9.7 TŘÍDĚNÍ PODLE JEDNOHO SPOJITÉHO ČÍSELNÉHO ZNAKU. INTERVALOVÉ ROZDĚLENÍ ČETNOSTI

Rozměr: px
Začít zobrazení ze stránky:

Download "9.7 TŘÍDĚNÍ PODLE JEDNOHO SPOJITÉHO ČÍSELNÉHO ZNAKU. INTERVALOVÉ ROZDĚLENÍ ČETNOSTI"

Transkript

1 Statistické třídění, intervalové rozdělení četnosti Aleš Drobník strana TŘÍDĚNÍ PODLE JEDNOHO SPOJITÉHO ČÍSELNÉHO ZNAKU. INTERVALOVÉ ROZDĚLENÍ ČETNOSTI Problematiku třídění podle jednoho spojitého číselného znaku si vysvětlíme na následujícím příkladu. Předpokládejme, že pracovník podniku Alfa Blatná, který spravuje podnikovou databázi, exportoval do tabulkového procesoru všechny pracovníky podniku s některými sledovanými atributy (vlastnostmi), které jsou vypsané v tabulce 9.1. Tuto tabulku budeme používat i pro tento příklad. Tabulka 9.1: Zaměstnanci malé organizace Alfa Blatná k Číslo pracovníka Příjmení Pohlaví Titul Stav Počet vyživovaných dětí Pracovní kategorie Hrubá měsíční mzda za červen Zbývá dní dovolené 1 Adam Dělník Bartoš Dělník Beneš Dělník Berka Provozní Bláha 1 Ing. 2 2 Technický Bohuš Dělník Bouše Dělník Boušová Hospodářský Bůbal Dělník Bureš Technický Burešová Provozní

2 Statistické třídění, intervalové rozdělení četnosti Aleš Drobník strana 2 12 Burgerová Dělník Černá Dělník Daněk Dělník Dlask Dělník Dobeš Dělník Drobník 1 RNDr. Bc. 2 2 Hospodářský Erb Dělník Fichtner Dělník Gál Hospodářský Gott Dělník Havel Hospodářský Házová Dělník Hejral Technický Hrubín Dělník Hubač Dělník Hupová Provozní Hus 1 JUDr. 2 3 Hospodářský Janda Dělník Janků Dělník Janků Provozní Jarý Dělník Jiřinec Dělník Jonáš Dělník Kobosil Hospodářský Korousová Dělník Kos Dělník Koucký Dělník Kulíšek Dělník Lahodný Dělník Lahodová Dělník Líbenková 2 Mgr. 2 0 Hospodářský Lín Dělník

3 Statistické třídění, intervalové rozdělení četnosti Aleš Drobník strana 3 44 Linka 1 Doc. 2 2 Hospodářský Líný 1 Mgr. 2 1 Technický Mahel Dělník Masaryk Dělník Mocová Dělník Moravec Technický Nezval Dělník Nohavica Technický Novák Dělník Novák Dělník Nováková Dělník Ondráš Dělník Prádler Hospodářský Rus Technický Svoboda Technický Tatar Technický Tomšů Technický Celkem x x x 106 x x Vysvětlivky: Pohlaví Kód muž 1 žena 2 Stav Kód svobodný/á 1 vdaná/ženatý 2 vdova/vdovec 3 rozvedený/á 4

4 Statistické třídění, intervalové rozdělení četnosti Aleš Drobník strana 4 Příklad 9.4: a) Z tabulky 9.1 vhodné skupinové tabulky roztřídíme soubor pracovníků dle třídícího číselného znaku hrubá měsíční mzda na přiměřený počet tříd neboli intervalů mezd. Pak doplníme procento pracovníků s daným intervalem mezd. Dále vytvoříme graficky histogram rozdělení četnosti pracovníků podle intervalů mezd. Jde o tzv. intervalové (skupinové) rozdělení četnosti. b) Do skupinové tabulky doplníme kumulativní četnost. Tzn. počet pracovníků, kteří mají první interval mezd, první až druhý interval mezd, první až třetí interval mezd atd. Dále vytvoříme graf kumulativní četnosti pracovníků v závislosti na postupně se zvyšujícím intervalu mezd. c) Do skupinové tabulky doplníme poměrné zastoupení pro kumulativní četnosti. d) Uvedeme slovní popis pro první, druhý a třetí řádek tabulky. Řešení: Ad a) Z tabulky 9.1 vhodné skupinové tabulky roztřídíme soubor pracovníků dle třídícího číselného znaku hrubá měsíční mzda na přiměřený počet tříd neboli intervalů mezd. Pak doplníme procento pracovníků s daným intervalem mezd. Dále vytvoříme graficky histogram rozdělení četnosti pracovníků podle intervalů mezd. Jde o tzv. intervalové (skupinové) rozdělení četnosti. Ad b) Do skupinové tabulky doplníme kumulativní četnost. Tzn. počet pracovníků, kteří mají první interval mezd, první až druhý interval mezd, první až třetí interval mezd atd. Dále vytvoříme graf kumulativní četnosti pracovníků v závislosti na postupně se zvyšujícím intervalu mezd. U spojitého číselného znaku neznáme počet tříd. i) Jednak nevíme, od jaké minimální do jaké maximální hrubé měsíční mzdy se budeme pohybovat. Proto musíme ve sloupci Hrubá měsíční mzda tabulky 9.1 nejprve zjistit minimum a maximum. Minimum a maximum zjistíme z tabulky 9.1 buď ručně, anebo výpočtem v MS Excel. Pohledem vidíme, že v tab. 9.1 je nejmenší mzda Kč a nejvyšší Kč. Při výpočtu v MS Excel jde o funkci MIN a MAX: =MIN(oblast) =MAX(oblast) kde oblast je oblast buněk v tabulce 9.1 ve sloupci Hrubá měsíční mzda.

5 Statistické třídění, intervalové rozdělení četnosti Aleš Drobník strana 5 ii) Dalším problémem je, že statistický znak pracovníka hrubá měsíční mzda lze považovat za spojitý nebo částečně spojitý. (Mzdu lze vyplácet na účet pracovníka s přesností na setiny Kč.) Proto musíme třídit rozpětí znaku, u nás mezd, od minimální po maximální mzdu na několik intervalů mezd. Pravidla pro tvorbu intervalů spojitého znaku Pro tvorbu intervalů spojitého znaku platí několik základních pravidel a doporučení: Intervaly mohou být stejně dlouhé. I když nutně to není třeba. Všechny intervaly musejí pokrýt variační rozpětí znaku, tj. u nás mezd, od minima po maximum. Je doporučeno, aby interval byl polouzavřený, tj. aby jedna mez každého intervalu byla otevřená a druhá mez každého intervalu uzavřená, aby hodnota krajního znaku (meze intervalu) jednoznačně patřila do právě jednoho intervalu. Jinými slovy, aby hodnota znaku nebyla započítána dvakrát nebo ani jednou. Počet intervalů k může být podle potřeby libovolný, je doporučeno, aby byl mezi 4 až 20. Ale je zřejmé, že čím větší je počet statistických jednotek souboru n, tím více intervalů k může být. Pro počet intervalů k je doporučený jeden z následujících vzorců. První je Sturgessovo pravidlo, druhý Yuleho vzorec. Oba vedou k přibližně stejnému výsledku, stačí pracovat jen s jedním z nich: k 1 3,322.log( n) 4 k 2,5. n V našem příkladě máme n = 60 pracovníků. Podle Sturgessova pravidla je počet intervalů mezd: k 1 3,322.log(60) 6,91 Vzorec v Excelu vypadá následovně: = 1 + 3,322*LOG(60) Podle Yuleho vzorce je počet intervalů mezd: k 2, ,96 Vzorec v Excelu vypadá následovně:

6 Statistické třídění, intervalové rozdělení četnosti Aleš Drobník strana 6 = 2,5*(60)^(1/4) Vidíme, že oba vzorce vedou k téměř stejnému výsledku. Počet intervalů musí být přirozené číslo. Zvolíme počet intervalů k = 7. Délka intervalu d se přibližně stanoví jako podíl variačního rozpětí R a počtu intervalů k. Variační rozpětí R je rozdíl mezi maximální a minimální mzdou: R X max X min Variační rozpětí je u nás: R Kč Kč Kč Délka intervalu d je: d X max X k min R k V našem příkladě je délka intervalu: Kč Kč d Kč 7 Je doporučeno kvůli přehlednosti budoucí tabulky rozumně zaokrouhlit délku intervalu: Například zaokrouhlit nahoru na pětistovky na číslo Kč. Počet intervalů zůstane k = 7. Nebo zaokrouhlit dolů na tisíce na číslo Kč, pak ale musíme počet intervalů zvýšit třeba na k = 8. Zvolíme první možnost, zaokrouhlení nahoru na pětistovky na číslo Kč. Počet intervalů zůstane k = 7. Zkontrolujeme si, jaké rozpětí mezd pokryjeme tímto zaokrouhleným intervalem Kč při počtu intervalů k = 7: d Kč Kč Vidíme, že variační rozpětí R = Kč je překročeno o Kč = Kč Kč. Proto lze začít mzdu například o Kč níže, než je minimum, tj. od = Kč. A lze mzdu zakončit o 500 Kč nad maximem, maximální mzdou tj. do = Kč. První interval bude Kč až Kč a tyto meze zvyšujeme o Kč. Další interval bude Kč až Kč, další Kč až Kč atd., jak vidíme v tabulce 9.5.

7 Statistické třídění, intervalové rozdělení četnosti Aleš Drobník strana 7 V tabulce 9.5 vytvoříme legendu Interval mezd, kdy dolní mez volíme uzavřenou a horní mez volíme otevřenou. V tabulce 9.5 vytvoříme hlavičku Počet pracovníků, a to absolutně, v %, kumulativně a kumulativně v %. Zařazení pracovníků podle mezd řešíme buď ručně nad tabulkou 9.1, anebo využitím MS Excel. Při využití MS Excel je tabulku nejvýhodnější vyplňovat od sloupce Počet pracovníků kumulativně, kam do prvního řádku napíšeme: =COUNTIF(oblast;"<13500") kde oblast je sloupec buněk v tabulce 9.1, kde se nalézá sloupec Hrubá měsíční mzda za červen a "<13500" znamená, že v oblasti sloupce hledáme počet mezd nižších než Kč. Například: =COUNTIF(H$24:H$83;"<13500") Výsledkem je číslo 4. Takže jsou 4 pracovníci, kteří mají mzdu pod Kč. Protože minimální vyplacená mzda je Kč, zjistíme tím, že v intervalu Kč až Kč jsou mzdy 4 pracovníků. Proto do prvního řádku tabulky 9.5 napíšeme číslo 4 jak do sloupce Počet pracovníků absolutně i Počet pracovníků kumulativně. Do sloupce Počet pracovníků kumulativně do druhého řádku napíšeme: kde =COUNTIF(oblast;"<18000") oblast je sloupec buněk v tabulce 9.1, kde se nalézá sloupec Hrubá měsíční mzda za červen a "<18 000" znamená, že v oblasti sloupce hledáme počet mezd nižších než Kč. Výsledek je 21. Takže je 21 pracovníků, kteří mají hrubou mzdu pod Kč. Protože mzdu pod Kč mají 4 pracovníci, pokud tyto vyloučíme, zjistíme tím zároveň, že v intervalu Kč až Kč jsou mzdy 21 4 = 17 pracovníků. Proto do sloupce Počet pracovníků kumulativně napíšeme 21 a do sloupce Počet pracovníků absolutně napíšeme 17. Do sloupce "Počet pracovníků kumulativně" do třetího řádku napíšeme:

8 Statistické třídění, intervalové rozdělení četnosti Aleš Drobník strana 8 kde =COUNTIF(oblast;"<22500") oblast je sloupec buněk v tabulce 9.1, kde se nalézá sloupec Hrubá měsíční mzda za červen a "<22 500" znamená, že v oblasti sloupce hledáme počet mezd nižších než Kč. Výsledek je 42. Takže je 42 pracovníků, kteří mají mzdu pod Kč. Protože mzdu pod Kč má 21 pracovníků, zjistíme tím zároveň, že v intervalu Kč až Kč jsou mzdy = 21 pracovníků Proto do sloupce Počet pracovníků kumulativně napíšeme 42 a do sloupce Počet pracovníků absolutně napíšeme 21. Takto vyplníme celou tabulku. Dále již může laskavý čtenář postupovat sám. Legendu uzavřeme řádkem Celkem. V řádku Celkem ve sloupci Počet pracovníků absolutně sečteme pracovníky s různým počtem dětí. Výsledek musí být 60, což je počet pracovníků. Ve sloupci Počet pracovníků v % jde o známá poměrná čísla struktury. Spočítáme je jednoduše podle příkladu 9.1. V řádku Celkem ve sloupci Počet pracovníků kumulativně a Počet pracovníků kumulativně v % dáme symbol x, neboť hodnota v tomto řádku nemá smysl. Tabulka vypadá takto: Tab. 9.5: Třídění pracovníků firmy Alfa Blatná podle mzdy za červen 2012 Interval mezd Počet pracovníků dolní mez uzavřená horní mez otevřená absolutně v % kumulativně kumulativně v % ,7 4 6, , , , , , , , , , , , ,0 Celkem x x

9 Statistické třídění, intervalové rozdělení četnosti Aleš Drobník strana 9 Histogram absolutní četnosti vytvoříme sloupcovým grafem ze sloupce Počet pracovníků absolutně. Na ose x budou hodnoty z legendy tabulky 9.5, kde je dolní mez uzavřená a horní mez otevřená. Z grafu vidíme, že počet pracovníků narůstá s výší mzdy až do intervalu mezd Kč až Kč. Nejvyšší počet pracovníků má mzdu Kč až Kč s tím, že do intervalu dolní mez Kč patří a horní mez Kč nepatří. Od intervalu Kč až Kč počet pracovníků klesá. Tzn., že nejčetnější jsou střední mzdy. Intervaly nižších i vyšších mezd má již menší počet pracovníků. S tím souvisí obálka grafu, která připomíná tvarem horu nebo zvon. Jedná se o asymetrickou Gaussovu křivku. Histogram relativní četnosti vytvoříme sloupcovým grafem ze sloupce Počet pracovníků v %. Na ose x budou hodnoty z legendy tabulky 9.5, kde je dolní mez uzavřená a horní mez otevřená. Histogram rozdělení relativní četnosti pracovníků v závislosti na mzdě je v grafu 9.6. Tvar grafu s relativní četností je stejný, jako u grafu s absolutní četností. Jen místo počtů pracovníků je procentuální zastoupení pracovníků.

10 Statistické třídění, intervalové rozdělení četnosti Aleš Drobník strana 10 Graf kumulativní četnosti pracovníků v závislosti na mzdě vytvoříme sloupcovým grafem ze sloupce tabulky 9.5 Počet pracovníků kumulativně. Z grafu 9.7 vidíme, že relativní počet pracovníků, kteří mají mzdu od intervalu Kč až Kč s rozšiřujícím se intervalem narůstá nejprve rychleji, pak pomaleji k hodnotě 60, kdy mzdu Kč až Kč má všech 60 pracovníků.

11 Statistické třídění, intervalové rozdělení četnosti Aleš Drobník strana 11 Ad c) Do skupinové tabulky doplníme poměrné zastoupení pro kumulativní četnosti. Počítáme, kolik procent jsou 4 pracovníci, kteří mají mzdu od Kč do Kč, ze 60, vyjde 6,7 %, kolik procent je 21 pracovníků, kteří mají mzdu Kč do Kč, ze 60, vyjde 35 %, ostatní výpočty si provede čtenář sám a jsou v tabulce 9.5. Graf relativní kumulativní četnosti pracovníků v závislosti na mzdě vytvoříme sloupcovým grafem ze sloupce tabulky 9.5 Počet pracovníků kumulativně v %. Tvar grafu 9.8 s relativní kumulativní četností je stejný, jako u grafu s kumulativní četností. Jen místo počtů pracovníků je procentuální zastoupení pracovníků. Ad d) Uvedeme slovní popis pro první, druhý a třetí řádek tabulky. Slovní popis pro první řádek tabulky: Mzdu od 9000 Kč včetně do Kč mají 4 pracovníci z 60, což je 6,7 % pracovníků. Slovní popis pro druhý řádek tabulky: Mzdu od Kč včetně do Kč má 17 pracovníků z 60, což je 28,3 % pracovníků. Mzdu od Kč včetně do Kč má 21 pracovníků z 60, což je 35 % pracovníků.

12 Statistické třídění, intervalové rozdělení četnosti Aleš Drobník strana 12 Slovní popis pro třetí řádek tabulky: Mzdu od Kč včetně do Kč má 21 pracovníků z 60, což je 35 % pracovníků. Mzdu od Kč včetně do Kč má 42 pracovníků z 60, což je 70 % pracovníků. Úkol 9.4: a) Z tabulky 9.1 vhodné skupinové tabulky roztřídíme soubor pracovníků dle třídícího číselného znaku hrubá měsíční mzda na přiměřený počet tříd neboli intervalů mezd. Pak doplníme procento pracovníků s daným intervalem mezd. Dále vytvoříme graficky histogram rozdělení četnosti pracovníků podle intervalů mezd. Jde o tzv. intervalové rozdělení četnosti. Počet intervalů volíme pro změnu k = 8. b) Do skupinové tabulky doplníme kumulativní četnost. Tzn. počet pracovníků, kteří mají první interval mezd, první až druhý interval mezd, první až třetí interval mezd atd. Dále vytvoříme graf kumulativní četnosti pracovníků v závislosti na postupně se zvyšujícím intervalu mezd. c) Do skupinové tabulky doplníme poměrné zastoupení pro kumulativní četnosti. d) Uvedeme slovní popis pro první, druhý a třetí řádek tabulky. PŘÍKLADY V EXCELU Praktické provedení třídění v MS Excel je v příkladech: 22TrideniDleJednohoCiselnehoZnakuSpojitehoNeresene.xlsx zde je neřešený příklad. 22TrideniDleJednohoCiselnehoZnakuSpojitehoResene.xlsx zde je ten samý příklad řešený. 22TrideniDleJednohoCiselnehoZnakuSpojitehoUkol.xlsx zde je nový neřešený příklad. OPAKOVACÍ OTÁZKY 1. Jak postupujeme při třídění podle jednoho číselného znaku spojitého? 2. Jaká jsou pravidla pro stanovení intervalového rozdělení četnosti. 3. Vysvětlete pojem histogram rozdělení (absolutní) četnosti? Čeho se týká, s čím souvisí? Jak souvisí s Gaussovou křivkou? 4. Vysvětlete pojem histogram rozdělení relativní četnosti? Čeho se týká, s čím souvisí?

PŘÍKLAD NA TŘÍDĚNÍ PODLE JEDNOHO NESPOJITÉHO ČÍSELNÉHO ZNAKU

PŘÍKLAD NA TŘÍDĚNÍ PODLE JEDNOHO NESPOJITÉHO ČÍSELNÉHO ZNAKU PŘÍKLAD NA TŘÍDĚNÍ PODLE JEDNOHO NESPOJITÉHO ČÍSELNÉHO ZNAKU Pracovník, který spravuje podnikovou databázi, exportoval do tabulkového procesoru všechny pracovníky podniku Alfa Blatná s některými sledovanými

Více

PŘÍKLAD NA TŘÍDĚNÍ DLE JEDNOHO SLOVNÍHO ZNAKU

PŘÍKLAD NA TŘÍDĚNÍ DLE JEDNOHO SLOVNÍHO ZNAKU PŘÍKLAD NA TŘÍDĚNÍ DLE JEDNOHO SLOVNÍHO ZNAKU Pracovník, který spravuje podnikovou databázi, exportoval do tabulkového procesoru všechny pracovníky podniku Alfa Blatná s některými sledovanými atributy

Více

PŘÍKLAD NA TŘÍDĚNÍ PODLE JEDNOHO SPOJITÉHO ČÍSELNÉHO ZNAKU. INTERVALOVÉ ROZDĚLENÍ ČETNOSTI

PŘÍKLAD NA TŘÍDĚNÍ PODLE JEDNOHO SPOJITÉHO ČÍSELNÉHO ZNAKU. INTERVALOVÉ ROZDĚLENÍ ČETNOSTI PŘÍKLAD NA TŘÍDĚNÍ PODLE JEDNOHO SPOJITÉHO ČÍSELNÉHO ZNAKU. INTERVALOVÉ ROZDĚLENÍ ČETNOSTI Pracovník, který spravuje podnikovou databázi, exportoval do tabulkového procesoru všechny pracovníky podniku

Více

9. STATISTICKÉ TŘÍDĚNÍ

9. STATISTICKÉ TŘÍDĚNÍ Statistické třídění. Třídění dle jednoho znaku Aleš Drobník strana 1 9. STATISTICKÉ TŘÍDĚNÍ 9.1 CO JE TO STATISTICKÉ TŘÍDĚNÍ Již jsme si říkali, že v 19. a 20. století se stala statistika vědou, která

Více

8.1.2 TABULKA SKUPINOVÁ

8.1.2 TABULKA SKUPINOVÁ Prezentace dat. Tabulky skupinové a kombinační Aleš Drobník strana 1 8.1.2 TABULKA SKUPINOVÁ Užití: Hlubší analýza konkrétnější oblasti. Například ve vlastní části odborné práce, žákovského projektu apod.

Více

Prezentace dat. Slovní popis a tabulky prosté Aleš Drobník strana 1

Prezentace dat. Slovní popis a tabulky prosté Aleš Drobník strana 1 Prezentace dat. Slovní popis a tabulky prosté Aleš Drobník strana 1 8. PREZENTACE DAT Jakými prostředky sdělujeme informace, údaje, účetní a statistické charakteristiky? Používáme tyto prostředky sdělování

Více

Prezentace dat. Grafy Aleš Drobník strana 1

Prezentace dat. Grafy Aleš Drobník strana 1 Prezentace dat. Grafy Aleš Drobník strana 1 8.3 GRAFY Užití: Grafy vkládáme do textu (slovního popisu) vždy, je-li to vhodné. Grafy zvýší přehlednost sdělovaných informací. Výhoda grafu vůči tabulce či

Více

9.5 TŘÍDĚNÍ PODLE DVOU SLOVNÍCH ZNAKŮ

9.5 TŘÍDĚNÍ PODLE DVOU SLOVNÍCH ZNAKŮ Statistické třídění podle dvou slovních znaků Aleš Drobník strana 1 9.5 TŘÍDĚNÍ PODLE DVOU SLOVNÍCH ZNAKŮ Problematiku třídění podle dvou slovních znaků si vysvětlíme na následujícím příkladu. Příklad

Více

PŘÍKLAD NA VÁŽENÝ ARITMETICKÝ PRŮMĚR Z INTERVALOVÉHO ROZDĚLENÍ ČETNOSTI

PŘÍKLAD NA VÁŽENÝ ARITMETICKÝ PRŮMĚR Z INTERVALOVÉHO ROZDĚLENÍ ČETNOSTI PŘÍKLAD NA VÁŽENÝ ARITMETICKÝ PRŮMĚR Z INTERVALOVÉHO ROZDĚLENÍ ČETNOSTI Přílad 0.6 Pracoví, terý spravuje podovou databáz, eportoval do tabulového procesoru všechy pracovíy podu Alfa Blatá s ěterým sledovaým

Více

5.2.4 POMĚRNÁ ČÍSLA SPLNĚNÍ PLÁNU

5.2.4 POMĚRNÁ ČÍSLA SPLNĚNÍ PLÁNU Druhy poměrných čísel Aleš Drobník strana 1 5.2.4 POMĚRNÁ ČÍSLA SPLNĚNÍ PLÁNU Poměrná čísla neboli poměrní ukazatelé : Získáme srovnáním (podílem) 2 veličin stejnorodých. Srovnávaná veličina (čitatel)

Více

STATISTICA Téma 1. Práce s datovým souborem

STATISTICA Téma 1. Práce s datovým souborem STATISTICA Téma 1. Práce s datovým souborem 1) Otevření datového souboru Program Statistika.cz otevíráme z ikony Start, nabídka Programy, podnabídka Statistika Cz 6. Ze dvou nabídnutých možností vybereme

Více

PREZENTACE DAT: SLOŽITĚJŠÍ GRAFY

PREZENTACE DAT: SLOŽITĚJŠÍ GRAFY PREZENTACE DAT: SLOŽITĚJŠÍ GRAFY V kombinační tabulce 8.7 jsme roztřídili soubor pracovníků dle znaku pracovní kategorie na 4 třídy dělníci, techničtí pracovníci, hospodářští pracovníci, provozní a obsluhující

Více

Pojem a úkoly statistiky

Pojem a úkoly statistiky Katedra ekonometrie FVL UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Pojem a úkoly statistiky Statistika je věda, která se zabývá získáváním, zpracováním a analýzou dat pro potřeby

Více

Střední hodnoty. Aritmetický průměr prostý Aleš Drobník strana 1

Střední hodnoty. Aritmetický průměr prostý Aleš Drobník strana 1 Středí hodoty. Artmetcký průměr prostý Aleš Drobík straa 0. STŘEDNÍ HODNOTY Př statstckém zjšťováí často zpracováváme statstcké soubory s velkým možstvím statstckých jedotek. Např. soubor pracovíků orgazace,

Více

Protokol č. 1. Tloušťková struktura. Zadání:

Protokol č. 1. Tloušťková struktura. Zadání: Protokol č. 1 Tloušťková struktura Zadání: Pro zadané výčetní tloušťky (v cm) vypočítejte statistické charakteristiky a slovně interpretujte základní statistické vlastnosti tohoto souboru tloušťek. Dále

Více

Srovnání údajů. Poměrná čísla Aleš Drobník strana 1

Srovnání údajů. Poměrná čísla Aleš Drobník strana 1 Srovnání údajů. Poměrná čísla Aleš Drobník strana 4. SROVNÁVÁNÍ ÚDAJŮ Statistika mj. zpracovává údaje (viz definice statistiky). Důležitou součástí zpracování údajů je srovnávání údajů (statistických znaků

Více

veličin, deskriptivní statistika Ing. Michael Rost, Ph.D.

veličin, deskriptivní statistika Ing. Michael Rost, Ph.D. Vybraná rozdělení spojitých náhodných veličin, deskriptivní statistika Ing. Michael Rost, Ph.D. Třídění Základním zpracováním dat je jejich třídění. Jde o uspořádání získaných dat, kde volba třídícího

Více

Kombinatorika, pravděpodobnost a statistika, Posloupnosti a řady

Kombinatorika, pravděpodobnost a statistika, Posloupnosti a řady Předmět: Náplň: Třída: Počet hodin: Pomůcky: Matematika Kombinatorika, pravděpodobnost a statistika, Posloupnosti a řady 4. ročník 3 hodiny týdně PC a dataprojektor Kombinatorika Řeší jednoduché úlohy

Více

Parametrické programování

Parametrické programování Parametrické programování Příklad 1 Parametrické pravé strany Firma vyrábí tři výrobky. K jejich výrobě potřebuje jednak surovinu a jednak stroje, na kterých dochází ke zpracování. Na první výrobek jsou

Více

10.2 VÁŽENÝ ARITMETICKÝ PRŮMĚR

10.2 VÁŽENÝ ARITMETICKÝ PRŮMĚR Středí hodoty Artmetcý průměr vážeý ze tříděí Aleš Drobí straa 0 VÁŽENÝ ARITMETICKÝ PRŮMĚR Výzam a užtí vážeého artmetcého průměru uážeme a ásledujících příladech Přílad 0 Ve frmě Gama Blatá máme soubor

Více

Třídění statistických dat

Třídění statistických dat 2.1 Třídění statistických dat Všechny muže ve městě rozdělíme na 2 skupiny: A) muži, kteří chodí k holiči B) muži, kteří se holí sami Do které skupiny zařadíme holiče? prof. Raymond M. Smullyan, Dr. Math.

Více

Statistická prezentace je umění vytvořit dobrou tabulku nebo graf, které přitáhnou oko k tomu, co je zajímavé. Mgr. Ing.

Statistická prezentace je umění vytvořit dobrou tabulku nebo graf, které přitáhnou oko k tomu, co je zajímavé. Mgr. Ing. 1.2 Prezentace statistických dat Statistická prezentace je umění vytvořit dobrou tabulku nebo graf, které přitáhnou oko k tomu, co je zajímavé. Mgr. Ing. Jan Spousta Co se dozvíte Statistické ukazatele.

Více

Protokol č. 7. Jednotné objemové křivky. Je zadána výměra porostu, výška dřevin a počty stromů v jednotlivých tloušťkových stupních.

Protokol č. 7. Jednotné objemové křivky. Je zadána výměra porostu, výška dřevin a počty stromů v jednotlivých tloušťkových stupních. Protokol č. 7 Jednotné objemové křivky Zadání: Pro zadané dřeviny stanovte zásobu pomocí JOK tabulek. Součástí protokolu bude tabulka obsahující střední Weisseho tloušťku, Weisseho procento, číslo JOK,

Více

Školení obsluhy PC stručný manuál obsluhy pro používání PC

Školení obsluhy PC stručný manuál obsluhy pro používání PC Školení obsluhy PC stručný manuál obsluhy pro používání PC tabulkový procesor MS EXCEL Zpracoval: mgr. Ježek Vl. Str. 1 MS EXCEL - základy tabulkového procesoru Tyto programy jsou specielně navrženy na

Více

2. popis prostředí, nastavení pracovní plochy

2. popis prostředí, nastavení pracovní plochy (c) mise 2013 1 2 1. úvod Tabulkový procesor program pro organizaci a správu dat pomocí tabulek určen pro zpracování dat převážně číselného charakteru Využití tabulkových procesorů přehledná prezentace

Více

PREZENTACE DAT: JEDNODUCHÉ GRAFY

PREZENTACE DAT: JEDNODUCHÉ GRAFY PREZENTACE DAT: JEDNODUCHÉ GRAFY V tabulce 8.1 uvádíme přehled některých ukazatelů fiktivní firmy Alfa Blatná. Tabulka 8.1 je prostá, je v ní navíc časové srovnání hodnot v roce 2011 a v roce 2012. a)

Více

2. Numerické výpočty. 1. Numerická derivace funkce

2. Numerické výpočty. 1. Numerická derivace funkce 2. Numerické výpočty Excel je poměrně pohodlný nástroj na provádění různých numerických výpočtů. V příkladu si ukážeme možnosti výpočtu a zobrazení diferenciálních charakteristik analytické funkce, přičemž

Více

Analýza dat z dotazníkových šetření. Zdrojová data: dotazník http://www.vyplnto.cz/realizovane-pruzkumy/konzumace-ryb-a-rybich-vyrob/

Analýza dat z dotazníkových šetření. Zdrojová data: dotazník http://www.vyplnto.cz/realizovane-pruzkumy/konzumace-ryb-a-rybich-vyrob/ Analýza dat z dotazníkových šetření Cvičení 3. - Jednorozměrné třídění Zdrojová data: dotazník http://www.vyplnto.cz/realizovane-pruzkumy/konzumace-ryb-a-rybich-vyrob/ - Seznamte se s dotazníkem a strukturou

Více

5.3 SHRNUTÍ LÁTKY NA POMĚRNÁ ČÍSLA, SOUVISLÝ PŘÍKLAD

5.3 SHRNUTÍ LÁTKY NA POMĚRNÁ ČÍSLA, SOUVISLÝ PŘÍKLAD Souvislý příklad na poměrná čísla Aleš Drobník strana 1 5.3 SHRNUTÍ LÁTKY NA POMĚRNÁ ČÍSLA, SOUVISLÝ PŘÍKLAD Poměrná čísla se hojně užívají v ekonomické praxi. Všechny druhy poměrných čísel si shrneme

Více

Analýza dat s využitím MS Excel

Analýza dat s využitím MS Excel Analýza dat s využitím MS Excel Seminář aplikované statistiky Martina Litschmannová Několik fíglů na úvod Absolutní vs. relativní adresování změna pomocí F4 =$H$20 =H$20 =$H20 =H20 Posun po souvislé oblasti

Více

SAMOSTATNÁ STUDENTSKÁ PRÁCE ZE STATISTIKY

SAMOSTATNÁ STUDENTSKÁ PRÁCE ZE STATISTIKY SAMOSTATÁ STUDETSKÁ PRÁCE ZE STATISTIKY Váha studentů Kučerová Eliška, Pazdeříková Jana septima červen 005 Zadání: My dvě studentky jsme si vylosovaly zjistit statistickým šetřením v celém ročníku septim

Více

MS EXCEL 2010 ÚLOHY. Vytvořte tabulku podle obrázku, která bude provádět základní matematické operace se dvěma zadanými čísly a a b.

MS EXCEL 2010 ÚLOHY. Vytvořte tabulku podle obrázku, která bude provádět základní matematické operace se dvěma zadanými čísly a a b. MS EXCEL 2010 ÚLOHY ÚLOHA Č.1 Vytvořte tabulku podle obrázku, která bude provádět základní matematické operace se dvěma zadanými čísly a a b. Do buněk B2 a B3 očekávám zadání hodnot. Buňky B6:B13 a D6:D13

Více

Semestrální projekt. do předmětu Statistika. Vypracoval: Adam Mlejnek 2-36. Oponenti: Patrik Novotný 2-36. Jakub Nováček 2-36. Click here to buy 2

Semestrální projekt. do předmětu Statistika. Vypracoval: Adam Mlejnek 2-36. Oponenti: Patrik Novotný 2-36. Jakub Nováček 2-36. Click here to buy 2 Semestrální projekt do předmětu Statistika Vypracoval: Adam Mlejnek 2-36 Oponenti: Patrik Novotný 2-36 Jakub Nováček 2-36 Úvod Pro vypracování projektu do předmětu statistika jsem si zvolil průzkum kvality

Více

Praktická statistika. Petr Ponížil Eva Kutálková

Praktická statistika. Petr Ponížil Eva Kutálková Praktická statistika Petr Ponížil Eva Kutálková Zápis výsledků měření Předpokládejme, že známe hodnotu napětí U = 238,9 V i její chybu 3,3 V. Hodnotu veličiny zapíšeme na tolik míst, aby až poslední bylo

Více

MODELY HOSPODÁŘSKÝCH LESŮ IV. Postup výpočtu etátu

MODELY HOSPODÁŘSKÝCH LESŮ IV. Postup výpočtu etátu MODELY HOSPODÁŘSKÝCH LESŮ IV. Postup výpočtu etátu Obecný postup výpočtu etátu A) TĚŽBA MÝTNÍ Stanovení těžebních procent pro zadaný hospodářský soubor (dále jen HS) podle parametrů u - obmýtí a o - obnovní

Více

Pracovní list č. 3 Charakteristiky variability

Pracovní list č. 3 Charakteristiky variability 1. Při zjišťování počtu nezletilých dětí ve třiceti vybraných rodinách byly získány tyto výsledky: 1, 1, 0, 2, 3, 4, 2, 2, 3, 0, 1, 2, 2, 4, 3, 3, 0, 1, 1, 1, 2, 2, 0, 2, 1, 1, 2, 3, 3, 2. Uspořádejte

Více

Zpracování náhodného výběru. Ing. Michal Dorda, Ph.D.

Zpracování náhodného výběru. Ing. Michal Dorda, Ph.D. Zpracování náhodného výběru popisná statistika Ing. Michal Dorda, Ph.D. Základní pojmy Úkolem statistiky je na základě vlastností výběrového souboru usuzovat o vlastnostech celé populace. Populace(základní

Více

Výsledný graf ukazuje následující obrázek.

Výsledný graf ukazuje následující obrázek. Úvod do problematiky GRAFY - SPOJNICOVÝ GRAF A XY A. Spojnicový graf Spojnicový graf používáme především v případě, kdy chceme graficky znázornit trend některé veličiny ve zvoleném časovém intervalu. V

Více

2.5 STATISTISKÉ ZJIŠŤOVÁNÍ, ZÁKLADNÍ STATISTICKÉ POJMY

2.5 STATISTISKÉ ZJIŠŤOVÁNÍ, ZÁKLADNÍ STATISTICKÉ POJMY Základní statistické pojmy Aleš Drobník strana 1 2.5 STATISTISKÉ ZJIŠŤOVÁNÍ, ZÁKLADNÍ STATISTICKÉ POJMY Organizace (zpravodajská jednotka) provádějí různé druhy statistického zjišťování z důvodu: vlastní

Více

Gymnázium Vysoké Mýto nám. Vaňorného 163, 566 01 Vysoké Mýto

Gymnázium Vysoké Mýto nám. Vaňorného 163, 566 01 Vysoké Mýto Gymnázium Vysoké Mýto nám. Vaňorného 163, 566 01 Vysoké Mýto Registrační číslo projektu Šablona Autor Název materiálu / Druh CZ.1.07/1.5.00/34.0951 III/2 INOVACE A ZKVALITNĚNÍ VÝUKY PROSTŘEDNICTVÍM ICT

Více

pracovní list studenta Kombinatorika, pravděpodobnost, základy statistiky Jak jsou vysocí? Mirek Kubera

pracovní list studenta Kombinatorika, pravděpodobnost, základy statistiky Jak jsou vysocí? Mirek Kubera Výstup RVP: Klíčová slova: pracovní list studenta Kombinatorika, pravděpodobnost, základy statistiky Mirek Kubera žák diskutuje a kriticky zhodnotí statistické informace a daná statistická sdělení, volí

Více

Softwarový projekt Vyhodnocovač a zobrazovač meteorologických dat

Softwarový projekt Vyhodnocovač a zobrazovač meteorologických dat Softwarový projekt Vyhodnocovač a zobrazovač meteorologických dat Stručný popis: vyhodnocovač a zobrazovač environmentálních (převážně meteorologických) dat s webovým uživatelským rozhraním. Úvod Cílem

Více

JčU - Cvičení z matematiky pro zemědělské obory (doc. RNDr. Nýdl, CSc & spol.) Minitest MT4

JčU - Cvičení z matematiky pro zemědělské obory (doc. RNDr. Nýdl, CSc & spol.) Minitest MT4 ŘEŠENÍ MINITESTŮ JčU - Cvičení z matematiky pro zemědělské obory (doc. RNDr. Nýdl, CSc & spol.) Minitest MT4. Z daných tří soustav rovnic o neznámých x, x vyberte právě všechny ty, které jsou regulární.

Více

2. Statistická terminologie a vyjadřovací prostředky. 2.1. Statistická terminologie. Statistická jednotka

2. Statistická terminologie a vyjadřovací prostředky. 2.1. Statistická terminologie. Statistická jednotka 2. Statistická terminologie a vyjadřovací prostředky 2.1. Statistická terminologie Statistická jednotka Statistická jednotka = nositel statistické informace, elementární prvek hromadného jevu. Příklady:

Více

František Hudek. červen 2012

František Hudek. červen 2012 VY_32_INOVACE_FH09 Jméno autora výukového materiálu Datum (období), ve kterém byl VM vytvořen Ročník, pro který je VM určen Vzdělávací oblast, obor, okruh, téma Anotace František Hudek červen 2012 8. ročník

Více

Základy zpracování kalkulačních tabulek

Základy zpracování kalkulačních tabulek Radek Maca Makovského 436 Nové Město na Moravě 592 31 tel. 0776 / 274 152 e-mail: rama@inforama.cz http://www.inforama.cz Základy zpracování kalkulačních tabulek Mgr. Radek Maca Excel I 1 slide ZÁKLADNÍ

Více

Registrační číslo projektu: CZ.1.07/1.5.00/34.0185. Název projektu: Moderní škola 21. století. Zařazení materiálu: Ověření materiálu ve výuce:

Registrační číslo projektu: CZ.1.07/1.5.00/34.0185. Název projektu: Moderní škola 21. století. Zařazení materiálu: Ověření materiálu ve výuce: STŘEDNÍ ODBORNÁ ŠKOLA A STŘEDNÍ ODBORNÉ UČILIŠTĚ NERATOVICE Školní 664, 277 11 Neratovice, tel.: 315 682 314, IČO: 683 834 95, IZO: 110 450 639 Ředitelství školy: Spojovací 632, 277 11 Neratovice tel.:

Více

MICROSOFT EXCEL - ÚKOLY

MICROSOFT EXCEL - ÚKOLY MICROSOFT EXCEL - ÚKOLY Mgr. Krejčí Jan Základní škola Jaroslava Pešaty, Duchcov 21. září 2012 Mgr. Krejčí Jan (ZSJP) MICROSOFT EXCEL - ÚKOLY 21. září 2012 1 / 7 Microsoft Excel - Úkoly Anotace V souboru

Více

INFORMATIKA. Libovolná učebnice k MS OFFICE 200x (samostatné učebnice k textovému procesoru MS Word 200x, tabulkovému procesoru MS Excel 200x).

INFORMATIKA. Libovolná učebnice k MS OFFICE 200x (samostatné učebnice k textovému procesoru MS Word 200x, tabulkovému procesoru MS Excel 200x). Cíl předmětu: Cílem předmětu je prohloubit znalosti studentů ze základních aplikačních programů. Jedná se především o pokročilejší nástroje z aplikací MS Word a MS Excel. Jednotlivé semináře se zaměřují

Více

Požadavky k opravným zkouškám z matematiky školní rok 2013-2014

Požadavky k opravným zkouškám z matematiky školní rok 2013-2014 Požadavky k opravným zkouškám z matematiky školní rok 2013-2014 1. ročník (první pololetí, druhé pololetí) 1) Množiny. Číselné obory N, Z, Q, I, R. 2) Absolutní hodnota reálného čísla, intervaly. 3) Procenta,

Více

Stěžejní funkce MS Excel 2007/2010, jejich ovládání a možnosti využití

Stěžejní funkce MS Excel 2007/2010, jejich ovládání a možnosti využití Stěžejní funkce MS Excel 2007/2010, jejich ovládání a možnosti využití Proč Excel? Práce s Excelem obnáší množství operací s tabulkami a jejich obsahem. Jejich jednotlivé buňky jsou uspořádány do sloupců

Více

Metodologie pro Informační studia a knihovnictví 2

Metodologie pro Informační studia a knihovnictví 2 Metodologie pro Informační studia a knihovnictví 2 Modul 5: Popis nekategorizovaných dat Co se dozvíte v tomto modulu? Kdy používat modus, průměr a medián. Co je to směrodatná odchylka. Jak popsat distribuci

Více

Normální (Gaussovo) rozdělení

Normální (Gaussovo) rozdělení Normální (Gaussovo) rozdělení Normální (Gaussovo) rozdělení popisuje vlastnosti náhodné spojité veličiny, která vzniká složením různých náhodných vlivů, které jsou navzájem nezávislé, kterých je velký

Více

Tematická oblast: Tabulkové procesory (VY_32_INOVACE_10_3_AP) Anotace: Využití ve výuce: Autor: Ing. Jan Roubíček Vytvořeno: únor až květen 2013

Tematická oblast: Tabulkové procesory (VY_32_INOVACE_10_3_AP) Anotace: Využití ve výuce: Autor: Ing. Jan Roubíček Vytvořeno: únor až květen 2013 Tematická oblast: Tabulkové procesory (VY_32_INOVACE_10_3_AP) Autor: Ing. Jan Roubíček Vytvořeno: únor až květen 2013 Anotace: Digitální učební materiály slouží k seznámení s možnostmi a s prací v tabulkových

Více

Míra přerozdělování příjmů v ČR

Míra přerozdělování příjmů v ČR Míra přerozdělování příjmů v ČR Luboš Marek, Michal Vrabec Anotace V tomto článku počítají autoři hodnoty Giniho indexu v České republice. Tento index je spočítán nejprve za celou ČR, poté pro skupinu

Více

KAPITOLA 11 - POKROČILÁ PRÁCE S TABULKOVÝM PROCESOREM

KAPITOLA 11 - POKROČILÁ PRÁCE S TABULKOVÝM PROCESOREM KAPITOLA 11 - POKROČILÁ PRÁCE S TABULKOVÝM PROCESOREM FILTROVÁNÍ DAT Po filtrování dat jsou zobrazeny pouze řádky, které splňují zadaná kritéria, a řádky, které nechcete zobrazit, jsou skryty. Filtrovat

Více

Matematické modelování dopravního proudu

Matematické modelování dopravního proudu Matematické modelování dopravního proudu Ondřej Lanč, Alena Girglová, Kateřina Papežová, Lucie Obšilová Gymnázium Otokara Březiny a SOŠ Telč lancondrej@centrum.cz Abstrakt: Cílem projektu bylo seznámení

Více

Statistika pro geografy. Rozd lení etností DEPARTMENT OF GEOGRAPHY

Statistika pro geografy. Rozd lení etností DEPARTMENT OF GEOGRAPHY Statistika pro geografy Rozd lení etností DEPARTMENT OF GEOGRAPHY Faculty of Science Palacký University Olomouc t. 17. listopadu 1192/12, 771 46 Olomouc Pojmy etnost = po et prvk se stejnou hodnotou statistického

Více

3. VELIČINY UŽÍVANÉ VE STATISTICE A EKONOMICE

3. VELIČINY UŽÍVANÉ VE STATISTICE A EKONOMICE Veličiny užívané ve statistice Aleš Drobník strana 1 3. VELIČINY UŽÍVANÉ VE STATISTICE A EKONOMICE Lze zjednodušeně říci: Statistika = matematika užitá v ekonomice (aj. vědních oborech). Statistika jako

Více

Řešení úloh z TSP MU SADY S 1

Řešení úloh z TSP MU SADY S 1 Řešení úloh z TSP MU SADY S 1 projekt RESENI-TSP.CZ úlohy jsou vybírány z dříve použitých TSP MU autoři řešení jsou zkušení lektoři vzdělávací agentury Kurzy-Fido.cz Masarykova univerzita nabízí uchazečům

Více

Pravděpodobnost v závislosti na proměnné x je zde modelován pomocí logistického modelu. exp x. x x x. log 1

Pravděpodobnost v závislosti na proměnné x je zde modelován pomocí logistického modelu. exp x. x x x. log 1 Logistická regrese Menu: QCExpert Regrese Logistická Modul Logistická regrese umožňuje analýzu dat, kdy odezva je binární, nebo frekvenční veličina vyjádřená hodnotami 0 nebo 1, případně poměry v intervalu

Více

DEFINICE A PŘÍKLAD NA MEDIÁN

DEFINICE A PŘÍKLAD NA MEDIÁN DEFINICE A PŘÍKLAD NA MEDIÁN Definice: MEDIÁNU Medián je hodnota prostředního znaku souboru, jsou-li znaky uspořádané dle velikosti. Značí se vlnkou: X ~ Nezávisí na všech hodnotách znaku. Příklad 1: Vlastním

Více

Cvičení ze statistiky. Filip Děchtěrenko ZS 2012/2013

Cvičení ze statistiky. Filip Děchtěrenko ZS 2012/2013 Cvičení ze statistiky Filip Děchtěrenko ZS 2012/2013 Cvičení ze statistiky Pondělí 16:40, C328 http://www.ms.mff.cuni.cz/~dechf7am Praktické zaměření Proč potřebuji statistiku, když chci dělat (doplň)?

Více

Excel Matematické operátory. Excel předdefinované funkce

Excel Matematické operátory. Excel předdefinované funkce Excel Matematické operátory a) Sčítání + příklad =A1+A2 sečte obsah buněk A1 a A2 b) Odčítání - příklad =A1-A2 odečte hodnotu buňky A2 od hodnoty buňky A1 c) Násobení * příklad =A1*A2 vynásobí obsah buněk

Více

TVOŘÍME MAPU V GIS. manuál

TVOŘÍME MAPU V GIS. manuál TVOŘÍME MAPU V GIS manuál 1 Quantum GIS Každý GIS pracuje s tzv. vrstvami (vrstva měst, řek, krajů, atd.), které pak zobrazuje v mapovém poli. Pro práci s jednotlivými vrstvami slouží panel nástrojů, kde

Více

1/2. pro začátečníky. Ing. Zbyněk Sušil, MSc.

1/2. pro začátečníky. Ing. Zbyněk Sušil, MSc. 1/2 pro začátečníky Ing. Zbyněk Sušil, MSc. Průběh lekce Základní informace Seznamy Formátování buněk Operace s řádky a sloupci Příprava tisku Matematické operace Vzorce Absolutní a relativní adresování

Více

Obsah. Statistika Zpracování informací ze statistického šetření Charakteristiky úrovně, variability a koncentrace kvantitativního znaku

Obsah. Statistika Zpracování informací ze statistického šetření Charakteristiky úrovně, variability a koncentrace kvantitativního znaku Obsah Statistika Zpracování informací ze statistického šetření Charakteristiky úrovně, variability a koncentrace kvantitativního znaku Roman Biskup (zapálený) statistik ve výslužbě, aktuálně analytik v

Více

2.7.6 Rovnice vyšších řádů

2.7.6 Rovnice vyšších řádů 6 Rovnice vyšších řádů Předpoklady: 50, 05 Pedagogická poznámka: Pokud mám jenom trochu čas probírám látku této hodiny ve dvou vyučovacích hodinách V první probíráme separaci kořenů, v druhé pak snížení

Více

KAPITOLA 9 - POKROČILÁ PRÁCE S TABULKOVÝM PROCESOREM

KAPITOLA 9 - POKROČILÁ PRÁCE S TABULKOVÝM PROCESOREM KAPITOLA 9 - POKROČILÁ PRÁCE S TABULKOVÝM PROCESOREM CÍLE KAPITOLY Využívat pokročilé možnosti formátování, jako je podmíněné formátování, používat vlastní formát čísel a umět pracovat s listy. Používat

Více

Přílohy. Příloha 1. Obr. P1.1 Zadání úlohy v MS Excel

Přílohy. Příloha 1. Obr. P1.1 Zadání úlohy v MS Excel Přílohy Příloha 1 Řešení úlohy lineárního programování v MS Excel V této příloze si ukážeme, jak lze řešit úlohy lineárního programování pomocí tabulkového procesoru MS Excel 2007. Výpočet budeme demonstrovat

Více

Inferenční statistika - úvod. z-skóry normální rozdělení pravděpodobnost rozdělení výběrových průměrů

Inferenční statistika - úvod. z-skóry normální rozdělení pravděpodobnost rozdělení výběrových průměrů Inferenční statistika - úvod z-skóry normální rozdělení pravděpodobnost rozdělení výběrových průměrů Pravděpodobnost postupy induktivní statistiky vycházejí z teorie pravděpodobnosti pravděpodobnost, že

Více

Induktivní statistika. z-skóry pravděpodobnost

Induktivní statistika. z-skóry pravděpodobnost Induktivní statistika z-skóry pravděpodobnost normální rozdělení Z-skóry umožňují najít a popsat pozici každé hodnoty v rámci rozdělení hodnot a také srovnávání hodnot pocházejících z měření na rozdílných

Více

fakulty MENDELU v Brně (LDF) s ohledem na disciplíny společného základu http://akademie.ldf.mendelu.cz/cz (reg. č. CZ.1.07/2.2.00/28.

fakulty MENDELU v Brně (LDF) s ohledem na disciplíny společného základu http://akademie.ldf.mendelu.cz/cz (reg. č. CZ.1.07/2.2.00/28. Základy lineárního programování Vyšší matematika, Inženýrská matematika LDF MENDELU Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem

Více

Metodologie pro Informační studia a knihovnictví 2

Metodologie pro Informační studia a knihovnictví 2 Metodologie pro Informační studia a knihovnictví 2 Modul 7: Třídění druhého stupně. Kontingenční tabulky Co se dozvíte v tomto modulu? Co je třídění druhého stupně Jak vytvořit a interpretovat kontingenční

Více

Vzdělávání v egoncentru ORP Louny

Vzdělávání v egoncentru ORP Louny Zpracováno v rámci projektu č. CZ.1.04/4.1.00/40.00067 Vzdělávání v egoncentru ORP Louny Město Louny Obsah 1. Databáze... 4 2. Třídění pomocí filtrů... 5 3. Ukotvení a uvolnění příček... 6 3.1 Ukotvení

Více

Postup: Nejprve musíme vyplnit tabulku. Pak bude vypadat takto:

Postup: Nejprve musíme vyplnit tabulku. Pak bude vypadat takto: Úkol: Jednoduchá tabulka v Excelu Obrázky jsou vytvořené v Excelu verze 2003 CZ. Postupy jsou platné pro všechny běžně dostupné české verze Excelu s výjimkou verze roku 2007. Postup: Nejprve musíme vyplnit

Více

Popisná statistika kvantitativní veličiny

Popisná statistika kvantitativní veličiny StatSoft Popisná statistika kvantitativní veličiny Protože nám surová data obvykle žádnou smysluplnou informaci neposkytnou, je žádoucí vyjádřit tyto ve zhuštěnější formě. V předchozím dílu jsme začali

Více

Informační technologie a statistika 1

Informační technologie a statistika 1 Informační technologie a statistika 1 přednášející: konzul. hodiny: e-mail: Martin Schindler KAP, tel. 48 535 2836, budova G po dohodě martin.schindler@tul.cz naposledy upraveno: 21. září 2015, 1/33 Požadavek

Více

Rozšířené výstupy Informačního systému o průměrném výdělku

Rozšířené výstupy Informačního systému o průměrném výdělku Rozšířené výstupy Informačního systému o průměrném výdělku A) Výstupy pro odbor 65 - odbor analýz a statistik Výsledková část ISPV-ČR za 1. pololetí a rok 2014 a 1. pololetí a rok 2015 Hrubý měsíční mzda/plat

Více

KONTINGENČNÍ TABULKY CO TO JE

KONTINGENČNÍ TABULKY CO TO JE KONTINGENČNÍ TABULKY CO TO JE Název školy Obchodní akademie, Vyšší odborná škola a Jazyková škola s právem státní jazykové zkoušky Uherské Hradiště Název DUMu Kontingenční tabulky - co to je Autor Mgr.

Více

Obr. P1.1 Zadání úlohy v MS Excel

Obr. P1.1 Zadání úlohy v MS Excel Přílohy Příloha 1 Řešení úlohy lineárního programování v MS Excel V této příloze si ukážeme, jak lze řešit úlohy lineárního programování pomocí tabulkového procesoru MS Excel. Výpočet budeme demonstrovat

Více

Excel tabulkový procesor

Excel tabulkový procesor Pozice aktivní buňky Excel tabulkový procesor Označená aktivní buňka Řádek vzorců zobrazuje úplný a skutečný obsah buňky Typ buňky řetězec, číslo, vzorec, datum Oprava obsahu buňky F2 nebo v řádku vzorců,

Více

LDF MENDELU. Simona Fišnarová (MENDELU) Základy lineárního programování VMAT, IMT 1 / 25

LDF MENDELU. Simona Fišnarová (MENDELU) Základy lineárního programování VMAT, IMT 1 / 25 Základy lineárního programování Vyšší matematika, Inženýrská matematika LDF MENDELU Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem

Více

Seznam funkcí pro kurz EXCEL I. Jaroslav Nedoma

Seznam funkcí pro kurz EXCEL I. Jaroslav Nedoma Seznam funkcí pro kurz EXCEL I Jaroslav Nedoma 2010 Obsah ÚVOD... 3 SUMA... 4 PRŮMĚR... 6 MIN... 8 MAX... 10 POČET... 12 POČET2... 14 ZAOKROUHLIT... 16 COUNTIF... 18 SVYHLEDAT... 22 2 ÚVOD Autor zpracoval

Více

ODKAZY. Autor: Mgr. Dana Kaprálová. Datum (období) tvorby: září, říjen 2013. Ročník: sedmý. Vzdělávací oblast: Informatika a výpočetní technika

ODKAZY. Autor: Mgr. Dana Kaprálová. Datum (období) tvorby: září, říjen 2013. Ročník: sedmý. Vzdělávací oblast: Informatika a výpočetní technika ODKAZY Autor: Mgr. Dana Kaprálová Datum (období) tvorby: září, říjen 2013 Ročník: sedmý Vzdělávací oblast: Informatika a výpočetní technika 1 Anotace: Žáci se seznámí se základní obsluhou tabulkového procesoru,

Více

PÁS KARET. Autor: Mgr. Dana Kaprálová. Datum (období) tvorby: září, říjen 2013. Ročník: sedmý. Vzdělávací oblast: Informatika a výpočetní technika

PÁS KARET. Autor: Mgr. Dana Kaprálová. Datum (období) tvorby: září, říjen 2013. Ročník: sedmý. Vzdělávací oblast: Informatika a výpočetní technika Autor: Mgr. Dana Kaprálová PÁS KARET Datum (období) tvorby: září, říjen 2013 Ročník: sedmý Vzdělávací oblast: Informatika a výpočetní technika 1 Anotace: Žáci se seznámí se základní obsluhou tabulkového

Více

Základní vzorce a funkce v tabulkovém procesoru

Základní vzorce a funkce v tabulkovém procesoru Základní vzorce a funkce v tabulkovém procesoru Na tabulkovém programu je asi nejzajímavější práce se vzorci a funkcemi. Když jednou nastavíte, jak se mají dané údaje zpracovávat (některé buňky sečíst,

Více

e-mail: RadkaZahradnikova@seznam.cz 1. července 2010

e-mail: RadkaZahradnikova@seznam.cz 1. července 2010 Optimální výrobní program Radka Zahradníková e-mail: RadkaZahradnikova@seznam.cz 1. července 2010 Obsah 1 Lineární programování 2 Simplexová metoda 3 Grafická metoda 4 Optimální výrobní program Řešení

Více

Testování statistických hypotéz. Ing. Michal Dorda, Ph.D.

Testování statistických hypotéz. Ing. Michal Dorda, Ph.D. Testování statistických hypotéz Ing. Michal Dorda, Ph.D. Testování normality Př. : Při simulaci provozu na křižovatce byla získána data o mezerách mezi přijíždějícími vozidly v [s]. Otestujte na hladině

Více

marek.pomp@vsb.cz http://homel.vsb.cz/~pom68

marek.pomp@vsb.cz http://homel.vsb.cz/~pom68 Statistika B (151-0303) Marek Pomp ZS 2014 marek.pomp@vsb.cz http://homel.vsb.cz/~pom68 Cvičení: Pavlína Kuráňová & Marek Pomp Podmínky pro úspěšné ukončení zápočet 45 bodů, min. 23 bodů, dvě zápočtové

Více

Inovace bakalářského studijního oboru Aplikovaná chemie http://aplchem.upol.cz

Inovace bakalářského studijního oboru Aplikovaná chemie http://aplchem.upol.cz http://aplchem.upol.cz CZ.1.07/2.2.00/15.0247 Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky. Sedm základních nástrojů řízení kvality Doc. RNDr. Jiří Šimek,

Více

Excel tabulkový procesor

Excel tabulkový procesor Pozice aktivní buňky Excel tabulkový procesor Označená aktivní buňka Řádek vzorců zobrazuje úplný a skutečný obsah buňky Typ buňky řetězec, číslo, vzorec, datum Oprava obsahu buňky F2 nebo v řádku vzorců,

Více

Inflace. Makroekonomie I. Inflace výpočet pomocí CPI, deflátoru. Téma cvičení. Osnova k teorii inflace. Vymezení podstata inflace

Inflace. Makroekonomie I. Inflace výpočet pomocí CPI, deflátoru. Téma cvičení. Osnova k teorii inflace. Vymezení podstata inflace Téma cvičení Makroekonomie I Inflace výpočet pomocí CPI, deflátoru. Ing. Jaroslav ŠETEK, Ph.D. Katedra ekonomiky Teorie inflace Praktické příklady Příklady k opakování Inflace Osnova k teorii inflace Vymezení

Více

UNIVERZITA OBRANY Fakulta ekonomiky a managementu. Aplikace STAT1. Výsledek řešení projektu PRO HORR2011 a PRO GRAM2011 3. 11.

UNIVERZITA OBRANY Fakulta ekonomiky a managementu. Aplikace STAT1. Výsledek řešení projektu PRO HORR2011 a PRO GRAM2011 3. 11. UNIVERZITA OBRANY Fakulta ekonomiky a managementu Aplikace STAT1 Výsledek řešení projektu PRO HORR2011 a PRO GRAM2011 Jiří Neubauer, Marek Sedlačík, Oldřich Kříž 3. 11. 2012 Popis a návod k použití aplikace

Více

IES FSV UK. Domácí úkol Pravděpodobnost a statistika I. Cyklistův rok

IES FSV UK. Domácí úkol Pravděpodobnost a statistika I. Cyklistův rok IES FSV UK Domácí úkol Pravděpodobnost a statistika I Cyklistův rok Radovan Fišer rfiser@gmail.com XII.26 Úvod Jako statistický soubor jsem si vybral počet ujetých kilometrů za posledních 1 dnů v mé vlastní

Více

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE FAKULTA STAVEBNÍ, OBOR GEODÉZIE A KARTOGRAFIE KATEDRA MAPOVÁNÍ A KARTOGRAFIE

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE FAKULTA STAVEBNÍ, OBOR GEODÉZIE A KARTOGRAFIE KATEDRA MAPOVÁNÍ A KARTOGRAFIE ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE FAKULTA STAVEBNÍ, OBOR GEODÉZIE A KARTOGRAFIE KATEDRA MAPOVÁNÍ A KARTOGRAFIE název předmětu TOPOGRAFICKÁ A TEMATICKÁ KARTOGRAFIE číslo úlohy název úlohy 2 Tvorba tematických

Více

Zeměpisná olympiáda 2008

Zeměpisná olympiáda 2008 Zeměpisná olympiáda 2008 Kategorie D okresní kolo Název a adresa školy: Okres: Jméno a příjmení: Třída: Datum:.. Praktická část autorské řešení Projekt Název projektu: Nelegální migrace přes státní hranice

Více

ANALÝZA: Nesezdaná soužití v ČR podle výsledků SLDB

ANALÝZA: Nesezdaná soužití v ČR podle výsledků SLDB ANALÝZA: Nesezdaná soužití v ČR podle výsledků SLDB Informace o nesezdaném soužití (Český statistický úřad používá k označení vztahu druha a družky pojem faktické manželství) byly zjišťovány ve Sčítáních

Více

Gymnázium a Střední odborná škola, Rokycany, Mládežníků 1115

Gymnázium a Střední odborná škola, Rokycany, Mládežníků 1115 Gymnázium a Střední odborná škola, Rokycany, Mládežníků 1115 Číslo projektu: CZ.1.07/1.5.00/34.0410 Číslo šablony: 24 Název materiálu: Databázové funkce Ročník: 2. ročník Identifikace materiálu: WOH_52_24_D-funkce

Více

3. úloha - problém batohu metodami branch & bound, dynamické programování, heuristika s testem

3. úloha - problém batohu metodami branch & bound, dynamické programování, heuristika s testem ČVUT FEL X36PAA - Problémy a algoritmy 3. úloha - problém batohu metodami branch & bound, dynamické programování, heuristika s testem Jméno: Marek Handl Datum: 1. 1. 2009 Cvičení: Pondělí 9:00 Zadání Naprogramujte

Více