19 Hilbertovy prostory

Rozměr: px
Začít zobrazení ze stránky:

Download "19 Hilbertovy prostory"

Transkript

1 M. Rokyta, MFF UK: Aplikovaná matematika III kap. 19: Hilbertovy prostory Hilbertovy prostory 19.1 Úvod, základní pojmy Poznámka (připomenutí). Necht (X,(, )) je vektorový prostor se skalárním součinem nad tělesem K reálných nebo komplexních čísel (říkáme též, že X je unitární prostor nad K). Potom x = (x,x) je norma na X, nazývaná někdy též "norma indukovaná skalárním součinem". Necht (X,(, )) je unitární prostor nad K. Na X X uvažujme normu [x,y] = max{ x, y }. Potom je zobrazení (, ) : X X K spojité. Definice. Necht (X,(, )) je unitární prostor nad K, x = (x,x). Řekneme, že posloupnost x n X je cauchyovská v X, pokud ε > 0 n 0 N m,n n 0 x n x m < ε. Řekneme, že prostor X je úplný vzhledem k normě, pokud každá cauchyovská posloupnost v X je konvergentní v X. Pokud je X úplný vzhledem k normě x = (x,x), pak se nazývá Hilbertovým prostorem. Příklad 1. Prostory R n (opatřené eukleidovským skalárním součinem) jsou Hilbertovými prostory konečné dimenze. Příklad 2. Bud Ω R n otevřená množina. Pro p 1, ) definujme tzv. Lebesgueovy (L p ) prostory předpisem L p (Ω) := {f : Ω C, Ω f p < }. Na prostoru L 2 (Ω) definujme skalární součin (f,g) 2 = f g. Prostor L 2 (Ω) s tímto skalárním součinem je Hilbertovým prostorem nekonečné dimenze. Příklad 3. Bud Ω R n otevřená množina. Mějme na Ω definovanou tzv. váhovou funkci (váhu, hustotu) ρ takovou, že ρ C(Ω) L 1 (Ω), ρ > 0 na Ω. Pro p (1, ) definujme tzv. Lebesgueovy (váhové) prostory s vahou předpisem L p (Ω) := {f : Ω C, Ω f p < }. Na prostoru L2 (Ω) definujme skalární součin (f,g) 2, = f g. Prostor L 2 (Ω) s tímto skalárním součinem je Hilbertovým prostorem nekonečné dimenze. Poznámka. Mezi všemi L p (resp. L p ) prostory je prostor L 2 (resp. L 2 ) jediný, na kterém lze zavést skalární součin. Pokud má Ω R n konečnou míru, platí Ω Ω 1 p < r < = L r (Ω) L p (Ω). Cvičení. Ukažte: je-li f : (a,b) R omezená na omezeném intervalu (a,b), pak f L p (a,b) p 1, ). Nalezněte funkci f : (0,1) R takovou, že f L 3 (0,1) a přitom f / L 4 (0,1). (Návod: uvažujte funkce 1/x α pro α R.)

2 M. Rokyta, MFF UK: Aplikovaná matematika III kap. 19: Hilbertovy prostory Fourierovy řady v Hilbertově prostoru Definice. Necht X je Hilbertův prostor, Γ je indexová množina a (x γ ) γ Γ je systém prvků prostoru X. (i) Řekneme, že systém {x γ } γ Γ je ortogonální, jestliže platí γ,γ Γ,γ γ : ( x γ,x γ ) = 0. Jestliže navíc x γ = 1 pro každé γ Γ, potom říkáme, že je systém {x γ } γ Γ ortonormální. (ii) Ortogonální systém {x γ } γ Γ je úplný, jestliže jeho lineární obal je hustý v X, tedy jestliže platí Lin({x γ } γ Γ ) = X. (iii) Ortogonální systém {x γ } γ Γ je maximální, jestliže neexistuje prvek u X \ {0} kolmý na všechna x γ, tedy pokud platí (u,x γ ) = 0 γ Γ = u = 0. Zobecnění kartézského souřadného systému do (Hilbertových) prostorů nekonečné di- Poznámka. menze. Ortogonální systém vektorů tvoří lineárně nezávislou množinu vektorů. Z každého lineárně nezávislého systému lze učinit systém ortogonální pomocí tzv. Gram-Schmidtova ortogonalizačního procesu. (Viz Příklad 4 za touto poznámkou.) Z každého ortogonálního systému lze učinit systém ortonormální (prvky vydělíme jejich normami). Systém {1,sin kx,cos kx} k N je ortogonální systém v L 2 (0,2π). Systém {e ikx } k Z je ortogonální systém v L 2 (0,2π). Příklad 4 (Gram-Schmidtův OG proces). Bud {v 1,v 2,...} lineárně nezávislá množina nenulových prvků v Hilbertově prostoru X. Položme e 1 := v 1 a dále, pro n 2, n 1 e n := v n Ukažte, že {e 1,e 2,... } je ortogonální množina nenulových prvků, přičemž j=1 Lin{e 1,...,e k } = Lin{v 1,...,v k }, k = 1,2,... (v n,e j ) e j 2 e j. (1) Věta Necht {e n } je ortogonální posloupnost nenulových prvků Hilbertově prostoru X nad K. Necht x = c ne n, kde c n K. Potom c n = (x,e n) e n 2, n N. (2) Definice. Číslo c n, definované pomocí (2), nazýváme n-tým Fourierovým koeficientem prvku x vzhledem k ortogonální posloupnosti {e n }. Definice. Bud {e n } ortogonální posloupnost nenulových prvků v Hilbertově prostoru X nad K a mějme x X. Uvažujme Fourierovy koeficienty prvku x vzhledem k posloupnosti {e n }, tj. Pak řadu c n = (x,e n) e n 2, n N. c n e n = (x,e n ) e n 2 e n (3) nazvu (abstraktní) Fourierovou řadou prvku x v prostoru X podle ortogonálního systému {e n }.

3 M. Rokyta, MFF UK: Aplikovaná matematika III kap. 19: Hilbertovy prostory 36 Otázky: Jak zajistit, abych měl "všechny prvky OG systému" (tj. aby tvořil bázi)? (Úplnost? Maximalita?) Mám x X, rozvinu jej do (Fourierovy) řady. Konverguje vůbec tato řada? Pokud konverguje, co má společného její součet s původním prvkem x? Věta 19.2 (Besselova nerovnost, Parsevalova rovnost). Necht X je Hilbertův prostor nekonečné dimenze, {e n } je ortogonální systém nenulových prvků v X, x X, a c n = (x,en) e n, n N jsou Fourierovy 2 koeficienty prvku x vzhledem k {e n }. Potom Vždy platí c n 2 e n 2 x 2 (Besselova nerovnost); Fourierova řada c n e n vždy konverguje k nějakému prvku y X; Je x = c n e n c n 2 e n 2 = x 2 (Parsevalova rovnost). Poznámka. S ohledem na (2) lze Parsevalovu rovnost psát také ve tvaru (x,e n ) 2 e n 2 = x 2. Definice. Necht X je Hilbertův prostor nad K. Posloupnost {u n } prvků zx se nazývá (Schauderova) báze prostoru X, jestliže pro každý bod x X existuje právě jedna posloupnost {c n } prvků z K, pro kterou platí x = c n u n. Věta Necht X je Hilbertův prostor a {e n } je ortogonální systém nenulových prvků prostoru X. Pak následující tvrzení jsou ekvivalentní: (i) {e n } je Schauderova báze, (ii) {e n } je úplný ortogonální systém, (iii) {e n } je maximální ortogonální systém. (iv) Pro každé x X platí Parsevalova rovnost (vzhledem k systému {e n } ). (v) Každý prvek x X je roven součtu své Fourierovy řady (vzhledem k systému {e n } ). Definice. Necht X Hilbertův prostor. Řeknu, že X je separabilní, pokud existuje spočetná množina prvků z X, která je hustá v X (tedy jejíž uzávěr je celé X). Věta (i) Necht X je separabilní Hilbertův prostor. Potom v X existuje ortonormální spočetná (Schauderova) báze. (ii) Necht X 1,X 2 jsou nekonečně-dimenzionální separabilní Hilbertovy prostory. Potom jsou X 1 a X 2 izometricky izomorfní (tj. existuje mezi nimi bijekce, která zachovává skalární součin). (iii) Každý separabilní Hilbertův prostor dimenze n N je izometricky izomorfní R n.

4 M. Rokyta, MFF UK: Aplikovaná matematika III kap. 19: Hilbertovy prostory 37 Věta Systém {1,sin kx,cos kx} k N je úplný ortogonální systém v L 2 (0,2π) a tvoří v něm ortogonální bázi. Systém {e ikx } k Z je úplný ortogonální systém v L 2 (0,2π) a tvoří v něm ortogonální bázi. Věta 19.6 (o nejlepší aproximaci). Bud X Hilbertův prostor a {e n } X ortogonální systém v X. Bud x X. Potom pro libovolná β 1,...,β N K platí x N (x,e n ) e n 2 e n x přičemž nerovnost v (4) je ostrá, pokud je alespoň jedno β j různé od (x,e j) e j Ortogonální systémy polynomů, operátory N β n e n, (4) Důležité otázky: Jakým způsobem získat nějaký konkrétní úplný ortogonální systém (bázi) v L2 (a,b)? Lze to například zařídit tak, aby tato báze byla složena z polynomů? Metoda I: ortogonalizace dané husté LN množiny pomocí Gram-Schmidtova procesu Uvažujme na (a, b) R polynomy 1,x,x 2,x 3,x 4... (5) a uvažujme (pokud (a,b) je neomezený) váhovou funkci takovou, aby x n L 2 (a,b) pro všechna n N {0}. Ortogonalizací pomocí Gram-Schmidtova procesu dostaneme úplný systém ortogonálních polynomů v L 2 (a,b). Obr.: Legendreovy polynomy pro n = 0,1,2,3,4,5. Příklad 5 (Legendreovy polynomy). Ortogonalizací systému (5) v prostoru L 2 ( 1,1) dostaneme tzv. Legendreovy polynomy P n (x). Lze ukázat, že platí P 0 (x) = 1, P n (x) = 1 2 n n! d n dx n(x2 1) n, n N.

5 M. Rokyta, MFF UK: Aplikovaná matematika III kap. 19: Hilbertovy prostory 38 přičemž P n (x) 2 = 2 2n + 1, n N {0}. Prvních několik Legendreových polynomů je: P 0 (x) = 1, P 1 (x) = x, P 2 (x) = 3 2 x2 1 2, P 3(x) = 5 2 x3 3 2 x, P 4(x) = 35 8 x x ,... kde kde Podle předchozí teorie tedy platí, že pro každou funkci f L 2 ( 1,1) platí f(x) s.v. = c n P n (x), c n = n=0 1 1 P n (x) 2 f(x)p n (x) dx = 2n f(x)p n (x) dx Například pro f(x) = x L 2 ( 1,1) dostaneme x s.v. = c n P n (x), c n = 2n n=0 1 1 x P n (x) dx, což dá (spočtěte) c 2k+1 = 0 k = 0,1,..., c 0 = 1 2, c 2 = 5 8, c 4 = 3 16, c 6 = například aproximace do šestého řádu dá x x x x6 na ( 1,1). Obr.: Aproximace x pomocí Legendreova polynomu do šestého řádu. Poznámka. Legendreovy polynomy splňují tzv. rekurentní vztah (n+1)p n+1 (x) = (2n+1)xP n (x) np n 1 (x), n N, P 0 (x) = 1, P 1 (x) = x, a jsou řešením tzv. generující diferenciální rovnice ( (1 x 2 )y ) = λy, λ = n(n + 1),n = 0,1,2,....

6 M. Rokyta, MFF UK: Aplikovaná matematika III kap. 19: Hilbertovy prostory 39 Příklad 6 (Čebyševovy polynomy). Ortogonalizací systému (5) v prostoru L 2 1 ( 1,1) dostaneme tzv. 1 x 2 Čebyševovy polynomy (1. druhu) T n (x). Lze ukázat, že platí T 0 (x) = 1, T n (x) = cos(n arccos x), n N. přičemž T n (x) 2 = π 2, n N. Prvních několik Čebyševových polynomů je: T 0 (x) = 1, T 1 (x) = x, T 2 (x) = 2x 2 1, T 3 (x) = 4x 3 3x, T 4 (x) = 8x 4 8x 2 1, T 5 (x) = 16x 5 20x 3 + 5x,... Obr.: Čebyševovy polynomy pro n = 0,1,2,3,4,5. Poznámka. Čebyševovy polynomy splňují rekurentní vztah T n+1 (x) + T n 1 (x) = 2xT n (x), a jsou řešením generující diferenciální rovnice n N T 0 (x) = 1, T 1 (x) = x, ( 1 x 2 y ) = λy 1 x 2, λ = n2, n = 0,1,2,.... Poznámka. Ortogonalizací základního systému polynomů 1,x,x 2,x 3,... v příslušných prostorech L2 (a,b) dostaneme odpovídající systém ortogonálních polynomů, do kterého lze rozvíjet všechny funkce, patřící do L2 (a,b). Na konkrétní tvar těchto polynomů má vliv zejména tvar skalárního součinu v L 2 (a,b). Takto dostaneme například Hermiteovy polynomy H n (v prostoru L 2 e x2 (, )), Laguerrovy polynomy L s n řádu s > 1 (v prostoru L2 x s e x (0, )) a mnoho dalších. Pro každý takový systém existuje rekurentní vztah a generující diferenciální rovnice. Podrobněji viz tabulku ortogonálních systémů polynomů na stránce této přednášky.

7 M. Rokyta, MFF UK: Aplikovaná matematika III kap. 19: Hilbertovy prostory 40 Metoda II: generující diferenciální rovnice, resp. generující operátor Definice. Bud a,b R uzavřený interval, p,q, dané funkce definované na a,b. Necht dále α,β,γ,δ R. Okrajovou úlohou v samoadjungovaném tvaru pro neznámou funkci y = y(t) nazveme diferenciální rovnici druhého řádu v tzv. samoadjungovaném tvaru, doplněnou o tzv. okrajové podmínky (p(t)y ) + q(t)y = λ (t)y, t (a,b), λ C, (6) αy(a) + βy (a) = 0, γy(b) + δy (b) = 0. (7) Věta Uvažujme okrajovou úlohu tvaru (6) (7), kde p je spojitá a kladná na a,b, p je spojitá na (a,b), q je reálná a spojitá na a,b, je spojitá, kladná a konečně integrovatelná na (a,b). Navíc necht alespoň jedno z čísel α,β a alespoň jedno z čísel γ,δ je nenulové. Potom existují λ 1 < λ 2 <, lim λ n = taková, že: Pro všechna λ λ n má úloha (6) (7) pouze řešení y 0. Pro každé λ = λ n existuje právě jedno (až na násobek konstantou) nenulové řešení y n úlohy (6) (7). Systém {y n,n N} je úplný ortogonální systém funkcí v L 2 (a,b). Definice. Čísla λ n resp. funkce y n z předchozí věty nazýváme vlastní čísla resp. vlastní funkce úlohy (6) (7). Poznámka. Zobrazení mezi dvěma prostory nazýváme operátorem. Definujeme-li operátor T : C 1 ( a,b ) L 2 (a,b) předpisem T(y) = (py ) + qy, lze rovnici (6) psát ve tvaru tzv. operátorové rovnice: Ty = λ y. (8) Analogicky nazýváme nenulová řešení y n úlohy (8), (7) vlastními funkcemi (s vahou ) operátoru T, přináležejícími vlastnímu číslu λ n. Poznámka. Pro váhu = 1 má rovnice (8) pro vlastní funkce a vlastní čísla operátoru T tvar Ty = λy. (Srovnejte to s definicí vlastního vektoru a vlastního čísla matice.) Věta 19.7 je formulována pouze pro omezené intervaly. Existují také její varianty pro neomezené intervaly, ty však jsou složitější. Existují také varianty s obecnější sadou okrajových podmínek. Obecně však jde vždy o věty, odpovídající na otázku "Za jakých podmínek tvoří vlastní funkce nějakého operátoru T úplný ortogonální systém v daném Hilbertově prostoru?" Studiem (m.j.) i těchto otázek (které jdou nad rámec tohoto kurzu) se zabývá matematická disciplína jménem funkcionální analýza. Cvičení. Aplikujte Větu 19.7 pro a = 0, b = π, p = = 1, q = 0, a pro α = γ = 0, β = δ = 1 resp. pro α = γ = 1, β = δ = 0. Uvažujte rovnici (6) s a = π, b = π, p = = 1, q = 0, a se zobecněnou sadou okrajových podmínek y( π) = y(π), y ( π) = y (π). Poznámka. Existuje varianta Věty 19.7, která připouští, aby funkce p nabývala v některém krajním bodě intervalu a, b nulové hodnoty. V takovém případě se ovšem předpokládá omezenost řešení y v tomto bodě. Za těchto předpokladů dostávame proa = 1, b = 1, p = 1 t 2, = 1, q = 0 generující rovnici pro Legendreovy polynomy. Naznačené úvahy lze zobecnit i pro parciální diferenciální rovnice. Můžeme tak mluvit o vlastních funkcích Laplaceova operátoru jako o nenulových řešeních rovnice y = λy pro x Ω R n, s nulovými okrajovými podmínkami na Ω, atd.

Učební texty k státní bakalářské zkoušce Matematika Skalární součin. študenti MFF 15. augusta 2008

Učební texty k státní bakalářské zkoušce Matematika Skalární součin. študenti MFF 15. augusta 2008 Učební texty k státní bakalářské zkoušce Matematika Skalární součin študenti MFF 15. augusta 2008 1 10 Skalární součin Požadavky Vlastnosti v reálném i komplexním případě Norma Cauchy-Schwarzova nerovnost

Více

8 Matice a determinanty

8 Matice a determinanty M Rokyta, MFF UK: Aplikovaná matematika II kap 8: Matice a determinanty 1 8 Matice a determinanty 81 Matice - definice a základní vlastnosti Definice Reálnou resp komplexní maticí A typu m n nazveme obdélníkovou

Více

Necht L je lineární prostor nad R. Operaci : L L R nazýváme

Necht L je lineární prostor nad R. Operaci : L L R nazýváme Skalární součin axiomatická definice odvození velikosti vektorů a úhlu mezi vektory geometrická interpretace ortogonalita vlastnosti ortonormálních bázi [1] Definice skalárního součinu Necht L je lineární

Více

Vektorové podprostory, lineární nezávislost, báze, dimenze a souřadnice

Vektorové podprostory, lineární nezávislost, báze, dimenze a souřadnice Vektorové podprostory, lineární nezávislost, báze, dimenze a souřadnice Vektorové podprostory K množina reálných nebo komplexních čísel, U vektorový prostor nad K. Lineární kombinace vektorů u 1, u 2,...,u

Více

MATICE. a 11 a 12 a 1n a 21 a 22 a 2n A = = [a ij]

MATICE. a 11 a 12 a 1n a 21 a 22 a 2n A = = [a ij] MATICE Matice typu m/n nad tělesem T je soubor m n prvků z tělesa T uspořádaných do m řádků a n sloupců: a 11 a 12 a 1n a 21 a 22 a 2n A = = [a ij] a m1 a m2 a mn Prvek a i,j je prvek matice A na místě

Více

Aplikovaná numerická matematika

Aplikovaná numerická matematika Aplikovaná numerická matematika 6. Metoda nejmenších čtverců doc. Ing. Róbert Lórencz, CSc. České vysoké učení technické v Praze Fakulta informačních technologií Katedra počítačových systémů Příprava studijních

Více

17. Posloupnosti a řady funkcí

17. Posloupnosti a řady funkcí 17. Posloupnosti a řady funkcí Aplikovaná matematika III, NMAF073 M. Rokyta, KMA MFF UK ZS 2011/12 17.1 Stejnoměrná konvergence posloupnosti funkcí Definice Necht M je množina, f, f n : M R m, m, n N.

Více

Matematika B101MA1, B101MA2

Matematika B101MA1, B101MA2 Matematika B101MA1, B101MA2 Zařazení předmětu: povinný předmět 1.ročníku bc studia 2 semestry Rozsah předmětu: prezenční studium 2 + 2 kombinované studium 16 + 0 / semestr Zakončení předmětu: ZS zápočet

Více

příkladů do cvičení. V textu se objeví i pár detailů, které jsem nestihl (na které jsem zapomněl) a(b u) = (ab) u, u + ( u) = 0 = ( u) + u.

příkladů do cvičení. V textu se objeví i pár detailů, které jsem nestihl (na které jsem zapomněl) a(b u) = (ab) u, u + ( u) = 0 = ( u) + u. Několik řešených příkladů do Matematiky Vektory V tomto textu je spočteno několik ukázkových příkladů které vám snad pomohou při řešení příkladů do cvičení. V textu se objeví i pár detailů které jsem nestihl

Více

Základní pojmy teorie množin Vektorové prostory

Základní pojmy teorie množin Vektorové prostory Základní pojmy teorie množin Přednáška MATEMATIKA č. 1 Katedra ekonometrie FEM UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz 7. 10. 2010 Základní pojmy teorie množin Základní pojmy

Více

Vektorový prostor. Př.1. R 2 ; R 3 ; R n Dvě operace v R n : u + v = (u 1 + v 1,...u n + v n ), V (E 3 )...množina vektorů v E 3,

Vektorový prostor. Př.1. R 2 ; R 3 ; R n Dvě operace v R n : u + v = (u 1 + v 1,...u n + v n ), V (E 3 )...množina vektorů v E 3, Vektorový prostor Příklady: Př.1. R 2 ; R 3 ; R n...aritmetický n-rozměrný prostor Dvě operace v R n : součet vektorů u = (u 1,...u n ) a v = (v 1,...v n ) je vektor u + v = (u 1 + v 1,...u n + v n ),

Více

DEFINICE Z LINEÁRNÍ ALGEBRY

DEFINICE Z LINEÁRNÍ ALGEBRY DEFINICE Z LINEÁRNÍ ALGEBRY Skripta Matematické metody pro statistiku a operační výzkum (Nešetřilová, H., Šařecová, P., 2009). 1. definice Vektorovým prostorem rozumíme neprázdnou množinu prvků V, na které

Více

METRICKÉ A NORMOVANÉ PROSTORY

METRICKÉ A NORMOVANÉ PROSTORY PŘEDNÁŠKA 1 METRICKÉ A NORMOVANÉ PROSTORY 1.1 Prostor R n a jeho podmnožiny Připomeňme, že prostorem R n rozumíme množinu uspořádaných n tic reálných čísel, tj. R n = R } R {{ R }. n krát Prvky R n budeme

Více

Matematika III. Miroslava Dubcová, Daniel Turzík, Drahoslava Janovská. Ústav matematiky

Matematika III. Miroslava Dubcová, Daniel Turzík, Drahoslava Janovská. Ústav matematiky Matematika III Řady Miroslava Dubcová, Daniel Turzík, Drahoslava Janovská Ústav matematiky Přednášky ZS 202-203 Obsah Číselné řady. Součet nekonečné řady. Kritéria konvergence 2 Funkční řady. Bodová konvergence.

Více

LDF MENDELU. Simona Fišnarová (MENDELU) LDR druhého řádu VMAT, IMT 1 / 22

LDF MENDELU. Simona Fišnarová (MENDELU) LDR druhého řádu VMAT, IMT 1 / 22 Lineární diferenciální rovnice druhého řádu Vyšší matematika, Inženýrská matematika LDF MENDELU Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF)

Více

Definice. Vektorový prostor V nad tělesem T je množina s operacemi + : V V V, tj. u, v V : u + v V : T V V, tj. ( u V )( a T ) : a u V které splňují

Definice. Vektorový prostor V nad tělesem T je množina s operacemi + : V V V, tj. u, v V : u + v V : T V V, tj. ( u V )( a T ) : a u V které splňují Definice. Vektorový prostor V nad tělesem T je množina s operacemi + : V V V, tj. u, v V : u + v V : T V V, tj. ( u V )( a T ) : a u V které splňují 1. u + v = v + u, u, v V 2. (u + v) + w = u + (v + w),

Více

1 Linearní prostory nad komplexními čísly

1 Linearní prostory nad komplexními čísly 1 Linearní prostory nad komplexními čísly V této přednášce budeme hledat kořeny polynomů, které se dále budou moci vyskytovat jako složky vektorů nebo matic Vzhledem k tomu, že kořeny polynomu (i reálného)

Více

INTEGRÁLY S PARAMETREM

INTEGRÁLY S PARAMETREM INTEGRÁLY S PARAMETREM b a V kapitole o integraci funkcí více proměnných byla potřeba funkce g(x) = f(x, y) dy proměnné x. Spojitost funkce g(x) = b a f(x, y) dy proměnné x znamená vlastně prohození limity

Více

ALGEBRA. Téma 4: Grupy, okruhy a pole

ALGEBRA. Téma 4: Grupy, okruhy a pole SLEZSKÁ UNIVERZITA V OPAVĚ Matematický ústav v Opavě Na Rybníčku 1, 746 01 Opava, tel. (553) 684 611 DENNÍ STUDIUM Téma 4: Grupy, okruhy a pole Základní pojmy unární operace, binární operace, asociativita,

Více

Lineární algebra : Báze a dimenze

Lineární algebra : Báze a dimenze Lineární algebra : Báze a dimenze (5. přednáška) František Štampach, Karel Klouda LS 2013/2014 vytvořeno: 9. dubna 2014, 13:33 1 2 5.1 Báze lineárního prostoru Definice 1. O množině vektorů M z LP V řekneme,

Více

Rovnice matematické fyziky cvičení pro akademický školní rok 2013-2014

Rovnice matematické fyziky cvičení pro akademický školní rok 2013-2014 Harmonogram výuky předmětu Rovnice matematické fyziky cvičení pro akademický školní rok 2013-2014 Vedoucí cvičení: ing. Václav Klika, Ph.D. & MSc. Karolína Korvasová & & ing. Matěj Tušek, Ph.D. Katedra

Více

6.1 Vektorový prostor

6.1 Vektorový prostor 6 Vektorový prostor, vektory Lineární závislost vektorů 6.1 Vektorový prostor Nechť je dán soubor nějakých prvků, v němž je dána jistá struktura vztahů mezi jednotlivými prvky nebo v němž jsou předepsána

Více

ALGEBRA. Téma 5: Vektorové prostory

ALGEBRA. Téma 5: Vektorové prostory SLEZSKÁ UNIVERZITA V OPAVĚ Matematický ústav v Opavě Na Rybníčku 1, 746 01 Opava, tel. (553) 684 611 DENNÍ STUDIUM Téma 5: Vektorové prostory Základní pojmy Vektorový prostor nad polem P, reálný (komplexní)

Více

Eukleidovský prostor a KSS Eukleidovský prostor je bodový prostor, ve kterém je definována vzdálenost dvou bodů (metrika)

Eukleidovský prostor a KSS Eukleidovský prostor je bodový prostor, ve kterém je definována vzdálenost dvou bodů (metrika) Eukleidovský prostor a KSS Eukleidovský prostor je bodový prostor, ve kterém je definována vzdálenost dvou bodů (metrika) Kartézská soustava souřadnic je dána počátkem O a uspořádanou trojicí bodů E x,

Více

verze 1.3 kde ρ(, ) je vzdálenost dvou bodů v R r. Redukovaným ε-ovým okolím nazveme ε-ové okolí bodu x 0 mimo tohoto bodu, tedy množinu

verze 1.3 kde ρ(, ) je vzdálenost dvou bodů v R r. Redukovaným ε-ovým okolím nazveme ε-ové okolí bodu x 0 mimo tohoto bodu, tedy množinu Úvod Diferenciální počet více proměnných verze.3 Následující text popisuje základy diferenciálního počtu více proměnných. Měl by sloužit především studentům předmětu MATEMAT na Univerzitě Hradec Králové

Více

9 Kolmost vektorových podprostorů

9 Kolmost vektorových podprostorů 9 Kolmost vektorových podprostorů Od kolmosti dvou vektorů nyní přejdeme ke kolmosti dvou vektorových podprostorů. Budeme se zabývat otázkou, kdy jsou dva vektorové podprostory na sebe kolmé a jak to poznáme.

Více

Posloupnosti a řady. 28. listopadu 2015

Posloupnosti a řady. 28. listopadu 2015 Posloupnosti a řady Přednáška 5 28. listopadu 205 Obsah Posloupnosti 2 Věty o limitách 3 Řady 4 Kritéria konvergence 5 Absolutní a relativní konvergence 6 Operace s řadami 7 Mocninné a Taylorovy řady Zdroj

Více

na magisterský studijní obor Učitelství matematiky pro střední školy

na magisterský studijní obor Učitelství matematiky pro střední školy Datum:... Jméno:... Přijímací řízení pro akademický rok 203/4 na magisterský studijní obor Učitelství matematiky pro střední školy Písemná část přijímací zkoušky z matematiky Za každou správnou odpověd

Více

V: Pro nulový prvek o lineárního prostoru L platí vlastnosti:

V: Pro nulový prvek o lineárního prostoru L platí vlastnosti: Zpracoval: hypspave@fel.cvut.cz. Základní vlastnosti abstraktních lineárních prostorů. Lineární závislost, nezávislost, báze, souřadnice vzhledem k bázi, matice lineárního zobrazení vzhledem k bázím.skalární

Více

Učební texty k státní bakalářské zkoušce Matematika Diferenciální rovnice. študenti MFF 15. augusta 2008

Učební texty k státní bakalářské zkoušce Matematika Diferenciální rovnice. študenti MFF 15. augusta 2008 Učební texty k státní bakalářské zkoušce Matematika Diferenciální rovnice študenti MFF 15. augusta 2008 1 7 Diferenciální rovnice Požadavky Soustavy lineárních diferenciálních rovnic prvního řádu lineární

Více

a vlastních vektorů Příklad: Stanovte taková čísla λ, pro která má homogenní soustava Av = λv nenulové (A λ i I) v = 0.

a vlastních vektorů Příklad: Stanovte taková čísla λ, pro která má homogenní soustava Av = λv nenulové (A λ i I) v = 0. Výpočet vlastních čísel a vlastních vektorů S pojmem vlastního čísla jsme se již setkali například u iteračních metod pro řešení soustavy lineárních algebraických rovnic. Velikosti vlastních čísel iterační

Více

Učební texty k státní bakalářské zkoušce Matematika Základy teorie funkcí více proměnných. študenti MFF 15. augusta 2008

Učební texty k státní bakalářské zkoušce Matematika Základy teorie funkcí více proměnných. študenti MFF 15. augusta 2008 Učební texty k státní bakalářské zkoušce Matematika Základy teorie funkcí více proměnných študenti MFF 15. augusta 2008 1 5 Základy teorie funkcí více proměnných Požadavky Parciální derivace a totální

Více

MATEMATIKA IV - PARCIÁLNÍ DIFERENCIÁLNÍ ROVNICE - ZÁPISKY Z. Obsah. 1. Parciální diferenciální rovnice obecně. 2. Kvaazilineární rovnice prvního řádu

MATEMATIKA IV - PARCIÁLNÍ DIFERENCIÁLNÍ ROVNICE - ZÁPISKY Z. Obsah. 1. Parciální diferenciální rovnice obecně. 2. Kvaazilineární rovnice prvního řádu MATEMATIKA IV - PARCIÁLNÍ DIFERENCIÁLNÍ ROVNICE - ZÁPISKY Z PŘEDNÁŠEK JAN MALÝ Obsah 1. Parciální diferenciální rovnice obecně 1. Kvaazilineární rovnice prvního řádu 1 3. Lineární rovnice druhého řádu

Více

Lineární algebra Operace s vektory a maticemi

Lineární algebra Operace s vektory a maticemi Lineární algebra Operace s vektory a maticemi Robert Mařík 26. září 2008 Obsah Operace s řádkovými vektory..................... 3 Operace se sloupcovými vektory................... 12 Matice..................................

Více

Riemannův určitý integrál

Riemannův určitý integrál Riemannův určitý integrál 1. Motivační příklad Příklad (Motivační příklad pro zavedení Riemannova integrálu). Nechť,. Vypočtěme obsah vybarvené oblasti ohraničené grafem funkce, osou a svislými přímkami

Více

4. OBYČEJNÉ DIFERENCIÁLNÍ ROVNICE

4. OBYČEJNÉ DIFERENCIÁLNÍ ROVNICE FBI VŠB-TUO 28. března 2014 4.1. Základní pojmy Definice 4.1. Rovnice tvaru F (x, y, y, y,..., y (n) ) = 0 se nazývá obyčejná diferenciální rovnice n-tého řádu a vyjadřuje vztah mezi neznámou funkcí y

Více

Vlastní číslo, vektor

Vlastní číslo, vektor [1] Vlastní číslo, vektor motivace: směr přímky, kterou lin. transformace nezmění invariantní podprostory charakteristický polynom báze, vzhledem ke které je matice transformace nejjednodušší podobnost

Více

Matematická analýza III.

Matematická analýza III. 1. - limita, spojitost Miroslav Hušek, Lucie Loukotová UJEP 2010 Úvod Co bychom měli znát limity posloupností v R základní vlastnosti funkcí jedné proměnné (definiční obor, monotónnost, omezenost,... )

Více

Učební texty k státní bakalářské zkoušce Matematika Posloupnosti a řady funkcí. študenti MFF 15. augusta 2008

Učební texty k státní bakalářské zkoušce Matematika Posloupnosti a řady funkcí. študenti MFF 15. augusta 2008 Učební texty k státní bakalářské zkoušce Matematika Poslounosti a řady funkcí študenti MFF 15. augusta 2008 1 3 Poslounosti a řady funkcí Požadavky Sojitost za ředokladu stejnoměrné konvergence Mocninné

Více

Učební texty k státní bakalářské zkoušce Matematika Vlastní čísla a vlastní hodnoty. študenti MFF 15. augusta 2008

Učební texty k státní bakalářské zkoušce Matematika Vlastní čísla a vlastní hodnoty. študenti MFF 15. augusta 2008 Učební texty k státní bakalářské zkoušce Matematika Vlastní čísla a vlastní hodnoty študenti MFF 15. augusta 2008 1 14 Vlastní čísla a vlastní hodnoty Požadavky Vlastní čísla a vlastní hodnoty lineárního

Více

Texty k přednáškám z MMAN3: 4. Funkce a zobrazení v euklidovských prostorech

Texty k přednáškám z MMAN3: 4. Funkce a zobrazení v euklidovských prostorech Texty k přednáškám z MMAN3: 4. Funkce a zobrazení v euklidovských prostorech 1. července 2008 1 Funkce v R n Definice 1 Necht n N a D R n. Reálnou funkcí v R n (reálnou funkcí n proměnných) rozumíme zobrazení

Více

Kapitola 11: Vektory a matice:

Kapitola 11: Vektory a matice: Kapitola 11: Vektory a matice: Prostor R n R n = {(x 1,, x n ) x i R, i = 1,, n}, n N x = (x 1,, x n ) R n se nazývá vektor x i je i-tá souřadnice vektoru x rovnost vektorů: x = y i = 1,, n : x i = y i

Více

7 Ortogonální a ortonormální vektory

7 Ortogonální a ortonormální vektory 7 Ortogonální a ortonormální vektory Ze vztahu (5) pro výpočet odchylky dvou vektorů vyplývá, že nenulové vektory u, v jsou na sebe kolmé právě tehdy, když u v =0. Tato skutečnost nám poslouží k zavedení

Více

Definice 7.1 Nechť je dán pravděpodobnostní prostor (Ω, A, P). Zobrazení. nebo ekvivalentně

Definice 7.1 Nechť je dán pravděpodobnostní prostor (Ω, A, P). Zobrazení. nebo ekvivalentně 7 Náhodný vektor Nezávislost náhodných veličin Definice 7 Nechť je dán pravděpodobnostní prostor (Ω, A, P) Zobrazení X : Ω R n, které je A-měřitelné, se nazývá (n-rozměrný) náhodný vektor Měřitelností

Více

Aplikovaná matematika I, NMAF071

Aplikovaná matematika I, NMAF071 M. Rokyta, MFF UK: Aplikovaná matematika I kap. 1: Úvod, čísla, zobrazení, posloupnosti 1 Aplikovaná matematika I, NMAF071 M. Rokyta, KMA MFF UK ZS 2013/14 Sylabus = obsah (plán) přednášky [a orientační

Více

3 Lineární kombinace vektorů. Lineární závislost a nezávislost

3 Lineární kombinace vektorů. Lineární závislost a nezávislost 3 Lineární kombinace vektorů. Lineární závislost a nezávislost vektorů. Obrázek 5: Vektor w je lineární kombinací vektorů u a v. Vektory u, v a w jsou lineárně závislé. Obrázek 6: Vektor q je lineární

Více

Skalární součin je nástroj, jak měřit velikost vektorů a úhly mezi vektory v reálných a komplexních vektorových prostorech.

Skalární součin je nástroj, jak měřit velikost vektorů a úhly mezi vektory v reálných a komplexních vektorových prostorech. Kapitola 9 Skalární součin Skalární součin je nástroj, jak měřit velikost vektorů a úhly mezi vektory v reálných a komplexních vektorových prostorech. Definice 9.1 Je-li x = (x 1,..., x n ) T R n 1 reálný

Více

Rovnice matematické fyziky

Rovnice matematické fyziky Rovnice matematické fyziky cvičení 1 Rovnice matematické fyziky cvičení Michael Krbek Obsah Opakování ze známé matematické analýzy Parciální diferenciální rovnice metoda charakteristik Okrajová úloha pro

Více

Matematika 2 LS 2012/13. Prezentace vznikla na základě učebního textu, jehož autorem je doc. RNDr. Mirko Rokyta, CSc. J. Stebel Matematika 2

Matematika 2 LS 2012/13. Prezentace vznikla na základě učebního textu, jehož autorem je doc. RNDr. Mirko Rokyta, CSc. J. Stebel Matematika 2 Matematika 2 14. přednáška Číselné a mocninné řady Jan Stebel Fakulta mechatroniky, informatiky a mezioborových studíı Technická univerzita v Liberci jan.stebel@tul.cz http://bacula.nti.tul.cz/~jan.stebel

Více

Funkce komplexní proměnné a integrální transformace

Funkce komplexní proměnné a integrální transformace Funkce komplexní proměnné a integrální transformace Fourierovy řady I. Marek Lampart Text byl vytvořen v rámci realizace projektu Matematika pro inženýry 21. století (reg. č. CZ.1.07/2.2.00/07.0332), na

Více

ANALYTICKÁ GEOMETRIE V ROVINĚ

ANALYTICKÁ GEOMETRIE V ROVINĚ ANALYTICKÁ GEOMETRIE V ROVINĚ Analytická geometrie vyšetřuje geometrické objekty (body, přímky, kuželosečky apod.) analytickými metodami. Podle prostoru, ve kterém pracujeme, můžeme analytickou geometrii

Více

Posloupnosti a jejich limity

Posloupnosti a jejich limity KMA/MAT Přednáška č. 7, Posloupnosti a jejich ity 5. listopadu 203 Motivační příklady Prozkoumejme, zatím laicky, následující posloupnosti: Posloupnost, 4, 9,..., n 2,... : Hodnoty rostou nade všechny

Více

Symetrické a kvadratické formy

Symetrické a kvadratické formy Symetrické a kvadratické formy Aplikace: klasifikace kvadrik(r 2 ) a kvadratických ploch(r 3 ), optimalizace(mpi) BI-LIN (Symetrické a kvadratické formy) 1 / 20 V celé přednášce uvažujeme číselné těleso

Více

1 Determinanty a inverzní matice

1 Determinanty a inverzní matice Determinanty a inverzní matice Definice Necht A = (a ij ) je matice typu (n, n), n 2 Subdeterminantem A ij matice A příslušným pozici (i, j) nazýváme determinant matice, která vznikne z A vypuštěním i-tého

Více

Maticí typu (m, n), kde m, n jsou přirozená čísla, se rozumí soubor mn veličin a jk zapsaných do m řádků a n sloupců tvaru:

Maticí typu (m, n), kde m, n jsou přirozená čísla, se rozumí soubor mn veličin a jk zapsaných do m řádků a n sloupců tvaru: 3 Maticový počet 3.1 Zavedení pojmu matice Maticí typu (m, n, kde m, n jsou přirozená čísla, se rozumí soubor mn veličin a jk zapsaných do m řádků a n sloupců tvaru: a 11 a 12... a 1k... a 1n a 21 a 22...

Více

ftp://math.feld.cvut.cz/pub/olsak/linal/

ftp://math.feld.cvut.cz/pub/olsak/linal/ Petr Olšák Výcuc z textu Lineární algebra určeno pro promítání na přednášce Úvod do algebry http://www.olsak.net/linal.html ftp://math.feld.cvut.cz/pub/olsak/linal/ http://math.feld.cvut.cz/skripta/ua/

Více

z textu Lineární algebra

z textu Lineární algebra 2 Úvodní poznámky Petr Olšák Výcuc z textu Lineární algebra určeno pro promítání na přednášce Úvod do algebry http://www.olsak.net/linal.html ftp://math.feld.cvut.cz/pub/olsak/linal/ http://math.feld.cvut.cz/skripta/ua/

Více

Matematika 2 LS 2012/13. Prezentace vznikla na základě učebního textu, jehož autorem je doc. RNDr. Mirko Rokyta, CSc. J. Stebel Matematika 2

Matematika 2 LS 2012/13. Prezentace vznikla na základě učebního textu, jehož autorem je doc. RNDr. Mirko Rokyta, CSc. J. Stebel Matematika 2 Matematika 2 13. přednáška Obyčejné diferenciální rovnice Jan Stebel Fakulta mechatroniky, informatiky a mezioborových studíı Technická univerzita v Liberci jan.stebel@tul.cz http://bacula.nti.tul.cz/~jan.stebel

Více

Matematika 2 pro PEF PaE

Matematika 2 pro PEF PaE Vektorové prostory 1 / 17 Matematika 2 pro PEF PaE 8. Vektorové prostory Přemysl Jedlička Katedra matematiky, TF ČZU Vektorové prostory Vektorové prostory a podprostory 2 / 17 vektorového prostoru Množina

Více

Matematika 3. Úloha 1. Úloha 2. Úloha 3

Matematika 3. Úloha 1. Úloha 2. Úloha 3 Matematika 3 Úloha 1 Co lze říci o funkci imaginární část komplexního čísla která každému komplexnímu číslu q přiřazuje číslo Im(q)? a. Je to funkce mnohoznačná. b. Je to reálná funkce komplexní proměnné.

Více

1 Vektorové prostory.

1 Vektorové prostory. 1 Vektorové prostory DefiniceMnožinu V, jejíž prvky budeme označovat a, b, c, z, budeme nazývat vektorovým prostorem právě tehdy, když budou splněny následující podmínky: 1 Je dáno zobrazení V V V, které

Více

Funkce zadané implicitně

Funkce zadané implicitně Kapitola 8 Funkce zadané implicitně Začneme několika příklady. Prvním je známá rovnice pro jednotkovou kružnici x 2 + y 2 1 = 0. Tato rovnice popisuje křivku, kterou si však nelze představit jako graf

Více

Sbírka příkladů z matematické analýzy II. Petr Tomiczek

Sbírka příkladů z matematické analýzy II. Petr Tomiczek Sbírka příkladů z matematické analýzy II Petr Tomiczek Obsah Diferenciální rovnice. řádu 3. Separace proměnných......................... 3. Přechod k separaci.......................... 4.3 Variace konstant...........................

Více

LINEÁRNÍ DIFERENCIÁLNÍ ROVNICE 2.ŘÁDU

LINEÁRNÍ DIFERENCIÁLNÍ ROVNICE 2.ŘÁDU LINEÁRNÍ DIFERENCIÁLNÍ ROVNICE 2.ŘÁDU ZDENĚK ŠIBRAVA 1. Obecné řešení lin. dif. rovnice 2.řádu s konstntními koeficienty 1.1. Vrice konstnt. Příkld 1.1. Njděme obecné řešení diferenciální rovnice (1) y

Více

Matematika. Kamila Hasilová. Matematika 1/34

Matematika. Kamila Hasilová. Matematika 1/34 Matematika Kamila Hasilová Matematika 1/34 Obsah 1 Úvod 2 GEM 3 Lineární algebra 4 Vektory Matematika 2/34 Úvod Zkouška písemná, termíny budou včas vypsány na Intranetu UO obsah: teoretická a praktická

Více

9. přednáška 26. listopadu f(a)h < 0 a pro h (0, δ) máme f(a 1 + h, a 2,..., a m ) f(a) > 1 2 x 1

9. přednáška 26. listopadu f(a)h < 0 a pro h (0, δ) máme f(a 1 + h, a 2,..., a m ) f(a) > 1 2 x 1 9 přednáška 6 listopadu 007 Věta 11 Nechť f C U, kde U R m je otevřená množina, a a U je bod Pokud fa 0, nemá f v a ani neostrý lokální extrém Pokud fa = 0 a H f a je pozitivně negativně definitní, potom

Více

Úvod základy teorie zobrazení

Úvod základy teorie zobrazení Úvod základy teorie zobrazení V přednášce se budeme zabývat diferenciálním a integrálním počtem funkcí více proměnných. Přednáška navazuje na přednášku atematická analýza 1 z prvního semestru. Proto se

Více

Přednáška 6, 7. listopadu 2014

Přednáška 6, 7. listopadu 2014 Přednáška 6, 7. listopadu 204 Část 3: nekonečné řady Základní definice. Nekonečná řada, krátce řada, je posloupnost reálných čísel (a n ) R uvedená v zápisu a n = a + a 2 + a 3 +..., spolu s metodou přiřazující

Více

Matice lineárních zobrazení

Matice lineárních zobrazení Matice lineárních zobrazení Nechť V, +, a W, +, jsou nenulové vektorové prostory konečných dimenzí n a m nad tělesem T, +,, nechť posloupnosti vektorů g 1, g 2,..., g n V a h 1, h 2,..., h m W tvoří báze

Více

Matematika B101MA1, B101MA2

Matematika B101MA1, B101MA2 Matematika B101MA1, B101MA2 Zařazení předmětu: povinný předmět 1.ročníku bc studia 2 semestry Rozsah předmětu: prezenční studium 2 + 2 kombinované studium 16 + 0 / semestr Zakončení předmětu: ZS zápočet

Více

Derivace funkce. Přednáška MATEMATIKA č Jiří Neubauer

Derivace funkce. Přednáška MATEMATIKA č Jiří Neubauer Přednáška MATEMATIKA č. 9-11 Katedra ekonometrie FEM UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Šotová, J., Doudová, L. Diferenciální počet funkcí jedné proměnné Motivační příklady

Více

Průvodce studiem. do bodu B se snažíme najít nejkratší cestu. Ve firmách je snaha minimalizovat

Průvodce studiem. do bodu B se snažíme najít nejkratší cestu. Ve firmách je snaha minimalizovat 6. Extrémy funkcí více proměnných Průvodce studiem Hledání extrémů je v praxi často řešená úloha. Např. při cestě z bodu A do bodu B se snažíme najít nejkratší cestu. Ve firmách je snaha minimalizovat

Více

15. Moduly. a platí (p + q)(x) = p(x) + q(x), 1(X) = id. Vzniká tak struktura P [x]-modulu na V.

15. Moduly. a platí (p + q)(x) = p(x) + q(x), 1(X) = id. Vzniká tak struktura P [x]-modulu na V. Učební texty k přednášce ALGEBRAICKÉ STRUKTURY Michal Marvan, Matematický ústav Slezská univerzita v Opavě 15. Moduly Definice. Bud R okruh, bud M množina na níž jsou zadány binární operace + : M M M,

Více

1 Posloupnosti a řady.

1 Posloupnosti a řady. 1 Posloupnosti a řady. 1.1 Posloupnosti reálných čísel. Definice 1.1: Posloupností reálných čísel nazýváme zobrazení f množiny N všech přirozených čísel do množiny R všech reálných čísel. Pokud nemůže

Více

Funkce více proměnných. April 29, 2016

Funkce více proměnných. April 29, 2016 Funkce více proměnných April 29, 2016 Příklad (Derivace vyšších řádů) Daná je funkce f (x, y) = x 2 y + y 3 x 4, určte její parc. derivace podle x a podle y prvního i druhého řádu, i smíšené. f x = 2xy

Více

5. Lokální, vázané a globální extrémy

5. Lokální, vázané a globální extrémy 5 Lokální, vázané a globální extrémy Studijní text Lokální extrémy 5 Lokální, vázané a globální extrémy Definice 51 Řekneme, že f : R n R má v bodě a Df: 1 lokální maximum, když Ka, δ Df tak, že x Ka,

Více

OBYČEJNÉ DIFERENCIÁLNÍ ROVNICE DIFERENCIÁLNÍ ROVNICE 1.ŘÁDU

OBYČEJNÉ DIFERENCIÁLNÍ ROVNICE DIFERENCIÁLNÍ ROVNICE 1.ŘÁDU OBYČEJNÉ DIFERENCIÁLNÍ ROVNICE Diferenciální rovnice patří mezi nejužívanější nástroje matematiky v aplikacích. Jsou to rovnice, kde neznámou je funkce a rovnice obsahuje i derivace této funkce. Lze očekávat,

Více

Četba: Texty o lineární algebře (odkazy na webových stránkách přednášejícího).

Četba: Texty o lineární algebře (odkazy na webových stránkách přednášejícího). Předmět: MA 4 Dnešní látka Lineární (vektorový) prostor Normovaný lineární prostor Normy matic a vektorů Symetrické matice, pozitivně definitní matice Gaussova eliminační metoda, podmíněnost matic Četba:

Více

IV. Základní pojmy matematické analýzy IV.1. Rozšíření množiny reálných čísel

IV. Základní pojmy matematické analýzy IV.1. Rozšíření množiny reálných čísel Matematická analýza IV. Základní pojmy matematické analýzy IV.1. Rozšíření množiny reálných čísel na množině R je definováno: velikost (absolutní hodnota), uspořádání, aritmetické operace; znázornění:

Více

)(x 2 + 3x + 4),

)(x 2 + 3x + 4), 3 IREDUCIBILNÍ ROZKLADY POLYNOMŮ V T [X] 3 Ireducibilní rozklady polynomů v T [x] - rozklady polynomů na ireducibilní (dále nerozložitelné) prvky v oboru integrity polynomů jedné neurčité x nad tělesem

Více

1 Soustavy lineárních rovnic

1 Soustavy lineárních rovnic 1 Soustavy lineárních rovnic 1.1 Základní pojmy Budeme uvažovat soustavu m lineárních rovnic o n neznámých s koeficienty z tělesa T (potom hovoříme o soustavě m lineárních rovnic o n neznámých nad tělesem

Více

2. Schurova věta. Petr Tichý. 3. října 2012

2. Schurova věta. Petr Tichý. 3. října 2012 2. Schurova věta Petr Tichý 3. října 2012 1 Podobnostní transformace a výpočet vlastních čísel Obecný princip: Úloha: Řešíme-li matematickou úlohu, je často velmi vhodné hledat její ekvivalentní formulaci

Více

9. Úvod do teorie PDR

9. Úvod do teorie PDR 9. Úvod do teorie PDR A. Základní poznatky o soustavách ODR1 Diferenciální rovnici nazveme parciální, jestliže neznámá funkce závisí na dvou či více proměnných (příslušná rovnice tedy obsahuje parciální

Více

Nechť je číselná posloupnost. Pro všechna položme. Posloupnost nazýváme posloupnost částečných součtů řady.

Nechť je číselná posloupnost. Pro všechna položme. Posloupnost nazýváme posloupnost částečných součtů řady. Číselné řady Definice (Posloupnost částečných součtů číselné řady). Nechť je číselná posloupnost. Pro všechna položme. Posloupnost nazýváme posloupnost částečných součtů řady. Definice (Součet číselné

Více

stránkách přednášejícího.

stránkách přednášejícího. Předmět: MA 4 Dnešní látka Iterační metoda Jacobiova iterační metoda Gaussova-Seidelova iterační metoda Superrelaxační metoda (metoda SOR) Metoda sdružených gradientů Četba: Text o lineární algebře v Příručce

Více

6. Vektorový počet Studijní text. 6. Vektorový počet

6. Vektorový počet Studijní text. 6. Vektorový počet 6. Vektorový počet Budeme se pohybovat v prostoru R n, což je kartézská mocnina množiny reálných čísel R; R n = R R. Obvykle nám bude stačit omezení na případy n = 1, 2, 3; nicméně teorie je platná obecně.

Více

[1] Motivace. p = {t u ; t R}, A(p) = {A(t u ); t R} = {t A( u ); t R}

[1] Motivace. p = {t u ; t R}, A(p) = {A(t u ); t R} = {t A( u ); t R} Vlastní číslo, vektor motivace: směr přímky, kterou lin. transformace nezmění invariantní podprostory charakteristický polynom báze, vzhledem ke které je matice transformace nejjednodušší podobnost s diagonální

Více

pouze u některých typů rovnic a v tomto textu se jím nebudeme až na

pouze u některých typů rovnic a v tomto textu se jím nebudeme až na Matematika II 7.1. Zavedení diferenciálních rovnic Definice 7.1.1. Rovnice tvaru F(y (n), y (n 1),, y, y, x) = 0 se nazývá diferenciální rovnice n-tého řádu pro funkci y = y(x). Speciálně je F(y, y, x)

Více

2.6. VLASTNÍ ČÍSLA A VEKTORY MATIC

2.6. VLASTNÍ ČÍSLA A VEKTORY MATIC .6. VLASTNÍ ČÍSLA A VEKTORY MATIC V této kapitole se dozvíte: jak jsou definována vlastní (charakteristická) čísla a vektory čtvercové matice; co je to charakteristická matice a charakteristický polynom

Více

1. Algebraické struktury

1. Algebraické struktury 1. Algebraické struktury Definice 1.1 : Kartézský součin množin A,B (značíme A B) je množina všech uspořádaných dvojic [a, b], kde a A, b B. N-tou kartézskou mocninou nazveme A n. Definice 1.2 : Nechť

Více

1 Funkce dvou a tří proměnných

1 Funkce dvou a tří proměnných 1 Funkce dvou a tří proměnných 1.1 Pojem funkce více proměnných Definice Funkce dvou proměnných je předpis, který každému bodu z R 2 (tj. z roviny) přiřazuje jediné reálné číslo. z = f(x, y), D(f) R 2

Více

Báze a dimense. Odpřednesenou látku naleznete v kapitolách a 3.6 skript Abstraktní a konkrétní lineární algebra.

Báze a dimense. Odpřednesenou látku naleznete v kapitolách a 3.6 skript Abstraktní a konkrétní lineární algebra. Báze a dimense Odpřednesenou látku naleznete v kapitolách 3.1 3.3 a 3.6 skript Abstraktní a konkrétní lineární algebra. Jiří Velebil: A7B01LAG 15.10.2015: Báze a dimense 1/19 Minulé přednášky 1 Lineární

Více

Posloupnosti a jejich konvergence POSLOUPNOSTI

Posloupnosti a jejich konvergence POSLOUPNOSTI Posloupnosti a jejich konvergence Pojem konvergence je velmi důležitý pro nediskrétní matematiku. Je nezbytný všude, kde je potřeba aproximovat nějaké hodnoty, řešit rovnice přibližně, používat derivace,

Více

1 Mnohočleny a algebraické rovnice

1 Mnohočleny a algebraické rovnice 1 Mnohočleny a algebraické rovnice 1.1 Pojem mnohočlenu (polynomu) Připomeňme, že výrazům typu a 2 x 2 + a 1 x + a 0 říkáme kvadratický trojčlen, když a 2 0. Číslům a 0, a 1, a 2 říkáme koeficienty a písmenem

Více

Kapitola 11: Vektory a matice 1/19

Kapitola 11: Vektory a matice 1/19 Kapitola 11: Vektory a matice 1/19 2/19 Prostor R n R n = {(x 1,..., x n ) x i R, i = 1,..., n}, n N x = (x 1,..., x n ) R n se nazývá vektor x i je i-tá souřadnice vektoru x rovnost vektorů: x = y i =

Více

Cvičení z Lineární algebry 1

Cvičení z Lineární algebry 1 Cvičení z Lineární algebry Michael Krbek podzim 2003 2392003 Hodina Jsou dána komplexní čísla z = +2 i a w = 2 i Vyjádřete c algebraickém tvaru (z + w) 3,, (zw), z w 2 Řešte v komplexním oboru rovnice

Více

Necht tedy máme přirozená čísla n, k pod pojmem systém lineárních rovnic rozumíme rovnice ve tvaru

Necht tedy máme přirozená čísla n, k pod pojmem systém lineárních rovnic rozumíme rovnice ve tvaru 2. Systémy lineárních rovnic V této kapitole se budeme zabývat soustavami lineárních rovnic s koeficienty z pole reálných případně komplexních čísel. Uvádíme podmínku pro existenci řešení systému lineárních

Více

Operátory obecně (viz QMCA s. 88) je matematický předpis který, pokud je aplikován na funkci, převádí ji na

Operátory obecně (viz QMCA s. 88) je matematický předpis který, pokud je aplikován na funkci, převádí ji na 4 Matematická vsuvka: Operátory na Hilbertově prostoru. Popis vlastností kvantové částice. Operátory rychlosti a polohy kvantové částice. Princip korespondence. Vlastních stavy a spektra operátorů, jejich

Více

Matice. Modifikace matic eliminační metodou. α A = α a 2,1, α a 2,2,..., α a 2,n α a m,1, α a m,2,..., α a m,n

Matice. Modifikace matic eliminační metodou. α A = α a 2,1, α a 2,2,..., α a 2,n α a m,1, α a m,2,..., α a m,n [1] Základní pojmy [2] Matice mezi sebou sčítáme a násobíme konstantou (lineární prostor) měníme je na jiné matice eliminační metodou násobíme je mezi sebou... Matice je tabulka čísel s konečným počtem

Více

Katedra matematiky Fakulty jaderné a fyzikálně inženýrské ČVUT v Praze. Zápočtová písemná práce č. 1 z předmětu 01MAB3 varianta A

Katedra matematiky Fakulty jaderné a fyzikálně inženýrské ČVUT v Praze. Zápočtová písemná práce č. 1 z předmětu 01MAB3 varianta A Zápočtová písemná práce č. 1 z předmětu 01MAB3 varianta A středa 19. listopadu 2014, 11:20 13:20 ➊ (8 bodů) Rozhodněte o stejnoměrné konvergenci řady n 3 n ( ) 1 e xn2 x 2 +n 2 na množině A = 0, + ). ➋

Více