4 POČÍTAČOVÉ MODELY DETERMINISTICKÉ. VYUŽITÍ SLOŽITÉ OKRAJOVÉ PODMÍNKY V SIMULAČNÍM MODELU

Rozměr: px
Začít zobrazení ze stránky:

Download "4 POČÍTAČOVÉ MODELY DETERMINISTICKÉ. VYUŽITÍ SLOŽITÉ OKRAJOVÉ PODMÍNKY V SIMULAČNÍM MODELU"

Transkript

1 4 POČÍTAČOVÉ MODELY DETERMINISTICKÉ. VYUŽITÍ SLOŽITÉ OKRAJOVÉ PODMÍNKY V SIMULAČNÍM MODELU Počítačové modely deterministické využívající numerickou metodu konečných prvků (MKP). Tvorba simulačního modelu se složitou okrajovou podmínkou s využitím prostředků výpočetního systému Cosmos/M. Modelování přenosu tepla z pohybujícího se tepelného zdroje do vzorku materiálu. Použití nadstavbového software pro přípravu časově i prostorově proměnné okrajové podmínky na zatěžovaném povrchu vzorku. 1

2 4.1 CÍL CVIČENÍ Seznámit se s problematikou povlakových tepelných bariér (TBC thermal barrier coating), plazmovým nástřikem a tepelným zatěžováním TBC. Blíže se seznámit se simulačním modelem dynamického tepelného zatěžování vzorků TBC, který se používá pro vyhodnocení účinnosti TBC při nízkých teplotách. Provést porovnání teplot ve vzorku s TBC získaných experimentálně a z počítačového modelu pro již nalezený přestup tepla z hořáku do vzorku. Provést simulaci dynamického tepelného zatěžování vzorků TBC při 5 cyklech (periodách) pojezdu hořáku nad vzorkem po stejné trati pro dva různé přestupy tepla do vzorku. Vzájemně porovnat obě varianty simulace. 4.2 TEPELNÉ PROCESY V TBC PŘI PŮSOBENÍ TEPELNÉHO RÁZU VEŠKERÉ INFORMACE JSOU UVEDENY V PREZENTACI KE CVIČENÍ Problematika TBC Motivace, struktura, funkce, vytváření a použití TBC Plazmový nástřik TBC Příprava vzorku, technologie plazmového nástřiku, nástřikové materiály Tepelné zatěžování TBC Tepelné zatěžování Technologie zatěžování, statické a dynamické zatěžování, měření při zatěžování Emisivita materiálů Emisivita materiálů ve spektrálním rozsahu 7,5 13 m a 0,8 1,8 m Teploty při dynamickém tepelném zatěžování Teploty měření termočlánky a měřené termovizní kamerou Tepelně izolační účinnost TBC při nízkých teplotách Dynamické zatěžování 2

3 4.2.4 Simulační model dynamického tepelného zatěžování vzorků TBC Popis simulačního modelu geometrie, výpočetní síť, počáteční podmínky, příprava a zadávání okrajových podmínek, nastavení parametrů výpočtu. V nadstavbovém software Def_Cos_OP je připraven skriptový soubor, který se následně spouští ve výpočetním systému Cosmos/M a zahrnuje tvorbu simulačního modelu, výpočet a částečné vyhodnocení výsledků. Specifické vyhodnocení výsledků odlišné pro jednotlivé samostatné úkoly se provádí ručně. 4.3 POUŽÍVANÝ SOFTWARE Nadstavbový software Def_Cos_OP Software Def_Cos_OP tvoří ve spolupráci s výpočetním systémem Cosmos/M simulační model tepelného procesu ohřevu vzorku při nástřiku nebo tepelném zatěžování. Prostřednictvím Def_Cos_OP se zadávají vstupní data a připravuje se složitá okrajová podmínka na zatěžovaném povrchu vzorku Výpočetní systém Cosmos/M Cosmos/M je modulární výpočetní systém založený na metodě konečných prvků vyvinutý firmou SRAC Structural Research and Analysis Company, nyní součástí výpočetního systému Cosmos DesignStar firmy Solidworks. Celý systém má rozsáhlé možnosti použití při výpočtech tepelných, mechanických, únavových, optimalizačních, elektromagnetických aj. analýz. Úplná modularita umožňuje získat a provozovat pouze potřebné moduly. Podrobnější informace o software Cosmos/M je možné získat v programové dokumentaci (manuálu) tohoto systému. 4.4 MODELOVÁNÍ TEPELNÉHO PROCESU PŘI DYNAMICKÉM ZATĚŽOVÁNÍ POVLAKOVÝCH TEPELNÝCH BARIÉR V úloze je modelován tepelný proces ve vzorku s povlakovou tepelnou bariérou při jejím dynamickém tepelném zatěžování působením pohybujícího se hořáku. Schéma úlohy je na obr Popis úlohy Je řešena 2D nestacionární úloha šíření tepla ve vzorku s TBC. Geometrie se skládá z řezu vzorkem, viz. obr. 1, a obsahuje pouze substrát. Přítomnost a vliv povlakové tepelné bariéry se zahrnuje do součinitele přestupu tepla na horním povrchu vzorku, který je dynamicky zatěžován. 3

4 Rozměry řezu vzorkem jsou 10 cm šířka vzorku, 2 cm tloušťka vzorku. Vzorek je umístěn vzhledem k počátku soustavy souřadné podle obr. 1. Materiálové vlastnosti vzorku jsou uvažovány teplotně závislé. Hodnoty tepelné vodivosti λ, měrné tepelné kapacity c a hustoty ρ jsou uvedeny v tab. 1. Počáteční teplota vzorku je homogenní a rovna 30 C. Teplota okolí vzorku je 20 C. Okrajové podmínky na bočních stranách vzorku nulový tepelný tok. Okrajová podmínka na horním (tepelně zatěžovaném) povrchu vzorku okrajová podmínka 3. druhu (vnější teplota plamene hořáku, koeficient přestupu tepla) pro ohřev vzorku přestupem tepla z tepelného zdroje (hořák) a zároveň okrajová podmínka 3. druhu (vnější teplota, emisivita) pro volné chladnutí radiací. Okrajová podmínka na spodním povrchu vzorku okrajová podmínka 3. druhu (vnější teplota, koeficient přestupu tepla) pro volné chladnutí přirozenou konvekcí a zároveň okrajová podmínka 3. druhu (vnější teplota, emisivita) pro volné chladnutí radiací. Emisivita ε povrchu vzorku je uvažována teplotně závislá. Hodnoty emisivity jsou uvedeny v tab. 2. Základní koeficient přestupu tepla (z hořáku do vzorku) v závislosti na vzdálenosti od osy hořáku hodnoty jsou uvedeny v tab. 3. Koeficient redukce v závislosti na vzdálenosti osy hořáku od kraje vzorku (pokud je osa hořáku mimo vzorek) - hodnoty jsou uvedeny v tab. 4. Pohyb tepelného zdroje je popsán závislostí pozice osy hořáku na čase liší se dle samostatného úkolu. Na výběr je jedna z hodnot periody pojezdu hořáku (perioda = dva pojezdy hořáku) dle varianty zadání úlohy v tab. 5. y (cm) zatěžující tepelný zdroj levá úvrať pravá úvrať x (cm) Obr. 1 Schéma úlohy. Rozměry vzorku, materiálové vlastnosti, počáteční podmínka pro teplotu, okrajové podmínky na zatěžovaném povrchu vzorku i na ostatních površích vzorku jsou definovány v nadstavbovém software Def_Cos_OP. Některé z těchto údajů jsou pevné, např. rozměry vzorku, hustota výpočetní sítě. Hodnoty všech ostatních veličin lze v nadstavbovém software Def_Cos_OP editovat. 4

5 Tab. 1 Teplotně závislá tepelná vodivost, měrná tepelná kapacita a hustota vzorku teplota T ( C) tepelná vodivost λ (W.m -1.K -1 ) měrná tepelná kapacita c (J.kg -1.K -1 ) 40,493 39,774 38,847 37,888 36,897 35,873 34, ,31 438,66 474,48 526,02 593,27 676,24 774,92 hustota ρ (kg.m -3 ) 7821,3 7798,1 7768,0 7736,8 7704,4 7670,9 7636,1 Tab. 2 Teplotně závislá emisivita povrchu vzorku teplota T ( C) emisivita ε (-) 0,950 0,950 0,955 0,980 0,980 0,970 Tab. 3 Základní koeficient přestupu tepla v závislosti na vzdálenosti od osy hořáku vzdálenost x (cm) základní koeficient přestupu tepla (W.m -2.K -1 ) 0 1 1,5 2 3,3 4, Tab. 4 Koeficient redukce v závislosti na vzdálenosti osy hořáku od kraje vzorku vzdálenost x (cm) koeficient redukce (-) 1 0,7 0,5 0,3 Tab. 5 Perioda pojezdu zatěžujícího tepelného zdroje a příslušný časový krok pro jednotlivé varianty úlohy varianta úlohy (1) (2) (3) (4) (5) (6) perioda pojezdu (s) časový krok (s) 0,05 0,10 0,15 0,20 0,25 0,30 Úkolem je modelovat tři dynamická tepelná zatěžování vzorku podle jednotlivých samostatných úkolů s využitím 2D přímých nestacionárních úloh a provést jejich vyhodnocení. 5

6 4.4.2 Samostatné úkoly 1) Porovnání měřených a modelových teplot ve vzorku s TBC Provést simulaci ohřevu vzorku III s TBC v již sestaveném simulačním modelu dynamického tepelného zatěžování, jehož proměnné parametry jsou již nafitovány na provedené experimentální zatěžování. Porovnat naměřené teploty s vypočítanými, porovnání provést přímo v nadstavbovém software Def_Cos_OP. 2) Provedení modelového ohřevu vzorku s TBC při plném přestupu tepla Při použití modelu dynamického tepelného zatěžování vzorku III s TBC provést simulaci ohřevu při plném přestupu tepla pro 5 cyklů (period) pojezdu hořáku nad vzorkem po stejné trati, tj. pohyb mezi pravou úvratí x = 25 cm a levou úvratí x = 5 cm. Perioda pojezdu hořáku je jedna z hodnot dle varianty zadání úlohy v tab. 5. Ke každé periodě pojezdu hořáku je též doporučována hodnota časového kroku simulačního modelu tak, aby výpočet byl proveden v krátké době. 3) Provedení modelového ohřevu vzorku s TBC při redukovaném přestupu tepla Při použití modelu dynamického tepelného zatěžování vzorku III s TBC provést simulaci ohřevu vzorku při 80 % přestupu tepla pro stejný pohyb hořáku jako v případě plného přestupu tepla Postup řešení úloh 1) Porovnání měřených a modelových teplot ve vzorku s TBC Spustit nadstavbový software Def_Cos_OP v příslušném adresáři. Z předpřipravených parametrů se provede výpočet součinitelů přestupu tepla stiskem tlačítka v záložce PŘESTUP TEPLA. Poté se provede export již předpřipravených parametrů v Def_Cos_OP do Cosmos/M příkazem COSMOS -> EXPORT SOUBORŮ. Vlastní výpočet v Cosmos/M je nutno spustit ručně, tj. spustit grafické rozhraní Geostar přímo z podadresáře Cosmos (v příkazové řádce napsat GSTAR128). Příkazem FILE -> OPEN lze načíst úlohu v souboru NOVY.gen v tomto podadresáři Cosmos, pokud chcete provádět nový výpočet, je nutné vymazat starou úlohu příkazem `new, NOVY. Je též možné si vytvořit svojí vlastní úlohu příkazem FILE -> NEW a zadat název své úlohy. Poté příkazem FILE -> LOAD načíst skriptový soubor defcos.cos v podadresáři Cosmos, který obsahuje veškeré příkazy výpočetního systému Cosmos/M pro definici simulačního modelu, provedení výpočtu a uložení výsledných dat. Načíst výsledky do Def_Cos_OP a porovnat měřené průběhy s vypočtenými v záložce VÝSLEDKY, pro zobrazení grafu je nuné kliknout do oblasti grafu, ve spodním grafu lze přepínat rozdíly a rychlosti ohřevu (časovou derivaci teploty). Pro vizuální porovnání stačí 6

7 využít graf zobrazený na záložce VÝSLEDKY, do referátu pak vložit graf v Excelu z naměřených teplot uložených v souboru mereni.txt a vypočítaných teplot v souboru vypocet.txt. Pozn: Pokud se stiskne export souborů pro Cosmos/M v Def_Cos_OP, tak se již musí provést výpočet v Cosmos/M, neboť se automaticky vymaže obsah souboru vypocet.txt, odkud se načítají vypočítané teploty do Def_Cos_OP. Pozn: Předem je třeba nastavit ve Windows desetinnou tečku. Místní nastavení -> Čeština -> Čísla -> Desetinný oddělovač nastavit na desetinnou tečku. 2) Provedení modelového ohřevu vzorku s TBC při plném přestupu tepla Upravit parametry v nadstavbovém software Def_Cos_OP pro pohyb hořáku, celkový čas procesu a časový krok. To se provádí příkazy v záložce CHLADNUTÍ a záložce POHYB. Celkový čas procesu a časový krok se zadává dvakrát, v každé záložce samostatně. Polohu hořáku v osách x a y vždy nastavit o 1 s déle než celkový čas procesu, tj. v poslední úvrati nechat hořák stát po dobu 1 s. (Pokud je celkový čas procesu např. 100 s, tak předepsat pohybu hořáku až do času 101 s.) Nechat spočítat časové průběhy součinitele přestupu tepla pro všechny povrchové elementy modelu příkazem stiskem tlačítka v záložce PŘESTUP TEPLA. Poté se provede export již předpřipravených parametrů v Def_Cos_OP do Cosmos/M příkazem COSMOS -> EXPORT SOUBORŮ. Vlastní výpočet v Cosmos/M je nutno spustit ručně, tj. spustit grafické rozhraní Geostar přímo z podadresáře Cosmos (v příkazové řádce napsat GSTAR128). Příkazem FILE -> OPEN lze načíst úlohu v souboru NOVY.gen v tomto podadresáři Cosmos, pokud chcete provádět nový výpočet, je nutné vymazat starou úlohu příkazem `new, NOVY. Je též možné si vytvořit svojí vlastní úlohu příkazem FILE -> NEW a zadat název své úlohy. Poté příkazem FILE -> LOAD načíst skriptový soubor defcos.cos v podadresáři Cosmos, který obsahuje veškeré příkazy výpočetního systému Cosmos/M pro definici simulačního modelu, provedení výpočtu a uložení výsledných dat. Vykreslit přímo v Cosmos/M potřebné rozložení veličin (uložit do obrázků.bmp) a potřebné průběhy veličin (uložit číselná data grafů do textových souborů). Bližší popis vyhodnocovaných výsledků je v části Popis příkazů výpočetního systému Cosmos/M užitečných při vyhodnocování úlohy je v části 4.6. Pozn: Do Def_Cos_OP se zpět již nic nenačítá, protože tato varianta výpočtu (perioda pojezdu 6, 9 a 12 s) je jen simulovaná (toto tepelné zatěžování nebylo měřeno). 7

8 3) Provedení modelového ohřevu vzorku s TBC při redukovaném přestupu tepla Upravit parametry v nadstavbovém software Def_Cos_OP pro součinitel přestupu tepla v závislosti na vzdálenosti od osy hořáku, což se provede v záložce OHŘEV. Nechat spočítat časové průběhy součinitele přestupu tepla pro všechny povrchové elementy modelu příkazem stiskem tlačítka v záložce PŘESTUP TEPLA. Poté se provede export již předpřipravených parametrů v Def_Cos_OP do Cosmos/M příkazem COSMOS -> EXPORT SOUBORŮ. Vlastní výpočet v Cosmos/M je nutno spustit ručně, tj. spustit grafické rozhraní Geostar přímo z podadresáře Cosmos (v příkazové řádce napsat GSTAR128). Příkazem FILE -> OPEN lze načíst úlohu v souboru NOVY.gen v tomto podadresáři Cosmos, pokud chcete provádět nový výpočet, je nutné vymazat starou úlohu příkazem `new, NOVY. Je též možné si vytvořit svojí vlastní úlohu příkazem FILE -> NEW a zadat název své úlohy. Poté příkazem FILE -> LOAD načíst skriptový soubor defcos.cos v podadresáři Cosmos, který obsahuje veškeré příkazy výpočetního systému Cosmos/M pro definici simulačního modelu, provedení výpočtu a uložení výsledných dat. Vykreslit přímo v Cosmos/M potřebné rozložení veličin (uložit do obrázků.bmp) a potřebné průběhy veličin (uložit číselná data grafů do textových souborů). Bližší popis vyhodnocovaných výsledků je v části Popis příkazů výpočetního systému Cosmos/M užitečných při vyhodnocování úlohy je v části 4.6. Pozn: Do Def_Cos_OP se zpět již nic nenačítá, protože tato varianta výpočtu (perioda pojezdu 6, 9 a 12 s) je jen simulovaná (toto tepelné zatěžování nebylo měřeno) Výsledky a zhodnocení 1) Porovnání měřených a modelových teplot ve vzorku s TBC Porovnat naměřené průběhy teplot s vypočtenými při prvním pojezdu hořáku nad vzorkem. Průběhy teplot vložit dohromady do jednoho grafu (1 obrázek). Diskutovat možnosti tohoto modelu při simulaci více pojezdů hořáku nad vzorkem (s ohledem na definici okrajových podmínek a dimenzi modelu) 2) Provedení modelového ohřevu vzorku s TBC při plném přestupu tepla Vyhodnotit rozložení teploty, dále složek tepelného toku ve směru jednotlivých souřadných os a celkového tepelného roku v čase, kdy je hořák nad středem vzorku při prvním a desátém pojezdu. Každé rozložení veličiny vložit jako samostatný obrázek (8 obrázků). 8

9 Diskutovat velikost složek tepelného toku v osách x a y (osa x směřuje je od levého kraje substrátu k pravému, osa y směřuje od spodního kraje substrátu k hornímu zatěžovanému). Porovnáváním rozložení teploty a celkového tepelného toku zjistit vzájemnou polohu maxima teploty povrchu vzorku vůči poloze hořáku v časech, kdy je hořák nad středem vzorku při prvním a desátém pojezdu. Vyhodnotit průběhy povrchové teploty vzorku na jeho krajích, čtvrtině, polovině a třech čtvrtinách délky vzorku (x = 10; 12,5; 15; 17,5; 20 cm). Průběhy teploty ve všech místech po povrchu vložit dohromady do jednoho grafu (1 obrázek). Diskutovat vzájemné posunutí maxim teplotních průběhů. Vyhodnotit teplotní průběhy uprostřed vzorku na povrchu a v hloubkách 1, 2, 5 a 10 mm pod povrchem. Průběhy teploty ve všech místech po hloubce vložit dohromady do jednoho grafu (1 obrázek). Diskutovat vzájemné posunutí maxim teplotních průběhů. 3) Provedení modelového ohřevu vzorku s TBC při redukovaném přestupu tepla Vyhodnotit teplotní průběhy uprostřed vzorku na povrchu a v hloubkách 1, 2, 5 a 10 mm pod povrchem. Průběhy teploty ve všech místech po hloubce vložit dohromady do jednoho grafu (1 obrázek). Porovnat tyto teplotní průběhy po hloubce při plném a redukovaném přestupu tepla. 4.5 POKYNY PRO VYPRACOVÁNÍ PÍSEMNÉHO REFERÁTU A KONTROLNÍ OTÁZKY Obsah referátu V části teoretický úvod stručně popsat: Základní věci týkající se povlakových tepelných bariér, tzn. popis TBC, její funkce, materiály a použití. V části metody zpracování stručně popsat: Popis postupu tvorby simulačních modelů úloh z 4.4, tzn. geometrie, výpočetní sítě, okrajové a počáteční podmínky, materiálové vlastnosti a pohyb hořáku. 9

10 V části výsledky a diskuze uvést: Výsledky všech výpočtů úloh (1), (2) a (3), tzn. příslušné grafy a obrázky všech získaných výsledků podle Diskuze ke všem uvedeným výsledkům Kontrolní otázky Ochrana materiálu před účinky vysokých teplot a tepelných rázů. Charakteristika, materiály a použití povlakových tepelných bariér. Tepelné zatěžování povlakových tepelných bariér jako metoda určování jejich tepelně izolační účinnosti. Tvorba simulačního modelu úlohy tepelného zatěžování TBC. Rozložení teploty a celkového tepelného toku ve vzorku při dynamickém tepelném zatěžování, časové průběhy pro různá místa na povrchu vzorku a pro různé hloubky pod povrchem. Pozice maxima teploty a celkového tepelného toku na povrchu vzorku co určují a jaké je jejich vzájemné posunutí. 10

11 4.6 TECHNICKÉ DETAILY POSTUPŮ VE VÝPOČETNÍM SYSTÉMU COSMOS/M Spuštění, zobrazování, práce se skriptovým souborem 1. Spuštění grafického rozhraní Geostar výpočetního systému Cosmos/M se provede v příkazové řádce příkazem GSTAR Načtení rozpracované úlohy v systému Cosmos/M se provádí příkazem FILE -> OPEN, kde se nalezne příslušný soubor s úlohou, což je soubor s příponou.gen. 3. Vymazání okna pracovní plochy Cosmos/M se provede příkazem cls; nebo ikonkou Clear screen v dolní části Geo Panel. 4. Nastavení pohledu 3D, 2D v různých směrech (View) se provádí ikonkou Dalekohled ve střední části Geo Panel. 5. Zvětšování a zmenšování (Zoom in, Zoom out, Scale, Auto Scale), posuv (Translate), rotace (Rotate) se provádí ikonkami a posuvníky umístěnými ve střední a dolní části Geo Panel. 6. Nastavení bílého pozadí okna pracovní plochy Cosmos/M se provede nastavením Foreground color na černou, Background color na bílou, Axis color na černou. Poté se nechá překreslit okno pracovní plochy Cosmos/M příkazy Clear screen a Replot, všechny ikonky jsou umístěny ve spodní části Geo Panel. Při vykreslování rozložení veličin je nutné ještě nastavit barvu písma na černou příkazem RESULTS -> SETUP -> COLOR/VALUE RANGE, zde první dotazovací okno potvrdit beze změn tlačítkem Continue a ve druhém okně nastavit Chart color na černou. Příkazem RESULTS -> SETUP -> COLOR/VALUE RANGE lze v prvním dotazovacím okně nastavit i minimální a maximální hodnoty zobrazované veličiny, pokud je potřeba. 7. Uložení části okna pracovní plochy Cosmos/M jako obrázek ve formátu.bmp se provede příkazem FILE -> SAVE IMAGE FILE. Je nutné zadat název souboru a typ souboru. Zvolí se typ souboru BMP, dále se vybírá levý horní bod a pravý spodní bod plochy, která se má uložit. Při ukládání rozložení veličin je vhodné samostatně ukládat samotné pole veličin a samotnou stupnici s hodnotami (při současném ukládání a vkládání obrázku do referátu dojde ke zmenšení obrázku a tím ke zhoršené čitelnosti textu ve stupnici). 8. Veškeré prováděné příkazy se automaticky ukládají do skriptového souboru, který lze uložit i ručně příkazem FILE -> SAVE SESSION FILE. Načtení a provedení všech příkazů skriptového souboru se provádí příkazem FILE -> LOAD, kde se dále příkazem Find nalezne příslušný skriptový soubor, což je soubor s příponou.ses (Session File) Vykreslení rozložení teplot (gradientů, tepelných toků) 1. Rozložení teplot (gradientů, tepelných toků) se provede příkazem RESULTS -> PLOT -> THERMAL. Je nutné zadat Time step number, ve kterém se zobrazí výsledné pole (což je požadovaný čas děleno časový krok výpočtu) a zobrazovanou veličinu. Plnobarevné rozložení hodnot vybrané veličiny se provede příkazem Contour Plot. 11

12 2. Pokud je potřeba vykreslit rozložení teplot (tepelných toků) bez hran výpočetních elementů, je potřeba před tím příkazem DISPLAY -> DISPLAY OPTION -> SET BOUND PLOT nastavit Boundary plot na hodnotu 0: None Získání hodnot teploty (gradientů, tepelných toků) v požadovaných místech 1. Pro získání hodnot teploty (gradientů, tepelných toků) ve vybraných místech je nutné neprve zjistit příslušná čísla výpočetních uzlů ležících přímo v těchto místech nebo velmi blízko těchto míst. Příkazem GEOMETRY -> POINTS -> EDITING ->PLOT se vykreslí body geometrie. Příkazem MESHING -> NODES -> PLOT se vykreslí uzly výpočetní sítě. Příkazem MESHING -> NODES -> IDENTIFY se po kliknutí na příslušný uzel zobrazí jeho souřadnice a pořadové číslo. 2. Následuje vypsání hodnot teploty (gradientů, tepelných toků) příkazem RESULTS -> LIST -> THERMAL RESULT s parametry Time step number dle požadavku (tzn. u stacionární úlohy se používá hodnota 1), Set number 1: Temperature and gradient nebo 2: Heat flux component/resultant dle výběru, s přednastavenými hodnotami od prvního do posledního uzlu, takže se vypíší údaje ke všem uzlům. Tuto matici hodnot je nutné zkopírovat a uložit do souboru (kopírování se provádí stiskem pravého tlačítka myši na okně s příslušným výpisem a výběrem položky Copy), nebo lze ručně opsat požadované hodnoty teploty (gradientu, tepelného toku) u příslušných výpočetních uzlů Vykreslení časových průběhů teplot (gradientů, tepelných toků) 1. Pro vykreslení průběhů teplot (gradientů, tepelných toků) ve vybraných uzlech je nutné neprve zjistit příslušná čísla uzlů. Příkazem GEOMETRY -> POINTS -> EDITING - >PLOT se vykreslí body geometrie. Příkazem MESHING -> NODES -> PLOT se vykreslí uzly výpočetní sítě. Příkazem MESHING -> NODES -> IDENTIFY se po kliknutí na příslušný uzel zobrazí jeho souřadnice a pořadové číslo. 2. Vykreslované veličiny v požadovaných uzlech se nadefinují příkazem DISPLAY -> XY PLOTS -> ACTIVATE POST-PROC. Zde se uvede číslo křivky v grafu (pozor je to nazvané jako Graph number, tuto hodnotu je potřeba zvyšovat), provede se výběr požadované veličiny a zadá se číslo uzlu, ve kterém se má veličina vykreslit. Tímto způsobem se nadefinují všechny křivky v grafu, tj. všechy uzly ve kterých se zobrazí průběh hodnot veličiny. 3. Příslušný graf se pak zobrazí příkazem DISPLAY -> XY PLOTS -> PLOT CURVES. Je vhodné tímto způsobem křivky pouze zobrazovat. Vlastní zpracování grafů do referátu se provádí v Excelu. Vypsání hodnot pro křivky v grafu se provede příkazem DISPLAY -> XY PLOTS -> LIST POINTS. Tuto matici hodnot je nutné zkopírovat a uložit do souboru (kopírování se provádí stiskem pravého tlačítka myši na okně s příslušným výpisem a výběrem položky Copy). 12

13 4.6.5 Vykreslení průběhů teplot (gradientů, tepelných toků) po přímce 1. Pro vykreslení průběhů teplot (gradientů, tepelných toků) po přímce (tj. ve vybraných uzlech) je nutné neprve vybrat příslušné uzly. Příkazem GEOMETRY -> POINTS -> EDITING -> PLOT se vykreslí body geometrie. Příkazem MESHING -> NODES -> PLOT se vykreslí uzly výpočetní sítě. Příkazem CONTROL -> SELECT -> BY WINDOWING s parametry Entity Name ND: Node, Window type 0:Box, Selection Set Number 2 se myší vyberou požadované výpočetní uzly. Dále je nutné zjistit u výběru výpočetních uzlů čísla krajních uzlů. To se provede příkazem MESHING -> NODES -> IDENTIFY. 2. Pro vykreslení průběhů teplot (gradientů, tepelných toků) do grafu se využije příkaz RESULTS -> PLOT -> THERMAL s parametry Time step number dle požadavku, Component dle výběru z množiny TEMP: Nodal temperature, GRADX,..., GRADN, HFLUXX,..., HFLUXN, dále Contour Plot. Dále se provede příkaz RESULTS -> PLOT -> PATH GRAPH, kde se zadávají čísla krajních uzlů přímky, druhý uzel se zadá dvakrát za sebou.vykreslený graf má na ose x vzdálenost, která je normovaná v rozsahu 0 1. Je vhodné tímto způsobem graf pouze zobrazovat. 3. Pro vlastní zpracování grafu v Excelu je potřeba získat prostorové souřadnice vybraných uzlů a v nich příslušné hodnoty požadované veličiny. Vypsání prostorových souřadnic se provede příkazem MESHING -> NODES -> LIST s přednastavenými hodnotami od prvního do posledního uzlu, na což je aplikován aktivní výběr 2, takže se vypíší údaje pouze k uzlům ve výběru 2. Tuto matici hodnot je nutné zkopírovat a uložit do souboru (kopírování se provádí stiskem pravého tlačítka myši na okně s příslušným výpisem a výběrem položky Copy). 4. Vypsání hodnot požadovaných veličin se provede příkazem RESULTS -> LIST -> THERMAL RESULT s parametry Time step number dle požadavku, Set number 1: Temperature and gradient nebo 2: Heat flux component/resultant dle výběru, s přednastavenými hodnotami od prvního do posledního uzlu, na což je aplikován aktivní výběr 2, takže se vypíší údaje pouze k uzlům ve výběru 2. Tuto matici hodnot je nutné zkopírovat a uložit do souboru (kopírování se provádí stiskem pravého tlačítka myši na okně s příslušným výpisem a výběrem položky Copy). 5. Když je potřeba mít ve výběru výpočetních uzlů opět všechny uzly, provede se to příkazem CONTROL -> SELECT -> BY RANGE s parametry Entity Name ND: Node, rozsahy na osách nechat přednastavené (tj. 0 až 10 v ose x, 0 až 8 v ose y), zadat Selection Set Number 1. Tato množina Selection Set Number 1 již existovala, teď se tedy pouze aktivovala. Tuto aktivaci lze též provést příkazem CONTROL -> ACTIVATE -> SELECT LIST, kde se vybere entita Node, dale se nastaví Selection Set Number na požadované číslo (1 nebo 2), ostatní parametry implicitní.tím lze přepínat mezi Selection Set Number 1 (nechají se zde standardně všechny uzly) a Selection set Number 2 (nastaví se zde vybrané uzly kolem čerchované čáry, viz. obrázek geometrie úlohy). 13

14 4.7 NADSTAVBOVÝ SOFTWARE DEF_COS_OP Obr. 2 Popis mat. vlastností vzorku. Obr. 3 Popis ohřevu vzorku. Obr. 4 Popis chladnutí vzorku. Obr. 5 Popis pohybu hořáku. 14

15 Obr. 6 Výpočet koeficientů přestupu tepla Obr. 7 Automaticky sestavené soubory pro jednotlivé elementy modelu. definující úlohu v Cosmos/M. Obr. 8 Komunikace s Cosmos/M. Obr. 9 Analýza výsledků. 15

4 POČÍTAČOVÉ MODELY DETERMINISTICKÉ. VYUŽITÍ SLOŽITÉ OKRAJOVÉ PODMÍNKY V SIMULAČNÍM MODELU

4 POČÍTAČOVÉ MODELY DETERMINISTICKÉ. VYUŽITÍ SLOŽITÉ OKRAJOVÉ PODMÍNKY V SIMULAČNÍM MODELU 4 POČÍTAČOVÉ MODELY DETERMINISTICKÉ. VYUŽITÍ SLOŽITÉ OKRAJOVÉ PODMÍNKY V SIMULAČNÍM MODELU Počítačové modely deterministické využívající numerickou metodu konečných prvků (MKP). Tvorba simulačního modelu

Více

5 POČÍTAČOVÉ MODELY DETERMINISTICKÉ. VYUŽITÍ MĚŘÍTEK ÚLOHY A ČASOVÉ ZMĚNY GEOMETRIE ÚLOHY V SIMULAČNÍM MODELU

5 POČÍTAČOVÉ MODELY DETERMINISTICKÉ. VYUŽITÍ MĚŘÍTEK ÚLOHY A ČASOVÉ ZMĚNY GEOMETRIE ÚLOHY V SIMULAČNÍM MODELU 5 POČÍTAČOVÉ OELY ETERINISTICKÉ. VYUŽITÍ ĚŘÍTEK ÚLOHY A ČASOVÉ ZĚNY GEOETRIE ÚLOHY V SIULAČNÍ OELU Počítačové model deterministické vužívající numerickou metodu konečných prvků (KP). Tvorba simulačního

Více

2 POČÍTAČOVÉ MODELY DETERMINISTICKÉ. MKP VÝPOČETNÍ SYSTÉM COSMOS/M. TVORBA SIMULAČNÍHO MODELU TEPELNÉ ÚLOHY

2 POČÍTAČOVÉ MODELY DETERMINISTICKÉ. MKP VÝPOČETNÍ SYSTÉM COSMOS/M. TVORBA SIMULAČNÍHO MODELU TEPELNÉ ÚLOHY 2 POČÍTAČOVÉ MODELY DETERMINISTICKÉ. MKP VÝPOČETNÍ SYSTÉM COSMOS/M. TVORBA SIMULAČNÍHO MODELU TEPELNÉ ÚLOHY Seznámení s aplikací počítačových modelů deterministických při řešení tepelných úloh. Ukázky

Více

PŘÍKLAD 1: 2D VEDENÍ TEPLA

PŘÍKLAD 1: 2D VEDENÍ TEPLA Schéma řešeného problému: PŘÍKLAD 1: 2D VEDENÍ TEPLA d5 zdivo tep. izolace h3 interiér h2 h4 vzduch kov exteriér h1 d1 d2 d3 d4 Postup zadání a výpočtu: a) volba modelu: 2D + Heat transfer in solids +

Více

Uživatelská příručka.!instalace!průvodce.!dialogová okna!program zevnitř

Uživatelská příručka.!instalace!průvodce.!dialogová okna!program zevnitř Uživatelská příručka!instalace!průvodce!použití!dialogová okna!program zevnitř KAPITOLA 1: INSTALACE PROGRAMU Svitek...4 HARDWAROVÉ POŽADAVKY...4 SOFTWAROVÉ POŽADAVKY...4 INSTALACE PROGRAMU Svitek NA VÁŠ

Více

Počítačová simulace tepelných procesů s využitím výpočetních MKP systémů

Počítačová simulace tepelných procesů s využitím výpočetních MKP systémů Počítačová simulace tepelných procesů s využitím výpočetních MKP systémů Obsah cvičení Přednáška Výpočetní metody identifikace termomechanických procesů - stručný přehled Příklady použití výpočetních metod

Více

P R OGR AM P R O NÁVRH VÝVAR U

P R OGR AM P R O NÁVRH VÝVAR U P R OGR AM P R O NÁVRH VÝVAR U Program Vývar je jednoduchá aplikace řešící problematiku vodního skoku. Zahrnuje interaktivní zadávání dat pro určení dimenze vývaru, tzn. jeho hloubku a délku. V aplikaci

Více

Nápověda k aplikaci GraphGUI

Nápověda k aplikaci GraphGUI Nápověda k aplikaci GraphGUI 1 APLIKACE Aplikace slouží pro zobrazování závislosti několika veličin s různými jednotkami a rozsahy na čase v jednom grafu. Do aplikace lze importovat data ze souborů různých

Více

Cvičení software Groma základní seznámení

Cvičení software Groma základní seznámení Cvičení software Groma základní seznámení 4 2 3 1 Obr. 1: Hlavní okno programu Groma v.11. Hlavní okno 1. Ikony základních geodetických úloh, lze je vyvolat i z menu Výpočty. 2. Ikona základního nastavení

Více

nastavení real-time PCR cykléru icycler iq5 Multi-Color Real-Time PCR Detection System

nastavení real-time PCR cykléru icycler iq5 Multi-Color Real-Time PCR Detection System Verze: 1.0 Datum poslední revize: 2.1.2014 nastavení real-time PCR cykléru icycler iq5 Multi-Color Real-Time PCR Detection System (BioRad) generi biotech OBSAH: 1. Spuštění již existujícího či nastavení

Více

UniLog-D. v1.01 návod k obsluze software. Strana 1

UniLog-D. v1.01 návod k obsluze software. Strana 1 UniLog-D v1.01 návod k obsluze software Strana 1 UniLog-D je PC program, který slouží k přípravě karty pro záznam událostí aplikací přístroje M-BOX, dále pak k prohlížení, vyhodnocení a exportům zaznamenaných

Více

generi biotech nastavení real-time PCR cykleru Applied Biosystems 7300 a 7500 Fast Real-Time System (Applied Biosystems)

generi biotech nastavení real-time PCR cykleru Applied Biosystems 7300 a 7500 Fast Real-Time System (Applied Biosystems) Verze: 1.2 Datum poslední revize: 24.9.2014 nastavení real-time PCR cykleru Applied Biosystems 7300 a 7500 Fast Real-Time System (Applied Biosystems) generi biotech OBSAH 1. Nastavení nového teplotního

Více

Stručný postup k použití programu PL7 Junior (programování TSX Micro)

Stručný postup k použití programu PL7 Junior (programování TSX Micro) Stručný postup k použití programu PL7 Junior (programování TSX Micro) 1. Připojení PLC TSX Micro k počítači Kabel, trvale zapojený ke konektoru TER PLC, je nutné zapojit na sériový port PC. 2. Spuštění

Více

VYBRANÉ STATĚ Z PROCESNÍHO INŢENÝRSTVÍ cvičení 9

VYBRANÉ STATĚ Z PROCESNÍHO INŢENÝRSTVÍ cvičení 9 UNIVERZITA TOMÁŠE BATI VE ZLÍNĚ FAKULTA APLIKOVANÉ INFORMATIKY VYBRANÉ STATĚ Z PROCESNÍHO INŢENÝRSTVÍ cvičení 9 Nestacionární vedení tepla v rovinné stěně Hana Charvátová, Dagmar Janáčová Zlín 2013 Tento

Více

VYBRANÉ STATĚ Z PROCESNÍHO INŢENÝRSTVÍ cvičení 8

VYBRANÉ STATĚ Z PROCESNÍHO INŢENÝRSTVÍ cvičení 8 UNIVERZITA TOMÁŠE BATI VE ZLÍNĚ FAKULTA APLIKOVANÉ INFORMATIKY VYBRANÉ STATĚ Z PROCESNÍHO INŢENÝRSTVÍ cvičení 8 Hana Charvátová, Dagmar Janáčová Zlín 2013 Tento studijní materiál vznikl za finanční podpory

Více

Stručný návod na program COMSOL, řešení příkladu 6 z Tepelných procesů.

Stručný návod na program COMSOL, řešení příkladu 6 z Tepelných procesů. Stručný návod na program COMSOL, řešení příkladu 6 z Tepelných procesů. Zadání: Implementujte problém neustáleného vedení tepla v prostorově 1D systému v programu COMSOL. Ujistěte se, že v ustáleném stavu

Více

EXPERIMENTÁLNÍ METODY I. 2. Zpracování měření

EXPERIMENTÁLNÍ METODY I. 2. Zpracování měření FSI VUT v Brně, Energetický ústav Odbor termomechanik a technik prostředí prof. Ing. Milan Pavelek, CSc. EXPERIMENTÁLNÍ METODY I OSNOVA. KAPITOLY. Zpracování měření Zpracování výsledků měření (nezávislých

Více

Výpočtové nadstavby pro CAD

Výpočtové nadstavby pro CAD Výpočtové nadstavby pro CAD 4. přednáška eplotní úlohy v MKP Michal Vaverka, Martin Vrbka Přenos tepla Př: Uvažujme pro jednoduchost spalovací motor chlazený vzduchem. Spalováním vzniká teplo, které se

Více

Aplikované úlohy Solid Edge. SPŠSE a VOŠ Liberec. Ing. Jan Boháček [ÚLOHA 27 NÁSTROJE KRESLENÍ]

Aplikované úlohy Solid Edge. SPŠSE a VOŠ Liberec. Ing. Jan Boháček [ÚLOHA 27 NÁSTROJE KRESLENÍ] Aplikované úlohy Solid Edge SPŠSE a VOŠ Liberec Ing. Jan Boháček [ÚLOHA 27 NÁSTROJE KRESLENÍ] 1 CÍL KAPITOLY V této kapitole si představíme Nástroje kreslení pro tvorbu 2D skic v modulu Objemová součást

Více

PŘECHODOVÁ CHARAKTERISTIKA

PŘECHODOVÁ CHARAKTERISTIKA PŘECHODOVÁ CHARAKTERISTIKA Schéma Obr. 1 Schéma úlohy Popis úlohy Dynamická soustava na obrázku obr. 1 je tvořena stejnosměrným motorem M, který je prostřednictvím spojky EC spojen se stejnosměrným generátorem

Více

Část 5.2 Lokalizovaný požár

Část 5.2 Lokalizovaný požár Část 5.2 Lokalizovaný požár P. Schaumann, T. Trautmann University of Hannover J. Žižka České vysoké učení technické v Praze 1 ZADÁNÍ Cílem příkladu je určit teplotu ocelového nosníku, který je součástí

Více

IBRIDGE 1.0 UŽIVATELSKÝ MANUÁL

IBRIDGE 1.0 UŽIVATELSKÝ MANUÁL IBRIDGE 1.0 UŽIVATELSKÝ MANUÁL Jaromír Křížek OBSAH 1 ÚVOD... 3 2 INSTALACE... 4 2.1 SYSTÉMOVÉ POŽADAVKY... 5 2.2 SPUŠTĚNÍ IBRIDGE 1.0... 5 3 HLAVNÍ MENU... 6 3.1 MENU FILE... 6 3.2 MENU SETTINGS... 6

Více

Vetknutý nosník zatížený momentem. Robert Zemčík

Vetknutý nosník zatížený momentem. Robert Zemčík Vetknutý nosník zatížený momentem Robert Zemčík Západočeská univerzita v Plzni 2014 1 Vetknutý nosník zatížený momentem (s uvažováním velkých posuvů a rotací) Úkol: Určit velikost momentu, který zdeformuje

Více

prezentace ke 4. cvičení z předmětu Modelování tepelných procesů ve fyzikálních technologiích (MTP / KFY)

prezentace ke 4. cvičení z předmětu Modelování tepelných procesů ve fyzikálních technologiích (MTP / KFY) prezentace ke 4. cvičení z předmětu Modelování tepelných procesů ve fyzikálních technologiích (MTP / KFY) TEPELNÉ PROCESY V POVLAKOVÉ TEPELNÉ BARIÉŘE PŘI PŮSOBENÍ TEPELNÉHO RÁZU Ing. Zdeněk Veselý, Ph.D.

Více

Velmi stručný návod jak dostat data z Terminálu Bloomberg do R

Velmi stručný návod jak dostat data z Terminálu Bloomberg do R Velmi stručný návod jak dostat data z Terminálu Bloomberg do R Ondřej Pokora, PřF MU, Brno 11. března 2013 1 Terminál Bloomberg Klávesou Help získáte nápovědu. Dvojím stisknutím Help Help spustíte online

Více

Nápověda k systému CCS Carnet Mini

Nápověda k systému CCS Carnet Mini Nápověda k systému CCS Carnet Mini Manuál k aplikaci pro evidenci knihy jízd Vážený zákazníku, vítejte v našem nejnovějším systému pro evidenci knihy jízd - CCS Carnet Mini. V následujících kapitolách

Více

Jednoduchý návod k použití programu Vinotéka 2006, v 2.0

Jednoduchý návod k použití programu Vinotéka 2006, v 2.0 Jednoduchý návod k použití programu Vinotéka 2006, v 2.0 Demeter Jurista 2006 25.01.2006 Obsah Obsah...2 Instalace programu...3 Spuštění programu...3 Popis hlavního panelu...3 Menu...4 Panel Regály...4

Více

Úvod. OLYMPUS Stream Rychlý návod k obsluze

Úvod. OLYMPUS Stream Rychlý návod k obsluze Upozornění * Podívejte se prosím na on-line nápovědu v návodu (help) softwaru, nastavení softwaru, kalibraci systému a podrobná nastavení.. *Tento návod k obsluze obsahuje základní funkce verze SW Start

Více

MANUÁL K AGENDĚ SPEDICE PŘÍRUČKA PRO UŽIVATELE

MANUÁL K AGENDĚ SPEDICE PŘÍRUČKA PRO UŽIVATELE MANUÁL K AGENDĚ SPEDICE PŘÍRUČKA PRO UŽIVATELE Úvodem Spedice je nová agenda WEBDISPEČINKU, která nahrazuje dosavadní Optimalizaci rozvozů a svozů. Umožňuje vytvářet rozvozové trasy (přepravy), zastávky

Více

Meo S-H: software pro kompletní diagnostiku intenzity a vlnoplochy

Meo S-H: software pro kompletní diagnostiku intenzity a vlnoplochy Centrum Digitální Optiky Meo S-H: software pro kompletní diagnostiku intenzity a vlnoplochy Výzkumná zpráva projektu Identifikační čí slo výstupu: TE01020229DV003 Pracovní balíček: Zpracování dat S-H senzoru

Více

TRHACÍ PŘÍSTROJ LABTEST 2.05

TRHACÍ PŘÍSTROJ LABTEST 2.05 TRHACÍ PŘÍSTROJ LABTEST 2.05 Přístroj: 1 8 7 6 2 3 4 1 horní příčník 2 pohyblivý příčník 3 siloměrný snímač 4 bezpečnostní STOP tlačítko 5 kontrolka napájení 6 modul řízení 7 spodní zarážka 8 horní zarážka

Více

SCIA.ESA PT. Export a import souborů DWG a DXF

SCIA.ESA PT. Export a import souborů DWG a DXF SCIA.ESA PT Export a import souborů DWG a DXF VÍTEJTE 5 EXPORT DWG A DXF 6 Export z grafického okna programu...6 Export z Galerie obrázků...8 Export z Galerie výkresů...9 IMPORT DWG A DXF 10 Import do

Více

VŠB Technická univerzita Ostrava Fakulta strojní Katedra pružnosti a pevnosti (339) Metoda konečných prvků MKP I (Návody do cvičení)

VŠB Technická univerzita Ostrava Fakulta strojní Katedra pružnosti a pevnosti (339) Metoda konečných prvků MKP I (Návody do cvičení) VŠB Technická univerzita Ostrava Fakulta strojní Katedra pružnosti a pevnosti (339) Metoda konečných prvků MKP I (Návody do cvičení) Autoři: Martin Fusek, Radim Halama, Jaroslav Rojíček Verze: 0 Ostrava

Více

MIDAS GTS. gram_txt=gts

MIDAS GTS. gram_txt=gts K135YGSM Příklady (MIDAS GTS): - Plošný základ lineární výpočet a nelineární výpočet ve 2D MKP - Stabilita svahu ve 2D a 3D MKP - Pažící konstrukce ve 2D a 3D MKP MIDAS GTS http://en.midasuser.com http://departments.fsv.cvut.cz/k135/cms/?pa

Více

NUMERICKÝ MODEL NESTACIONÁRNÍHO PŘENOSU TEPLA V PALIVOVÉ TYČI JADERNÉHO REAKTORU VVER 1000 SVOČ FST 2014

NUMERICKÝ MODEL NESTACIONÁRNÍHO PŘENOSU TEPLA V PALIVOVÉ TYČI JADERNÉHO REAKTORU VVER 1000 SVOČ FST 2014 NUMERICKÝ MODEL NESTACIONÁRNÍHO PŘENOSU TEPLA V PALIVOVÉ TYČI JADERNÉHO REAKTORU VVER 1000 SVOČ FST 2014 Miroslav Kabát, Západočeská univerzita v Plzni, Univerzitní 8, 306 14 Plzeň Česká republika ABSTRAKT

Více

Recognoil RRW Manager rychlý návod k obsluze

Recognoil RRW Manager rychlý návod k obsluze Recognoil RRW Manager rychlý návod k obsluze Obsah: 1) Úvod charakteristika funkcí 2) Instalace 3) První spuštění - menu 4) Selektivní vyhodnocení plochy + uložení 5) Práce s projektem a exporty 6) Poznámky

Více

SEMESTRÁLNÍ PRÁCE Z PŘEDMĚTU MODELOVÁNÍ MATLABEM

SEMESTRÁLNÍ PRÁCE Z PŘEDMĚTU MODELOVÁNÍ MATLABEM SEMESTRÁLNÍ PRÁCE Z PŘEDMĚTU MODELOVÁNÍ MATLABEM Jméno: Petr Thür Os. číslo: A04236 E-mail: petr.thur@post.cz Zadání: 8-D Datum vypracování: 7. 5. 2005 Zadání: Sestavte program (funkční M-soubor) pro vykreslení

Více

Aplikované úlohy Solid Edge. SPŠSE a VOŠ Liberec. Radek Havlík [ÚLOHA 32 ODKAZY A TEXTY]

Aplikované úlohy Solid Edge. SPŠSE a VOŠ Liberec. Radek Havlík [ÚLOHA 32 ODKAZY A TEXTY] Aplikované úlohy Solid Edge SPŠSE a VOŠ Liberec Radek Havlík [ÚLOHA 32 ODKAZY A TEXTY] 1 CÍL KAPITOLY Cílem této kapitoly je naučit se tvořit odkazy ke strojním součástem, plochám, dílům, sestavám, a práci

Více

Jednoduchý návod k použití programu Vinotéka 2007, v 2.2.1

Jednoduchý návod k použití programu Vinotéka 2007, v 2.2.1 Jednoduchý návod k použití programu Vinotéka 2007, v 2.2.1 Demeter Jurista 2007 16.12.2007 Obsah Obsah... 2 Instalace programu... 3 Spuštění programu... 3 Popis hlavního panelu... 4 Menu... 4 Panel Vinotéka...

Více

Ovládání Open Office.org Calc Ukládání dokumentu : Levým tlačítkem myši kliknete v menu na Soubor a pak na Uložit jako.

Ovládání Open Office.org Calc Ukládání dokumentu : Levým tlačítkem myši kliknete v menu na Soubor a pak na Uložit jako. Ukládání dokumentu : Levým tlačítkem myši kliknete v menu na Soubor a pak na Uložit jako. Otevře se tabulka, v které si najdete místo adresář, pomocí malé šedočerné šipky (jako na obrázku), do kterého

Více

Metoda Monte Carlo a její aplikace v problematice oceňování technologií. Manuál k programu

Metoda Monte Carlo a její aplikace v problematice oceňování technologií. Manuál k programu Metoda Monte Carlo a její aplikace v problematice oceňování technologií Manuál k programu This software was created under the state subsidy of the Czech Republic within the research and development project

Více

Nový způsob práce s průběžnou klasifikací lze nastavit pouze tehdy, je-li průběžná klasifikace v evidenčním pololetí a školním roce prázdná.

Nový způsob práce s průběžnou klasifikací lze nastavit pouze tehdy, je-li průběžná klasifikace v evidenčním pololetí a školním roce prázdná. Průběžná klasifikace Nová verze modulu Klasifikace žáků přináší novinky především v práci s průběžnou klasifikací. Pro zadání průběžné klasifikace ve třídě doposud existovaly 3 funkce Průběžná klasifikace,

Více

MĚŘENÍ TEPLOTY. MĚŘENÍ ODPOROVÝM SNÍMAČEM S Pt 100

MĚŘENÍ TEPLOTY. MĚŘENÍ ODPOROVÝM SNÍMAČEM S Pt 100 MĚŘENÍ TEPLOTY 1. úloha MĚŘENÍ ODPOROVÝM SNÍMAČEM S Pt 100 Úkol měření: 1. Změřte statickou charakteristiku R t = f(t) odporového snímače s Pt 100 v rozsahu teplot od 25 C do 80 C. Měření proveďte prostřednictvím

Více

Software pro úpravu snímků LAB-10. Návod k obsluze

Software pro úpravu snímků LAB-10. Návod k obsluze Software pro úpravu snímků LAB-10 Návod k obsluze CZ Úvod Charakteristické vlastnosti programu LAB-10 Program LAB-10 je určen ke zpracování snímků skenovaných skenerem filmů ES-10 a je vybaven následujícími

Více

Aplikované úlohy Solid Edge. SPŠSE a VOŠ Liberec. Ing. Aleš Najman [ÚLOHA 38 KONTROLA A POHONY]

Aplikované úlohy Solid Edge. SPŠSE a VOŠ Liberec. Ing. Aleš Najman [ÚLOHA 38 KONTROLA A POHONY] Aplikované úlohy Solid Edge SPŠSE a VOŠ Liberec Ing. Aleš Najman [ÚLOHA 38 KONTROLA A POHONY] 1 ÚVOD Úloha 38 popisuje jednu část oblasti sestava programu Solid Edge V20. Tato úloha je v první části zaměřena

Více

1. Nastavení dokumentu

1. Nastavení dokumentu Obsah as a asta 2. Okno / více dokumentů otevírání, zavírání, vytváření nového, přepínání, ukládání 3. Barevný režim dokumentu 4. Zobrazení, vlastní pohledy 5. Objekty vkládání 1. Nastavení dokumentu Uprostřed

Více

Návod k použití softwaru Solar Viewer 3D

Návod k použití softwaru Solar Viewer 3D Návod k použití softwaru Solar Viewer 3D Software byl vyvinut v rámci grantového projektu Technologie a systém určující fyzikální a prostorové charakteristiky pro ochranu a tvorbu životního prostředí a

Více

OBTÉKÁNÍ AUTA S PŘÍTLAČNÝM KŘÍDLEM VE 2D

OBTÉKÁNÍ AUTA S PŘÍTLAČNÝM KŘÍDLEM VE 2D INOVACE ODBORNÉHO VZDĚLÁVÁNÍ NA STŘEDNÍCH ŠKOLÁCH ZAMĚŘENÉ NA VYUŽÍVÁNÍ ENERGETICKÝCH ZDROJŮ PRO 21. STOLETÍ A NA JEJICH DOPAD NA ŽIVOTNÍ PROSTŘEDÍ CZ.1.07/1.1.00/08.0010 OBTÉKÁNÍ AUTA S PŘÍTLAČNÝM KŘÍDLEM

Více

Budovy a místnosti. 1. Spuštění modulu Budovy a místnosti

Budovy a místnosti. 1. Spuštění modulu Budovy a místnosti Budovy a místnosti Tento modul představuje jednoduchou prohlížečku pasportizace budov a místností VUT. Obsahuje detailní přehled všech budov a místností včetně fotografií, výkresů objektů, leteckých snímků

Více

Šíření tepla. Obecnéprincipy

Šíření tepla. Obecnéprincipy Šíření tepla Obecnéprincipy Šíření tepla Obecně: Šíření tepla je výměna tepelné energie v tělese nebo mezi tělesy, která nastává při rozdílu teplot. Těleso s vyšší teplotou má větší tepelnou energii. Šíření

Více

Zdokonalování gramotnosti v oblasti ICT. Kurz MS Excel kurz 6. Inovace a modernizace studijních oborů FSpS (IMPACT) CZ.1.07/2.2.00/28.

Zdokonalování gramotnosti v oblasti ICT. Kurz MS Excel kurz 6. Inovace a modernizace studijních oborů FSpS (IMPACT) CZ.1.07/2.2.00/28. Zdokonalování gramotnosti v oblasti ICT Kurz MS Excel kurz 6 1 Obsah Kontingenční tabulky... 3 Zdroj dat... 3 Příprava dat... 3 Vytvoření kontingenční tabulky... 3 Možnosti v poli Hodnoty... 7 Aktualizace

Více

Popis programu řádkové kamery USB Video Interface

Popis programu řádkové kamery USB Video Interface Popis programu řádkové kamery USB Video Interface 1. Část programu pro 1D video 1 řádkový režim kamery Inicializace kamery Stisknutím tlačítka Initialization se nakonfiguruje komunikační spojení mezi kamerou

Více

Zelená bariéra. Software Zelená bariéra je výstupem projektu TA ČR č. TD Optimalizace výsadeb dřevin pohlcujících prachové částice

Zelená bariéra. Software Zelená bariéra je výstupem projektu TA ČR č. TD Optimalizace výsadeb dřevin pohlcujících prachové částice Zelená bariéra Aplikace pro výpočet účinnosti vegetačních bariér podél silničních a dálničních komunikací z hlediska záchytu celkového prachu, suspendovaných částic PM 10 a PM 2.5 a benzo[a]pyrenu Software

Více

Uživatelské rozhraní grafického zadávání

Uživatelské rozhraní grafického zadávání 24.02.2014 Seznam změn Truss 4.6 Firma Fine s.r.o. připravila verzi 4.6 programu Truss. Tato verze přináší následující změny a vylepšení: Grafické zadávání Rovinné (2D) pracovní plochy nyní umožňují přímé

Více

CAD library. Spuštění aplikace. Práce s aplikací. Popis okna

CAD library. Spuštění aplikace. Práce s aplikací. Popis okna CAD library Aplikace CAD library je určena pro zobrazení schémat a pohledů na přístroje firmy Schneider Electric (obsahuje také knihovnu elektrotechnických značek pro všeobecné použití). Zobrazené výkresy

Více

CZ.1.07/2.2.00/28.0021)

CZ.1.07/2.2.00/28.0021) Metody geoinženýrstv enýrství Ing. Miloš Cibulka, Ph.D. Brno, 2014 Cvičen ení č.. 2 Vytvořeno s podporou projektu Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF)

Více

Popis programu 3D_VIZ

Popis programu 3D_VIZ Popis programu 3D_VIZ Programový modul 3D_VIZ doplňuje interaktivní programový systém pro aplikaci moderních metod hodnocení uhelných ložisek (IPSHUL), který byl vyvinut na Institutu geologického inženýrství

Více

Šíření rovinné vlny Cvičení č. 1

Šíření rovinné vlny Cvičení č. 1 Šíření rovinné vlny Cvičení č. 1 Cílem dnešního cvičení je seznámit se s modelováním rovinné vlny v programu ANSYS HFSS. Splnit bychom měli následující úkoly: 1. Vytvořme model rovinné vlny, která se šíří

Více

Reliance 3 design OBSAH

Reliance 3 design OBSAH Reliance 3 design Obsah OBSAH 1. První kroky... 3 1.1 Úvod... 3 1.2 Založení nového projektu... 4 1.3 Tvorba projektu... 6 1.3.1 Správce stanic definice stanic, proměnných, stavových hlášení a komunikačních

Více

HPS - SEŘÍZENÍ PID REGULÁTORU PODLE PŘECHODOVÉ CHARAKTERISTIKY

HPS - SEŘÍZENÍ PID REGULÁTORU PODLE PŘECHODOVÉ CHARAKTERISTIKY Schéma PS - SEŘÍZENÍ PID REGULÁTORU PODLE PŘECODOVÉ CARAKTERISTIKY A1 K1L U1 K1R A2 PC K2L K2R B1 U2 B2 PjR PjR F C1 S1 h L S2 F C2 h R A/D, D/A PŘEVODNÍK A OVLÁDACÍ JEDNOTKA u R u L Obr. 1 Schéma úlohy

Více

MANUÁL administrátora elektronické spisové služby

MANUÁL administrátora elektronické spisové služby MANUÁL administrátora elektronické spisové služby Administrace obálek a sestav (NÁVRHÁŘ) 1 PilsCom, s.r.o. OBSAH 1. NÁVRHÁŘ OBECNĚ... 3 2. NASTAVENÍ MS INTERNET EXPLORERU... 4 3. SPUŠTĚNÍ NÁVRHÁŘE OBÁLKY...

Více

Nápověda k systému CCS Carnet Mini. Manuál k aplikaci pro evidenci knihy jízd

Nápověda k systému CCS Carnet Mini. Manuál k aplikaci pro evidenci knihy jízd Nápověda k systému CCS Carnet Mini Manuál k aplikaci pro evidenci knihy jízd Vážený zákazníku, vítejte v našem nejnovějším systému pro evidenci knihy jízd - CCS Carnet Mini. V následujících kapitolách

Více

Typy souborů ve STATISTICA. Tento článek poslouží jako přehled hlavních typů souborů v programu

Typy souborů ve STATISTICA. Tento článek poslouží jako přehled hlavních typů souborů v programu StatSoft Typy souborů ve STATISTICA Tento článek poslouží jako přehled hlavních typů souborů v programu STATISTICA, ukáže Vám jejich možnosti a tím Vám dovolí využívat program efektivněji. Jistě jste již

Více

Prohlížení a editace externích předmětů

Prohlížení a editace externích předmětů Prohlížení a editace externích předmětů 1. Spuštění modulu Externí předměty 2. Popis prostředí a ovládacích prvků 2.1. Rozbalovací seznamy 2.3. Seznamy 2.3.1. Definice předmětů 2.3.2. Vypsané předměty

Více

Postup zadávání základové desky a její interakce s podložím v programu SCIA

Postup zadávání základové desky a její interakce s podložím v programu SCIA Postup zadávání základové desky a její interakce s podložím v programu SCIA Tloušťka desky h s = 0,4 m. Sloupy 0,6 x 0,6m. Zatížení: rohové sloupy N 1 = 800 kn krajní sloupy N 2 = 1200 kn střední sloupy

Více

PROGRAM RP56 Odvodnění pláně Příručka uživatele Základní verze 2014

PROGRAM RP56 Odvodnění pláně Příručka uživatele Základní verze 2014 PROGRAM RP56 Odvodnění pláně Příručka uživatele Základní verze 2014 Pragoprojekt a.s. 2014 1 Program RP-56 Program RP-56... 2 Funkce programu a zásady použité při jejich řešení... 2 56-1. Zadávací okno

Více

MANUÁL VÝPOČTOVÉHO SYSTÉMU W2E (WASTE-TO-ENERGY)

MANUÁL VÝPOČTOVÉHO SYSTÉMU W2E (WASTE-TO-ENERGY) MANUÁL VÝPOČTOVÉHO SYSTÉMU W2E (WASTE-TO-ENERGY) 0 1. PRACOVNÍ PLOCHA Uspořádání a vzhled pracovní plochy, se kterým se uživatel během práce může setkat, zobrazuje obr. 1. Obr. 1: Uspořádání pracovní plochy

Více

SCIA.ESA PT. Galerie obrázků

SCIA.ESA PT. Galerie obrázků SCIA.ESA PT Galerie obrázků 2 VÍTEJTE 5 SPRÁVCE GALERIE OBRÁZKŮ 6 Otevření Galerie obrázků...6 Vložení obrázku z okna do galerie...7 Průvodce tvorbou obrázků...7 Řezy rovinami čárového rastru (generované

Více

Přehledy pro Tabulky Hlavním smyslem této nové agendy je jednoduché řazení, filtrování a seskupování dle libovolných sloupců.

Přehledy pro Tabulky Hlavním smyslem této nové agendy je jednoduché řazení, filtrování a seskupování dle libovolných sloupců. Přehledy pro Tabulky V programu CONTACT Professional 5 naleznete u firem, osob a obchodních případů záložku Tabulka. Tuto záložku lze rozmnožit, přejmenovat a sloupce je možné definovat dle vlastních požadavků

Více

Stanovení sedimentační stability a distribuce velikosti částic na přístroji LUMisizer

Stanovení sedimentační stability a distribuce velikosti částic na přístroji LUMisizer Návody pro laboratorní cvičení z technologie mléka 1/6 Stanovení sedimentační stability a distribuce velikosti částic na přístroji LUMisizer Popis zařízení LUMisizer je temperovaná odstředivka, která umožňuje

Více

Technologické postupy práce s aktovkou IS MPP

Technologické postupy práce s aktovkou IS MPP Technologické postupy práce s aktovkou IS MPP Modul plánování a přezkoumávání, verze 1.20 vypracovala společnost ASD Software, s.r.o. dokument ze dne 27. 3. 2013, verze 1.01 Technologické postupy práce

Více

Co je nového 2018 R2

Co je nového 2018 R2 Co je nového 2018 R2 Obsah NOVINKY... 5 1: Vyhledat prvek... 5 2: Čáry modelu podle... 6 3: Duplikovat výkresy... 7 4: Délka kabelů... 8 5: Výškové kóty... 9 VYLEPŠENÍ... 10 1: Excel Link... 10 2: Uspořádání

Více

Bloky, atributy, knihovny

Bloky, atributy, knihovny Bloky, atributy, knihovny Projekt SIPVZ 2006 Řešené příklady AutoCADu Autor: ing. Laďka Krejčí 2 Obsah úlohy Procvičíte zadávání vzdáleností a délek úsečky kreslící nástroje (text, úsečka, kóta) vlastnosti

Více

Zelená bariéra. Software Zelená bariéra je výstupem projektu TA ČR TD Optimalizace výsadeb dřevin pohlcujících prachové částice.

Zelená bariéra. Software Zelená bariéra je výstupem projektu TA ČR TD Optimalizace výsadeb dřevin pohlcujících prachové částice. Zelená bariéra Aplikace pro výpočet účinnosti vegetačních bariér podél silničních a dálničních komunikací, z hlediska záchytu celkového prachu, suspendovaných částic PM 10 a PM 2.5 a benzo(a)pyrenu. Software

Více

DesignCAD Express 25.0 - poznámky k vydání verze z 22/07/2015

DesignCAD Express 25.0 - poznámky k vydání verze z 22/07/2015 DesignCAD Express 25.0 - poznámky k vydání verze z 22/07/2015 Nové vlastnosti: DesignCAD je nyní k dispozici jako 64-bit program Za posledních osmnáct let byly programy DesignCAD dostupné pouze jako 32-bit

Více

UniLog-L. v0.81 návod k obsluze software. Strana 1

UniLog-L. v0.81 návod k obsluze software. Strana 1 UniLog-L v0.81 návod k obsluze software Strana 1 UniLog-L je PC program, který slouží k přípravě karty pro záznam logických průběhů aplikací přístroje M-BOX, dále pak k prohlížení a vyhodnocení. Popis

Více

tohoto systému. Můžeme propojit Mathcad s dalšími aplikacemi, jako je Excel, MATLAB, Axum, nebo dokumenty jedné aplikace navzájem.

tohoto systému. Můžeme propojit Mathcad s dalšími aplikacemi, jako je Excel, MATLAB, Axum, nebo dokumenty jedné aplikace navzájem. 83 14. (Pouze u verze Mathcad Professional) je prostředí pro přehlednou integraci a propojování aplikací a zdrojů dat. Umožní vytvořit složitý výpočtový systém a řídit tok dat mezi komponentami tohoto

Více

MSC.Marc 2005r3 Tutorial 2. Robert Zemčík

MSC.Marc 2005r3 Tutorial 2. Robert Zemčík MSC.Marc 2005r3 Tutorial 2 Robert Zemčík Západočeská univerzita v Plzni 204 Tento dokument obsahuje návod na modální analýzu tenkostěnné laminátové nádoby pomocí MKP v programu MSC.Marc 2005r3. Zadání

Více

VŠB- Technická univerzita Ostrava Fakulta strojní Katedra pružnosti a pevnosti. Úvod do MKP Deformační analýza stojanu na kuželky

VŠB- Technická univerzita Ostrava Fakulta strojní Katedra pružnosti a pevnosti. Úvod do MKP Deformační analýza stojanu na kuželky VŠB- Technická univerzita Ostrava akulta strojní Katedra pružnosti a pevnosti Úvod do KP Autor: ichal Šofer Verze Ostrava Úvod do KP Zadání: Určete horizontální a vertikální posun volného konce stojanu

Více

Uživatelský manuál. A4000 Download

Uživatelský manuál. A4000 Download Uživatelský manuál Aplikace: Jednoduchý program pro přenášení dat z přístrojů řady A4000 Export měřených dat do souboru Zobrazení grafů naměřených dat Tisk grafů naměřených dat Vlastnosti: Hardwarové požadavky:

Více

Projektová dokumentace GED 2006

Projektová dokumentace GED 2006 Projektová dokumentace GED 2006 20.4.2006 Řešitelé týmu a podíl práce na projektu: Kamil Dudka xdudka00 objektový návrh uživatelské rozhraní podpora plug-in programů kreslící plocha vkládání textu programová

Více

nastavení real-time PCR cykléru CFX 96 Real-Time System

nastavení real-time PCR cykléru CFX 96 Real-Time System nastavení real-time PCR cykléru CFX 96 Real-Time System (BioRad) generi biotech OBSAH 1. Spuštění již existujícího či nastavení nového teplotního profilu...3 1.1. Spuštění již uloženého teplotního profilu...3

Více

Tvorba výpočtového modelu MKP

Tvorba výpočtového modelu MKP Tvorba výpočtového modelu MKP Jaroslav Beran (KTS) Modelování a simulace Tvorba výpočtového modelu s využitím MKP zahrnuje: Tvorbu (import) geometrického modelu Generování sítě konečných prvků Definování

Více

GEOGRAFICKÉ INFORMAČNÍ SYSTÉMY CVIČENÍ 2

GEOGRAFICKÉ INFORMAČNÍ SYSTÉMY CVIČENÍ 2 UNIVERZITA TOMÁŠE BATI VE ZLÍNĚ FAKULTA APLIKOVANÉ INFORMATIKY GEOGRAFICKÉ INFORMAČNÍ SYSTÉMY CVIČENÍ 2 Praktické zvládnutí software Geomedia Pavel Vařacha a kol. Zlín 2013 Tento studijní materiál vznikl

Více

nastavení real-time PCR cykleru Rotor Gene 3000

nastavení real-time PCR cykleru Rotor Gene 3000 Verze: 1.4 Datum poslední revize: 25. 3. 2015 nastavení real-time PCR cykleru Rotor Gene 3000 (Corbett Research) generi biotech OBSAH: 1. Nastavení teplotního profilu a spuštění cykleru... 3 2. Zadání

Více

CZ.1.07/2.2.00/28.0021)

CZ.1.07/2.2.00/28.0021) Metody geoinženýrstv enýrství Ing. Miloš Cibulka, Ph.D. Brno, 2015 Cvičen ení č.. 1 Vytvořeno s podporou projektu Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF)

Více

Obsah. 1. Obecná vylepšení Úpravy Prvky Zatížení Výpočet Posudky a výsledky Dokument...

Obsah. 1. Obecná vylepšení Úpravy Prvky Zatížení Výpočet Posudky a výsledky Dokument... Novinky 2/2016 Obsah 1. Obecná vylepšení...3 2. Úpravy...7 3. Prvky...9 4. Zatížení... 11 5. Výpočet...4 6. Posudky a výsledky...5 7. Dokument...8 2 1. Obecná vylepšení Nové možnosti otáčení modelu, zobrazení

Více

Tvorba prezentaci v Autodesk Inventoru 10

Tvorba prezentaci v Autodesk Inventoru 10 Tvorba prezentaci v Autodesk Inventoru 10 Příprava montážní dokumentace vyžaduje věnovat zvýšenou pozornost postupu sestavování jednotlivých strojních uzlů a detailům jednotlivých komponentů. Inventoru

Více

OBSAH. KaPiGraf příručka III. vydání

OBSAH. KaPiGraf příručka III. vydání OBSAH OBSAH... 1 KaPiGraf příručka III. vydání... 1 1. Otevření dat v KaPiGrafu... 2 1.1. Přetažením myši (metoda Drag&Drop)... 2 1.2. Přes schránku (metoda Ctrl+C / Ctrl+V)... 2 1.3. Výběr z menu (kl.zkratka

Více

SkiJo podpora pro vytyčování, řez terénem a kreslení situací

SkiJo podpora pro vytyčování, řez terénem a kreslení situací SkiJo podpora pro vytyčování, řez terénem a kreslení situací Koncepce: Pro podporu vytyčování, řezu terénem a kreslení situací byla vytvořena samostatná aplikace SkiJo GEOdeti. Obsahuje funkce pro odečítání

Více

FRVŠ 1460/2010. Nekotvená podzemní stěna

FRVŠ 1460/2010. Nekotvená podzemní stěna Projekt vznikl za podpory FRVŠ 1460/2010 Multimediální učebnice předmětu "Výpočty podzemních konstrukcí na počítači"" Příklad č. 1 Nekotvená podzemní stěna Na tomto příkladu je ukázáno základní seznámení

Více

Connect Genius V2. Instalace programu.

Connect Genius V2. Instalace programu. Connect Genius V2 Program připojíte k PC přes RS 232. Instalace programu. Vložte CD do PC a automaticky se nabídne instalační program. Otevřete instalační program a klikněte dvojklikem na setup.exe a program

Více

Manuál k programu KaraokeEditor

Manuál k programu KaraokeEditor Manuál k programu KaraokeEditor Co je KaraokeEditor? Program slouží pro editaci tagů v hudebních souborech formátu mp3. Tagy jsou doprovodné informace o písni, uložené přímo v mp3. Aplikace umí pracovat

Více

Excel 2007 praktická práce

Excel 2007 praktická práce Excel 2007 praktická práce 1 Excel OP LZZ Tento kurz je financován prostřednictvím výzvy č. 40 Operačního programu Lidské zdroje a zaměstnanost z prostředků Evropského sociálního fondu. 2 Excel Cíl kurzu

Více

NÁVOD K OVLÁDÁNÍ PÁLÍCÍHO STROJE A ŘÍDÍCÍHO SYSTÉMU RIPAST 401

NÁVOD K OVLÁDÁNÍ PÁLÍCÍHO STROJE A ŘÍDÍCÍHO SYSTÉMU RIPAST 401 NÁVOD K OVLÁDÁNÍ PÁLÍCÍHO STROJE A ŘÍDÍCÍHO SYSTÉMU RIPAST 401 Start stroje Stroj se uvádí do provozu stisknutím talčítka START na ovládacím panelu. Po zapnutí stroje a načtení operačního systému se objeví

Více

Popis ovládání. Po přihlášení do aplikace se objeví navigátor. Navigátor je stromově seřazen a slouží pro přístup ke všem oknům celé aplikace.

Popis ovládání. Po přihlášení do aplikace se objeví navigátor. Navigátor je stromově seřazen a slouží pro přístup ke všem oknům celé aplikace. Popis ovládání 1. Úvod Tento popis má za úkol seznámit uživatele se základními principy ovládání aplikace. Ovládání je možné pomocí myši, ale všechny činnosti jsou dosažitelné také pomocí klávesnice. 2.

Více

PŘEVODNÍK SNÍMAČE SIL NA USB PRO ZOBRAZENÍ V PC DSCUSB. KRÁTKÁ PŘÍRUČKA PRO OBSLUHU A KONFIGURACI Revize červenec 2014

PŘEVODNÍK SNÍMAČE SIL NA USB PRO ZOBRAZENÍ V PC DSCUSB. KRÁTKÁ PŘÍRUČKA PRO OBSLUHU A KONFIGURACI Revize červenec 2014 PŘEVODNÍK SNÍMAČE SIL NA USB PRO ZOBRAZENÍ V PC DSCUSB KRÁTKÁ PŘÍRUČKA PRO OBSLUHU A KONFIGURACI Revize červenec spol. s.r.o. Ostrovačice OBSAH 1 ZÁKLADNÍ INFORMACE... 2 1.1 Parametry převodníku DSCUSB...

Více

Nejčastější chyby v explorační analýze

Nejčastější chyby v explorační analýze Nejčastější chyby v explorační analýze Obecně doporučuju přečíst přednášku 5: Výběrová šetření, Exploratorní analýza http://homel.vsb.cz/~lit40/sta1/materialy/io.pptx Použití nesprávných charakteristik

Více

Datalogger Teploty a Vlhkosti

Datalogger Teploty a Vlhkosti Datalogger Teploty a Vlhkosti Uživatelský Návod Úvod Teplotní a Vlhkostní Datalogger je vybaven senzorem o vysoké přesnosti měření teploty a vlhkosti. Tento datalogger má vlastnosti jako je vysoká přesnost,

Více

Návod k práci s programem MMPI-2

Návod k práci s programem MMPI-2 Návod k práci s programem MMPI-2 Výchozím vstupním heslem je název programu psaný malými písmeny, tedy mmpi-2. Po zadání hesla stiskněte Enter nebo tlačítko Dále. Hlavní obrazovka programu zobrazuje přehled

Více