ANALÝZA A KLASIFIKACE DAT
|
|
- Daniela Bártová
- před 5 lety
- Počet zobrazení:
Transkript
1 ANALÝZA A KLASIFIKACE DAT RNDr. Eva Janoušová INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ
2 HODNOCENÍ ÚSPĚŠNOSTI KLASIFIKACE A SROVNÁNÍ KLASIFIKÁTORŮ
3 ÚVOD Vstupní data Subjekt Objem hipokampu Objem komor Skutečnost (správná třída) pacient pacient pacient kontrola kontrola kontrola Výsledek klasifikace pacient pacient kontrola kontrola pacient kontrola Jak dobrá je klasifikační metoda, kterou jsme použili?
4 HODNOCENÍ ÚSPĚŠNOSTI KLASIFIKACE Matice záměn (konfusní matice, confusion matrix): Skutečnost (správná třída) Pacienti (+) Kontroly (-) Výsledek klasifikace Pacienti (+) TP FP Kontroly (-) FN TN TP ( true positive ) kolik výsledků bylo skutečně pozitivních (tzn. kolik pacientů bylo správně diagnostikováno jako pacienti). FP ( false positive ) kolik výsledků bylo falešně pozitivních (tzn. kolik zdravých lidí bylo chybně diagnostikováno jako pacienti). FN ( false negative ) kolik výsledků bylo falešně negativních (tzn. kolik pacientů bylo chybně diagnostikováno jako zdraví). TN ( true negative ) kolik výsledků bylo skutečně negativních (tzn. kolik zdravých lidí bylo správně diagnostikováno jako zdraví).
5 HODNOCENÍ ÚSPĚŠNOSTI KLASIFIKACE Výsledek klasifikace Pacienti (+) Kontroly (-) Skutečnost (správná třída) Pacienti (+) Kontroly (-) TP FP TP+FP FN TN FN+TN TP+FN Senzitivita (sensitivity) TP / (TP+FN) FP+TN Specificita (specificity) TN / (FP+TN) Prediktivní hodnota pozitivního testu = přesnost (precision) TP / (TP+FP) Celková správnost (accuracy) (TP+TN)/(TP+FP+FN+TN) Chyba (error) (FP+FN)/(TP+FP+FN+TN)
6 PŘÍKLAD KLASIFIKACE POMOCÍ LDA Subjekt Skutečnost 1 P P 2 P P 3 P K 4 K K 5 K P 6 K K Výsledek LDA Výsledek klasifikace Skutečnost (správná třída) Pacienti (+) Kontroly (-) Pacienti (+) TP=2 FP=1 Kontroly (-) FN=1 TN=2 Senzitivita: TP/(TP+FN)=2/(2+1)=0.67 Specificita: TN/(FP+TN)=2/(1+2)=0.67 Přesnost: TP/(TP+FP)=2/(2+1)=0.67 Správnost: (TP+TN)/(TP+FP+FN+TN)=(2+2)/( )=0.67 Chyba: (FP+FN)/(TP+FP+FN+TN)=(1+1)/( )=0.33
7 INTERVALY SPOLEHLIVOSTI PRO CHYBU chyba: FF+FN = N eeeee TT+FF+FF+TT N ze statistického hlediska odhad pravděpodobnosti chyby: P E = N eeeee (vychází z: N N eeeee ~BB(N, P E )) za splnění předpokladů, že P E N > 5, 1 P E N > 5 a N > 30, lze spočítat 95% interval spolehlivosti pro chybu pomocí aproximace na normální rozdělení: ( 1 ) ( ) - Pˆ Pˆ 1 Pˆ Ø Pˆ - ŒPˆ E E E E -1.96, Pˆ E Œ N N º E ø œ œß
8 INTERVALY SPOLEHLIVOSTI PRO CELKOVOU SPRÁVNOST celková správnost: z toho plyne: P A = 1 P E = N ccc N TT+TN = 1 N eeeee TT+FF+FF+TT N (tedy N ccc ~BB(N, P A )) za splnění předpokladů, že P A N > 5, 1 P A N > 5 a N > 30, lze spočítat 95% interval spolehlivosti pro správnost pomocí aproximace na normální rozdělení: ( 1 ) ( ) - Pˆ Pˆ 1 Pˆ Ø Pˆ - ŒPˆ A A A A -1.96, Pˆ A Œ N N º A ø œ œß
9 PŘÍKLAD POKRAČOVÁNÍ ( 1 ) ( ) - Pˆ Pˆ 1 Pˆ Ø Pˆ ø IS pro chybu: - ŒPˆ E E E E E -1.96, Pˆ E œ Œ N N º œß Ø Œ , º 6 6 ( ) ( ) œß ø [ 0,0.71] IS pro správnost: ( 1 ) ( ) - Pˆ Pˆ 1 Pˆ Ø Pˆ - ø ŒPˆ A A A A A -1.96, Pˆ A œ Œ N N º œß Ø Œ , º 6 6 ( ) ( ) œß ø [ 0.29,1.00]
10 TRÉNOVACÍ A TESTOVACÍ DATA 1. resubstituce 2. náhodný výběr s opakováním (bootstrap) 3. predikční testování externí validací (hold-out) 4. křížová validace (cross validation) q q k-násobná (k-fold) odlož-jeden-mimo (leave-one-out, jackknife)
11 1. RESUBSTITUCE stejná trénovací a testovací množina výhody: + jednoduchá + rychlá nevýhody: - příliš optimistické výsledky
12 2. NÁHODNÝ VÝBĚR S OPAKOVÁNÍM (BOOTSTRAP) náhodně vybereme N subjektů s opakováním jako trénovací data (tzn. subjekty se v trénovací sadě mohou opakovat) a zbylé subjekty (ani jednou nevybrané) použijeme jako testovací data pro rozumně velká data se vybere zhruba 63,2% subjektů pro učení a 36,8% subjektů pro testování a testování se provede jen jednou výhody: + velká trénovací sada + rychlé nevýhody: - data se v trénovací sadě opakují - výsledek vcelku závislý na výběru trénovacích dat
13 3. PREDIKČNÍ TESTOVÁNÍ EXTERNÍ VALIDACÍ (HOLD-OUT) použití části dat (většinou dvou třetin) na a zbytku dat (třetiny) na testování trénovací data výhody: + nezávislá trénovací a testovací sada testovací data nevýhody: - méně dat pro i testování - výsledek velmi závislý na výběru trénovacích dat
14 3. PREDIKČNÍ TESTOVÁNÍ EXTERNÍ VALIDACÍ (HOLD-OUT) MODIFIKACE 1 použití části dat (obvykle poloviny) pro a zbytku (poloviny) pro testování a následné přehození testovací a trénovací sady zprůměrování 2 výsledků klasifikace trénovací data testovací data testovací data trénovací data výhody: + nezávislá trénovací a testovací sada nevýhody: - výsledek stále hodně závislý na výběru trénovacích dat (i když trochu méně než předtím) - při malých souborech může být polovina dat pro příliš málo
15 3. PREDIKČNÍ TESTOVÁNÍ EXTERNÍ VALIDACÍ (HOLD-OUT) MODIFIKACE 2 r-krát náhodně rozdělíme soubor na trénovací a testovací data (většinou dvě třetiny pro a třetinu pro testování) a r výsledků zprůměrujeme iterace 1 iterace 2 iterace 3 iterace 4... iterace r trénovací data testovací data výhody: + poměrně přesný odhad úspěšnosti klasifikace nevýhody: - trénovací i testovací sady se překrývají - časově náročné
16 4. KŘÍŽOVÁ VALIDACE (CROSS VALIDATION, CV) používán též název příčná validace obecně: k-násobná (k-fold) křížová validace speciální případ: odlož-jeden-mimo (leave-oneout = jackknife) křížová validace
17 4A. k-násobná KŘÍŽOVÁ VALIDACE (k-fold CROSS VALIDATION) rozdělení souboru na k částí, 1 část použita na testování a zbylých k-1 částí na postup se opakuje (všechny části 1x použity pro testování) např. pro k=5: iterace 1 iterace 2 iterace 3 iterace 4 iterace 5 testování testování testování výhody: + testovací sady se nepřekrývají + poměrně přesný odhad úspěšnosti klasifikace nevýhody: - trénovací sady se překrývají - časově náročné testování testování
18 4B. ODLOŽ-JEDEN-MIMO KŘÍŽOVÁ VALIDACE anglický překlad: leave-one-out (nebo jackknife) pro k=n (tzn. v každé z N iterací je jeden subjekt použit na testování a zbylých N-1 subjektů na ) platí výhody a nevýhody zmíněné u k-násobné křížové validace se třemi komentáři: qčasově nejnáročnější ze všech možných k qvelmi vhodná pro malé soubory dat qv některých článcích se uvádí, že lehce nadhodnocuje úspěšnost doporučuje se 10-násobná křížová validace
19 PŘÍKLAD ODLOŽ-JEDEN-MIMO KŘÍŽOVÁ VALIDACE Iterace: iter. 1 iter. 2 iter. 3 iter. 4 iter. 5 iter Skutečnost: pacient pacient pacient kontrola kontrola kontrola Výsledek klasifikace: Výsledek klasifikace pacient kontrola pacient kontrola kontrola kontrola pacient kontrola Skutečnost pac. kont. TP=1 FP=1 FN=2 TN=2 Senzitivita: 1/(1+2)=0.33 Specificita: 2/(1+2)=0.67 Přesnost: 1/(1+1)=0.50 Správnost: (1+2)/( )=0.50 Chyba: (1+2)/( )=0.50
20 JE KLASIFIKACE LEPŠÍ NEŽ NÁHODNÁ KLASIFIKACE? permutační testování jednovýběrový binomický test
21 PERMUTAČNÍ TESTOVÁNÍ r-krát náhodně přeházíme identifikátory příslušnosti do skupin u subjektů a provedeme klasifikaci (se stejným nastavením jako při použití originálních dat) p-hodnota se vypočte jako: n r, kde n je počet iterací, v nichž byla úspěšnost klasifikace (např. celková správnost) vyšší nebo rovna úspěšnosti klasifikace originálních dat (P A ) pozn. pokud histogram z r celkových správností získaných permutacemi neleží kolem 0.5, máme v algoritmu zřejmě někde chybu! 0.5 P A
22 JEDNOVÝBĚROVÝ BINOMICKÝ TEST testujeme, zda se liší celková správnost (což je podíl správně zařazených subjektů) od správnosti získané náhodnou klasifikací správnost u náhodné klasifikace: P A0 = N i N, kde N i je počet subjektů nejpočetnější skupiny z = P A P A 0 P A 0 1 P A0 N Pokud z >1.96, zamítáme nulovou hypotézu o shodnosti správnosti naší klasifikace a správnosti náhodné klasifikace
23 PŘÍKLAD JEDNOVÝBĚROVÝ BINOMICKÝ TEST uvažujme např. výsledek klasifikace pacientů a kontrol pomocí LDA (pomocí resubstituce): P A = 0.67, N = 6, P A0 = N i = 0.5 z = P A P A 0 P A 0 1 P A0 N = N = 0.83 Protože z <1.96, nezamítáme nulovou hypotézu o shodnosti správnosti naší klasifikace a správnosti náhodné klasifikace (tzn. neprokázali jsme, že by naše klasifikace byla lepší než náhodná klasifikace)
24 SROVNÁNÍ ÚSPĚŠNOSTI KLASIFIKACE Srovnání 2 klasifikátorů Srovnání 3 a více klasifikátorů
25 SROVNÁNÍ 2 KLASIFIKÁTORŮ Klasifikátor 1 Klasifikátor 2 Správně (1) Chybně (0) Celkem: Správně (1) N 11 N 10 N 11 + N 10 + N 01 + N 00 = N tt Chybně (0) N 01 N 00 McNemarův test: Pokud χ 2 > 3.841, zamítáme nulovou hypotézu H 0 o shodnosti celkové správnosti klasifikace pomocí dvou klasifikátorů Dvouvýběrový binomický test: Pokud z >1.96, zamítáme nulovou hypotézu H 0 o shodnosti podílu správně klasifikovaných subjektů dvou klasifikátorů Dvouvýb. binomický test předpokládá nezávislost (tzn. že každý klasifikátor byl testován na jiném testovacím souboru) raději používat McNemarův test
26 SROVNÁNÍ 2 KLASIFIKÁTORŮ - PŘÍKLAD Lineární diskriminační analýza (LDA) Metoda 9 nejbližších sousedů (9-nn)
27 SROVNÁNÍ 2 KLASIFIKÁTORŮ - PŘÍKLAD Matice záměn: LDA správnost 9-nn správnost Shody u klasifikátorů: Klasifikátor 1: Klasifikátor 2: 9-nn LDA Správně (1) Chybně (0) Správně (1) N 11 = 82 N 10 = 2 Chybně (0) N 01 = 10 N 00 = 6 McNemarův test: Dvouvýb. binomický test: Protože χ 2 > 3.841, zamítáme H 0. Protože z < 1.96, nezamítáme H 0.
28 SROVNÁNÍ 3 A VÍCE KLASIFIKÁTORŮ Testuje se, zda jsou statisticky významně odlišné správnosti klasifikátorů měřené na stejných testovacích datech tzn. H 0 : p 1 = p 2 = = p L, kde p L je správnost L-tého klasifikátoru. Poté je možno srovnávat správnosti klasifikátorů vždy po dvou, aby se zjistilo, které klasifikátory se od sebe liší. Cochranův Q test: Pokud Q C > χ 2 (L 1), zamítáme H 0. F-test: Pokud F ccc > F(L 1, L 1 N tt 1 ), zamítáme H 0. Looney doporučuje F-test, protože je méně konzervativní.
29 SROVNÁNÍ 3 A VÍCE KLASIFIKÁTORŮ - PŘÍKLAD Matice záměn: LDA 9-nn Parzen správnost správnost správnost Cochranův Q test: Protože Q C < χ 2 L 1 = 5.991, nezamítáme H 0. F-test: Protože F ccc > F 2,198 = 3.09, zamítáme H 0.
30 SHRNUTÍ výpočet úspěšnosti klasifikace (správnosti, chyby, senzitivity, specificity a přesnosti) pomocí matice záměn výpočet intervalu spolehlivosti pro správnost a chybu volba trénovacího a testovacího souboru: Ł resubstituce Ł náhodný výběr s opakováním (bootstrap) Ł predikční testování externí validací (hold-out) Ł křížová validace (cross validation): k-násobná, odlož-jeden-mimo srovnání úspěšnosti klasifikace s náhodnou klasifikací Ł permutační testování Ł jednovýběrový binomický test srovnání úspěšnosti klasifikace 2 klasifikátorů: Ł McNemarův test Ł dvouvýběrový binomický test srovnání úspěšnosti klasifikace 3 a více klasifikátorů: Ł Cochranův Q test Ł F-test
31 Příprava nových učebních materiálů oboru Matematická biologie je podporována projektem ESF č. CZ.1.07/2.2.00/ VÍCEOBOROVÁ INOVACE STUDIA MATEMATICKÉ BIOLOGIE INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ
RNDr. Eva Janoušová doc. RNDr. Ladislav Dušek, Dr.
Analýza dat pro Neurovědy RNDr. Eva Janoušová doc. RNDr. Ladislav Dušek, Dr. Jaro 2014 Institut biostatistiky Janoušová, a analýz Dušek: Analýza dat pro neurovědy Blok 6 Jak analyzovat kategoriální a binární
Obsah přednášky Jaká asi bude chyba modelu na nových datech?
Obsah přednášky Jaká asi bude chyba modelu na nových datech? Chyba modelu Bootstrap Cross Validation Vapnik-Chervonenkisova dimenze 2 Chyba skutečná a trénovací Máme 30 záznamů, rozhodli jsme se na jejich
Vytěžování znalostí z dat
Vytěžování znalostí z dat Department of Computer Systems Faculty of Information Technology Czech Technical University in Prague Přednáška 5: Hodnocení kvality modelu BI-VZD, 09/2011 MI-POA Evropský sociální
Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz
Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická
RNDr. Eva Janoušová doc. RNDr. Ladislav Dušek, Dr.
Analýza dat pro Neurovědy RNDr. Eva Janoušová doc. RNDr. Ladislav Dušek, Dr. Jaro 2014 Institut biostatistiky Janoušová, a analýz Dušek: Analýza dat pro neurovědy Blok 4 Jak a kdy použít parametrické a
Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc.
Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická statistika 010 1.týden (0.09.-4.09. ) Data, typy dat, variabilita, frekvenční analýza
Hodnocení klasifikátoru Test nezávislosti. 14. prosinec Rozvoj aplikačního potenciálu (RAPlus) CZ.1.07/2.4.00/
Čtyřpolní tabulky Čtyřpolní tabulky 14. prosinec 2012 Rozvoj aplikačního potenciálu (RAPlus) CZ.1.07/2.4.00/17.0117 O čem se bude mluvit? Čtyřpolní tabulky Osnova prezentace Čtyřpolní tabulky 1. přístupy
RNDr. Eva Janoušová doc. RNDr. Ladislav Dušek, Dr.
Analýza dat pro Neurovědy RNDr. Eva Janoušová doc. RNDr. Ladislav Dušek, Dr. Jaro 2014 Institut biostatistiky Janoušová, a analýz Dušek: Analýza dat pro neurovědy Blok 3 Jak a kdy použít parametrické a
Dobývání znalostí. Doc. RNDr. Iveta Mrázová, CSc. Katedra teoretické informatiky Matematicko-fyzikální fakulta Univerzity Karlovy v Praze
Dobývání znalostí Doc. RNDr. Iveta Mrázová, CSc. Katedra teoretické informatiky Matematicko-fyzikální fakulta Univerzity Karlovy v Praze Dobývání znalostí Pravděpodobnost a učení Doc. RNDr. Iveta Mrázová,
Intervalové odhady. Interval spolehlivosti pro střední hodnotu v N(µ, σ 2 ) Interpretace intervalu spolehlivosti. Interval spolehlivosti ilustrace
Intervalové odhady Interval spolehlivosti pro střední hodnotu v Nµ, σ 2 ) Situace: X 1,..., X n náhodný výběr z Nµ, σ 2 ), kde σ 2 > 0 známe měli jsme: bodové odhady odhadem charakteristiky je číslo) nevyjadřuje
Intervalové odhady. Interval spolehlivosti pro střední hodnotu v N(µ, σ 2 ) Interpretace intervalu spolehlivosti. Interval spolehlivosti ilustrace
Intervalové odhady Interval spolehlivosti pro střední hodnotu v Nµ, σ 2 ) Situace: X 1,..., X n náhodný výběr z Nµ, σ 2 ), kde σ 2 > 0 známe měli jsme: bodové odhady odhadem charakteristiky je číslo) nevyjadřuje
15. T e s t o v á n í h y p o t é z
15. T e s t o v á n í h y p o t é z Na základě hodnot náhodného výběru činíme rozhodnutí o platnosti hypotézy o hodnotách parametrů rozdělení nebo o jeho vlastnostech. Rozeznáváme dva základní typy testů:
Přednáška X. Testování hypotéz o kvantitativních proměnných
Přednáška X. Testování hypotéz o kvantitativních proměnných Testování hypotéz o podílech Kontingenční tabulka, čtyřpolní tabulka Testy nezávislosti, Fisherůvexaktní test, McNemarůvtest Testy dobré shody
Příklady na testy hypotéz o parametrech normálního rozdělení
Příklady na testy hypotéz o parametrech normálního rozdělení. O životnosti 75W žárovky (v hodinách) je známo, že má normální rozdělení s = 5h. Pro náhodný výběr 0 žárovek byla stanovena průměrná životnost
676 + 4 + 100 + 196 + 0 + 484 + 196 + 324 + 64 + 324 = = 2368
Příklad 1 Je třeba prověřit, zda lze na 5% hladině významnosti pokládat za prokázanou hypotézu, že střední doba výroby výlisku je 30 sekund. Přitom 10 náhodně vybraných výlisků bylo vyráběno celkem 540
15. T e s t o v á n í h y p o t é z
15. T e s t o v á n í h y p o t é z Na základě hodnot náhodného výběru činíme rozhodnutí o platnosti hypotézy o hodnotách parametrů rozdělení nebo o jeho vlastnostech. Rozeznáváme dva základní typy testů:
DATA MINING KLASIFIKACE DMINA LS 2009/2010
DATA MINING KLASIFIKACE DMINA LS 2009/2010 Osnova co je to klasifikace typy klasifikátoru typy výstupu jednoduchý klasifikátor (1R) rozhodovací stromy Klasifikace (ohodnocení) zařazuje data do předdefinovaných
5. T e s t o v á n í h y p o t é z
5. T e s t o v á n í h y p o t é z Na základě hodnot náhodného výběru činíme rozhodnutí o platnosti hypotézy o hodnotách parametrů rozdělení nebo o jeho vlastnostech. Rozeznáváme dva základní typy testů:
Testy. Pavel Provinský. 19. listopadu 2013
Testy Pavel Provinský 19. listopadu 2013 Test a intervalový odhad Testy a intervalové odhady - jsou vlastně to samé. Jiný je jen úhel pohledu. Lze přecházet od jednoho k druhému. Například: Při odvozování
4ST201 STATISTIKA CVIČENÍ Č. 7
4ST201 STATISTIKA CVIČENÍ Č. 7 testování hypotéz parametrické testy test hypotézy o střední hodnotě test hypotézy o relativní četnosti test o shodě středních hodnot testování hypotéz v MS Excel neparametrické
Obr. 1: Vizualizace dat pacientů, kontrolních subjektů a testovacího subjektu.
Řešení příkladu - klasifikace testovacího subjektu pomocí Bayesova klasifikátoru: ata si vizualizujeme (Obr. ). Objem mozkových komor 9 8 7 6 5 pacienti kontroly testovací subjekt 5 6 Objem hipokampu Obr.
Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc.
Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická statistika 2010 1.týden (20.09.-24.09. ) Data, typy dat, variabilita, frekvenční analýza
Řešení: máme diskrétní N.V. vzdělání bez maturity, s maturitou, vysokoškoláci, PhD.
Cvičení 13 Opakování 1 Příklad χ 2 test dobré shody Průzkumem bylo zjištěno, že v roce 2005 bylo ve městě 18% lidí bez maturity, 56% s maturitou, 22% absolventů vysokoškolského studia, zbytek tvořili absolventi
Testování modelů a jejich výsledků. Jak moc můžeme věřit tomu, co jsme se naučili?
Testování modelů a jejich výsledků Jak moc můžeme věřit tomu, co jsme se naučili? 2 Osnova Úvod různé klasifikační modely a jejich kvalita Hodnotící míry (kriteria kvality) pro zvolený model. Postup vyhodnocování
validaci a bootstrap. Tyto metody opětovně prokládají model našeho zájmu vzorky informace o proloženém modelu.
Křížová validace a bootstrap V této části probereme dvě metody převzorkování: křížovou validaci a bootstrap. Tyto metody opětovně prokládají model našeho zájmu vzorky vytvářenými z trénovacího souboru
Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc.
Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická statistika 2010 1.týden (20.09.-24.09. ) Data, typy dat, variabilita, frekvenční analýza
McNemarův test, Stuartův test, Test symetrie
Tereza Burgetová McNemarův test, Stuartův test, Test symetrie 11. prosince 2017 McNemarův test - motivace Analýza kontingenčních tabulek, kdy není cílem provést klasický test nezávislosti. Příklad: Před
Testování hypotéz. testujeme (většinou) tvrzení o parametru populace. tvrzení je nutno předem zformulovat
Testování hypotéz testujeme (většinou) tvrzení o parametru populace tvrzení je nutno předem zformulovat najít odpovídající test, podle kterého se na základě informace z výběrového souboru rozhodneme, zda
NEPARAMETRICKÉ TESTY
NEPARAMETRICKÉ TESTY Neparametrický jednovýběrový Jeden výběr jehož medián srovnáváme s nějakou hodnotou Wilcoxonův jednovýběrový test 1) Máme data z družice Hipparcos pro deklinaci (obdoba zeměpisné šířky)
MATEMATICKO STATISTICKÉ PARAMETRY ANALYTICKÝCH VÝSLEDKŮ
MATEMATICKO STATISTICKÉ PARAMETRY ANALYTICKÝCH VÝSLEDKŮ Má-li analytický výsledek objektivně vypovídat o chemickém složení vzorku, musí splňovat určitá kriteria: Mezinárodní metrologický slovník (VIM 3),
Lineární regrese. Komentované řešení pomocí MS Excel
Lineární regrese Komentované řešení pomocí MS Excel Vstupní data Tabulka se vstupními daty je umístěna v oblasti A1:B11 (viz. obrázek) na listu cela data Postup Základní výpočty - regrese Výpočet základních
Statistika, Biostatistika pro kombinované studium. Jan Kracík
Statistika, Biostatistika pro kombinované studium Letní semestr 2014/2015 Tutoriál č. 6: ANOVA Jan Kracík jan.kracik@vsb.cz Obsah: Testování hypotéz opakování ANOVA Testování hypotéz (opakování) Testování
Lékařská biofyzika, výpočetní technika I. Biostatistika Josef Tvrdík (doc. Ing. CSc.)
Lékařská biofyzika, výpočetní technika I Biostatistika Josef Tvrdík (doc. Ing. CSc.) Přírodovědecká fakulta, katedra informatiky josef.tvrdik@osu.cz konzultace úterý 4. až 5.4 hod. http://www.osu.cz/~tvrdik
Jednostranné intervaly spolehlivosti
Jednostranné intervaly spolehlivosti hledáme jen jednu z obou mezí Princip: dle zadání úlohy hledáme jen dolní či jen horní mez podle oboustranného vzorce s tou změnou, že výraz 1-α/2 ve vzorci nahradíme
Testování statistických hypotéz. Obecný postup
poznámky k MIII, Tomečková I., poslední aktualizace 9. listopadu 016 9 Testování statistických hypotéz Obecný postup (I) Vyslovení hypotézy O datech vyslovíme doměnku, kterou chceme ověřit statistickým
Testování modelů a jejich výsledků. tomu, co jsme se naučili?
Testování modelů a jejich výsledků Jak moc můžeme věřit tomu, co jsme se naučili? Osnova Úvod Trénovací, Testovací a Validační datové soubory Práce s nebalancovanými daty; ladění parametrů Křížová validace
Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc.
Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická statistika 2010 1.týden (20.09.-24.09. ) Data, typy dat, variabilita, frekvenční analýza
Tomáš Karel LS 2012/2013
Tomáš Karel LS 2012/2013 Doplňkový materiál ke cvičení z předmětu 4ST201. Na případné faktické chyby v této presentaci mě prosím upozorněte. Děkuji. Tyto slidy berte pouze jako doplňkový materiál není
Přednáška IX. Analýza rozptylu (ANOVA)
Přednáška IX. Analýza rozptylu (ANOVA) Princip a metodika výpočtu Předpoklady analýzy rozptylu a jejich ověření Rozbor rozdílů jednotlivých skupin násobné testování hypotéz Analýza rozptylu jako lineární
Aproximace binomického rozdělení normálním
Aproximace binomického rozdělení normálním Aproximace binomického rozdělení normálním Příklad Sybilla a Kassandra tvrdí, že mají telepatické schopnosti, a chtějí to dokázat následujícím pokusem: V jedné
Testování modelů a jejich výsledků. Jak moc můžeme věřit tomu, co jsme se naučili?
Testování modelů a jejich výsledků Jak moc můžeme věřit tomu, co jsme se naučili? Osnova Úvod Trénovací, Testovací a Validační datové soubory Práce s nebalancovanými daty; ladění parametrů Křížová validace
UNIVERZITA OBRANY Fakulta ekonomiky a managementu. Aplikace STAT1. Výsledek řešení projektu PRO HORR2011 a PRO GRAM2011 3. 11.
UNIVERZITA OBRANY Fakulta ekonomiky a managementu Aplikace STAT1 Výsledek řešení projektu PRO HORR2011 a PRO GRAM2011 Jiří Neubauer, Marek Sedlačík, Oldřich Kříž 3. 11. 2012 Popis a návod k použití aplikace
Testování statistických hypotéz
Testování statistických hypotéz Michal Fusek Ústav matematiky FEKT VUT, fusekmi@feec.vutbr.cz 11. přednáška z ESMAT Michal Fusek (fusekmi@feec.vutbr.cz) 1 / 27 Obsah 1 Testování statistických hypotéz 2
Rozhodnutí / Skutečnost platí neplatí Nezamítáme správně chyba 2. druhu Zamítáme chyba 1. druhu správně
Testování hypotéz Nechť,, je náhodný výběr z nějakého rozdělení s neznámými parametry. Máme dvě navzájem si odporující hypotézy o parametrech daného rozdělení: Nulová hypotéza parametry (případně jediný
PARAMETRICKÉ TESTY. 1) Měření Etalonu. Dataset - mereni_etalonu.sta - 9 měření etalonu srovnáváme s PŘEDPOKLÁDANOU HODNOTOU 10.
PARAMETRICKÉ TESTY Testujeme rovnost průměru - předpokladem normální rozdělení I) Jednovýběrový t-test 1) Měření Etalonu. Dataset - mereni_etalonu.sta - 9 měření etalonu srovnáváme s PŘEDPOKLÁDANOU HODNOTOU
Základy vytěžování dat
Základy vytěžování dat předmět A7Bb36vyd Vytěžování dat Filip Železný, Miroslav Čepek, Radomír Černoch, Jan Hrdlička katedra kybernetiky a katedra počítačů ČVUT v Praze, FEL Evropský sociální fond Praha
t-test, Studentův párový test Ing. Michael Rost, Ph.D.
Testování hypotéz: dvouvýběrový t-test, Studentův párový test Ing. Michael Rost, Ph.D. Úvod do problému... Již známe jednovýběrový t-test, při kterém jsme měli k dispozici pouze jeden výběr. Můžeme se
DVOUVÝBĚROVÉ A PÁROVÉ TESTY Komentované řešení pomocí programu Statistica
DVOUVÝBĚROVÉ A PÁROVÉ TESTY Komentované řešení pomocí programu Statistica Úloha A) koncentrace glukózy v krvi V této části posoudíme pomocí párového testu, zda nový lék prokazatelně snižuje koncentraci
Statistická analýza dat
Statistická analýza dat Jméno: Podpis: Cvičení Zkouška (písemná + ústní) 25 Celkem 50 Známka Pokyny k vypracování: doba řešení je 120min, jasně zodpovězte pokud možno všechny otázky ze zadání, pracujte
Vícerozměrné statistické metody
Vícerozměrné statistické metody Vícerozměrné statistické rozdělení a testy, operace s vektory a maticemi Jiří Jarkovský, Simona Littnerová FSTA: Pokročilé statistické metody Vícerozměrné statistické rozdělení
Úvod do analýzy rozptylu
Úvod do analýzy rozptylu Párovým t-testem se podařilo prokázat, že úprava režimu stravování a fyzické aktivity ve vybrané škole měla vliv na zlepšené hodnoty HDLcholesterolu u školáků. Pro otestování jsme
Připomeň: Shluková analýza
Připomeň: Shluková analýza Data Návrh kategorií X Y= 1, 2,..., K resp. i jejich počet K = co je s čím blízké + jak moc Neposkytne pravidlo pro zařazování Připomeň: Klasifikace Data (X,Y) X... prediktory
Dálkový průzkum Země. Klasifikace obrazu
Dálkový průzkum Země Klasifikace obrazu Neřízená klasifikace v IDRISI Modul CLUSTER (Image Processing / Hard Classifiers) využívá techniku histogramových vrcholů pásma pro klasifikaci výsledný obraz volba
PSY117/454 Statistická analýza dat v psychologii seminář 9. Statistické testování hypotéz
PSY117/454 Statistická analýza dat v psychologii seminář 9 Statistické testování hypotéz Základní výzkumné otázky/hypotézy 1. Stanovení hodnoty parametru =stanovení intervalu spolehlivosti na μ, σ, ρ,
TECHNICKÁ UNIVERZITA V LIBERCI
TECHNICKÁ UNIVERZITA V LIBERCI Fakulta mechatroniky, informatiky a mezioborových studií Základní pojmy diagnostiky a statistických metod vyhodnocení Učební text Ivan Jaksch Liberec 2012 Materiál vznikl
PRAVDĚPODOBNOST A STATISTIKA
PRAVDĚPODOBNOST A STATISTIKA Testování hypotéz Nechť X je náhodná proměnná, která má distribuční funkci F(x, ϑ). Předpokládejme, že známe tvar distribuční funkce (víme jaké má rozdělení) a neznáme parametr
Tomáš Karel LS 2012/2013
Tomáš Karel LS 2012/2013 Doplňkový materiál ke cvičení z předmětu 4ST201. Na případné faktické chyby v této presentaci mě prosím upozorněte. Děkuji. Tyto slidy berte pouze jako doplňkový materiál není
Mann-Whitney U-test. Znaménkový test. Vytvořil Institut biostatistiky a analýz, Masarykova univerzita J. Jarkovský, L. Dušek
10. Neparametrické y Mann-Whitney U- Wilcoxonův Znaménkový Shrnutí statistických ů Typ srovnání Nulová hypotéza Parametrický Neparametrický 1 skupina dat vs. etalon Střední hodnota je rovna hodnotě etalonu.
TESTOVÁNÍ HYPOTÉZ STATISTICKÁ HYPOTÉZA Statistické testy Testovací kritérium = B B > B < B B - B - B < 0 - B > 0 oboustranný test = B > B
TESTOVÁNÍ HYPOTÉZ Od statistického šetření neočekáváme pouze elementární informace o velikosti některých statistických ukazatelů. Používáme je i k ověřování našich očekávání o výsledcích nějakého procesu,
Diskriminační analýza hodnocení rozdílů mezi 2 nebo více skupinami objektů charakterizovanými více znaky
Diskriminační analýza hodnocení rozdílů mezi 2 nebo více skupinami objektů charakterizovanými více znaky Interpretují rozdíly mezi předem stanovenými třídami Cílem je klasifikace objektů do skupin Hledáme
Jana Vránová, 3. lékařská fakulta, UK Praha
Jana Vránová, 3. lékařská fakulta, UK Praha Byla navržena v 60tých letech jako alternativa k metodě nejmenších čtverců pro případ, že vysvětlovaná proměnná je binární Byla především používaná v medicíně
Testování hypotéz. 1. vymezení základních pojmů 2. testování hypotéz o rozdílu průměrů 3. jednovýběrový t-test
Testování hypotéz 1. vymezení základních pojmů 2. testování hypotéz o rozdílu průměrů 3. jednovýběrový t-test Testování hypotéz proces, kterým rozhodujeme, zda přijmeme nebo zamítneme nulovou hypotézu
Opakování. Neparametrické testy. Pořadí. Jednovýběrový Wilcoxonův test. t-testy: hypotézy o populačním průměru (střední hodnoty) předpoklad normality
Opakování Opakování: Testy o střední hodnotě normálního rozdělení 1 jednovýběrový t-test 2 párový t-test 3 dvouvýběrový t-test jednovýběrový Wilcoxonův test párový Wilcoxonův test dvouvýběrový Wilcoxonův
31. 3. 2014, Brno Hanuš Vavrčík Základy statistiky ve vědě
31. 3. 2014, Brno Hanuš Vavrčík Základy statistiky ve vědě Motto Statistika nuda je, má však cenné údaje. strana 3 Statistické charakteristiky Charakteristiky polohy jsou kolem ní seskupeny ostatní hodnoty
Tématické okruhy pro státní závěrečné zkoušky. bakalářské studium. studijní obor "Management jakosti"
Tématické okruhy pro státní závěrečné zkoušky bakalářské studium studijní obor "Management jakosti" školní rok 2010/2011 Management jakosti A 1. Pojem jakosti a význam managementu jakosti v současném období.
Základy biostatistiky II. Veřejné zdravotnictví 3.LF UK - II
Základy biostatistiky II Veřejné zdravotnictví 3.LF UK - II Teoretické rozložení-matematické modely rozložení Naměřená data Výběrové rozložení Teoretické rozložení 1 e 2 x 2 Teoretické rozložení-matematické
Matematická statistika Zimní semestr Testy o proporci
Testy o proporci 18.12.2018 Jednovýběrový problém pro binární data. V roce 2008 se v České republice živě narodilo 119 570 dětí, z toho 58 244 dívek a 61 326 chlapců (zdroj ČSÚ). Zajímá nás, zda je pravděpodobnost
Dobývání znalostí. Doc. RNDr. Iveta Mrázová, CSc. Katedra teoretické informatiky Matematicko-fyzikální fakulta Univerzity Karlovy v Praze
Dobývání znalostí Doc. RNDr. Iveta Mrázová, CSc. Katedra teoretické informatiky Matematicko-fyzikální fakulta Univerzity Karlovy v Praze Dobývání znalostí Bayesovské modely Doc. RNDr. Iveta Mrázová, CSc.
Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc.
Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická statistika 2010 1.týden (20.09.-24.09. ) Data, typy dat, variabilita, frekvenční analýza
Úloha - rozpoznávání číslic
Úloha - rozpoznávání číslic Vojtěch Franc, Tomáš Pajdla a Tomáš Svoboda http://cmp.felk.cvut.cz 27. listopadu 26 Abstrakt Podpůrný text pro cvičení předmětu X33KUI. Vysvětluje tři způsoby rozpoznávání
Matematická statistika. Testy v. v binomickém. Test pravděpodobnosti. Test homogenity dvou. Neparametrické testy. statistika. Testy v.
Opakování Opakování: y o střední hodnotě normálního 1 jednovýběrový t-test 2 párový t-test 3 výběrový t-test Šárka Hudecová Katedra a matematické statistiky Matematicko-fyzikální fakulta Univerzity Karlovy
Řešení příkladu - klasifikace testovacího subjektu podle minimální vzdálenosti:
Řešení příkladu - klasifikace testovacího subjektu podle minimální vzdálenosti: Postup: I) zvolení metriky pro výpočet vzdáleností dvou bodů II) zvolení metriky pro určení vzdálenosti mezi dvěma množinami
Testování hypotéz. Analýza dat z dotazníkových šetření. Kuranova Pavlina
Testování hypotéz Analýza dat z dotazníkových šetření Kuranova Pavlina Statistická hypotéza Možné cíle výzkumu Srovnání účinnosti různých metod Srovnání výsledků různých skupin Tzn. prokázání rozdílů mezi
You created this PDF from an application that is not licensed to print to novapdf printer (http://www.novapdf.com)
Testování statistických hypotéz Testování statistických hypotéz Princip: Ověřování určitého předpokladu zjišťujeme, zda zkoumaný výběr pochází ze základního souboru, který má určité rozdělení zjišťujeme,
Testování hypotéz. Testování hypotéz o rozdílu průměrů t-test pro nezávislé výběry t-test pro závislé výběry
Testování hypotéz Testování hypotéz o rozdílu průměrů t-test pro nezávislé výběry t-test pro závislé výběry Testování hypotéz Obecný postup 1. Určení statistické hypotézy 2. Určení hladiny chyby 3. Výpočet
Testování hypotéz. 4. přednáška 6. 3. 2010
Testování hypotéz 4. přednáška 6. 3. 2010 Základní pojmy Statistická hypotéza Je tvrzení o vlastnostech základního souboru, o jehož pravdivosti se chceme přesvědčit. Předem nevíme, zda je pravdivé nebo
analýza kategoriáln lních dat Prof. RNDr. Jana Zvárová, DrSc. Záznam epidemiologických dat Epidemiologické ukazatele
Testování statistických hypotéz z a analýza kategoriáln lních dat Prof. RNDr. Jana Zvárová, DrSc. 1 Záznam epidemiologických dat Rizikový faktor Populace Přítomen Nepřítomen Celkem Nemocní a b a+b Kontroly
Kybernetika a umělá inteligence, cvičení 10/11
Kybernetika a umělá inteligence, cvičení 10/11 Program 1. seminární cvičení: základní typy klasifikátorů a jejich princip 2. počítačové cvičení: procvičení na problému rozpoznávání číslic... body za aktivitu
Katedra matematické analýzy a aplikací matematiky, Přírodovědecká fakulta, UP v Olomouci
Zpracování dat v edukačních vědách - Testování hypotéz Kamila Fačevicová Katedra matematické analýzy a aplikací matematiky, Přírodovědecká fakulta, UP v Olomouci Obsah seminářů 5.11. Úvod do matematické
Přednáška XI. Asociace ve čtyřpolní tabulce a základy korelační analýzy
Přednáška XI. Asociace ve čtyřpolní tabulce a základy korelační analýzy Relativní riziko a poměr šancí Princip korelace dvou náhodných veličin Korelační koeficienty Pearsonůva Spearmanův Korelace a kauzalita
INDUKTIVNÍ STATISTIKA
10. SEMINÁŘ INDUKTIVNÍ STATISTIKA 3. HODNOCENÍ ZÁVISLOSTÍ HODNOCENÍ ZÁVISLOSTÍ KVALITATIVNÍ VELIČINY - Vychází se z kombinační (kontingenční) tabulky, která je výsledkem třídění druhého stupně KVANTITATIVNÍ
RNDr. Eva Janoušová doc. RNDr. Ladislav Dušek, Dr.
Analýza dat pro Neurovědy RNDr. Eva Janoušová doc. RNDr. Ladislav Dušek, Dr. Jaro 2014 Institut biostatistiky Janoušová, a analýz Dušek: Analýza dat pro neurovědy Blok 7 Jak hodnotit vztah spojitých proměnných
MÍRY ZÁVISLOSTI (KORELACE A REGRESE)
zhanel@fsps.muni.cz MÍRY ZÁVISLOSTI (KORELACE A REGRESE) 2.5 MÍRY ZÁVISLOSTI 2.5.1 ZÁVISLOST PEVNÁ, VOLNÁ, STATISTICKÁ A KORELAČNÍ Jednorozměrné soubory - charakterizovány jednotlivými statistickými znaky
7. Analýza rozptylu.
7. Analýza rozptylu. Uvedeme obecnou ideu, která je založena na minimalizaci chyby metodou nejmenších čtverců. Nejdříve uvedeme několik základních tvrzení. Uvažujeme náhodný vektor Y = (Y, Y,..., Y n a
Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc.
Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipa.cz Pravděpodobnost a matematická statistika 2010 1.týden 20.09.-24.09. Data, tp dat, variabilita, frekvenční analýza histogram,
Kontingenční tabulky, korelační koeficienty
Statistika II Katedra ekonometrie FVL UO Brno kancelář 69a, tel 973 442029 email:jirineubauer@unobcz Budeme předpokládat, že X a Y jsou kvalitativní náhodné veličiny, obor hodnot X obsahuje r hodnot (kategorií,
RNDr. Eva Janoušová doc. RNDr. Ladislav Dušek, Dr.
Analýza dat pro Neurovědy RNDr. Eva Janoušová doc. RNDr. Ladislav Dušek, Dr. Jaro 2014 Institut biostatistiky Janoušová, a analýz Dušek: Analýza dat pro neurovědy Blok 2 Jak medicínská data správně testovat.
Parametrické testy hypotéz o středních hodnotách spojitých náhodných veličin
Parametrické testy hypotéz o středních hodnotách spojitých náhodných veličin EuroMISE Centrum I. ÚVOD vv této přednášce budeme hovořit o jednovýběrových a dvouvýběrových testech týkajících se střední hodnoty
4EK211 Základy ekonometrie
4EK11 Základy ekonometrie Autokorelace Cvičení 5 Zuzana Dlouhá Gauss-Markovy předpoklady Náhodná složka: Gauss-Markovy předpoklady 1. E(u) = náhodné vlivy se vzájemně vynulují. E(uu T ) = σ I n konečný
12. cvičení z PST. 20. prosince 2017
1 cvičení z PST 0 prosince 017 11 test rozptylu normálního rozdělení Do laboratoře bylo odesláno n = 5 stejných vzorků krve ke stanovení obsahu alkoholu X v promilích alkoholu Výsledkem byla realizace
Testování statistických hypotéz
Testování statistických hypotéz Na základě náhodného výběru, který je reprezentativním vzorkem základního souboru (který přesně neznáme, k němuž se ale daná statistická hypotéza váže), potřebujeme ověřit,
Testování hypotéz. Testování hypotéz o rozdílu průměrů t-test pro nezávislé výběry t-test pro závislé výběry
Testování hypotéz Testování hypotéz o rozdílu průměrů t-test pro nezávislé výběry t-test pro závislé výběry Testování hypotéz Obecný postup 1. Určení statistické hypotézy 2. Určení hladiny chyby 3. Výpočet
JEDNOVÝBĚROVÉ TESTY. Komentované řešení pomocí programu Statistica
JEDNOVÝBĚROVÉ TESTY Komentované řešení pomocí programu Statistica Vstupní data Data umístěná v excelovském souboru překopírujeme do tabulky ve Statistice a pojmenujeme proměnné, viz prezentace k tématu
Statistické metody - nástroj poznání a rozhodování anebo zdroj omylů a lží
Statistické metody - nástroj poznání a rozhodování anebo zdroj omylů a lží Zdeněk Karpíšek Jsou tři druhy lží: lži, odsouzeníhodné lži a statistiky. Statistika je logická a přesná metoda, jak nepřesně
Charakteristika datového souboru
Zápočtová práce z předmětu Statistika Vypracoval: 10. 11. 2014 Charakteristika datového souboru Zadání: Při kontrole dodržování hygienických norem v kuchyni se prováděl odběr vzduchu a pomocí filtru Pallflex
Matematika pro geometrickou morfometrii (5)
Ján Dupej (jdupej@cgg.mff.cuni.cz) Laboratoř 3D zobrazovacích a analytických metod Katedra antropologie a genetiky člověka Přírodovědecká fakulta UK v Praze Cíle GM 1. Popsat tvar čísly 2. Čísla statisticky
STATISTIKA A INFORMATIKA - bc studium OZW, 1.roč. (zkušební otázky)
STATISTIKA A INFORMATIKA - bc studium OZW, 1.roč. (zkušební otázky) 1) Význam a využití statistiky v biologických vědách a veterinárním lékařství ) Rozdělení znaků (veličin) ve statistice 3) Základní a
Tématické okruhy pro státní závěrečné zkoušky. bakalářské studium. studijní obor "Management jakosti"
Tématické okruhy pro státní závěrečné zkoušky bakalářské studium studijní obor "Management jakosti" školní rok 2013/2014 Management jakosti A 1. Pojem jakosti a význam managementu jakosti v současném období.
STATISTICKÉ HYPOTÉZY
STATISTICKÉ HYPOTÉZY ZÁKLADNÍ POJMY Bodové/intervalové odhady Maruška řešila hodnoty parametrů (průměr, rozptyl atd.) Zde bude Maruška dělat hypotézy (předpoklady) ohledně parametrů Z.S. Výsledek nebude
Problematika analýzy rozptylu. Ing. Michael Rost, Ph.D.
Problematika analýzy rozptylu Ing. Michael Rost, Ph.D. Úvod do problému Již umíte testovat shodu dvou středních hodnot prostřednictvím t-testů. Otázka: Jaké předpoklady musí být splněny, abyste mohli použít