Princip a vlastnosti promítání. Konstruktivní geometrie a technické kresleni - L

Save this PDF as:
 WORD  PNG  TXT  JPG

Rozměr: px
Začít zobrazení ze stránky:

Download "Princip a vlastnosti promítání. Konstruktivní geometrie a technické kresleni - L"

Transkript

1

2 Vlastnosti promítání Úkolem konstruktivní geometrie je zobrazení trojrozměrných předmětů ve dvojrozměrné rovině.

3 Vlastnosti promítání Úkolem konstruktivní geometrie je zobrazení trojrozměrných předmětů ve dvojrozměrné rovině. názorné

4 Vlastnosti promítání Úkolem konstruktivní geometrie je zobrazení trojrozměrných předmětů ve dvojrozměrné rovině. názorné v rovině snadno řešitelné

5 Vlastnosti promítání Úkolem konstruktivní geometrie je zobrazení trojrozměrných předmětů ve dvojrozměrné rovině. názorné v rovině snadno řešitelné rekonstruovatelné zpět do prostoru

6 Vlastnosti promítání Druhy promítání: středové rovnoběžné

7 Vlastnosti promítání Druhy promítání: středové rovnoběžné kosé kolmé

8 Vlastnosti promítání Druhy promítání: středové rovnoběžné kosé kolmé

9 Středové promítání Středové promítání je dáno středem promítání a průmětnou. S π

10 Středové promítání Středové promítání je dáno středem promítání a průmětnou. S A π

11 Středové promítání Středové promítání je dáno středem promítání a průmětnou. π S A A

12 Středové promítání Středové promítání je dáno středem promítání a průmětnou. π S A A S... střed promítání π... průmětna SA... promítací přímka A... průmět bodu A

13 Středové promítání Středové promítání je dáno středem promítání a průmětnou. π S A A S... střed promítání π... průmětna SA... promítací přímka A... průmět bodu A Obraz průmětu se zpravidla nekreslí přímo na průmětnu, ale na jinou rovinu - nákresna.

14 Středové promítání

15 Středové promítání Věta V1: Průmětem bodu je bod. V2: Průmětem přímky, která není promítací, je přímka. Průmět promítací přímky je bod. π S a

16 Středové promítání Věta V1: Průmětem bodu je bod. V2: Průmětem přímky, která není promítací, je přímka. Průmět promítací přímky je bod. S a B A π

17 Středové promítání Věta V1: Průmětem bodu je bod. V2: Průmětem přímky, která není promítací, je přímka. Průmět promítací přímky je bod. S a B A B π A

18 Středové promítání Věta V1: Průmětem bodu je bod. V2: Průmětem přímky, která není promítací, je přímka. Průmět promítací přímky je bod. S a B A a B π P A

19 Středové promítání Věta V1: Průmětem bodu je bod. V2: Průmětem přímky, která není promítací, je přímka. Průmět promítací přímky je bod. S a B A a B π P A π a a S

20 Středové promítání Věta V3: Průmětem roviny, která není promítací, je průmětna. Průmětem promítací roviny je přímka.

21 Středové promítání Věta V3: Průmětem roviny, která není promítací, je průmětna. Průmětem promítací roviny je přímka. S ϱ π

22 Středové promítání Věta V3: Průmětem roviny, která není promítací, je průmětna. Průmětem promítací roviny je přímka. S ϱ π

23 Středové promítání Věta V3: Průmětem roviny, která není promítací, je průmětna. Průmětem promítací roviny je přímka. S ϱ π

24 Středové promítání Věta V3: Průmětem roviny, která není promítací, je průmětna. Průmětem promítací roviny je přímka. S ϱ p π p... stopa roviny ϱ

25 Středové promítání Věta V3: Průmětem roviny, která není promítací, je průmětna. Průmětem promítací roviny je přímka. S ϱ ϱ S π p π p... stopa roviny ϱ

26 Středové promítání Věta V3: Průmětem roviny, která není promítací, je průmětna. Průmětem promítací roviny je přímka. S ϱ ϱ S π p π p... stopa roviny ϱ

27 Středové promítání Věta V3: Průmětem roviny, která není promítací, je průmětna. Průmětem promítací roviny je přímka. S π ϱ p π ϱ S p... stopa roviny ϱ

28 Středové promítání Věta V3: Průmětem roviny, která není promítací, je průmětna. Průmětem promítací roviny je přímka. S ϱ p π p... stopa roviny ϱ S ϱ ϱ π ϱ... průmět roviny ϱ

29 Středové promítání Věta V4: Středový průmět zachovává incidenci. S a A a π A

30 Středové promítání

31 Středové promítání

32 Středové promítání

33 Středové promítání

34 Středové promítání

35 Vlastnosti promítání Druhy promítání: středové rovnoběžné kosé kolmé

36 Rovnoběžné promítání Rovnoběžné promítání je dáno směrem promítání a průmětnou. s π

37 Rovnoběžné promítání Rovnoběžné promítání je dáno směrem promítání a průmětnou. s A π

38 Rovnoběžné promítání Rovnoběžné promítání je dáno směrem promítání a průmětnou. π s A A

39 Rovnoběžné promítání Rovnoběžné promítání je dáno směrem promítání a průmětnou. π s A A s... směr promítání π... průmětna A... průmět bodu A AA... promítací přímka

40 Rovnoběžné promítání

41 Rovnoběžné promítání Věta Kolmé promítání splňuje všechny vlastnosti středového promítání (tj. V1-V4).

42 Rovnoběžné promítání Věta V5: Průmětem rovnoběžek, které nejsou promítací, jsou rovnoběžky. s a b π a b

43 Rovnoběžné promítání Věta V5: Průmětem rovnoběžek, které nejsou promítací, jsou rovnoběžky. s a b s b π a b π a a =b

44 Rovnoběžné promítání Věta V6: Průmětem shodných, nenulových a vzájemně rovnoběžných úseček, které neleží na promítacích přímkách, jsou opět rovnoběžné a shodné úsečky. s a b a b π

45 Rovnoběžné promítání Věta V6: Průmětem shodných, nenulových a vzájemně rovnoběžných úseček, které neleží na promítacích přímkách, jsou opět rovnoběžné a shodné úsečky. s a b a b π

46 Rovnoběžné promítání Věta V7: Rovnoběžné promítání zachovává dělící poměr.

47 Rovnoběžné promítání Věta V7: Rovnoběžné promítání zachovává dělící poměr. s a a π

48 Rovnoběžné promítání Věta V7: Rovnoběžné promítání zachovává dělící poměr. s a s a π π

49 Rovnoběžné promítání Věta V8: Průmětem útvaru v rovině rovnoběžné s π je útvar s ním shodný. s σ π

50 Vlastnosti promítání Druhy promítání: středové rovnoběžné kosé kolmé

51 Kolmé promítání Speciální případ rovnoběžného promítání, kdy směr promítání je kolmý k průmětně. s A A π

52 Kolmé promítání

53 Kolmé promítání Věta Kolmé promítání splňuje všechny vlastnosti rovnoběžného promítání (tj. V1-V8).

54 Kolmé promítání Věta V9: Dvě vzájemně kolmé přímky, z nichž žádná není promítací, se prmítají jako kolmé právě tehdy, když alespoň jedna z nich je rovnoběžná s průmětnou. q p π

55 Kolmé promítání Věta V9: Dvě vzájemně kolmé přímky, z nichž žádná není promítací, se prmítají jako kolmé právě tehdy, když alespoň jedna z nich je rovnoběžná s průmětnou. s q p q p π

56 Kolmé promítání Věta V10: Délka pravoúhlého průmětu úsečky, která není kolmá k průmětně, se rovná nejvýše délce dané úsečky. A B π A B

57 Kolmé promítání Kótované promítání - topografické plochy

58 Kolmé promítání Kótované promítání - řešení střech

59 Kolmé promítání Mongeovo promítání - strojnictví

60 Kolmé promítání Mongeovo promítání - stavebnictví

61 Kolmé promítání Mongeovo promítání

62 Kolmé promítání Kolmá axonometrie

63 Kolmé promítání Kolmá axonometrie

MONGEOVO PROMÍTÁNÍ. bylo objeveno a rozvinuto francouzem Gaspardem Mongem (1746 1818) po dlouhou dobu bylo vojenským tajemstvím

MONGEOVO PROMÍTÁNÍ. bylo objeveno a rozvinuto francouzem Gaspardem Mongem (1746 1818) po dlouhou dobu bylo vojenským tajemstvím část 1. MONGEOVO PROMÍTÁNÍ kolmé promítání na dvě průmětny (půdorysna, nárysna), někdy se používá i třetí pomocná průmětna bokorysna bylo objeveno a rozvinuto francouzem Gaspardem Mongem (1746 1818) po

Více

FOTOGRAMMETRIE. Rekonstrukce svislého nezáměrně pořízeného snímku, známe-li obraz čtverce ve vodorovné rovině

FOTOGRAMMETRIE. Rekonstrukce svislého nezáměrně pořízeného snímku, známe-li obraz čtverce ve vodorovné rovině FOTOGRAMMETRIE Máme-li k dispozici jednu nebo několik fotografií daného objektu (objekt zobrazený v lineární perspektivě), pomocí fotogrammetrie můžeme zjistit jeho tvar, rozměr či polohu v prostoru. Známe-li

Více

STŘEDNÍ PRŮMYSLOVÁ ŠKOLA STROJÍRENSKÁ a Jazyková škola s právem státní jazykové zkoušky, Kolín IV, Heverova 191. Obor 23-41-M/01 STROJÍRENSTVÍ

STŘEDNÍ PRŮMYSLOVÁ ŠKOLA STROJÍRENSKÁ a Jazyková škola s právem státní jazykové zkoušky, Kolín IV, Heverova 191. Obor 23-41-M/01 STROJÍRENSTVÍ STŘEDNÍ PRŮMYSLOVÁ ŠKOLA STROJÍRENSKÁ a Jazyková škola s právem státní jazykové zkoušky, Kolín IV, Heverova 191 Obor 23-41-M/01 STROJÍRENSTVÍ 1. ročník TECHNICKÉ KRESLENÍ NORMY A TECHNICKÉ ZOBRAZOVÁNÍ

Více

Mongeovo zobrazení. Konstrukce stop roviny

Mongeovo zobrazení. Konstrukce stop roviny Mongeovo zobrazení Konstrukce stop roviny Způsoby určení roviny Způsoby určení roviny při provádění konstrukcí v Mongeově zobrazení je výhodné pracovat s rovinami, které náme určeny pomocí stop; Způsoby

Více

Lucie Zrůstová HISTORIE DESKRIPTIVNÍ GEOMETRIE NA VUT V BRNĚ. 1 Deskriptivní geometrie na VUT do 2. světové války

Lucie Zrůstová HISTORIE DESKRIPTIVNÍ GEOMETRIE NA VUT V BRNĚ. 1 Deskriptivní geometrie na VUT do 2. světové války 25. KONFERENCE O GEOMETRII A POČÍTAČOVÉ GRAFICE Lucie Zrůstová HISTORIE DESKRIPTIVNÍ GEOMETRIE NA VUT V BRNĚ Abstrakt Příspěvek se zabývá historií výuky deskriptivní geometrie na Vysokém učení technickém.

Více

TECHNICKÁ DOKUMENTACE

TECHNICKÁ DOKUMENTACE VŠB-TU Ostrava, Fakulta elektrotechniky a informatiky Katedra elektrických strojů a přístrojů KAT 453 TECHNICKÁ DOKUMENTACE (přednášky pro hodiny cvičení) Zobrazování Petr Šňupárek, Martin Marek 1 Co je

Více

Zobrazení a řezy těles v Mongeově promítání

Zobrazení a řezy těles v Mongeově promítání UNIVERZITA PALACKÉHO V OLOMOUCI Pedagogická fakulta Katedra matematiky Michaela Sukupová 3. ročník prezenční studium Obor: Matematika se zaměřením na vzdělávání a český jazyk se zaměřením na vzdělávání

Více

Tvorba technická dokumentace

Tvorba technická dokumentace Tvorba technická dokumentace Základy zobrazování na technických výkresech Zobrazování na technických výkresech se provádí dle normy ČSN 01 3121. Promítací metoda - je soubor pravidel, pro dvourozměrné

Více

ŘEŠENÉ PŘÍKLADY DESKRIPTIVNÍ GEOMETRIE. ONDŘEJ MACHŮ a kol.

ŘEŠENÉ PŘÍKLADY DESKRIPTIVNÍ GEOMETRIE. ONDŘEJ MACHŮ a kol. ŘEŠENÉ PŘÍKLADY Z DESKRIPTIVNÍ GEOMETRIE ONDŘEJ MACHŮ a kol. Předmluva Otevíráte sbírku, která vznikla z příkladů zadaných studentům pátého ročníku PřF UP v Olomouci, učitelů matematiky a deskriptivní

Více

vést žáky k pečlivému vypracování výkresu vést je k organizaci a plánování práce vést žáky k používání vhodných rýsovacích potřeb

vést žáky k pečlivému vypracování výkresu vést je k organizaci a plánování práce vést žáky k používání vhodných rýsovacích potřeb Vyučovací předmět: TECHNICKÉ KRESLENÍ A. Charakteristika vyučovacího předmětu. a) Obsahové, časové a organizační vymezení předmětu Předmět Technické kreslení má žákům umožnit zvládnout základy technického

Více

Gymnázium Christiana Dopplera, Zborovská 45, Praha 5. Technické Osvětlení

Gymnázium Christiana Dopplera, Zborovská 45, Praha 5. Technické Osvětlení Gymnázium Christiana Dopplera, Zborovská 45, Praha 5 ROČNÍKOVÁ PRÁCE Technické Osvětlení Vypracoval: Zbyšek Sedláček Třída: 8.M Školní rok: 2013/2014 Seminář: Deskriptivní geometrie Prohlašuji, že jsem

Více

Menší stavby (zejména obytné domy) se z většinou zastřešují pomocí rovin, mluvíme pak o. nebo zborcených ploch.

Menší stavby (zejména obytné domy) se z většinou zastřešují pomocí rovin, mluvíme pak o. nebo zborcených ploch. TEORETICKÉ ŘEŠENÍ STŘECH TEORETICKÉ ŘEŠENÍ STŘECH Menší stavby (zejména obytné domy) se z většinou zastřešují pomocí rovin, mluvíme pak o tzv. střešních rovinách. Velké stavby se často zastřešují pomocí

Více

CZ.1.07/1.5.00/34.0556 III / 2 = Inovace a zkvalitnění výuky prostřednictvím ICT. Číslo projektu Číslo a název šablony klíčové aktivity

CZ.1.07/1.5.00/34.0556 III / 2 = Inovace a zkvalitnění výuky prostřednictvím ICT. Číslo projektu Číslo a název šablony klíčové aktivity Číslo projektu Číslo a název šablony klíčové aktivity CZ.1.07/1.5.00/34.0556 III / 2 = Inovace a zkvalitnění výuky prostřednictvím ICT Tematická oblast ZÁSADY TVORBY VÝKRESŮ POZEMNÍCH STAVEB I. Autor :

Více

Deskriptivní geometrie II.

Deskriptivní geometrie II. Střední průmyslová škola elektrotechnická a Vyšší odborná škola Pardubice, Karla IV. 13 Deskriptivní geometrie II. Ing. Rudolf Rožec Pardubice 2001 Skripta jsou určena pro předmět deskriptivní geometrie

Více

ZOBRAZOVÁNÍ A NORMALIZACE V TECHNICKÉ DOKUMENTACI

ZOBRAZOVÁNÍ A NORMALIZACE V TECHNICKÉ DOKUMENTACI ZOBRAZOVÁNÍ A NORMALIZACE V TECHNICKÉ DOKUMENTACI Pravoúhlé rovnoběžné promítání na několik vzájemně kolmých průměten Použití pomocné průmětny Čistě ploché předměty Souměrné součásti Čistě rotační součásti

Více

TECHNICKÉ KRESLENÍ. Technické normy. Popisové pole. Zobrazování na technických výkresech

TECHNICKÉ KRESLENÍ. Technické normy. Popisové pole. Zobrazování na technických výkresech Technické normy Formáty výkresů Úprava výkresových listů Popisové pole Skládání výkresů TECHNICKÉ KRESLENÍ Čáry na technických výkresech Technické písmo Zobrazování na technických výkresech Kótování Technické

Více

BA03 Deskriptivní geometrie pro kombinované studium

BA03 Deskriptivní geometrie pro kombinované studium BA03 Deskriptivní geometrie pro kombinované studium RNDr. Jana Slaběňáková Mgr. Jan Šafařík přednášková skupina P-BK1VS1 učebna D185 letní semestr 2014-2015 Kontakt: Deskriptivní geometrie pro kombinované

Více

Pokroky matematiky, fyziky a astronomie

Pokroky matematiky, fyziky a astronomie Pokroky matematiky, fyziky a astronomie Ladislav Drs Použití samočinných počítačů a automatického kreslení v deskriptivní geometrii Pokroky matematiky, fyziky a astronomie, Vol. 17 (1972), No. 4, 199--203

Více

MĚSÍC MATEMATIKA GEOMETRIE

MĚSÍC MATEMATIKA GEOMETRIE 3. ročník Bod, přímka ZÁŘÍ Násobení a dělení Aplikační úlohy (nakupujeme) Bod, přímka Úsečka Násobení a dělení ŘÍJEN Procvičování Pamětné sčítání a odčítání, aplikační úlohy Polopřímka Modelování polopřímek

Více

Žák plní standard v průběhu primy a sekundy, učivo absolutní hodnota v kvartě.

Žák plní standard v průběhu primy a sekundy, učivo absolutní hodnota v kvartě. STANDARDY MATEMATIKA 2. stupeň ČÍSLO A PROMĚNNÁ 1. M-9-1-01 Žák provádí početní operace v oboru celých a racionálních čísel; užívá ve výpočtech druhou mocninu a odmocninu 1. žák provádí základní početní

Více

Ě ÁÁ Ú é é ý ů ý ů é ý ů é é ú Ž ý ů é ů é é Ě ÁÁ Ú é Ý ž ý ž ý ý ů ž ů ň é Ž ý Ž ů ý é é é é ý ž Í Ě ÁÁ Ú é é ň é Ž ý ž Ž Í ý é ý Í ů ý ý ý é ý é ý é ň Ž Ž Ě ÁÁ Ú é é ý Ý é é ý Ž Í Í é ž Í Ž Ě ÁÁ Ú é

Více

TROJÚHELNÍK 180. Definice. C neleží v přímce. Potom trojúhelníkem ABC nazveme průnik polorovin ABC, BCA, Nechť body. Viz příloha: obecny_trojuhelnik

TROJÚHELNÍK 180. Definice. C neleží v přímce. Potom trojúhelníkem ABC nazveme průnik polorovin ABC, BCA, Nechť body. Viz příloha: obecny_trojuhelnik TROJÚHELNÍK Definice Nechť body A, B, C neleží v přímce. Potom trojúhelníkem ABC nazveme průnik polorovin ABC, BCA, CAB. Viz příloha: obecny_trojuhelnik Definice trojúhelníku Uzavřená, jednoduchá (neprotínající

Více

GEOMETRICKÉ MODELOVÁNÍ PETRA SURYNKOVÁ, RADKA MATĚKOVÁ, JANA VLACHOVÁ

GEOMETRICKÉ MODELOVÁNÍ PETRA SURYNKOVÁ, RADKA MATĚKOVÁ, JANA VLACHOVÁ GEOMETRICKÉ MODELOVÁNÍ PETRA SURYNKOVÁ, RADKA MATĚKOVÁ, JANA VLACHOVÁ V příspěvku pojednáváme o použití počítačového modelování ve výuce geometrie. Naším cílem je zvýšit zájem o studium geometrie na všech

Více

Ročník VI. Matematika. Období Učivo téma Metody a formy práce- kurzívou. Kompetence Očekávané výstupy. Průřezová témata. Mezipřed.

Ročník VI. Matematika. Období Učivo téma Metody a formy práce- kurzívou. Kompetence Očekávané výstupy. Průřezová témata. Mezipřed. Přirozená čísla Desetinná čísla IX. X. Přirozená čísla opakování všech početních výkonů, zobrazení čísel na číselné ose, porovnávání a zaokrouhlování čísel. Metody- slovní, názorně demonstrační a grafická.

Více

Měsíc: učivo:. PROSINEC Numerace do 7, rozklad čísla 1 7. Sčítání a odčítání v oboru do 7, slovní úlohy.

Měsíc: učivo:. PROSINEC Numerace do 7, rozklad čísla 1 7. Sčítání a odčítání v oboru do 7, slovní úlohy. Předmět: MATEMATIKA Ročník: PRVNÍ Měsíc: učivo:. ZÁŘÍ Úvod k učivu o přirozeném čísle. Numerace do 5, čtení čísel 0-5. Vytváření souborů o daném počtu předmětů. Znaménka méně, více, rovná se, porovnávání

Více

MATURITNÍ TÉMATA Z MATEMATIKY

MATURITNÍ TÉMATA Z MATEMATIKY MATURITNÍ TÉMATA Z MATEMATIKY 1. Základní poznatky z logiky a teorie množin Pojem konstanty a proměnné. Obor proměnné. Pojem výroku a jeho pravdivostní hodnota. Operace s výroky, složené výroky, logické

Více

STŘEDNÍ PRŮMYSLOVÁ ŠKOLA ELEKTROTECHNICKÁ

STŘEDNÍ PRŮMYSLOVÁ ŠKOLA ELEKTROTECHNICKÁ STŘEDNÍ PRŮMYSLOVÁ ŠKOLA ELEKTROTECHNICKÁ V Úžlabině 320, Praha 10 Sbírka úloh z technického kreslení pracovní listy I. Praha 2011 Ing. Gabriela Uhlíková Sbírka úloh z technického kreslení Tato sbírka

Více

Úterý 8. ledna. Cabri program na rýsování. Základní rozmístění sad nástrojů na panelu nástrojů

Úterý 8. ledna. Cabri program na rýsování. Základní rozmístění sad nástrojů na panelu nástrojů Úterý 8. ledna Cabri program na rýsování program umožňuje rýsování základních geometrických útvarů, měření délky úsečky, velikosti úhlu, výpočet obvodů a obsahů. Je vhodný pro rýsování geometrických míst

Více

PRACOVNÍ SEŠIT PLANIMETRIE. 6. tematický okruh: Připrav se na státní maturitní zkoušku z MATEMATIKY důkladně, z pohodlí domova a online.

PRACOVNÍ SEŠIT PLANIMETRIE. 6. tematický okruh: Připrav se na státní maturitní zkoušku z MATEMATIKY důkladně, z pohodlí domova a online. Připrav se na státní maturitní zkoušku z MATEMATIKY důkladně, z pohodlí domova a online PRACOVNÍ SEŠIT 6. tematický okruh: PLANIMETRIE vytvořila: RNDr. Věra Effenberger expertka na online přípravu na SMZ

Více

Euklidovský prostor. Euklides. Euklidovy postuláty (axiomy)

Euklidovský prostor. Euklides. Euklidovy postuláty (axiomy) Euklidovský prostor Euklidovy Základy (pohled do historie) dnešní definice kartézský souřadnicový systém vlastnosti rovin v E n speciální vlastnosti v E 3 (vektorový součin) a) eprostor, 16, b) P. Olšák,

Více

Různostranný (obecný) žádné dvě strany nejsou stějně dlouhé. Rovnoramenný dvě strany (ramena) jsou stejně dlouhé, třetí strana je základna

Různostranný (obecný) žádné dvě strany nejsou stějně dlouhé. Rovnoramenný dvě strany (ramena) jsou stejně dlouhé, třetí strana je základna 16. Trojúhelník, Mnohoúhelník, Kružnice (typy trojúhelníků a jejich vlastnosti, Pythagorova věta, Euklidovy věty, čtyřúhelníky druhy a jejich vlastnosti, kružnice obvodový a středový, úsekový úhel, vzájemná

Více

Maturitní témata od 2013

Maturitní témata od 2013 1 Maturitní témata od 2013 1. Úvod do matematické logiky 2. Množiny a operace s nimi, číselné obory 3. Algebraické výrazy, výrazy s mocninami a odmocninami 4. Lineární rovnice a nerovnice a jejich soustavy

Více

Sčítání a odčítání Jsou-li oba sčítanci kladní, znaménko výsledku je + +421 +23 = + 444

Sčítání a odčítání Jsou-li oba sčítanci kladní, znaménko výsledku je + +421 +23 = + 444 ARITMETIKA CELÁ ČÍSLA Celá čísla jsou. -6, -5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, 6, Celá čísla rozdělujeme na záporná (-1, -2, -3, ) kladná (1, 2, 3,.) nula 0 (není číslo kladné ani záporné) absolutní

Více

MATEMATIKA STUDIJNÍ POŽADAVKY PRO JEDNOTLIVÉ ROČNÍKY STUDIA

MATEMATIKA STUDIJNÍ POŽADAVKY PRO JEDNOTLIVÉ ROČNÍKY STUDIA MATEMATIKA STUDIJNÍ POŽADAVKY PRO JEDNOTLIVÉ ROČNÍKY STUDIA Osmileté studium 1. ročník 1. Opakování a prohloubení učiva 1. 5. ročníku Číslo, číslice, množiny, přirozená čísla, desetinná čísla, číselné

Více

Předmět: Matematika. Charakteristika vyučovacího předmětu:

Předmět: Matematika. Charakteristika vyučovacího předmětu: Vzdělávací oblast: Vzdělávací obor: Matematika a její aplikace Matematika a její aplikace Oblast a obor jsou realizovány v povinném předmětu Matematika a ve volitelných předmětech Deskriptivní geometrie

Více

Trojúhelník. MATEMATIKA pro 1. ročníky tříletých učebních oborů. Ing. Miroslav Čapek srpen 2011

Trojúhelník. MATEMATIKA pro 1. ročníky tříletých učebních oborů. Ing. Miroslav Čapek srpen 2011 MATEMATIKA pro 1. ročníky tříletých učebních oborů Trojúhelník Ing. Miroslav Čapek srpen 2011 Projekt Využití e-learningu k rozvoji klíčových kompetencí reg. č.: CZ.1.07/1.1.10/03.0021 je spolufinancován

Více

ANOTACE nově vytvořených/inovovaných materiálů

ANOTACE nově vytvořených/inovovaných materiálů ANOTACE nově vytvořených/inovovaných materiálů Číslo projektu Číslo a název šablony klíčové aktivity Tematická oblast CZ.1.07/1.5.00/34.1017 III/2 - Inovace a zkvalitnění výuky prostřednictvím ICT Analytická

Více

Předmět: Matematika. Charakteristika vyučovacího předmětu:

Předmět: Matematika. Charakteristika vyučovacího předmětu: Vzdělávací oblast: Vzdělávací obor: Matematika a její aplikace Matematika a její aplikace Oblast a obor jsou realizovány v povinném předmětu Matematika a ve volitelných předmětech Základní cvičení z matematiky,

Více

Předmět: Matematika. Charakteristika vyučovacího předmětu:

Předmět: Matematika. Charakteristika vyučovacího předmětu: Vzdělávací oblast: Vzdělávací obor: Matematika a její aplikace Matematika a její aplikace Oblast a obor jsou realizovány v povinném předmětu Matematika a ve volitelných předmětech Deskriptivní geometrie

Více

M - 2. stupeň. Matematika a její aplikace Školní výstupy Žák by měl

M - 2. stupeň. Matematika a její aplikace Školní výstupy Žák by měl 6. ročník číst, zapisovat, porovnávat, zaokrouhlovat, rozkládat přirozená čísla do 10 000 provádět odhady výpočtů celá čísla - obor přirozených čísel do 10 000 numerace do 10 000 čtení, zápis, porovnávání,

Více

Střední průmyslová škola strojnická Olomouc, tř.17. listopadu 49

Střední průmyslová škola strojnická Olomouc, tř.17. listopadu 49 Střední průmyslová škola strojnická Olomouc, tř.17. listopadu 49 Výukový materiál zpracovaný v rámci projektu Výuka moderně Registrační číslo projektu: CZ.1.07/1.5.00/34.0205 Šablona: III/2 Přírodovědné

Více

Výukový materiál zpracovaný v rámci projektu Výuka moderně Registrační číslo projektu: CZ.1.07/1.5.00/34.0205

Výukový materiál zpracovaný v rámci projektu Výuka moderně Registrační číslo projektu: CZ.1.07/1.5.00/34.0205 Střední průmyslová škola strojnická Olomouc, tř.17. listopadu 49 Výukový materiál zpracovaný v rámci projektu Výuka moderně Registrační číslo projektu: CZ.1.07/1.5.00/34.0205 Šablona: III/2 Přírodovědné

Více

Vzdělávací oblast: Matematika a její aplikace. Vyučovací předmět: Matematika Ročník: 6. Mezipředmětové vztahy, průřezová témata, projekty, kurzy

Vzdělávací oblast: Matematika a její aplikace. Vyučovací předmět: Matematika Ročník: 6. Mezipředmětové vztahy, průřezová témata, projekty, kurzy Vzdělávací oblast: Matematika a její aplikace Vyučovací předmět: Matematika Ročník: 6. Žák: čte, zapisuje a porovnává přirozená čísla provádí početní operace s přirozenými čísly zpaměti a písemně provádí

Více

Využití programu Inventor pro e-learningovou výuku předmětu Technické kreslení. Pavel Velčovský

Využití programu Inventor pro e-learningovou výuku předmětu Technické kreslení. Pavel Velčovský Využití programu Inventor pro e-learningovou výuku předmětu Technické kreslení Pavel Velčovský Bakalářská práce 2008 ABSTRAKT Abstrakt česky Tato bakalářská práce se zabývá tvorbou elektronických podkladů

Více

Základní vlastnosti eukleidovského prostoru

Základní vlastnosti eukleidovského prostoru Kapitola 2 Základní vlastnosti eukleidovského prostoru 2.1 Eukleidovský prostor Eukleidovský prostor a jeho podprostory. Metrické vlastnosti, jako např. kolmost, odchylka, vzdálenost, obsah, objem apod.

Více

CZ 1.07/1.1.32/02.0006

CZ 1.07/1.1.32/02.0006 PO ŠKOLE DO ŠKOLY CZ 1.07/1.1.32/02.0006 Číslo projektu: CZ.1.07/1.1.32/02.0006 Název projektu: Po škole do školy Příjemce grantu: Gymnázium, Kladno Název výstupu: Prohlubující semináře Matematika (MI

Více

Matematika I, část I Vzájemná poloha lineárních útvarů v E 3

Matematika I, část I Vzájemná poloha lineárních útvarů v E 3 3.6. Vzájemná poloha lineárních útvarů v E 3 Výklad A. Vzájemná poloha dvou přímek Uvažujme v E 3 přímky p, q: p: X = A + ru q: X = B + sv a hledejme jejich společné body, tj. hledejme takové hodnoty parametrů

Více

VÝUKA DESKRIPTIVNÍ GEOMETRIE NA PŘELOMU 19. A 20. STOLETÍ

VÝUKA DESKRIPTIVNÍ GEOMETRIE NA PŘELOMU 19. A 20. STOLETÍ VÝUKA DESKRIPTIVNÍ GEOMETRIE NA PŘELOMU 19. A 20. STOLETÍ Lucie Zrůstová 1. Výuka na reálných školách a reálných gymnáziích První reálná škola v Rakousku - Uhersku byla založena roku 1770 jako reálná obchodní

Více

Projekt IMPLEMENTACE ŠVP. pořadí početních operací, dělitelnost, společný dělitel a násobek, základní početní operace

Projekt IMPLEMENTACE ŠVP. pořadí početních operací, dělitelnost, společný dělitel a násobek, základní početní operace Střední škola umělecká a řemeslná Evropský sociální fond "Praha a EU: Investujeme do vaší budoucnosti" Projekt IMPLEMENTACE ŠVP Evaluace a aktualizace metodiky předmětu Matematika Výrazy Obory nástavbového

Více

5) Průnik rotačních ploch. A) Osy totožné (a kolmé k půdorysně) Bod R průniku ploch. 1) Pomocná plocha κ

5) Průnik rotačních ploch. A) Osy totožné (a kolmé k půdorysně) Bod R průniku ploch. 1) Pomocná plocha κ 5) Průnik rotačních ploch Bod R průniku ploch κ, κ : 1) Pomocná plocha κ ) Průniky : l κ κ, l κ κ 3) R l l Volba pomocné plochy pro průnik rotačních ploch závisí na poloze os ploch. Omezíme se pouze na

Více

Definice. Vektorový prostor V nad tělesem T je množina s operacemi + : V V V, tj. u, v V : u + v V : T V V, tj. ( u V )( a T ) : a u V které splňují

Definice. Vektorový prostor V nad tělesem T je množina s operacemi + : V V V, tj. u, v V : u + v V : T V V, tj. ( u V )( a T ) : a u V které splňují Definice. Vektorový prostor V nad tělesem T je množina s operacemi + : V V V, tj. u, v V : u + v V : T V V, tj. ( u V )( a T ) : a u V které splňují 1. u + v = v + u, u, v V 2. (u + v) + w = u + (v + w),

Více

Vzdělávací obsah vyučovacího předmětu

Vzdělávací obsah vyučovacího předmětu Vzdělávací obsah vyučovacího předmětu Matematika 6. ročník Zpracovala: Mgr. Michaela Krůtová Číslo a početní operace zaokrouhluje, provádí odhady s danou přesností, účelně využívá kalkulátor porovnává

Více

1.7.10 Střední příčky trojúhelníku

1.7.10 Střední příčky trojúhelníku 1710 Střední příčky trojúhelníku Předpoklady: Př 1: Narýsuj libovolný trojúhelník (zvol ho tak, aby se co nejvíce lišil od trojúhelníku, který narýsoval soused) Najdi středy všech stran S a, S b a S c

Více

Příloha č. 6 MATEMATIKA A JEJÍ APLIKACE

Příloha č. 6 MATEMATIKA A JEJÍ APLIKACE Žák cvičí prostorovou představivost Žák využívá při paměťovém i písemném počítání komutativnost i asociativní sčítání a násobení Žák provádí písemné početní operace v oboru Opakování učiva 3. ročníku Písemné

Více

OBSAH 1 ÚVOD... 7. 1.1 Úloha, význam a obsah předmětu... 7 1.2 Pomůcky pro kreslení... 7 1.3 Technika kreslení... 9 2 ZÁSADY KRESLENÍ...

OBSAH 1 ÚVOD... 7. 1.1 Úloha, význam a obsah předmětu... 7 1.2 Pomůcky pro kreslení... 7 1.3 Technika kreslení... 9 2 ZÁSADY KRESLENÍ... Obsah 5 OBSAH 1 ÚVOD.................................... 7 1.1 Úloha, význam a obsah předmětu.............. 7 1.2 Pomůcky pro kreslení........................ 7 1.3 Technika kreslení...........................

Více

Výpočet vzdálenosti Země Slunce pozorováním přechodu Venuše před Sluncem

Výpočet vzdálenosti Země Slunce pozorováním přechodu Venuše před Sluncem Výpočet vzdálenosti Země Slunce pozorováním přechodu Venuše před Sluncem Podle mateiálu ESO přeložil Rostislav Halaš Úkol: Změřit vzdálenost Země Slunce (tzv. astronomickou jednotku AU) pozorováním přechodu

Více

- 1 - 1. - osobnostní rozvoj cvičení pozornosti,vnímaní a soustředění při řešení příkladů,, řešení problémů

- 1 - 1. - osobnostní rozvoj cvičení pozornosti,vnímaní a soustředění při řešení příkladů,, řešení problémů - 1 - Vzdělávací oblast: Matematika a její aplikace Vyučovací předmět: Matematika 6.ročník Výstup Učivo Průřezová témata - čte, zapisuje a porovnává přirozená čísla s přirozenými čísly - zpaměti a písemně

Více

SEZNAM ANOTACÍ. CZ.1.07/1.5.00/34.0527 III/2 Inovace a zkvalitnění výuky prostřednictvím ICT VY_32_INOVACE_MA3 Planimetrie

SEZNAM ANOTACÍ. CZ.1.07/1.5.00/34.0527 III/2 Inovace a zkvalitnění výuky prostřednictvím ICT VY_32_INOVACE_MA3 Planimetrie SEZNAM ANOTACÍ Číslo projektu Číslo a název šablony klíčové aktivity Označení sady DUM Tematická oblast CZ.1.07/1.5.00/34.0527 III/2 Inovace a zkvalitnění výuky prostřednictvím ICT VY_32_INOVACE_MA3 Planimetrie

Více

Přírodovědecká fakulta Univerzity Palackého v Olomouci Katedra algebry a geometrie VÝUKA DESKRIPTIVNÍ GEOMETRIE NA VYSOKÝCH ŠKOLÁCH V ČESKÉ REPUBLICE

Přírodovědecká fakulta Univerzity Palackého v Olomouci Katedra algebry a geometrie VÝUKA DESKRIPTIVNÍ GEOMETRIE NA VYSOKÝCH ŠKOLÁCH V ČESKÉ REPUBLICE Přírodovědecká fakulta Univerzity Palackého v Olomouci Katedra algebry a geometrie VÝUKA DESKRIPTIVNÍ GEOMETRIE NA VYSOKÝCH ŠKOLÁCH V ČESKÉ REPUBLICE Diplomová práce Vedoucí diplomové práce: RNDr. Miloslava

Více

Matematika prima. Vazby a přesahy v RVP Mezipředmětové vztahy Průřezová témata. Očekávané výstupy z RVP Školní výstupy Učivo (U) Žák:

Matematika prima. Vazby a přesahy v RVP Mezipředmětové vztahy Průřezová témata. Očekávané výstupy z RVP Školní výstupy Učivo (U) Žák: Matematika prima Očekávané výstupy z RVP Školní výstupy Učivo (U) využívá při paměťovém počítání komutativnost a asociativnost sčítání a násobení provádí písemné početní operace v oboru přirozených zaokrouhluje,

Více

Vzdělávací obsah vyučovacího předmětu

Vzdělávací obsah vyučovacího předmětu Vzdělávací obsah vyučovacího předmětu Matematika 5. ročník Zpracovala: Mgr. Jiřina Hrdinová Číslo a početní operace Využívá při pamětném i písemném počítání komutativnost a asociativnost sčítání a násobení

Více

Cvičení z matematiky jednoletý volitelný předmět

Cvičení z matematiky jednoletý volitelný předmět Název předmětu: Zařazení v učebním plánu: Cvičení z matematiky O8A, C4A, jednoletý volitelný předmět Cíle předmětu Obsah předmětu je zaměřen na přípravu studentů gymnázia na společnou část maturitní zkoušky

Více

Vzdálenosti. Copyright c 2006 Helena Říhová

Vzdálenosti. Copyright c 2006 Helena Říhová Vzdálenosti Copyright c 2006 Helena Říhová Obsah 1 Vzdálenosti 3 1.1 Vzdálenostivrovině... 3 1.1.1 Vzdálenostdvoubodů..... 3 1.1.2 Vzdálenostboduodpřímky..... 4 1.1.3 Vzdálenostdvourovnoběžek.... 5 1.2

Více

Matematický ústav Slezské univerzity v Opavě Učební texty k přednášce ALGEBRA II, letní semestr 2000/2001 Michal Marvan

Matematický ústav Slezské univerzity v Opavě Učební texty k přednášce ALGEBRA II, letní semestr 2000/2001 Michal Marvan Matematický ústav Slezské univerzity v Opavě Učební texty k přednášce ALGEBRA II, letní semestr 2000/2001 Michal Marvan 11. Lineární zobrazení V celé přednášce pojednáváme o vektorových prostorech nad

Více

16. Trojúhelník vlastnosti, prvky, konstrukční úlohy Vypracovala: Ing. Ludmila Všetulová, prosinec 2013

16. Trojúhelník vlastnosti, prvky, konstrukční úlohy Vypracovala: Ing. Ludmila Všetulová, prosinec 2013 16. Trojúhelník vlastnosti, prvky, konstrukční úlohy Vypracovala: Ing. Ludmila Všetulová, prosinec 2013 Název školy Obchodní akademie a Střední odborné učiliště Veselí nad Moravou Název a číslo OP OP Vzdělávání

Více

Trojúhelník a čtyřúhelník výpočet jejich obsahu, konstrukční úlohy

Trojúhelník a čtyřúhelník výpočet jejich obsahu, konstrukční úlohy 5 Trojúhelník a čtyřúhelník výpočet jejich obsahu, konstrukční úlohy Trojúhelník: Trojúhelník je definován jako průnik tří polorovin. Pojmy: ABC - vrcholy trojúhelníku abc - strany trojúhelníku ( a+b>c,

Více

Příloha č. 4 Matematika Ročník: 4. Očekávané výstupy z RVP Školní výstupy Učivo Přesahy (průřezová témata)

Příloha č. 4 Matematika Ročník: 4. Očekávané výstupy z RVP Školní výstupy Učivo Přesahy (průřezová témata) Příloha č. 4 Matematika Ročník: 4. Očekávané výstupy z RVP Školní výstupy Učivo Přesahy (průřezová témata) Číslo a početní operace - využívá při pamětném i písemném počítání komutativnost a asociativnost

Více

Matematika - 4. ročník Vzdělávací obsah

Matematika - 4. ročník Vzdělávací obsah Matematika - 4. ročník Čas.plán Téma Učivo Ročníkové výstupy žák podle svých schopností: Poznámka Září Opakování učiva 3. ročníku Počítaní do 20 Sčítání a odčítání do 20 Násobení a dělení číslem 2 Počítání

Více

FAKULTA STAVEBNÍ MATEMATIKA I MODUL GA01 M01 STUDIJNÍ OPORY PRO STUDIJNÍ PROGRAM GEODÉZIE A KARTOGRAFIE S KOMBINOVANOU FORMOU STUDIA

FAKULTA STAVEBNÍ MATEMATIKA I MODUL GA01 M01 STUDIJNÍ OPORY PRO STUDIJNÍ PROGRAM GEODÉZIE A KARTOGRAFIE S KOMBINOVANOU FORMOU STUDIA VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA STAVEBNÍ MATEMATIKA I MODUL GA01 M01 VYBRANÉ ČÁSTI A APLIKACE VEKTOROVÉHO POČTU STUDIJNÍ OPORY PRO STUDIJNÍ PROGRAM GEODÉZIE A KARTOGRAFIE S KOMBINOVANOU FORMOU STUDIA

Více

METODICKÉ LISTY Z MATEMATIKY pro gymnázia a základní vzdělávání

METODICKÉ LISTY Z MATEMATIKY pro gymnázia a základní vzdělávání METODICKÉ LISTY Z MATEMATIKY pro gymnázia a základní vzdělávání Jaroslav Švrček a kolektiv Rámcový vzdělávací program pro základní vzdělávání Vzdělávací oblast: Matematika a její aplikace Tematický okruh:

Více

ŠKOLNÍ VZDĚLÁVACÍ PROGRAM

ŠKOLNÍ VZDĚLÁVACÍ PROGRAM Vyučovací předmět : Období ročník : Učební texty : Matematika 3. období 6. ročník J.Coufalová : Matematika pro 6.ročník ZŠ (Fortuna) O.Odvárko,J.Kadleček : Sbírka úloh z matematiky pro 6.ročník ZŠ (Prometheus)

Více

Pravidla pro hodnocení a klasifikaci v jednotlivých předmětech a seminářích

Pravidla pro hodnocení a klasifikaci v jednotlivých předmětech a seminářích Pravidla pro hodnocení a klasifikaci v jednotlivých předmětech a seminářích Povinností žáka je napsat seminární práci nejpozději ve 3.ročníku (septima) v semináři (dle zájmu žáka). Práce bude ohodnocena

Více

ANALYTICKÁ GEOMETRIE INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ

ANALYTICKÁ GEOMETRIE INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ ANALYTICKÁ GEOMETRIE Gymnázium Jiřího Wolkera v Prostějově Výukové materiály z matematiky pro vyšší gymnázia Autoři projektu Student na prahu 21. století - využití ICT ve vyučování matematiky na gymnáziu

Více

1 Linearní prostory nad komplexními čísly

1 Linearní prostory nad komplexními čísly 1 Linearní prostory nad komplexními čísly V této přednášce budeme hledat kořeny polynomů, které se dále budou moci vyskytovat jako složky vektorů nebo matic Vzhledem k tomu, že kořeny polynomu (i reálného)

Více

Počítačová geometrie I

Počítačová geometrie I 0 I RNDr., Ph.D. Katedra didaktiky matematiky Univerzita Karlova v Praze Matematicko-fyzikální fakulta petra.surynkova@mff.cuni.cz http://surynkova.info Osnova předmětu Pojem výpočetní geometrie, oblasti

Více

15. Soustava lineárních nerovnic - optimalizace

15. Soustava lineárních nerovnic - optimalizace @173 15. Soustava lineárních nerovnic - optimalizace Jak jsme se dozvěděli v 3. lekci tohoto kurzu, je obrazem rovnice ax + by + c = 0, a,b,c R (a; b) (0; 0) přímka a obrazem nerovnic ax + by + c 0, a,b,c

Více

7.2.12 Vektorový součin I

7.2.12 Vektorový součin I 7 Vektorový součin I Předpoklad: 708, 7 Při násobení dvou čísel získáváme opět číslo Skalární násobení vektorů je zcela odlišné, protože vnásobením dvou vektorů dostaneme číslo, ted něco jiného Je možné

Více

Příloha č. 16 MATEMATIKA A JEJÍ APLIKACE

Příloha č. 16 MATEMATIKA A JEJÍ APLIKACE Získá zájem o předmět, posílí vědomí, že matematika poskytuje vědomosti a dovednosti potřebné v praktickém životě. Zopakuje a upevní učivo o přirozených číslech a geometrie z předchozích ročníků. Modeluje

Více

MINISTERSTVO ŠKOLSTVÍ, MLÁDEŽE A TĚLOVÝCHOVY. Učební osnova předmětu MATEMATIKA

MINISTERSTVO ŠKOLSTVÍ, MLÁDEŽE A TĚLOVÝCHOVY. Učební osnova předmětu MATEMATIKA MINISTERSTVO ŠKOLSTVÍ, MLÁDEŽE A TĚLOVÝCHOVY Učební osnova předmětu MATEMATIKA pro střední odborné školy s humanitním zaměřením (6 8 hodin týdně celkem) Schválilo Ministerstvo školství, mládeže a tělovýchovy

Více

VÝUKA DESKRIPTIVNÍ GEOMETRIE NA MFF UK

VÝUKA DESKRIPTIVNÍ GEOMETRIE NA MFF UK VÝUKA DESKRIPTIVNÍ GEOMETRIE NA MFF UK Jana Hromadová, Petra Surynková Katedra didaktiky matematiky, MFF UK Abstrakt: V článku je představen projekt Inovace předmětů Deskriptivní geometrie I a III na MFF

Více

Oblast podpory: 1.4 Zlepšení podmínek pro vzdělávání na základních školách

Oblast podpory: 1.4 Zlepšení podmínek pro vzdělávání na základních školách Prioritní osa: 1 Počáteční vzdělávání Oblast podpory: 1.4 Zlepšení podmínek pro vzdělávání na základních školách Registrační číslo projektu: CZ.1.07/1.4.00/21. 0918 Název projektu:inovace vzdělávání v

Více

Výukový materiál zpracován v rámci oblasti podpory 1.5 EU peníze středním školám

Výukový materiál zpracován v rámci oblasti podpory 1.5 EU peníze středním školám Výukový materiál zpracován v rámci oblasti podpory 1.5 EU peníze středním školám Název školy Obchodní akademie a Hotelová škola Havlíčkův Brod Název OP OP Vzdělávání pro konkurenceschopnost Registrační

Více

MATEMATIKA Maturitní témata společná část MZ základní úroveň (vychází z Katalogu požadavků MŠMT)

MATEMATIKA Maturitní témata společná část MZ základní úroveň (vychází z Katalogu požadavků MŠMT) MATEMATIKA Maturitní témata společná část MZ základní úroveň (vychází z Katalogu požadavků MŠMT) 1. Číselné obory 1.1 Přirozená čísla provádět aritmetické operace s přirozenými čísly rozlišit prvočíslo

Více

PRIMA Přirozená čísla Celá čísla Desetinná čísla Číselná osa Pravidla pro násobení a dělení 10, 100, 1000..a 0,1, 0,01, 0,001.. Čísla navzájem opačná

PRIMA Přirozená čísla Celá čísla Desetinná čísla Číselná osa Pravidla pro násobení a dělení 10, 100, 1000..a 0,1, 0,01, 0,001.. Čísla navzájem opačná PRIMA Přirozená čísla Celá čísla Desetinná čísla Číselná osa Pravidla pro násobení a dělení 10, 100, 1000..a 0,1, 0,01, 0,001.. Čísla navzájem opačná Racionální čísla Zlomky Rozšiřování a krácení zlomků

Více

Oddíl E učební osnovy VII.1.A MATEMATIKA

Oddíl E učební osnovy VII.1.A MATEMATIKA Podještědské gymnázium, s.r.o., Liberec, Sokolovská 328 Oddíl E učební osnovy VII.1.A MATEMATIKA VII.1.A Matematika Charakteristika předmětu: MATEMATIKA v nižším stupni osmiletého studia Obsah předmětu

Více

9 Prostorová grafika a modelování těles

9 Prostorová grafika a modelování těles 9 Prostorová grafika a modelování těles Studijní cíl Tento blok je věnován základům 3D grafiky. Jedná se především o vysvětlení principů vytváření modelů 3D objektů, jejich reprezentace v paměti počítače.

Více

NÁPLŇ VOLITELNÝCH PŘEDMĚTŮ - DVOULETÝCH...

NÁPLŇ VOLITELNÝCH PŘEDMĚTŮ - DVOULETÝCH... Obsah NÁPLŇ VOLITELNÝCH PŘEDMĚTŮ - DVOULETÝCH... 2 SEMINÁŘ Z JAZYKA ČESKÉHO A LITERATURY... 2 SEMINÁŘ A CVIČENÍ ZE ZEMĚPISU... 2 DĚJINY UMĚNÍ TVOŘIVĚ... 2 SEMINÁŘ A CVIČENÍ Z BIOLOGIE... 2 SEMINÁŘ A CVIČENÍ

Více

Vývoj lineární perspektivy ve výtvarném umění

Vývoj lineární perspektivy ve výtvarném umění Vývoj lineární perspektivy ve výtvarném umění Univerzita Karlova v Praze Matematicko-fyzikální fakulta petra.surynkova@mff.cuni.cz Přehled Výtvarné umění malířství, sochařství a architektura Lineární perspektiva

Více

Gymnázium Uherské Hradiště Charakteristika volitelných předmětů 3. ročník (dvouhodinové předměty, žák si vybírá dva)

Gymnázium Uherské Hradiště Charakteristika volitelných předmětů 3. ročník (dvouhodinové předměty, žák si vybírá dva) Gymnázium Uherské Hradiště Charakteristika volitelných předmětů 3. ročník (dvouhodinové předměty, žák si vybírá dva) Seminář z českého jazyka Rozšiřuje, prohlubuje a procvičuje učivo gramatiky, slohu a

Více

PLANIMETRIE, KONSTRUKČNÍ ÚLOHY V ROVINĚ

PLANIMETRIE, KONSTRUKČNÍ ÚLOHY V ROVINĚ PLANIMETRIE, KONSTRUKČNÍ ÚLOHY V ROVINĚ Gymnázium Jiřího Wolkera v Prostějově Výukové materiály z matematiky pro vyšší gymnázia Autoři projektu Student na prahu 21. století - využití ICT ve vyučování matematiky

Více

Požadavky na konkrétní dovednosti a znalosti z jednotlivých tematických celků

Požadavky na konkrétní dovednosti a znalosti z jednotlivých tematických celků Maturitní zkouška z matematiky 2012 požadované znalosti Zkouška z matematiky ověřuje matematické základy formou didaktického testu. Test obsahuje uzavřené i otevřené úlohy. V uzavřených úlohách je vždy

Více

á Š ý ň á Č Ú á Č á Í á á á š Ť ť Ž Í ú á á Íý á ý áá Č á ý á Íá Č á Ú á Č á á á Ž á á Ž á ú á ý á Ú á ó ý á ý á á á Č á Ú á Č á á á ú á ý á Ú á ý á ý ý á Ú á á Č á Ú á Č Í á Í á Í Žá ú ý á ď á ý á ý Ě

Více

[1] Vzhledem ke zvolené bázi určujeme souřadnice vektorů...

[1] Vzhledem ke zvolené bázi určujeme souřadnice vektorů... [1] Báze Každý lineární (pod)prostor má svou bázi Vzhledem ke zvolené bázi určujeme souřadnice vektorů... a) base, 4, b) P. Olšák, FEL ČVUT, c) P. Olšák 2010, d) BI-LIN, e) L, f) 2009/2010, g)l. Viz p.

Více

MINISTERSTVO ŠKOLSTVÍ, MLÁDEŽE A TĚLOVÝCHOVY. Učební osnova předmětu MATEMATIKA. pro studijní obory SOŠ a SOU (8 10 hodin týdně celkem)

MINISTERSTVO ŠKOLSTVÍ, MLÁDEŽE A TĚLOVÝCHOVY. Učební osnova předmětu MATEMATIKA. pro studijní obory SOŠ a SOU (8 10 hodin týdně celkem) MINISTERSTVO ŠKOLSTVÍ, MLÁDEŽE A TĚLOVÝCHOVY Učební osnova předmětu MATEMATIKA pro studijní obory SOŠ a SOU (8 10 hodin týdně celkem) Schválilo Ministerstvo školství, mládeže a tělovýchovy dne 14. 6. 2000,

Více

NÁPLŇ VOLITELNÝCH PŘEDMĚTŮ - DVOULETÝCH...2

NÁPLŇ VOLITELNÝCH PŘEDMĚTŮ - DVOULETÝCH...2 Obsah NÁPLŇ VOLITELNÝCH PŘEDMĚTŮ - DVOULETÝCH...2 SEMINÁŘ Z JAZYKA ČESKÉHO A LITERATURY... 2 SEMINÁŘ A CVIČENÍ ZE ZEMĚPISU... 2 DĚJINY UMĚNÍ TVOŘIVĚ... 2 SEMINÁŘ A CVIČENÍ Z BIOLOGIE... 2 SEMINÁŘ A CVIČENÍ

Více

MATEMATIKA. 6. 9. ročník Charakteristika vyučovacího předmětu. Obsahové, časové a organizační vymezení

MATEMATIKA. 6. 9. ročník Charakteristika vyučovacího předmětu. Obsahové, časové a organizační vymezení MATEMATIKA 6. 9. ročník Charakteristika vyučovacího předmětu Obsahové, časové a organizační vymezení Obsah vyučovacího předmětu Matematika je totožný s obsahem vyučovacího oboru Matematika a její aplikace.

Více

Máme tři různé body A, B, C. Trojúhelník ABC je průnik polorovin ABC, BCA a CAB.

Máme tři různé body A, B, C. Trojúhelník ABC je průnik polorovin ABC, BCA a CAB. 8. Trojúhelník 6. ročník 8. Trojúhelník 8.1. Základní pojmy 8.1.1. Trojúhelník Máme tři různé body A, B, C. Trojúhelník ABC je průnik polorovin ABC, BCA a CAB. Trojúhelník popisujeme proti chodu hodinových

Více

MATEMATIKA Maturitní témata společná část MZ vyšší úroveň (vychází z Katalogu požadavků MŠMT)

MATEMATIKA Maturitní témata společná část MZ vyšší úroveň (vychází z Katalogu požadavků MŠMT) MATEMATIKA Maturitní témata společná část MZ vyšší úroveň (vychází z Katalogu požadavků MŠMT) 1. Číselné obory 1.1 Přirozená čísla provádět aritmetické operace s přirozenými čísly rozlišit prvočíslo a

Více