.čas.fyz. 4 (2005) [F17] F.Fendrych, P.Řepa, L.Peksa, L.Kraus, T.Gronych, Z.Hubička, K.Rusňák, P.Hedbávný, P.Šťovíček, V.Klégr, Proc.of IVC-16 & NANO-8, Venice, Italy (2004) 239; Chemical Monthly (2005) article in press.

17 Potřebná oblast průtoků a tlaků v UHV komoře během depozice, návrh čerpacího systému

18 Pohled na nově zkonstruovanou UHV aparaturu s plazmovou tryskou

19 Zážeh a stabilní výboj v trysce

20 DC výboj v trysce při depozici vrstvy

21 Plazmová tryska při depozici vrstvy FeCo - AlN 1 MKS průtokoměry v rozvodu pracovních plynů, 2 Leybold Combivac měř ěřič tlaku, 3 IT90 tlaková měrka, 4 Leybold Coolvac 1500 kryovývěva, 5 VAT regulační ventil, 6 vypékací tělesa, 7 chlazený nebo vyhřívaný pohyblivý držák podložek, 8 podložky, 9 výboj v duté katodě, 10 těleso plazmové trysky.

22 Optické vrstvy Základní užití: mění optické vlastnosti původního povrchu výrobku (odrazivost, index lomu, atd.) Nitrid mědi Cu 3 N Krystalová struktura: kubická anti-reo 3 s mřížkovou konstantou a = 3,385 A Speciální aplikace: write-once optical recording media s laserovým zápisem informačních bitů (chem.dekompozice, změna odrazivosti), optické čtení záznamu C.A.Tai, E.S.Kohl, K.Akari, Surf.Coat.Technol. 43 (1990) 324. T.Maruyma, T.Morishita, J.Appl.Phys. 78 (1995) T.Maruyma, T.Morishita, Appl.Phys.Letters 69(7) (1996) 890. Plazmo-chemická syntéza Cu 3 N v reaktoru s RF výbojem v duté katodě

23 Vysvětlení vzniku Cu-částic ve vrstvě Cu 3 N Mikrotvrdost Cu 3 N RF plasma jet H = 8,8 GPa Elipsometrická měř ěření optických parametrů Cu 3 N Complex dielectric function ň = ε i ε = [n i k] 2

24 RF plazmovou tryskou deponovaný Cu 3 N šířka zakázaného optického pásu Absorption coefficient K(E photon ) = 4π k / λ Krystal E g [ev] GaAs 1,43 InP 1,35 Cu 3 N 1,24 Si 1,14 Ge 0,67 [F8] F.Fendrych, L.Soukup, L.Jastrabík, M.Šícha, Z.Hubička, D.Chvostová, A.Tarasenko, V.Studnička, T.Wagner, Diamond Rel.Mater. 8 (1999) [F9] L.Soukup, M.Šícha, F.Fendrych, L.Jastrabík, Z.Hubička, D.Chvostová, H.Šíchová, V.Valvoda, A.Tarasenko, V.Studnička, T.Wagner, M.Novák, Surf.Coat.Technol (1999) 321.

25 Fe-Hf-Ni-Cr-O, magnetorezistivní vrstva Log. scale [F10] L.Kraus, O.Chayka, F.Fendrych, Z.Frait, M.Šícha, J.Touš, Proc.of 16th ICMSF, Natal, Brazil, (2000) 163.

26 Fe-Ta-O, magnetorezistivní vrstvy 10 nm Nanočástice Fe v oxidu Ta O

27 Log. scale Fe-Ta-O, elektronový transport Dif.conduct. G=dI/dU Snížení elektrického odporu R v magnetickém poli H 0,0-0,1 T=300 K -0,2-0,3-0,4-0,5 H II I H I R/R [%] 0,0-0,2-0,4 T=77.3 K [F11] L.Kraus, O.Chayka, J.Touš, F.Fendrych, K.R.Pirota, Z.Frait, M.Šícha, L.Jastrabík, J.Magn.Magn.Mater (2001) 669. [F12] P.Lobotka, I.Vávra, F.Fendrych, L.Kraus, J.Magn.Magn.Mater. 240 (2002) 491. [F13] P.Lobotka, I.Vávra, F.Fendrych, O.Chayka, Physica Stat.Solidi (a) 201 (7)(2004) ,6-0,8-1,0-1,2-1,4 H II I H I H [Oe] [F14] F.Fendrych, L.Kraus, O.Chayka, P.Lobotka, I.Vávra, J.Touš, V.Studnička, Z.Frait, Chemical Monthly 133 (2002) 773.

28 10 µm Co-Al 2 O 3 připravené pulsní laserovou depozicí

29 Co-Al 2 O 3, tunelovací vodivost a magnetorezistence 8 log R log R = a T -1/2 + b T -1/2 (K -1/2 ) [F15] O.Chayka, L.Kraus, F.Fendrych, T.Kocourek, M.Jelínek, Physica Stat.Solidi (b) 241 (7)(2004) 1617.

30 Nanostrukturované magnetické nitridy FeCo - AlN Vysokofrekvenční permeabilita, feromagnetická rezonance FMR Charakteristická frekvence, při které se projevuje FMR, je kolem 1,7 GHz [F18] O.Chayka, L.Kraus, F.Fendrych, S.Veljko, Physica (a) (2007) in press.

31 Nanostrukturované vrstvy FeCo - AlN Poměr intenzit jednotlivých čar je 3:4:1:1:4:3, z toho lze usuzovat, že magnetizace nanokrystalitů FeCo je rovnoběžná s povrchem vrstvy

32 Magnetické nitridy FeCo - AlN (pro GHz induktory v mobilní komunikaci) Hysterezní smyčka magneticky měkké vrstvy FeCo-AlN nadeponované ve Forschungzentrum Karlsruhe, Helmholtz-Gemeinschaft, BRD, přetištěno z publikace K.Seemann et al., JMMM 283 (2004) koercitivita µ 0 H C = 3,0 mt Hysterezní smyčka magneticky měkké vrstvy FeCo-AlN nadeponované pomocí nově zkonstruované UHV aparatury ve FZÚ AV ČR koercitivita µ 0 H C = 0,7 mt

33 Detail hysterezní smyčky magnetické vrstvy FeCo - AlN připravené pomocí UHV plazmová aparatury ve FZÚ AV ČR koercitivita µ 0 H C = 0,7 mt koercitivita µ 0 H C = 0,3 mt!! [F19] O.Životský, F.Fendrych, L.Kraus, K.Postava, O.Chayka, L.Halagačka, J.Pištora, J.Magn.Magn.Mater. (2007) in press.

Anotace přednášek LŠVT 2015 Česká vakuová společnost. Téma: Plazmové technologie a procesy. Hotel Racek, Úštěk, 1 4. června 2015

Anotace přednášek LŠVT 2015 Česká vakuová společnost. Téma: Plazmové technologie a procesy. Hotel Racek, Úštěk, 1 4. června 2015 Anotace přednášek LŠVT 2015 Česká vakuová společnost Téma: Plazmové technologie a procesy Hotel Racek, Úštěk, 1 4. června 2015 1) Úvod do plasmochemie Lenka Zajíčková, Ústav fyzikální elektroniky, PřF

Více

Nanogrant KAN ( )

Nanogrant KAN ( ) Nanogrant KAN400480701 (2007 2011) Nanostruktury na bázi uhlíku a polymerů pro využití v bioelektronice a medicíně Ústav jaderné fyziky AV ČR, Mgr. Jiří Vacík, CSc., koordinátor projektu ( Výroční seminář

Více

REAKTIVNÍ MAGNETRONOVÉ NAPRAŠOV. Jan VALTER HVM Plasma s.r.o. www.hvm.cz

REAKTIVNÍ MAGNETRONOVÉ NAPRAŠOV. Jan VALTER HVM Plasma s.r.o. www.hvm.cz REAKTIVNÍ MAGNETRONOVÉ NAPRAŠOV OVÁNÍ Jan VALTER SCHEMA REAKTIVNÍHO NAPRAŠOV OVÁNÍ zdroj výboje katoda odprašovaný terč plasma inertní napouštění plynů reaktivní zdroj předpětí p o v l a k o v a n é s

Více

Plazmatické metody pro úpravu povrchů

Plazmatické metody pro úpravu povrchů Plazmatické metody pro úpravu povrchů Aleš Kolouch Technická Univerzita v Liberci Studentská 2 461 17 Liberec 1 Obsah 1. Plazma 2. Plazmové stříkání 3. Plazmové leptání 4. PVD 5. PECVD 6. Druhy reaktorů

Více

Plazmové metody Materiály a technologie přípravy M. Čada

Plazmové metody Materiály a technologie přípravy M. Čada Plazmové metody Existuje mnoho druhů výbojů v plynech. Ionizovaný plyn = elektrony + ionty + neutrály Depozice tenkých vrstev za pomocí plazmatu je jednou z nejpoužívanějších metod. Pomocí plazmatu lze

Více

Iradiace tenké vrstvy ionty

Iradiace tenké vrstvy ionty Iradiace tenké vrstvy ionty Ve většině technologických aplikací dochází k depozici tenké vrstvy za nízké teploty > jsme v zóně I nebo T > vrstvá má sloupcovou strukturu, je porézní a hrubá. Ukazuje se,

Více

Plazmová depozice tenkých vrstev oxidu zinečnatého

Plazmová depozice tenkých vrstev oxidu zinečnatého Plazmová depozice tenkých vrstev oxidu zinečnatého Bariérový pochodňový výboj za atmosférického tlaku Štěpán Kment Doc. Dr. Ing. Petr Klusoň Mgr. Zdeněk Hubička Ph.D. Obsah prezentace Úvod do problematiky

Více

Vakuové metody přípravy tenkých vrstev

Vakuové metody přípravy tenkých vrstev Vakuové metody přípravy tenkých vrstev Metody vytváření tenkých vrstev Vakuové metody dnes nejužívanější CVD Chemical Vapour Deposition (PE CVD Plasma Enhanced CVD nebo PA CVD Plasma Assisted CVD) PVD

Více

Vzdělávání výzkumných pracovníků v Regionálním centru pokročilých technologií a materiálů reg. č.: CZ.1.07/2.3.00/09.0042

Vzdělávání výzkumných pracovníků v Regionálním centru pokročilých technologií a materiálů reg. č.: CZ.1.07/2.3.00/09.0042 Vzdělávání výzkumných pracovníků v Regionálním centru pokročilých technologií a materiálů reg. č.: CZ.1.07/2.3.00/09.0042 Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem

Více

Vytváření tenkých speciálních vrstev metodou plazmochemické depozice z plynné fáze

Vytváření tenkých speciálních vrstev metodou plazmochemické depozice z plynné fáze Vytváření tenkých speciálních vrstev metodou plazmochemické depozice z plynné fáze Teoretické základy: Plazmochemická depozice z plynné fáze metoda PECVD Rozvoj plazmochemických metod vytváření tenkých

Více

Nanotechnologie a Nanomateriály na PřF UJEP Pavla Čapková

Nanotechnologie a Nanomateriály na PřF UJEP Pavla Čapková Přírodovědecká fakulta UJEP Ústí n.l. a Ústecké materiálové centrum na PřF UJEP http://sci.ujep.cz/faculty-of-science.html Nanotechnologie a Nanomateriály na PřF UJEP Pavla Čapková Kontakt: Doc. RNDr.

Více

SYSTÉM TENKÁ VRSTVA SUBSTRÁT V APLIKACI NA ŘEZNÝCH NÁSTROJÍCH

SYSTÉM TENKÁ VRSTVA SUBSTRÁT V APLIKACI NA ŘEZNÝCH NÁSTROJÍCH Západočeská univerzita v Plzni SYSTÉM TENKÁ VRSTVA SUBSTRÁT V APLIKACI NA ŘEZNÝCH NÁSTROJÍCH Antonín Kříž Univerzitní 22, 306 14 Plzeň, e-mail: kriz@kmm.zcu.cz Tento příspěvek vznikl na základě řešení

Více

ruvzdorné povlaky endoprotéz Otěruvzdorn Obsah TRIBOLOGIE Otěruvzdorné povlaky endoprotéz Fakulta strojního inženýrství

ruvzdorné povlaky endoprotéz Otěruvzdorn Obsah TRIBOLOGIE Otěruvzdorné povlaky endoprotéz Fakulta strojního inženýrství Otěruvzdorn ruvzdorné povlaky endoprotéz Obsah Základní části endoprotéz Požadavky na materiály Materiály endoprotéz Keramické povlaky DLC povlaky MPC povlaky Metody vytváření povlaků Testy povlaků Závěr

Více

FYZIKA VE FIRMĚ HVM PLASMA

FYZIKA VE FIRMĚ HVM PLASMA FYZIKA VE FIRMĚ HVM PLASMA Jiří Vyskočil HVM Plasma spol.s r.o. Na Hutmance 2, 158 00 Praha 5 OBSAH HVM PLASMA spol. s r.o. zaměření a historie firmy hlavní činnost a produkty POVRCHOVÉ TECHNOLOGIE metody

Více

SPOLUPRÁCE WESTINGHOUSE S ČVUT A FZÚ AV ČR

SPOLUPRÁCE WESTINGHOUSE S ČVUT A FZÚ AV ČR SPOLUPRÁCE WESTINGHOUSE S ČVUT A FZÚ AV ČR NA PROJEKTU OCHRANY POVRCHU ZIRKONIOVÝCH SLITIN KOMPOZITNÍMI POLYKRYSTALICKÝMI DIAMANTOVÝMI POVLAKY (2014 2016) Michal Šimoník Customer Account Engineer Květen

Více

TENKOVRSTVÁ TECHNOLOGIE HYDROGENOVANÉHO KŘEMÍKU PRO FOTOVOLTAICKÉ APLIKACE. oddělení tenkých vrstev F Y Z I K Á L N Í Ú S T A V A V Č R P R A H A

TENKOVRSTVÁ TECHNOLOGIE HYDROGENOVANÉHO KŘEMÍKU PRO FOTOVOLTAICKÉ APLIKACE. oddělení tenkých vrstev F Y Z I K Á L N Í Ú S T A V A V Č R P R A H A TENKOVRSTVÁ TECHNOLOGIE HYDROGENOVANÉHO KŘEMÍKU PRO FOTOVOLTAICKÉ APLIKACE J I Ř Í S T U C H L Í K oddělení tenkých vrstev F Y Z I K Á L N Í Ú S T A V A V Č R P R A H A Oddělení tenkých vrstev FZÚ O B

Více

Využití plazmových metod ve strojírenství. Metody depozice povlaků a tenkých vrstev

Využití plazmových metod ve strojírenství. Metody depozice povlaků a tenkých vrstev Využití plazmových metod ve strojírenství Metody depozice povlaků a tenkých vrstev Metody depozice povlaků Využití plazmatu pro depozice (nanášení) povlaků a tenkých vrstev je moderní a stále častěji aplikovaná

Více

Vybrané technologie povrchových úprav. Metody vytváření tenkých vrstev Doc. Ing. Karel Daďourek 2008

Vybrané technologie povrchových úprav. Metody vytváření tenkých vrstev Doc. Ing. Karel Daďourek 2008 Vybrané technologie povrchových úprav Metody vytváření tenkých vrstev Doc. Ing. Karel Daďourek 2008 Metody vytváření tenkých vrstev Vakuové metody dnes nejužívanější CVD Chemical vapour deposition PE CVD

Více

DOUTNAVÝ VÝBOJ. Magnetronové naprašování

DOUTNAVÝ VÝBOJ. Magnetronové naprašování DOUTNAVÝ VÝBOJ Magnetronové naprašování Efektivním způsobem jak získat částice vhodné k růstu povlaku je nahrazení teploty používané u odpařování ekvivalentem energie dodané dopadem těžkéčástice přenosem

Více

PRINCIPY ZAŘÍZENÍ PRO FYZIKÁLNÍ TECHNOLOGIE (FSI-TPZ-A)

PRINCIPY ZAŘÍZENÍ PRO FYZIKÁLNÍ TECHNOLOGIE (FSI-TPZ-A) PRINCIPY ZAŘÍZENÍ PRO FYZIKÁLNÍ TECHNOLOGIE (FSI-TPZ-A) GARANT PŘEDMĚTU: Prof. RNDr. Tomáš Šikola, CSc. (ÚFI) VYUČUJÍCÍ PŘEDMĚTU: Prof. RNDr. Tomáš Šikola, CSc., Ing. Stanislav Voborný, Ph.D. (ÚFI) JAZYK

Více

Monika Fialová VAKUOVÁ FYZIKA II. ZÍSKÁVÁNÍ NÍZKÝCH TLAKŮ

Monika Fialová VAKUOVÁ FYZIKA II. ZÍSKÁVÁNÍ NÍZKÝCH TLAKŮ Monika Fialová VAKUOVÁ FYZIKA II. ZÍSKÁVÁNÍ NÍZKÝCH TLAKŮ CHARAKTERISTIKY VÝVĚV vývěva = zařízení snižující tlak plynu v uzavřeném objemu parametry: mezní tlak čerpací rychlost pracovní tlak výstupní tlak

Více

Mikro a nanotribologie materiály, výroba a pohon MEMS

Mikro a nanotribologie materiály, výroba a pohon MEMS Tribologie Mikro a nanotribologie materiály, výroba a pohon MEMS vypracoval: Tomáš Píza Obsah - Co je to MEMS - Materiály pro MEMS - Výroba MEMS - Pohon MEMS Co to je MEMS - zkratka z anglických slov Micro-Electro-Mechanical-Systems

Více

Princip magnetického záznamuznamu

Princip magnetického záznamuznamu Princip magnetického záznamuznamu Obrázky: IBM, Hitachi 1 Magnetické materiály (1) n I H = l B = μ H B l μ μ = μ μ 0 0 μ = 4π 10 r 7 2 [ N A ] n I Diamagnetické materiály: µ r < 1 (Au, Cu) Paramagnetické

Více

Uhlík a jeho alotropy

Uhlík a jeho alotropy Uhlík Uhlík a jeho alotropy V přírodě se uhlík nachází zejména v karbonátových usazeninách, naftě, uhlí, a to jako směs grafitu a amorfní formy C. Rozeznáváme dvě základní krystalické formy uhlíku: a)

Více

Požadavky na technické materiály

Požadavky na technické materiály Základní pojmy Katedra materiálu, Strojní fakulta Technická univerzita v Liberci Základy materiálového inženýrství pro 1. r. Fakulty architektury Doc. Ing. Karel Daďourek, 2010 Rozdělení materiálů Požadavky

Více

Základní typy článků:

Základní typy článků: Základní typy článků: Články z krystalického Si c on ta c t a ntire fle c tio n c o a tin g Tenkovrstvé články N -ty p e P -ty p e Materiály a technologie pro fotovoltaické články Nové materiály Gratzel,

Více

Přehled metod depozice a povrchových

Přehled metod depozice a povrchových Kapitola 5 Přehled metod depozice a povrchových úprav Tabulka 5.1: První část přehledu technologií pro depozici tenkých vrstev. Klasifikované podle použitého procesu (napařování, MBE, máčení, CVD (chemical

Více

Laserové technologie v praxi I. Přednáška č.8. Laserové zpracování materiálu. Hana Chmelíčková, SLO UP a FZÚ AVČR Olomouc, 2011

Laserové technologie v praxi I. Přednáška č.8. Laserové zpracování materiálu. Hana Chmelíčková, SLO UP a FZÚ AVČR Olomouc, 2011 Laserové technologie v praxi I. Přednáška č.8 Laserové zpracování materiálu Hana Chmelíčková, SLO UP a FZÚ AVČR Olomouc, 2011 Lasery pro průmyslové zpracování materiálu E (ev) 0,12 1,17 1,17 1,2 1,5 4,17

Více

Tenká vrstva - aplikace

Tenká vrstva - aplikace Poznámka: tyto materiály slouží pouze pro opakování STT žáků SPŠ Na Třebešíně, Praha 10; s platností do r. 2016 v návaznosti na platnost norem. Zákaz šíření a modifikace těchto materiálů. Děkuji Ing. D.

Více

Tenké vrstvy pro lékařství 1. Laserové vrstvy ( metody přípravy vrstev, laser, princip metody pulzní laserové depozice PLD, růst vrstev, )

Tenké vrstvy pro lékařství 1. Laserové vrstvy ( metody přípravy vrstev, laser, princip metody pulzní laserové depozice PLD, růst vrstev, ) Tenké vrstvy pro lékařství 1. Laserové vrstvy ( metody přípravy vrstev, laser, princip metody pulzní laserové depozice PLD, růst vrstev, ) 2. Vybrané vrstvy a aplikace - gradientní vrstvy, nanokrystalické

Více

Základní zákony a terminologie v elektrotechnice

Základní zákony a terminologie v elektrotechnice Základní zákony a terminologie v elektrotechnice (opakování učiva SŠ, Fyziky) Určeno pro studenty komb. formy FMMI předmětu 452702 / 04 Elektrotechnika Zpracoval: Jan Dudek Prosinec 2006 Elektrický náboj

Více

Typy interakcí. Obsah přednášky

Typy interakcí. Obsah přednášky Co je to inteligentní a progresivní materiál - Jaderné analytické metody-využití iontových svazků v materiálové analýze Anna Macková Ústav jaderné fyziky AV ČR, Řež 250 68 Obsah přednášky fyzikální princip

Více

Diamantu podobné uhlíkové vrstvy pro pokrytí kloubních náhrad

Diamantu podobné uhlíkové vrstvy pro pokrytí kloubních náhrad České vysoké učení technické v Praze Fakulta biomedicínského inženýrství Diamantu podobné uhlíkové vrstvy pro pokrytí kloubních náhrad Ing. Petr Písařík petr.pisarik@fbmi.cvut.cz Kladno Listopad 2010 Cíl

Více

Vliv energie částic na vlastnosti vrstev Me-B-C-(N) připravených reaktivní magnetronovou depozicí

Vliv energie částic na vlastnosti vrstev Me-B-C-(N) připravených reaktivní magnetronovou depozicí ZÁPADOČESKÁ UNIVERZITA V PLZNI FAKULTA APLIKOVANÝCH VĚD KATEDRA FYZIKY Vliv energie částic na vlastnosti vrstev Me-B-C-(N) připravených reaktivní magnetronovou depozicí Plzeň 2014 Veronika Šímová Prohlášení

Více

Fyzikální metody nanášení tenkých vrstev

Fyzikální metody nanášení tenkých vrstev Fyzikální metody nanášení tenkých vrstev Vakuové napařování Příprava tenkých vrstev kovů některých dielektrik polovodičů je možné vytvořit i epitaxní vrstvy (orientované vrstvy na krystalické podložce)

Více

VIBRAČNÍ SPEKTROMETRIE

VIBRAČNÍ SPEKTROMETRIE VIBRAČNÍ SPEKTROMETRIE (c) -2012 RAMANOVA SPEKTROMETRIE 1 PRINCIP METODY Měří se rozptýlené záření, které vzniká interakcí monochromatického záření z viditelné oblasti s molekulami vzorku za současné změny

Více

Fyzikální metody depozice KFY / P223

Fyzikální metody depozice KFY / P223 Fyzikální metody depozice KFY / P223 Obsah Vymezení pojmu tenkých vrstev, význam TV ve vědě a technice, přehled metod vytváření TV Růst tenkých vrstev: módy a fáze růstu TV, vliv parametrů procesu. Napařování

Více

podíl permeability daného materiálu a permeability vakua (4π10-7 )

podíl permeability daného materiálu a permeability vakua (4π10-7 ) ELEKTROTECHNICKÉ MATERIÁLY 1) Uveďte charakteristické parametry magnetických látek Existence magnetického momentu: základním předpoklad, aby látky měly magnetické vlastnosti tvořen součtem orbitálního

Více

DOUTNAVÝ VÝBOJ. Další technologie využívající doutnavý výboj

DOUTNAVÝ VÝBOJ. Další technologie využívající doutnavý výboj DOUTNAVÝ VÝBOJ Další technologie využívající doutnavý výboj Plazma doutnavého výboje je využíváno v technologiích depozice povlaků nebo modifikace povrchů. Jedná se zejména o : - depozici povlaků magnetronovým

Více

Úloha 21: Studium rentgenových spekter

Úloha 21: Studium rentgenových spekter Petra Suková, 3.ročník 1 Úloha 21: Studium rentgenových spekter 1 Zadání 1. S využitím krystalu LiF jako analyzátoru proveďte měření následujících rentgenových spekter: a) Rentgenka s Cu anodou. proměřte

Více

Fakulta aplikovaných věd Katedra fyziky. Pulzní magnetronová depozice tenkovrstvých materiálů ze systému Zr-Si-B-C-N.

Fakulta aplikovaných věd Katedra fyziky. Pulzní magnetronová depozice tenkovrstvých materiálů ze systému Zr-Si-B-C-N. Fakulta aplikovaných věd Pulzní magnetronová depozice tenkovrstvých materiálů ze systému Zr-Si-B-C-N Vedoucí práce: Prof. RNDr. Jaroslav Vlček, CSc. Plzeň 2012 Autor práce: Poděkování Rád bych poděkoval

Více

Metody charakterizace

Metody charakterizace Metody y strukturní analýzy Metody charakterizace nanomateriálů I Význam strukturní analýzy pro studium vlastností materiálů Experimentáln lní metody využívan vané v materiálov lovém m inženýrstv enýrství:

Více

Výzkum slitin titanu - od letadel po implantáty

Výzkum slitin titanu - od letadel po implantáty Výzkum slitin titanu - od letadel po implantáty josef.strasky@gmail.com Titan Saturn a TITAN sonda Pioneer, 26. srpen 1976 Titan Titan Titan Unikátní vlastnosti titanu + nejvyšší poměr mezi pevností a

Více

Lasery v mikroelektrotechnice. Soviš Jan Aplikovaná fyzika

Lasery v mikroelektrotechnice. Soviš Jan Aplikovaná fyzika Lasery v mikroelektrotechnice Soviš Jan Aplikovaná fyzika Obsah Úvod Laserové: žíhání rýhování (orýsování) dolaďování depozice tenkých vrstev dopování příměsí Úvod Vysoká hustota výkonu laseru změna struktury

Více

TEPLOTNÍ DEGRADACE TENKÝCH OTĚRUVZDORNÝCH PVD VRSTEV. Autor: Ing. Petr Beneš Školitel: Doc. Dr. Ing. Antonín Kříž

TEPLOTNÍ DEGRADACE TENKÝCH OTĚRUVZDORNÝCH PVD VRSTEV. Autor: Ing. Petr Beneš Školitel: Doc. Dr. Ing. Antonín Kříž TEPLOTNÍ DEGRADACE TENKÝCH OTĚRUVZDORNÝCH PVD VRSTEV Autor: Ing. Petr Beneš Školitel: Doc. Dr. Ing. Antonín Kříž Tenké PVD vrstvy 1968 vytvořena první PVD vrstva TiN Do současnosti vytvořeno mnoho druhů

Více

POPIS NOVÝCH STRUKTURNÍCH FÁZÍ A JEJICH VLIV NA VLASTNOSTI CÍNOVÉ KOMPOZICE STANIT

POPIS NOVÝCH STRUKTURNÍCH FÁZÍ A JEJICH VLIV NA VLASTNOSTI CÍNOVÉ KOMPOZICE STANIT POPIS NOVÝCH STRUKTURNÍCH FÁZÍ A JEJICH VLIV NA VLASTNOSTI CÍNOVÉ KOMPOZICE STANIT Antonín Kříž Univerzitní 22, 306 14 Plzeň, e-mail: kriz@kmm.zcu.cz Příspěvek vznikl ve spolupráci s firmou GTW TECHNIK

Více

Fyzika, maturitní okruhy (profilová část), školní rok 2014/2015 Gymnázium INTEGRA BRNO

Fyzika, maturitní okruhy (profilová část), školní rok 2014/2015 Gymnázium INTEGRA BRNO 1. Jednotky a veličiny soustava SI odvozené jednotky násobky a díly jednotek skalární a vektorové fyzikální veličiny rozměrová analýza 2. Kinematika hmotného bodu základní pojmy kinematiky hmotného bodu

Více

Tenké vrstvy. metody přípravy. hodnocení vlastností

Tenké vrstvy. metody přípravy. hodnocení vlastností Tenké vrstvy metody přípravy hodnocení vlastností 1 / 39 Depozice tenkých vrstev Depozice vrstev se provádí jako finální operace na hotovém již tepelně zpracovaném substrátu. Pro dobré adhezní vlastnosti

Více

13. Spektroskopie základní pojmy

13. Spektroskopie základní pojmy základní pojmy Spektroskopicky významné OPTICKÉ JEVY absorpce absorpční spektrometrie emise emisní spektrometrie rozptyl rozptylové metody Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti

Více

14/10/2015 Z Á K L A D N Í C E N Í K Z B O Ž Í Strana: 1

14/10/2015 Z Á K L A D N Í C E N Í K Z B O Ž Í Strana: 1 14/10/2015 Z Á K L A D N Í C E N Í K Z B O Ž Í Strana: 1 S Á ČK Y NA PS Í E XK RE ME N TY SÁ ČK Y e xk re m en t. p o ti sk P ES C Sá čk y P ES C č er né,/ p ot is k/ 12 m y, 20 x2 7 +3 c m 8.8 10 bl ok

Více

Fyzikální vlastnosti materiálů FX001

Fyzikální vlastnosti materiálů FX001 Fyzikální vlastnosti materiálů FX001 Ondřej Caha 1. Vazba v pevné látce, elastické a tepelné vlastnosti materiálů 2. Elektrické vlastnosti materiálů 3. Optické vlastnosti materiálů 4. Magnetické vlastnosti

Více

galvanicky chemicky plazmatem ve vakuu Vrstvy ve vakuu MBE Vakuová fyzika 2 1 / 39

galvanicky chemicky plazmatem ve vakuu Vrstvy ve vakuu MBE Vakuová fyzika 2 1 / 39 Vytváření vrstev galvanicky chemicky plazmatem ve vakuu Vrstvy ve vakuu povlakování MBE měření tloušt ky vrstvy během depozice Vakuová fyzika 2 1 / 39 Velmi stručná historie (více na www.svc.org) 1857

Více

Katedra materiálu.

Katedra materiálu. Katedra materiálu Vedoucí katedry: prof. Ing. Petr Louda, CSc. Zástupce vedoucího katedry: doc. Ing. Dora Kroisová, Ph.D. Tajemnice katedry: Ing. Daniela Odehnalová http://www.kmt.tul.cz/ EF TUL, Gaudeamus

Více

1 3Tepeln і izolace a hladinom їry kryokapalin

1 3Tepeln і izolace a hladinom їry kryokapalin 1 3Tepeln і izolace a hladinom їry kryokapalin 6і1 R 0 1zn і typy hladinom їr 0 1 pro kryokapaliny 6і1 Dopl ov n kryokapalin 6і1 Dewarova n doba 6і1 P 0 0enos tepla veden m, z 0 0en m,... 6і1 Tepeln і

Více

LOGO. Struktura a vlastnosti pevných látek

LOGO. Struktura a vlastnosti pevných látek Struktura a vlastnosti pevných látek Rozdělení pevných látek (PL): monokrystalické krystalické Pevné látky polykrystalické amorfní Pevné látky Krystalické látky jsou charakterizovány pravidelným uspořádáním

Více

GD OES a GD MS v praktických aplikacích

GD OES a GD MS v praktických aplikacích GD OES a GD MS v praktických aplikacích Princip povrchových analýz Interakce materiálu s prvotním činidlem Prvotní činidlo prodělá změnu nebo vybudí reakci materiálu Detekce signálu vybuzeného materiálem

Více

Ionizační manometry. Při ionizaci plynu o koncentraci n nejsou ionizovány všechny molekuly, ale jenom část z nich n i = γn ; γ < 1.

Ionizační manometry. Při ionizaci plynu o koncentraci n nejsou ionizovány všechny molekuly, ale jenom část z nich n i = γn ; γ < 1. Ionizační manometry Princip: ionizace molekul a měření počtu nabitých částic Rozdělení podle způsobu ionizace: Manometry se žhavenou katodou Manometry se studenou katodou Manometry s radioaktivním zářičem

Více

E g IZOLANT POLOVODIČ KOV. Zakázaný pás energií

E g IZOLANT POLOVODIČ KOV. Zakázaný pás energií Polovodiče To jestli nazýváme danou látku polovodičem, závisí především na jejích vlastnostech ve zvoleném teplotním oboru. Obecně jsou to látky s 0 ev < Eg < ev. KOV POLOVODIČ E g IZOLANT Zakázaný pás

Více

Metodika hodnocení opotřebení povlaků

Metodika hodnocení opotřebení povlaků Metodika hodnocení opotřebení povlaků Bc. Petr Mutafov Vedoucí práce: Ing. Tomáš Polcar, Ph.D. Abstrakt Tento příspěvek se věnuje porovnáním kontaktního a bezkontaktního způsobu měření, které byly vybrány

Více

Odporové topné články. Elektrické odporové pece

Odporové topné články. Elektrické odporové pece Odporové topné články Otevřené topné články pro odporové pece (vpravo): 1 4 topný vodič v meandru 5 7 topný vodič ve šroubovici Zavřené topné články: a) trubkový (tyčový) článek NiCr izolovaný MgO b) válcové

Více

(1 + v ) (5 bodů) Pozor! Je nutné si uvědomit, že v a f mají opačný směr! Síla působí proti pohybu.

(1 + v ) (5 bodů) Pozor! Je nutné si uvědomit, že v a f mají opačný směr! Síla působí proti pohybu. Přijímací zkouška na navazující magisterské studium - 017 Studijní program Fyzika - všechny obory kromě Učitelství fyziky-matematiky pro střední školy, Varianta A Příklad 1 (5 bodů) Těleso s hmotností

Více

ž ě é ú ž é ů á ž ú á š ú Í Ť č é ž ě š ý ěž é řá é é Í č é ž ý Í ě ť ě ě ž é úř ž ř ú ý ř žá ý ý ř ú ý ý ůž ý ř á ě á á ř ě é á á ě ř á ř á é á á é ž

ž ě é ú ž é ů á ž ú á š ú Í Ť č é ž ě š ý ěž é řá é é Í č é ž ý Í ě ť ě ě ž é úř ž ř ú ý ř žá ý ý ř ú ý ý ůž ý ř á ě á á ř ě é á á ě ř á ř á é á á é ž ň č ý ě ř š ž ř ř é ý á ř é š ě á ú č č ý ě ž é ř á ů á á á ť é ěř ů ť Ť ž č Í úž Ě ě š á é á ě á ř é ř ě ě ž áč ž ě ůž á ž ů á ů é á á á ř é š ě á ž ě š á š é ř áč ý ř ž é ř á ý é ě ž ž ý á ý ů ěř ť ě

Více

á ý é í č ří Ť á íč é í ž č ř Í é Ť č í ž á ý ý á é č í ý ř ří í ž ř é ř á á í ý ý ů í Í ř ů Ž á á á ž ří š ě Í ž č é ří ř í ř í Ť ý š ý ř í ý ů ří ř

á ý é í č ří Ť á íč é í ž č ř Í é Ť č í ž á ý ý á é č í ý ř ří í ž ř é ř á á í ý ý ů í Í ř ů Ž á á á ž ří š ě Í ž č é ří ř í ř í Ť ý š ý ř í ý ů ří ř á ý č ř Ť á č ž č ř Í Ť č ž á ý ý á č ý ř ř ž ř ř á á ý ý ů Í ř ů Ž á á á ž ř š ě Í ž č ř ř ř Ť ý š ý ř ý ů ř ř á š á Í ř ý ý ř ř č ř ř Í š ý Í Ť č ř á Í ó č ř ý ž ý Í ř č ž á ř ž ý ž ří ř š Í É Í ř Í

Více

Technologie I. Část svařování. Kontakt : E-mail : michal.vslib@seznam.cz Kancelář : budova E, 2. patro, laboratoře

Technologie I. Část svařování. Kontakt : E-mail : michal.vslib@seznam.cz Kancelář : budova E, 2. patro, laboratoře Část svařování cvičící: Ing. Michal Douša Kontakt : E-mail : michal.vslib@seznam.cz Kancelář : budova E, 2. patro, laboratoře Doporučená studijní literatura Novotný, J a kol.:technologie slévání, tváření

Více

Seznam řešených projektů včetně informací o délce trvání projektu, objemu a poskytovateli finančních prostředků

Seznam řešených projektů včetně informací o délce trvání projektu, objemu a poskytovateli finančních prostředků Seznam řešených projektů včetně informací o délce trvání projektu, objemu a poskytovateli finančních prostředků Podíl na řešení celkem: 52 grantových projektů V roli hlavního e/e za UP/spoluautora návrhu

Více

VYUŽITÍ PVD POVLAKŮ PRO FUNKČNĚ GRADOVANÉ MATERIÁLY

VYUŽITÍ PVD POVLAKŮ PRO FUNKČNĚ GRADOVANÉ MATERIÁLY VYUŽITÍ PVD POVLAKŮ PRO FUNKČNĚ GRADOVANÉ MATERIÁLY Jakub HORNÍK, Pavlína HÁJKOVÁ, Evgeniy ANISIMOV Ústav materiálového inženýrství, fakulta strojní ČVUT v Praze, Karlovo nám. 13, 121 35, Praha 2, CZ,

Více

Polovodičové senzory. Polovodičové materiály Teplotní závislost polovodiče Piezoodporový jev Fotonové jevy Radiační jevy Magnetoelektrické jevy

Polovodičové senzory. Polovodičové materiály Teplotní závislost polovodiče Piezoodporový jev Fotonové jevy Radiační jevy Magnetoelektrické jevy Polovodičové senzory Polovodičové materiály Teplotní závislost polovodiče Piezoodporový jev Fotonové jevy Radiační jevy Magnetoelektrické jevy Polovodičové materiály elementární polovodiče Elementární

Více

DOUTNAVÝ VÝBOJ. 1. Vlastnosti doutnavého výboje 2. Aplikace v oboru plazmové nitridace

DOUTNAVÝ VÝBOJ. 1. Vlastnosti doutnavého výboje 2. Aplikace v oboru plazmové nitridace DOUTNAVÝ VÝBOJ 1. Vlastnosti doutnavého výboje 2. Aplikace v oboru plazmové nitridace Doutnavý výboj Připomeneme si voltampérovou charakteristiku výboje v plynech : Doutnavý výboj Připomeneme si, jaké

Více

Vybrané technologie povrchových úprav. Vakuum 2. Část Doc. Ing. Karel Daďourek 2006

Vybrané technologie povrchových úprav. Vakuum 2. Část Doc. Ing. Karel Daďourek 2006 Vybrané technologie povrchových úprav Vakuum 2. Část Doc. Ing. Karel Daďourek 2006 Základní parametry vývěv Mezní tlak vývěvy p mez Tlak na výstupu vývěvy, od kterého je schopna funkce p 0 Čerpací schopnost

Více

VÝROBKY PRÁŠKOVÉ METALURGIE

VÝROBKY PRÁŠKOVÉ METALURGIE 1 VÝROBKY PRÁŠKOVÉ METALURGIE Použití práškové metalurgie Prášková metalurgie umožňuje výrobu součástí z práškových směsí kovů navzájem neslévatelných (W-Cu, W-Ag), tj. v tekutém stavu nemísitelných nebo

Více

Glass temperature history

Glass temperature history Glass Glass temperature history Crystallization and nucleation Nucleation on temperature Crystallization on temperature New Applications of Glass Anorganické nanomateriály se skelnou matricí Martin Míka

Více

ď ř Í í ú í í Ž í Í óí č í í ý

ď ř Í í ú í í Ž í Í óí č í í ý í ř í ř ř ý č č ř č č ý í í ý ň ř í ř č č í í ř ý ý ř ý ř č ý ý í í í í ř íí ú ý ů í ý ů í í ý ř č ří í č č í č č ř ů í ř čí í ú í í ř í č ý ř í ř ý č í ů ř íč í í č ý ř č ů í í ří í í ú í ď í í í í ý

Více

Fotonické nanostruktury (alias nanofotonika)

Fotonické nanostruktury (alias nanofotonika) Základy nanotechnologií KEF/ZANAN Fotonické nanostruktury (alias nanofotonika) Jan Soubusta 27.10. 2017 Obsah 1. ÚVOD 2. POHLED DO MIKROSVĚTA 3. OD ELEKTRONIKY K FOTONICE 4. FYZIKA PRO NANOFOTONIKU 5.

Více

PVD povlaky pro nástrojové oceli

PVD povlaky pro nástrojové oceli PVD povlaky pro nástrojové oceli Bc. Martin Rund Vedoucí práce: Ing. Jan Rybníček Ph.D Abstrakt Tato práce se zabývá způsoby a možnostmi depozice PVD povlaků na nástrojové oceli. Obsahuje rešerši o PVD

Více

Plynové lasery pro průmyslové využití

Plynové lasery pro průmyslové využití Laserové technologie v praxi I. Přednáška č.3 Plynové lasery pro průmyslové využití Hana Chmelíčková, SLO UP a FZÚ AVČR Olomouc, 2011 Využití plynových laserů v průmyslových aplikacích Atomární - He-Ne

Více

Fyzika (učitelství) Zkouška - teoretická fyzika. Čas k řešení je 120 minut (6 minut na úlohu): snažte se nejprve rychle vyřešit ty nejsnazší úlohy,

Fyzika (učitelství) Zkouška - teoretická fyzika. Čas k řešení je 120 minut (6 minut na úlohu): snažte se nejprve rychle vyřešit ty nejsnazší úlohy, Státní bakalářská zkouška. 9. 05 Fyzika (učitelství) Zkouška - teoretická fyzika (test s řešením) Jméno: Pokyny k řešení testu: Ke každé úloze je správně pouze jedna odpověď. Čas k řešení je 0 minut (6

Více

Nové trendy vývoje tenkých vrstev vytvořených PVD a CVD technologií v aplikaci na řezné nástroje Antonín Kříž

Nové trendy vývoje tenkých vrstev vytvořených PVD a CVD technologií v aplikaci na řezné nástroje Antonín Kříž Nové trendy vývoje tenkých vrstev vytvořených PVD a CVD technologií v aplikaci na řezné nástroje Antonín Kříž TATO PŘEDNÁŠKA JE SPOLUFINANCOVÁNA EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY.

Více

c) vysvětlení jednotlivých veličin ve vztahu pro okamžitou výchylku, jejich jednotky

c) vysvětlení jednotlivých veličin ve vztahu pro okamžitou výchylku, jejich jednotky Harmonický kmitavý pohyb a) vysvětlení harmonického kmitavého pohybu b) zápis vztahu pro okamžitou výchylku c) vysvětlení jednotlivých veličin ve vztahu pro okamžitou výchylku, jejich jednotky d) perioda

Více

é č í é ě í ž ý í Ú á í ž ý í ý Á í ÁŘ É Á ý á ář é í á í ž ý í Ř ú á á č ý š á í š í řá ě č á í í é ář é á é é č á ú í ář é á á ů ě ž é é č é é ě ý ží á ý ý í ář é á ě ž é ří é ď ý é ě í í č í č íčá é

Více

Přehled veličin elektrických obvodů

Přehled veličin elektrických obvodů Přehled veličin elektrických obvodů Ing. Martin Černík, Ph.D Projekt ESF CZ.1.7/2.2./28.5 Modernizace didaktických metod a inovace. Elektrický náboj - základní vlastnost některých elementárních částic

Více

Diagram Fe N a nitridy

Diagram Fe N a nitridy Nitridace Diagram Fe N a nitridy Nitrid Fe 4 N s KPC mřížkou také γ fáze. Tvrdost 450 až 500 HV. Přítomnost uhlíku v oceli jeho výskyt silně omezuje. Nitrid Fe 2-3 N s HTU mřížkou, také εε fáze. Je stabilní

Více

Maturitní témata fyzika

Maturitní témata fyzika Maturitní témata fyzika 1. Kinematika pohybů hmotného bodu - mechanický pohyb a jeho sledování, trajektorie, dráha - rychlost hmotného bodu - rovnoměrný pohyb - zrychlení hmotného bodu - rovnoměrně zrychlený

Více

Fotokatalytická oxidace acetonu

Fotokatalytická oxidace acetonu Fotokatalytická oxidace acetonu Hana Žabová 5. ročník Doc. Ing. Bohumír Dvořák, CSc Osnova 1. ÚVOD 2. CÍL PRÁCE 3. FOTOKATALYTICKÁ OXIDACE Mechanismus Katalyzátor Nosič-typy Aparatura 4. VÝSLEDKY 5. ZÁVĚR

Více

Inženýrské výzvy v oblasti žárového stříkání

Inženýrské výzvy v oblasti žárového stříkání Inženýrské výzvy v oblasti žárového stříkání Radek Mušálek 1,2 musalek@ipp.cas.cz 1 Ústav fyziky plazmatu AV ČR, v.v.i. 2 Katedra materiálů FJFI Oddělení materiálového inženýrství ČVUT v Praze Praha Praha

Více

Aplikace jaderné fyziky (několik příkladů)

Aplikace jaderné fyziky (několik příkladů) Aplikace jaderné fyziky (několik příkladů) Pavel Cejnar Ústav částicové a jaderné fyziky MFF UK pavel.cejnar@mff.cuni.cz Příklad I Datování Galileiho rukopisů Galileo Galilei (1564 1642) Všechny vázané

Více

č č Ť ď

č č Ť ď č č Ť ď Ě č úň č Ť Í Ť Ť Ť č Ť č ď č Ť Ů č Í ť Ó Í č č Ú ň č Í ď Í č Í ď č ď Ť č Ť Ť Ť ň Ť ď ď Ť Ú č č Ť č Ě č Ý Í ň č Ť Í ď úť Ť č Ť Ú ň Ť č Ť Ť Í Ť Ť ď Ť č Ů ň Ť č Ť Í Ť Í Ť ň ů Ú Ú ď ú Ó ď č Ó ú ň č

Více

TENKÉ VRSTVY. 1. Modifikací povrchu materiálu (teplem, okysličením, laserem,.. 2. Depozicí (nanášením)

TENKÉ VRSTVY. 1. Modifikací povrchu materiálu (teplem, okysličením, laserem,.. 2. Depozicí (nanášením) TENKÉ VRSTVY Lze připravit : 1. Modifikací povrchu materiálu (teplem, okysličením, laserem,.. 2. Depozicí (nanášením) Metody fyzikální (Physical Vapor Deposition PVD) Metody chemické (Chemical Vapor Deposition-

Více

Dodávka vakuové komory s p íslušenstvím

Dodávka vakuové komory s p íslušenstvím Název ve ejné zakázky: Dodávka vakuové komory s p íslušenstvím Od vodn ní vymezení technických podmínek podle 156 odst. 1 písm. c) ZVZ Technická podmínka: Od vodn ní A) Komponenty erpacího systému a systému

Více

Konstrukce vakuových zařízení

Konstrukce vakuových zařízení Konstrukce vakuových zařízení Základní parametry vývěv Mezní tlak vývěvy p mez Tlak na výstupu vývěvy, od kterého je schopná funkce p 0 (je schopná pracovat od atmosférického tlaku?) Čerpací schopnost

Více

KONVENČNÍ FRÉZOVÁNÍ Zdeněk Zelinka

KONVENČNÍ FRÉZOVÁNÍ Zdeněk Zelinka KONVENČNÍ FRÉZOVÁNÍ Zdeněk Zelinka Frézy VY_32_INOVACE_OVZ_1_05 OPVK 1.5 EU peníze středním školám CZ.1.07/1.500/34.0116 Modernizace výuky na učilišti Název školy Název šablony Předmět Tematický celek

Více

Laserové technologie v praxi I. Přednáška č.2. Základní konstrukční součásti laserů. Hana Chmelíčková, SLO UP a FZÚ AVČR Olomouc, 2011

Laserové technologie v praxi I. Přednáška č.2. Základní konstrukční součásti laserů. Hana Chmelíčková, SLO UP a FZÚ AVČR Olomouc, 2011 Laserové technologie v praxi I. Přednáška č.2 Základní konstrukční součásti laserů Hana Chmelíčková, SLO UP a FZÚ AVČR Olomouc, 2011 Konstrukce laseru 1 - Aktivní prostředí 2 - Čerpací zařízení 3 - Optický

Více

Kovy - model volných elektronů

Kovy - model volných elektronů Kovy - model volných elektronů Kovová vazba 1. Preferuje ji většina prvků vyskytujících se v přírodě. Kov je tvořen kladně nabitými ionty (s konfigurací vzácného plynu) a relativně velmi volnými elektrony.

Více

JADERNÁ FYZIKA. Mgr. Jan Ptáčník - GJVJ - Fyzika - Fyzika mikrosvěta - 3. ročník

JADERNÁ FYZIKA. Mgr. Jan Ptáčník - GJVJ - Fyzika - Fyzika mikrosvěta - 3. ročník JADERNÁ FYZIKA Mgr. Jan Ptáčník - GJVJ - Fyzika - Fyzika mikrosvěta - 3. ročník Základní pojmy Jaderná síla - drží u sebe nukleony, velmi krátký dosah, nasycení Vazebná energie jádra: E V = ( Z m p + N

Více

Elektromagnetismus 163

Elektromagnetismus 163 Elektromagnetismus 163 I I H= 2πr Magnetické pole v blízkosti vodi e s proudem x r H Relativní permeabilita Materiály paramagnetické feromagnetické (nap. elezo, nikl, kobalt) diamagnetické Ve vzduchu je

Více

É ň ú ú Č Ě ú ó Ú Ú Ť Ú ď Ú Š ó Ž Ž ú Ó Ž ó ň ú Š Š ú ť ú Ť

É ň ú ú Č Ě ú ó Ú Ú Ť Ú ď Ú Š ó Ž Ž ú Ó Ž ó ň ú Š Š ú ť ú Ť É ť Č É ň ú ú Č Ě ú ó Ú Ú Ť Ú ď Ú Š ó Ž Ž ú Ó Ž ó ň ú Š Š ú ť ú Ť Ó ó Č ó Ž ú Š ú ú Ž ú ť Ž Š Ž ň Č ú ó Ž ú Ž Č Ž Ž Ž Ž ť Č Ž Ž ď Ž ó Ý Č Č ť ú ň Č ó ú Ž ť Ž ú ó Ý ň Č ó Ř ú ó ú ó ň ň ú ť ú ó ň ó ó Š ň

Více

Chemické metody přípravy tenkých vrstev

Chemické metody přípravy tenkých vrstev Chemické metody přípravy tenkých vrstev verze 2013 Povrchové filmy monomolekulární Langmuirovy filmy PAL (povrchově aktivní látky) na polární kapalině (vodě), 0,205 nm 2 na 1 molekulu, tloušťka dána délkou

Více

vodič u něho dochází k transportu el. nabitých částic, který je nevratný, dochází ke vzniku proudu a disipaci energie

vodič u něho dochází k transportu el. nabitých částic, který je nevratný, dochází ke vzniku proudu a disipaci energie Chování polymerů v elektrickém a magnetickém poli vodič u něho dochází k transportu el. nabitých částic, který je nevratný, dochází ke vzniku proudu a disipaci energie dielektrikum, izolant, nevodič v

Více

KONSTITUČNÍ VZTAHY. 1. Tahová zkouška

KONSTITUČNÍ VZTAHY. 1. Tahová zkouška 1. Tahová zkouška Tahová zkouška se provádí dle ČSN EN ISO 6892-1 (aktualizována v roce 2010) Je nejčastější mechanickou zkouškou kovových materiálů. Zkoušky se realizují na trhacích strojích, kde se zkušební

Více

Nauka o materiálu. Přednáška č.2 Poruchy krystalické mřížky

Nauka o materiálu. Přednáška č.2 Poruchy krystalické mřížky Nauka o materiálu Přednáška č.2 Poruchy krystalické mřížky Opakování z minula Materiál Degradační procesy Vnitřní stavba atomy, vazby Krystalické, amorfní, semikrystalické Vlastnosti materiálů chemické,

Více