Přednáška XI. Asociace ve čtyřpolní tabulce a základy korelační analýzy

Save this PDF as:
 WORD  PNG  TXT  JPG

Rozměr: px
Začít zobrazení ze stránky:

Download "Přednáška XI. Asociace ve čtyřpolní tabulce a základy korelační analýzy"

Transkript

1 Přednáška XI. Asociace ve čtyřpolní tabulce a základy korelační analýzy Relativní riziko a poměr šancí Princip korelace dvou náhodných veličin Korelační koeficienty Pearsonůva Spearmanův Korelace a kauzalita

2 Opakování Testování hypotéz o podílech V čem se liší konstrukce intervalů spolehlivosti a testování hypotéz při rozhodování o podílech (zastoupení úspěchů v náhodném výběru)?

3 Opakování Fisherůvexaktní test Jak funguje Fisherůvexaktní test? Veličina X Veličina Y Y Y 2 Celkem X a b a +b X 2 c d c+ d Celkem a+ c b+ d n

4 Opakování Chí kvadrát test dobré shody Lze použít chí kvadrát test dobré shody na testování normality dat? Pokud ano, jak?

5 . Vyjádření rizik ve čtyřpolní tabulce

6 Motivace Sledujeme souvislost věku matky a výskytu náhlého úmrtí kojence (SIDS). Výsledky dány v tabulce: SIDS Věk matky Do 25 let 25 a více let Celkem Ano Ne Celkem Pomocí Pearsonova chí kvadrát nebo Fisherova exaktního testu můžeme rozhodovat o závislosti/nezávislosti dvou sledovaných veličin. Testy ale neumožňují tento vztah kvantifikovat. Má li to smysl a chceme li kvantifikovat (rozhodovat o těsnosti této závislosti) můžeme použít tzv. relativní riziko a poměr šancí.

7 Relativní riziko Relative risk Výpočet relativního rizika (RR) umožňuje srovnat pravděpodobnosti výskytu sledovaného jevu ve dvou různých skupinách.. skupina experimentální nebo skupina s expozicí určitému faktoru 2. skupina kontrolní nebo skupina bez expozice RR Pravděpodobnost výskytu jevu v. skupině (experimentální) P Pravděpodobnost výskytu jevu ve 2. skupině (kontrolní) P0 Sledovaný jev Skupina Experimentální Kontrolní Celkem Ano a b a +b Ne c d c+ d Celkem a+ c b+ d n RR P P 0 a a + b c b + d

8 Příklad relativní riziko Sledujeme souvislost věku matky a výskytu náhlého úmrtí kojence (SIDS). Výsledky dány v tabulce: SIDS Věk matky Do 25 let 25 a více let Celkem Ano Ne Celkem RR P P 0 a a + b c b + d ,97 Riziko výskytu SIDS u dětí matek ve věku do 25 je téměř třikrát vyšší než u dětí matek rodících ve vyšším věku.

9 Poměr šancí Odds ratio Poměr šancí (OR) je další charakteristikou, která umožňuje srovnat výskyt sledovaného jevu ve dvou různých skupinách.. skupina experimentální nebo skupina s expozicí určitému faktoru 2. skupina kontrolní nebo skupina bez expozice OR Pravděpodobnost výskytu jevu v. skupině (experimentální) Pravděpodobnost výskytu jevu v. skupině (experimentální) Pravděpodobnost výskytu jevu ve 2. skupině (kontrolní) Pravděpodobnost výskytu jevu ve 2. skupině (kontrolní) O O 0 P P P0 P 0 Sledovaný jev Skupina Experimentální Kontrolní Celkem Ano a b a +b Ne c d c+ d Celkem a+ c b+ d n P P OR P0 P 0 a b c d

10 Příklad odds ratio Sledujeme souvislost věku matky a výskytu náhlého úmrtí kojence (SIDS). Výsledky dány v tabulce: SIDS Věk matky Do 25 let 25 a více let Celkem Ano Ne Celkem OR P P P0 P 0 a b c d ,98 Šance na výskyt SIDS u dětí matek ve věku do 25 je téměř třikrát vyšší než u dětí matek rodících ve vyšším věku.

11 Grafické srovnání RR a OR Výskyt sledovaného jevu A B Bez výskytu sledovaného jevu RR OR

12 Umělý příklad pití slazených nápojů Sledujeme vliv pití slazených nápojů na výskyt zubního kazu. Výsledky dány v tabulce: Zubní kaz Pití slazených nápojů Ano Ne Celkem Ano Ne Celkem a 34 a 34 RR a , b c OR 6 3, 47 b c 9 b + d d 3

13 Srovnání RR a OR Hodnoty, jakých může nabývat RR i OR, souvisí s četností výskytu sledované události v kontrolní (referenční) skupině.

14 Výhody a nevýhody RR a OR Nevýhoda OR: obtížná interpretace. Výhoda i nevýhoda RR: nezajímá ho samotná pravděpodobnost výskytu jevu, ale pouze jejich podíl korektní použití RR je však pouze v případě, že pravděpodobnost výskytu jevu v kontrolní skupině je reprezentativní (není ovlivněna výběrem sledovaných subjektů).

15 Prospektivní a retrospektivní studie Prospektivní studie U některých subjektů je rizikový faktor přítomen a u jiných ne sledujeme v čase, zda se vyskytne událost. Retrospektivní studie U některých subjektů se událost vyskytla a u jiných ne zpětně hodnotíme, zda se liší s ohledem na nějaký rizikový faktor.

16 Použití RR a OR Prospektivní studie u některých subjektů je rizikový faktor přítomen a u jiných ne sledujeme, zda se vyskytne událost. Zjištěná pravděpodobnost výskytu události v kontrolní skupině je reprezentativní, neboť prospektivně zařazujeme všechny pacienty korektní použití RR. Retrospektivní studie u některých subjektů se událost vyskytla a u jiných ne zpětně hodnotíme, zda se liší s ohledem na nějaký rizikový faktor. Zjištěná pravděpodobnost výskytu události v kontrolní skupině není reprezentativní, neboť ji ovlivňujeme zpětným výběrem skupin subjektů. nekorektní použití RR. korektní použití OR.

17 Srovnávané skupiny Pomocí RR i OR můžeme srovnat pravděpodobnosti výskytu sledovaného jevu ve dvou různých skupinách:. skupina s pravděpodobností výskytu události P : experimentální skupina např. léčená novou léčbou riziková skupina např. hypertonici skupina s expozicí určitému faktoru např. horníci 2. skupina s pravděpodobností výskytu události P 0 : kontrolní skupina skupina bez expozice

18 Intervalové odhady RR i OR jsou variabilní stejně jako četnosti v kontingenční tabulce bodový odhad je tak vhodné doplnit 00( α)% intervalem spolehlivosti. Lze ukázat, že pro nepříliš malé hodnoty a, b, c, d má přirozený logaritmus RR (lnrr) i přirozený logaritmus OR (lnor) normální rozdělení. Pak platí: SE(ln RR) + SE(ln OR) a a + c b b + d a b c 00( α)% IS pro přirozené logaritmy: d ( d, h ) ln RR ± z α / 2SE(ln RR) ( d, h ) lnor ± z α / 2SE(lnOR) 00( α)% IS pro RR a OR: ( d RR, h RR ) (exp( d ),exp( h )) ( d OR, h OR ) (exp( d ),exp( h ))

19 Příklad intervalové odhady Sledujeme souvislost věku matky a výskytu náhlého úmrtí kojence (SIDS): SIDS Věk matky Do 25 let 25 a více let Celkem Ano Ne Celkem Logaritmická transformace: 29 /( ) RR 5/(5 + 24) OR 29 / 730 5/24 2,98 2,97 SE(ln RR) SE(lnOR) ,38 0,37 ( d ( d, h, h ) ),089 ±,960,37 (0,47;,7),092 ±,960,38 (0,47;,72) Zpětná transformace: ( d ( d RR OR, h, h RR OR ) (exp( d ) (exp( d ),exp( h ),exp( h )) (,60;5,53) )) (,60;5,58)

20 Další způsoby vyjádření rozdílu rizika Relativní redukce rizika (RRR) Absolutní redukce rizika (ARR) RRR RR % Bez léčby S léčbou ARR %

21 Další způsoby vyjádření rozdílu rizika Počet pacientů, které je potřeba léčit, abychom zabránili výskytu jedné události number needed to treat (NNT). ARR 20% Pro snížení počtu událostí o 20 je třeba léčit 00 pacientů. NNT 0, NNT Pro snížení počtu událostí o je třeba léčit 5 pacientů.

22 Absolutní vs. relativní četnost Vyjádření výsledků v relativní formě (procento) má často příjemnou interpretaci, ale může být zavádějící. Relativní vyjádření účinnosti by mělo být vždy doprovázeno absolutním vyjádřením účinnosti. Příklad: Srovnání účinnosti léčiva ve smyslu prevence CMP u kardiaků. Studie : Výskyt CMP ve skupině A je 2 %, ve skupině B je 20 %. Relativní změna v účinnosti 40 %; absolutní změna 8 %. Studie 2: Výskyt CMP ve skupině A je 0,9 %, ve skupině B je,5 %. Relativní změna v účinnosti 40 %; absolutní změna 0,6 %. Výsledkem je rozdílný přínos léčby při stejné relativní účinnosti.

23 NNT a absolutní vs. relativní četnost Příklad: Srovnání účinnosti léčiva ve smyslu prevence CMP u kardiaků. Studie : Výskyt CMP ve skupině A je 2 %, ve skupině B je 20 %. Relativní změna v účinnosti 40 %; absolutní změna 8 %. NNT 0, ,5 NNT Pro snížení počtu událostí o je třeba léčit 3 pacientů. Studie 2: výskyt CMP ve skupině A je 0,9 %, ve skupině B je,5 %. Relativní změna v účinnosti 40 %; absolutní změna 0,6 %. NNT 0, ,6 66,7 NNT Pro snížení počtu událostí o je třeba léčit 67 pacientů.

24 2. Hodnocení vztahu dvou spojitých veličin základy korelace

25 Proč hodnotit vztah dvou spojitých veličin? Zatím jsme se zabývali spojitou veličinou v jedné skupině, spojitou veličinou ve více skupinách, diskrétní veličinou v jedné skupině, diskrétní veličinou ve více skupinách, dvěma diskrétními veličinami v jedné skupině. Teď se chceme zabývat dvěma spojitými veličinami v jedné skupině:. Chceme zjistit, jestli mezi nimi existuje vztah např. jestli vyšší hodnoty jedné veličiny znamenají nižší hodnoty jiné veličiny. 2. Chceme predikovat hodnoty jedné veličiny na základě znalosti hodnot jiných veličin. 3. Chceme kvantifikovat vztah mezi dvěma spojitými veličinami např. pro použití jedné veličiny na místo druhé veličiny.

26 Jak hodnotit vztah dvou spojitých veličin? Nejjednodušší formou je bodový graf (x y graf). Vztah výšky a váhy studentů Biostatistiky pro matematické biology jaro 200:

27 Korelace Korelační koeficient kvantifikuje míru vztahu mezi dvěma spojitými veličinami (X a Y). Standardní metodou je výpočet Pearsonova korelačního koeficientu (r). Nabývá hodnot od do. Hodnota r je kladná, když vyšší hodnoty X souvisí s vyššími hodnotami Y, a naopak je záporná, když nižší hodnoty X souvisí s vyššími hodnotami Y. Charakterizuje linearitu vztahu mezi X a Y jinak řečeno variabilitu kolem lineárního trendu. Hodnoty nebo získáme, když body x y grafu leží na přímce.

28 Pearsonův korelační koeficient (r) Předpokládáme realizaci dvourozměrného náhodného vektoru o rozsahu n: (máme dvojice hodnot, které patří k sobě charakterizují i tý subjekt) Pearsonůvkorelační koeficient: kde jsou výběrové průměry, jsou výběrové směrodatné odchylky. n n y x y x y x,,, 2 2 K y x n i i i n i i n i i n i i i s s n nx y y x y y x x y y x x r ) ( ) ( ) ( ) )( ( 2 2 x y a y x s s a

29 Pearsonův korelační koeficient (r) r,0 r 0,9 r 0,4 r 0,05

30 Příklad Pearsonův korelační koeficient (r) Vztah výšky a váhy studentů Biostatistiky pro matematické biology jaro 200: r i i nx y 48 47,2 s s x y n x 5,3 2,5 ( n ) s i n y i x i y i nx y x s y r ,2 (3 )5,32,5 0,64

31 Problémy s výpočtem r Pearsonůvkorelační koeficient lze vypočítat na jakýchkoliv datech. Pokud však budeme chtít jakkoliv rozhodovat o vlastnostech r (interval spolehlivosti, testování hypotéz), musíme učinit předpoklad o normalitě hodnocených veličin. Více skupin Nelineární vztah Velikost výběru r 0,93 p < 0,00 r 0,63 p < 0,00 r 0,23 p 0,09

32 Interval spolehlivosti pro r Výběrové rozdělení koeficientu r není normální, pro výpočet IS je třeba ho transformovat: Veličina w má normální rozdělení se standardní chybou přibližně: 00( α)% IS pro w má tvar: w 2 + ln r r ( d, h ) w ± z α / 2 / n 3 SE( w) / n 3 00( α)% IS pro r pak dostaneme zpětnou transformací: exp(2d d, h) exp(2d ) exp(2h ; ) + exp(2h ( ) ) +

33 Příklad interval spolehlivosti pro r Vztah výšky a váhy studentů Biostatistiky pro matematické biology jaro 200: r 0,64 w SE( w) / ( d + 0,64 ln 0, ,64, h ) w ± z 0 0,36 α / 2 SE( w) (0,38;,377) exp(2d ) exp(2h d, h) ; exp(2d ) + exp(2h ( d, h) (0,4;0,88) ( ) ) +

34 Test hypotézy H 0 : r 0 Předpokládáme realizaci dvourozměrného náhodného vektoru o rozsahu n: x y x, y 2 2 x, K, y n n Předpokládáme normalitu X i Y! Za platnosti nulové hypotézy má statistika pravděpodobnosti s n 2 stupni volnosti. T r n 2 2 r t rozdělení Pro oboustrannou alternativu zamítáme H 0 na hladině významnosti α 0,05, když hodnota testové statistiky přesáhne v absolutní hodnotě kvantil ( n 2) t α / 2 Tuto testovou statistiku nelze použít pro testování hypotézy H 0 : r r0 0

35 Příklad test hypotézy H 0 : r 0 Vztah výšky a váhy studentů Biostatistiky pro matematické biology jaro 200: r 0,64 T r n , r 0,64 2,76 H : r 0 ( 2) () t n α / 2 t0,975 2,20 T 2,76 > 2,20 t () 0,975 Zamítáme H 0 : r 0.

36 Spearmanůvkorelační koeficient (r s ) Pearsonůvkorelační koeficient je náchylný k odlehlým hodnotám a obecně odchylkám od normality. Spearmanůvkorelační koeficient stejně jako řada dalších neparametrických metod pracuje pouze s pořadími pozorovaných hodnot. x Máme náhodný výběr rozsahu n: y Definujeme: x ri pořadí x i mezi hodnotami x; y ri pořadí y i mezi hodnotami y; d i x ri y ri. Spearmanůvkorelační koeficient: r s x, y 2 6 d i i 2 n( n ) Vyskytují li se shodné hodnoty, doporučuje se použití Pearsonova korelačního koeficientu na pořadích. Hodnoty r s se pohybují stejně jako u r od do. n 2 2 x, K, y n n

37 Příklad Spearmanůvkorelační koeficient (r s ) Vztah výšky a váhy studentů Biostatistiky pro matematické biology jaro 200: Student Výška x i Pořadí výška Váha y i Pořadí váha Rozdíl d i d i ,5 52,5 2, ,5 0,5 0, ,5 7,5 56, ,5 0,5 0, , ,5 6, , ,5 0, ,5 4,5 20, , ,5 20,25

38 Příklad Spearmanůvkorelační koeficient (r s ) V souboru je hodně shodných hodnot lépe použít Pearsonovo r na pořadí. Student Pořadí výška Pořadí váha Rozdíl d i d i ,5,5 2, ,5 0,5 0, ,5 7,5 56, ,5 0,5 0,25 9 6,5 9 2,5 6, ,5 6 0,5 0, ,5 4,5 20,25 3 2,5 7 4,5 20,25 r nx y 637 s s 72,5 637 r 0,47 (3 )3,863,88 r s x y n i x i 3,86 3,88 ( n ) s i n y i x i y 72,5 n nx y s 2 6 d i i 2 n( n ) i x y 69 3(3 ) 2 0,48

39 Jak to, že nám r a r s vyšly různě? Původní hodnoty: r 0,64 Pořadí: r 0,47 r s 0,48

40 IS pro r s a test hypotézy H 0 : r s 0 Výběrové rozdělení r s je pro výběry s n >0 stejné jako výběrové rozdělení r, proto je možné pro konstrukci 00( α)% IS použít metodu pro Pearsonův koeficient. Pro větší vzorky, n > 30, je možné použít pro ověření hypotézy H 0 : r s 0 stejnou testovou statistiku jako v případě r: T r s n r 2 ~ ( n 2) t 2 s

41 Poznámka o r 2 Korelace dvou náhodných veličin se často interpretuje pomocí druhé mocniny Pearsonova korelačního koeficientu: r 2. Hodnota r 2 vyjadřuje, kolik % své variability sdílí jedna veličina s druhou, jinak řečeno, kolik % variability jedné veličiny může být predikováno pomocí té druhé. S hodnotou r 2 se setkáte v lineárních modelech.

42 Klíčové principy zkreslení Pojem zavádějící faktor pro zavádějící faktor současně platí, že přímo nebo nepřímo ovlivňuje sledovaný následek, je ve vztahu se studovanou expozicí, není mezikrokem mezi expozicí a následkem. Zavádějící faktor Expozice Následek

43 Poděkování Rozvoj studijního oboru Matematická biologie PřFMU Brno je finančně podporován prostředky projektu ESF č. CZ..07/2.2.00/ Víceoborová inovace studia Matematické biologie a státním rozpočtem České republiky

RNDr. Eva Janoušová doc. RNDr. Ladislav Dušek, Dr.

RNDr. Eva Janoušová doc. RNDr. Ladislav Dušek, Dr. Analýza dat pro Neurovědy RNDr. Eva Janoušová doc. RNDr. Ladislav Dušek, Dr. Jaro 014 Institut biostatistiky Janoušová, a analýz Dušek: Analýza dat pro neurovědy Blok 5 Jak analyzovat kategoriální a binární

Více

Přednáška X. Testování hypotéz o kvantitativních proměnných

Přednáška X. Testování hypotéz o kvantitativních proměnných Přednáška X. Testování hypotéz o kvantitativních proměnných Testování hypotéz o podílech Kontingenční tabulka, čtyřpolní tabulka Testy nezávislosti, Fisherůvexaktní test, McNemarůvtest Testy dobré shody

Více

KGG/STG Statistika pro geografy

KGG/STG Statistika pro geografy KGG/STG Statistika pro geografy 9. Korelační analýza Mgr. David Fiedor 20. dubna 2015 Analýza závislostí v řadě geografických disciplín studujeme jevy, u kterých vyšetřujeme nikoliv pouze jednu vlastnost

Více

Základy biostatistiky II. Veřejné zdravotnictví 3.LF UK - II

Základy biostatistiky II. Veřejné zdravotnictví 3.LF UK - II Základy biostatistiky II Veřejné zdravotnictví 3.LF UK - II Teoretické rozložení-matematické modely rozložení Naměřená data Výběrové rozložení Teoretické rozložení 1 e 2 x 2 Teoretické rozložení-matematické

Více

Jana Vránová, 3. lékařská fakulta UK

Jana Vránová, 3. lékařská fakulta UK Jana Vránová, 3. lékařská fakulta UK Vznikají při zkoumání vztahů kvalitativních resp. diskrétních znaků Jedná se o analogii s korelační analýzou spojitých znaků Přitom předpokládáme, že každý prvek populace

Více

Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc.

Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická statistika 010 1.týden (0.09.-4.09. ) Data, typy dat, variabilita, frekvenční analýza

Více

Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz

Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická

Více

Testování statistických hypotéz

Testování statistických hypotéz Testování statistických hypotéz Na základě náhodného výběru, který je reprezentativním vzorkem základního souboru (který přesně neznáme, k němuž se ale daná statistická hypotéza váže), potřebujeme ověřit,

Více

STATISTIKA A INFORMATIKA - bc studium OZW, 1.roč. (zkušební otázky)

STATISTIKA A INFORMATIKA - bc studium OZW, 1.roč. (zkušební otázky) STATISTIKA A INFORMATIKA - bc studium OZW, 1.roč. (zkušební otázky) 1) Význam a využití statistiky v biologických vědách a veterinárním lékařství ) Rozdělení znaků (veličin) ve statistice 3) Základní a

Více

Přednáška IX. Analýza rozptylu (ANOVA)

Přednáška IX. Analýza rozptylu (ANOVA) Přednáška IX. Analýza rozptylu (ANOVA) Princip a metodika výpočtu Předpoklady analýzy rozptylu a jejich ověření Rozbor rozdílů jednotlivých skupin násobné testování hypotéz Analýza rozptylu jako lineární

Více

Úkol 1.: Testování nezávislosti nominálních veličin V roce 1950 zkoumali Yule a Kendall barvu očí a vlasů u 6800 mužů.

Úkol 1.: Testování nezávislosti nominálních veličin V roce 1950 zkoumali Yule a Kendall barvu očí a vlasů u 6800 mužů. Téma 10: Analýza závislosti dvou nominálních veličin Úkol 1.: Testování nezávislosti nominálních veličin V roce 1950 zkoumali Yule a Kendall barvu očí a vlasů u 6800 mužů. barva očí barva vlasů světlá

Více

Korelace. Komentované řešení pomocí MS Excel

Korelace. Komentované řešení pomocí MS Excel Korelace Komentované řešení pomocí MS Excel Vstupní data Tabulka se vstupními daty je umístěna v oblasti A2:B84 (viz. obrázek) Prvotní představu o tvaru a síle závislosti docházky a počtu bodů nám poskytne

Více

META-ANALÝZA Z POHLEDU STATISTIKA. Medicína založená na důkazu - Modul 3B

META-ANALÝZA Z POHLEDU STATISTIKA. Medicína založená na důkazu - Modul 3B META-ANALÝZA Z POHLEDU STATISTIKA Medicína založená na důkazu - Modul 3B OBSAH: Úvodní definice... 2 Ověření homogenity pomocí Q statistiky... 3 Testování homogenity studií pomocí I 2 indexu... 6 Výpočet

Více

5 Vícerozměrná data - kontingenční tabulky, testy nezávislosti, regresní analýza

5 Vícerozměrná data - kontingenční tabulky, testy nezávislosti, regresní analýza 5 Vícerozměrná data - kontingenční tabulky, testy nezávislosti, regresní analýza 5.1 Vícerozměrná data a vícerozměrná rozdělení Při zpracování vícerozměrných dat se hledají souvislosti mezi dvěma, případně

Více

Tomáš Karel LS 2012/2013

Tomáš Karel LS 2012/2013 Tomáš Karel LS 2012/2013 Doplňkový materiál ke cvičení z předmětu 4ST201. Na případné faktické chyby v této presentaci mě prosím upozorněte. Děkuji. Tyto slidy berte pouze jako doplňkový materiál není

Více

Statistická analýza jednorozměrných dat

Statistická analýza jednorozměrných dat Statistická analýza jednorozměrných dat Prof. RNDr. Milan Meloun, DrSc. Univerzita Pardubice, Pardubice 31.ledna 2011 Tato prezentace je spolufinancována Evropským sociálním fondem a státním rozpočtem

Více

Intervalové odhady. Interval spolehlivosti pro střední hodnotu v N(µ, σ 2 ) Interpretace intervalu spolehlivosti. Interval spolehlivosti ilustrace

Intervalové odhady. Interval spolehlivosti pro střední hodnotu v N(µ, σ 2 ) Interpretace intervalu spolehlivosti. Interval spolehlivosti ilustrace Intervalové odhady Interval spolehlivosti pro střední hodnotu v Nµ, σ 2 ) Situace: X 1,..., X n náhodný výběr z Nµ, σ 2 ), kde σ 2 > 0 známe měli jsme: bodové odhady odhadem charakteristiky je číslo) nevyjadřuje

Více

Příklad 1. Korelační pole. Řešení 1 ŘEŠENÉ PŘÍKLADY Z MV2 ČÁST 13

Příklad 1. Korelační pole. Řešení 1 ŘEŠENÉ PŘÍKLADY Z MV2 ČÁST 13 Příklad 1 Máme k dispozici výsledky prvního a druhého testu deseti sportovců. Na hladině významnosti 0,05 prověřte, zda jsou výsledky testů kladně korelované. 1.test : 7, 8, 10, 4, 14, 9, 6, 2, 13, 5 2.test

Více

Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc.

Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická statistika 2010 1.týden (20.09.-24.09. ) Data, typy dat, variabilita, frekvenční analýza

Více

Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc.

Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická statistika 2010 1.týden (20.09.-24.09. ) Data, typy dat, variabilita, frekvenční analýza

Více

Kontingenční tabulky, korelační koeficienty

Kontingenční tabulky, korelační koeficienty Statistika II Katedra ekonometrie FVL UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Mějme kategoriální proměnné X a Y. Vytvoříme tzv. kontingenční tabulku. Budeme tedy testovat hypotézu

Více

You created this PDF from an application that is not licensed to print to novapdf printer (http://www.novapdf.com)

You created this PDF from an application that is not licensed to print to novapdf printer (http://www.novapdf.com) Závislost náhodných veličin Úvod Předchozí přednášky: - statistické charakteristiky jednoho výběrového nebo základního souboru - vztahy mezi výběrovým a základním souborem - vztahy statistických charakteristik

Více

Pravděpodobnost v závislosti na proměnné x je zde modelován pomocí logistického modelu. exp x. x x x. log 1

Pravděpodobnost v závislosti na proměnné x je zde modelován pomocí logistického modelu. exp x. x x x. log 1 Logistická regrese Menu: QCExpert Regrese Logistická Modul Logistická regrese umožňuje analýzu dat, kdy odezva je binární, nebo frekvenční veličina vyjádřená hodnotami 0 nebo 1, případně poměry v intervalu

Více

Náhodné veličiny jsou nekorelované, neexistuje mezi nimi korelační vztah. Když jsou X; Y nekorelované, nemusí být nezávislé.

Náhodné veličiny jsou nekorelované, neexistuje mezi nimi korelační vztah. Když jsou X; Y nekorelované, nemusí být nezávislé. 1. Korelační analýza V životě většinou nesledujeme pouze jeden statistický znak. Sledujeme více statistických znaků zároveň. Kromě vlastností statistických znaků nás zajímá také jejich těsnost (velikost,

Více

KGG/STG Statistika pro geografy

KGG/STG Statistika pro geografy KGG/STG Statistika pro geografy 10. Mgr. David Fiedor 27. dubna 2015 Nelineární závislost - korelační poměr užití v případě, kdy regresní čára není přímka, ale je vyjádřena složitější matematickou funkcí

Více

Analýza dat na PC I.

Analýza dat na PC I. CENTRUM BIOSTATISTIKY A ANALÝZ Lékařská a Přírodovědecká fakulta, Masarykova univerzita Analýza dat na PC I. Popisná analýza v programu Statistica IBA výuka Základní popisná statistika Popisná statistika

Více

Statistické metody v ekonomii. Ing. Michael Rost, Ph.D.

Statistické metody v ekonomii. Ing. Michael Rost, Ph.D. Statistické metody v ekonomii Ing. Michael Rost, Ph.D. Jihočeská univerzita v Českých Budějovicích Test χ 2 v kontingenční tabulce typu 2 2 Jde vlastně o speciální případ χ 2 testu pro čtyřpolní tabulku.

Více

Tomáš Karel LS 2012/2013

Tomáš Karel LS 2012/2013 Tomáš Karel LS 2012/2013 Doplňkový materiál ke cvičení z předmětu 4ST201. Na případné faktické chyby v této presentaci mě prosím upozorněte. Děkuji. Tyto slidy berte pouze jako doplňkový materiál není

Více

6. Lineární regresní modely

6. Lineární regresní modely 6. Lineární regresní modely 6.1 Jednoduchá regrese a validace 6.2 Testy hypotéz v lineární regresi 6.3 Kritika dat v regresním tripletu 6.4 Multikolinearita a polynomy 6.5 Kritika modelu v regresním tripletu

Více

TESTOVÁNÍ HYPOTÉZ STATISTICKÁ HYPOTÉZA Statistické testy Testovací kritérium = B B > B < B B - B - B < 0 - B > 0 oboustranný test = B > B

TESTOVÁNÍ HYPOTÉZ STATISTICKÁ HYPOTÉZA Statistické testy Testovací kritérium = B B > B < B B - B - B < 0 - B > 0 oboustranný test = B > B TESTOVÁNÍ HYPOTÉZ Od statistického šetření neočekáváme pouze elementární informace o velikosti některých statistických ukazatelů. Používáme je i k ověřování našich očekávání o výsledcích nějakého procesu,

Více

STATISTIKA. Inovace předmětu. Obsah. 1. Inovace předmětu STATISTIKA... 2 2. Sylabus pro předmět STATISTIKA... 3 3. Pomůcky... 7

STATISTIKA. Inovace předmětu. Obsah. 1. Inovace předmětu STATISTIKA... 2 2. Sylabus pro předmět STATISTIKA... 3 3. Pomůcky... 7 Inovace předmětu STATISTIKA Obsah 1. Inovace předmětu STATISTIKA... 2 2. Sylabus pro předmět STATISTIKA... 3 3. Pomůcky... 7 1 1. Inovace předmětu STATISTIKA Předmět Statistika se na bakalářském oboru

Více

Regresní analýza 1. Regresní analýza

Regresní analýza 1. Regresní analýza Regresní analýza 1 1 Regresní funkce Regresní analýza Důležitou statistickou úlohou je hledání a zkoumání závislostí proměnných, jejichž hodnoty získáme při realizaci experimentů Vzhledem k jejich náhodnému

Více

Statistické metody uţívané při ověřování platnosti hypotéz

Statistické metody uţívané při ověřování platnosti hypotéz Statistické metody uţívané při ověřování platnosti hypotéz Hypotéza Domněnka, předpoklad Nejčastěji o rozdělení, středních hodnotách, závislostech, Hypotézy ve vědeckém výzkumu pracovní, věcné hypotézy

Více

Epidemiologické metody

Epidemiologické metody 6. SEMINÁŘ RIZIKA Epidemiologické metody Posuzování vztahů mezi nemocemi a jejich příčinami a podmínkami vzniku. Důležitou roli zde má statistika poskytuje metody pro měření asociace mezi jevy Pro posouzení

Více

Grafický a číselný popis rozložení dat 3.1 Způsoby zobrazení dat Metody zobrazení kvalitativních a ordinálních dat Metody zobrazení kvan

Grafický a číselný popis rozložení dat 3.1 Způsoby zobrazení dat Metody zobrazení kvalitativních a ordinálních dat Metody zobrazení kvan 1 Úvod 1.1 Empirický výzkum a jeho etapy 1.2 Význam teorie pro výzkum 1.2.1 Konstrukty a jejich operacionalizace 1.2.2 Role teorie ve výzkumu 1.2.3 Proces ověření hypotéz a teorií 1.3 Etika vědecké práce

Více

676 + 4 + 100 + 196 + 0 + 484 + 196 + 324 + 64 + 324 = = 2368

676 + 4 + 100 + 196 + 0 + 484 + 196 + 324 + 64 + 324 = = 2368 Příklad 1 Je třeba prověřit, zda lze na 5% hladině významnosti pokládat za prokázanou hypotézu, že střední doba výroby výlisku je 30 sekund. Přitom 10 náhodně vybraných výlisků bylo vyráběno celkem 540

Více

Testování statistických hypotéz

Testování statistických hypotéz Testování statistických hypotéz 1 Testování statistických hypotéz 1 Statistická hypotéza a její test V praxi jsme nuceni rozhodnout, zda nějaké tvrzeni o parametrech náhodných veličin nebo o veličině samotné

Více

Intervalový odhad. Interval spolehlivosti = intervalový odhad nějakého parametru s danou pravděpodobností = konfidenční interval pro daný parametr

Intervalový odhad. Interval spolehlivosti = intervalový odhad nějakého parametru s danou pravděpodobností = konfidenční interval pro daný parametr StatSoft Intervalový odhad Dnes se budeme zabývat neodmyslitelnou součástí statistiky a to intervaly v nejrůznějších podobách. Toto téma je také úzce spojeno s tématem testování hypotéz, a tedy plynule

Více

Testování hypotéz a měření asociace mezi proměnnými

Testování hypotéz a měření asociace mezi proměnnými Testování hypotéz a měření asociace mezi proměnnými Testování hypotéz Nulová a alternativní hypotéza většina statistických analýz zahrnuje různá porovnání, hledání vztahů, efektů Tvrzení, že efekt je nulový,

Více

Ranní úvahy o statistice

Ranní úvahy o statistice Ranní úvahy o statistice Neúplný návod ke čtení statistických výsledků Dušan Merta květen 2016 Co nás čeká 1 Základní pojmy 2 Testování hypotéz 3 Confidence interval 4 Odds ratio 2 / 26 Základní pojmy

Více

Statistika, Biostatistika pro kombinované studium. Jan Kracík

Statistika, Biostatistika pro kombinované studium. Jan Kracík Statistika, Biostatistika pro kombinované studium Letní semestr 2014/2015 Tutoriál č. 6: ANOVA Jan Kracík jan.kracik@vsb.cz Obsah: Testování hypotéz opakování ANOVA Testování hypotéz (opakování) Testování

Více

Zápočtová práce STATISTIKA I

Zápočtová práce STATISTIKA I Zápočtová práce STATISTIKA I Obsah: - úvodní stránka - charakteristika dat (původ dat, důvod zpracování,...) - výpis naměřených hodnot (v tabulce) - zpracování dat (buď bodové nebo intervalové, podle charakteru

Více

y = 0, ,19716x.

y = 0, ,19716x. Grafické ověřování a testování vybraných modelů 1 Grafické ověřování empirického rozdělení Při grafické analýze empirického rozdělení vycházíme z empirické distribuční funkce F n (x) příslušné k náhodnému

Více

Název testu Předpoklady testu Testová statistika Nulové rozdělení. ( ) (p počet odhadovaných parametrů)

Název testu Předpoklady testu Testová statistika Nulové rozdělení. ( ) (p počet odhadovaných parametrů) VYBRANÉ TESTY NEPARAMETRICKÝCH HYPOTÉZ TESTY DOBRÉ SHODY Název testu Předpoklady testu Testová statistika Nulové rozdělení test dobré shody Očekávané četnosti, alespoň 80% očekávaných četností >5 ( ) (p

Více

Tomáš Karel LS 2012/2013

Tomáš Karel LS 2012/2013 Tomáš Karel LS 2012/2013 Doplňkový materiál ke cvičení z předmětu 4ST201. Na případné faktické chyby v této presentaci mě prosím upozorněte. Děkuji. Tyto slidy berte pouze jako doplňkový materiál není

Více

Cvičení 12: Binární logistická regrese

Cvičení 12: Binární logistická regrese Cvičení 12: Binární logistická regrese Příklad: V roce 2014 konalo státní závěrečné zkoušky bakalářského studia na jisté fakultě 167 studentů. U každého studenta bylo zaznamenáno jeho pohlaví (0 žena,

Více

Pearsonův korelační koeficient

Pearsonův korelační koeficient I I.I Pearsonův korelační koeficient Úvod Předpokládejme, že náhodně vybereme n objektů (nebo osob) ze zkoumané populace. Často se stává, že na každém z objektů měříme ne pouze jednu, ale několik kvantitativních

Více

Regresní a korelační analýza

Regresní a korelační analýza Regresní a korelační analýza Mějme dvojici proměnných, které spolu nějak souvisí. x je nezávisle (vysvětlující) proměnná y je závisle (vysvětlovaná) proměnná Chceme zjistit funkční závislost y = f(x).

Více

MĚŘENÍ STATISTICKÝCH ZÁVISLOSTÍ

MĚŘENÍ STATISTICKÝCH ZÁVISLOSTÍ MĚŘENÍ STATISTICKÝCH ZÁVISLOSTÍ v praxi u jednoho prvku souboru se často zkoumá více veličin, které mohou na sobě různě záviset jednorozměrný výběrový soubor VSS X vícerozměrným výběrovým souborem VSS

Více

ZX510 Pokročilé statistické metody geografického výzkumu. Téma: Měření síly asociace mezi proměnnými (korelační analýza)

ZX510 Pokročilé statistické metody geografického výzkumu. Téma: Měření síly asociace mezi proměnnými (korelační analýza) ZX510 Pokročilé statistické metody geografického výzkumu Téma: Měření síly asociace mezi proměnnými (korelační analýza) Měření síly asociace (korelace) mezi proměnnými Vztah mezi dvěma proměnnými existuje,

Více

Přednáška III. Data, jejich popis a vizualizace. Náhodný výběr, cílová a výběrová populace Typy dat Vizualizace různých typů dat Popisné statistiky

Přednáška III. Data, jejich popis a vizualizace. Náhodný výběr, cílová a výběrová populace Typy dat Vizualizace různých typů dat Popisné statistiky Přednáška III. Data, jejich popis a vizualizace Náhodný výběr, cílová a výběrová populace Typy dat Vizualizace různých typů dat Popisné statistiky Opakování podmíněná pravděpodobnost Ω A A B B Jak můžu

Více

Mgr. Karla Hrbáčková, Ph.D. Základy kvantitativního výzkumu

Mgr. Karla Hrbáčková, Ph.D. Základy kvantitativního výzkumu Mgr. Karla Hrbáčková, Ph.D. Základy kvantitativního výzkumu K čemu slouží statistika Popisuje velké soubory dat pomocí charakteristických čísel (popisná statistika). Hledá skryté zákonitosti v souborech

Více

VŠB Technická univerzita Ostrava Fakulta elektrotechniky a informatiky

VŠB Technická univerzita Ostrava Fakulta elektrotechniky a informatiky VŠB Technická univerzita Ostrava Fakulta elektrotechniky a informatiky PRAVDĚPODOBNOST A STATISTIKA Zadání 1 JMÉNO STUDENTKY/STUDENTA: OSOBNÍ ČÍSLO: JMÉNO CVIČÍCÍ/CVIČÍCÍHO: DATUM ODEVZDÁNÍ DOMÁCÍ ÚKOL

Více

Testování hypotéz. 1 Jednovýběrové testy. 90/2 odhad času

Testování hypotéz. 1 Jednovýběrové testy. 90/2 odhad času Testování hypotéz 1 Jednovýběrové testy 90/ odhad času V podmínkách naprostého odloučení má voák prokázat schopnost orientace v čase. Úkolem voáka e provést odhad časového intervalu 1 hodiny bez hodinek

Více

Příklady na testy hypotéz o parametrech normálního rozdělení

Příklady na testy hypotéz o parametrech normálního rozdělení Příklady na testy hypotéz o parametrech normálního rozdělení. O životnosti 75W žárovky (v hodinách) je známo, že má normální rozdělení s = 5h. Pro náhodný výběr 0 žárovek byla stanovena průměrná životnost

Více

Korelační a regresní analýza

Korelační a regresní analýza Korelační a regresní analýza Analýza závislosti v normálním rozdělení Pearsonův (výběrový) korelační koeficient: r = s XY s X s Y, kde s XY = 1 n (x n 1 i=0 i x )(y i y ), s X (s Y ) je výběrová směrodatná

Více

Porovnání dvou výběrů

Porovnání dvou výběrů Porovnání dvou výběrů Menu: QCExpert Porovnání dvou výběrů Tento modul je určen pro podrobnou analýzu dvou datových souborů (výběrů). Modul poskytuje dva postupy analýzy: porovnání dvou nezávislých výběrů

Více

PSY117/454 Statistická analýza dat v psychologii Přednáška 10

PSY117/454 Statistická analýza dat v psychologii Přednáška 10 PSY117/454 Statistická analýza dat v psychologii Přednáška 10 TESTY PRO NOMINÁLNÍ A ORDINÁLNÍ PROMĚNNÉ NEPARAMETRICKÉ METODY... a to mělo, jak sám vidíte, nedozírné následky. Smrť Analýza četností hodnot

Více

JEDNOVÝBĚROVÉ TESTY. Komentované řešení pomocí programu Statistica

JEDNOVÝBĚROVÉ TESTY. Komentované řešení pomocí programu Statistica JEDNOVÝBĚROVÉ TESTY Komentované řešení pomocí programu Statistica Vstupní data Data umístěná v excelovském souboru překopírujeme do tabulky ve Statistice a pojmenujeme proměnné, viz prezentace k tématu

Více

Pravděpodobnost a statistika, Biostatistika pro kombinované studium. Tutoriál č. 5: Bodové a intervalové odhady, testování hypotéz.

Pravděpodobnost a statistika, Biostatistika pro kombinované studium. Tutoriál č. 5: Bodové a intervalové odhady, testování hypotéz. Pravděpodobnost a statistika, Biostatistika pro kombinované studium Letní semestr 2015/2016 Tutoriál č. 5: Bodové a intervalové odhady, testování hypotéz Jan Kracík jan.kracik@vsb.cz Obsah: Výběrová rozdělení

Více

Stručný úvod do vybraných zredukovaných základů statistické analýzy dat

Stručný úvod do vybraných zredukovaných základů statistické analýzy dat Stručný úvod do vybraných zredukovaných základů statistické analýzy dat Statistika nuda je, má však cenné údaje. Neklesejme na mysli, ona nám to vyčíslí. Z pohádky Princové jsou na draka Populace (základní

Více

Závislost obsahu lipoproteinu v krevním séru na třech faktorech ( Lineární regresní modely )

Závislost obsahu lipoproteinu v krevním séru na třech faktorech ( Lineární regresní modely ) Úloha M608 Závislost obsahu lipoproteinu v krevním séru na třech faktorech ( Lineární regresní modely ) Zadání : Při kvantitativní analýze lidského krevního séra ovlivňují hodnotu obsahu vysokohustotního

Více

Epidemiologické ukazatele. lních dat. analýza kategoriáln. Prof. RNDr. Jana Zvárová, DrSc. Záznam epidemiologických dat. a I E

Epidemiologické ukazatele. lních dat. analýza kategoriáln. Prof. RNDr. Jana Zvárová, DrSc. Záznam epidemiologických dat. a I E Testování statistických hypotéz z a analýza kategoriáln lních dat Prof. RNDr. Jana Zvárová, DrSc. Epidemiologické ukazatele Rizikový faktor Populace Přítomen Nepřítomen Celkem Nemocní a b a+b Kontroly

Více

analýza kategoriáln lních dat Prof. RNDr. Jana Zvárová, DrSc. Záznam epidemiologických dat Epidemiologické ukazatele

analýza kategoriáln lních dat Prof. RNDr. Jana Zvárová, DrSc. Záznam epidemiologických dat Epidemiologické ukazatele Testování statistických hypotéz z a analýza kategoriáln lních dat Prof. RNDr. Jana Zvárová, DrSc. 1 Záznam epidemiologických dat Rizikový faktor Populace Přítomen Nepřítomen Celkem Nemocní a b a+b Kontroly

Více

Tématické okruhy pro státní závěrečné zkoušky. bakalářské studium. studijní obor "Management jakosti"

Tématické okruhy pro státní závěrečné zkoušky. bakalářské studium. studijní obor Management jakosti Tématické okruhy pro státní závěrečné zkoušky bakalářské studium studijní obor "Management jakosti" školní rok 2013/2014 Management jakosti A 1. Pojem jakosti a význam managementu jakosti v současném období.

Více

VŠB Technická univerzita Ostrava BIOSTATISTIKA

VŠB Technická univerzita Ostrava BIOSTATISTIKA VŠB Technická univerzita Ostrava Fakulta elektrotechniky a informatiky JMÉNO STUDENTKY/STUDENTA: OSOBNÍ ČÍSLO: JMÉNO CVIČÍCÍ/CVIČÍCÍHO: BIOSTATISTIKA Domácí úkoly Zadání 5 DATUM ODEVZDÁNÍ DOMÁCÍ ÚKOL 1:

Více

Induktivní statistika. z-skóry pravděpodobnost

Induktivní statistika. z-skóry pravděpodobnost Induktivní statistika z-skóry pravděpodobnost normální rozdělení Z-skóry umožňují najít a popsat pozici každé hodnoty v rámci rozdělení hodnot a také srovnávání hodnot pocházejících z měření na rozdílných

Více

Lineární regrese. Komentované řešení pomocí MS Excel

Lineární regrese. Komentované řešení pomocí MS Excel Lineární regrese Komentované řešení pomocí MS Excel Vstupní data Tabulka se vstupními daty je umístěna v oblasti A1:B11 (viz. obrázek) na listu cela data Postup Základní výpočty - regrese Výpočet základních

Více

Bodové a intervalové odhady parametrů v regresním modelu

Bodové a intervalové odhady parametrů v regresním modelu Statistika II Katedra ekonometrie FVL UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Lineární regresní model Mějme lineární regresní model (LRM) Y = Xβ + e, kde y 1 e 1 β y 2 Y =., e

Více

4ST201 STATISTIKA CVIČENÍ Č. 7

4ST201 STATISTIKA CVIČENÍ Č. 7 4ST201 STATISTIKA CVIČENÍ Č. 7 testování hypotéz parametrické testy test hypotézy o střední hodnotě test hypotézy o relativní četnosti test o shodě středních hodnot testování hypotéz v MS Excel neparametrické

Více

Jednofaktorová analýza rozptylu

Jednofaktorová analýza rozptylu Jednofaktorová analýza rozptylu David Hampel Ústav statistiky a operačního výzkumu, Mendelova univerzita v Brně Kurz pokročilých statistických metod Global Change Research Centre AS CR, 5 7 8 2015 Tato

Více

1. Přednáška. Ing. Miroslav Šulai, MBA

1. Přednáška. Ing. Miroslav Šulai, MBA N_OFI_2 1. Přednáška Počet pravděpodobnosti Statistický aparát používaný ve financích Ing. Miroslav Šulai, MBA 1 Počet pravděpodobnosti -náhodné veličiny 2 Počet pravděpodobnosti -náhodné veličiny 3 Jevy

Více

Bodové a intervalové odhady parametrů v regresním modelu

Bodové a intervalové odhady parametrů v regresním modelu Bodové a intervalové odhady parametrů v regresním modelu 1 Odhady parametrů 11 Bodové odhady Mějme lineární regresní model (LRM) kde Y = y 1 y 2 y n, e = e 1 e 2 e n Y = Xβ + e, x 11 x 1k, X =, β = x n1

Více

KGG/STG Statistika pro geografy

KGG/STG Statistika pro geografy KGG/STG Statistika pro geografy 4. Teoretická rozdělení Mgr. David Fiedor 9. března 2015 Osnova Úvod 1 Úvod 2 3 4 5 Vybraná rozdělení náhodných proměnných normální rozdělení normované normální rozdělení

Více

TECHNICKÁ UNIVERZITA V LIBERCI SEMESTRÁLNÍ PRÁCE

TECHNICKÁ UNIVERZITA V LIBERCI SEMESTRÁLNÍ PRÁCE TECHNICKÁ UNIVERZITA V LIBERCI Ekonomická fakulta Studentská 2 461 17 Liberec 1 SEMESTRÁLNÍ PRÁCE STATISTICKÝ ROZBOR DAT Z DOTAZNÍKOVÝCH ŠETŘENÍ Gabriela Dlasková, Veronika Bukovinská Sára Kroupová, Dagmar

Více

Me neˇ nezˇ minimum ze statistiky Michaela S ˇ edova KPMS MFF UK Principy medicı ny zalozˇene na du kazech a za klady veˇdecke prˇı pravy 1 / 33

Me neˇ nezˇ minimum ze statistiky Michaela S ˇ edova KPMS MFF UK Principy medicı ny zalozˇene na du kazech a za klady veˇdecke prˇı pravy 1 / 33 1 / 33 Méně než minimum ze statistiky Michaela Šedová KPMS MFF UK Principy medicíny založené na důkazech a základy vědecké přípravy Příklad Studie syndromu náhodného úmrtí dětí. Dvě skupiny: Děti, které

Více

Cvičení ze statistiky - 3. Filip Děchtěrenko

Cvičení ze statistiky - 3. Filip Děchtěrenko Cvičení ze statistiky - 3 Filip Děchtěrenko Minule bylo.. Dokončili jsme základní statistiky, typy proměnných a začali analýzu kvalitativních dat Tyhle termíny by měly být známé: Histogram, krabicový graf

Více

Jednovýběrový Wilcoxonův test a jeho asymptotická varianta (neparametrická obdoba jednovýběrového t-testu)

Jednovýběrový Wilcoxonův test a jeho asymptotická varianta (neparametrická obdoba jednovýběrového t-testu) Jednovýběrový Wilcoxonův test a jeho asymptotická varianta (neparametrická obdoba jednovýběrového t-testu) Frank Wilcoxon (1892 1965): Americký statistik a chemik Nechť X 1,..., X n je náhodný výběr ze

Více

Předpoklad o normalitě rozdělení je zamítnut, protože hodnota testovacího kritéria χ exp je vyšší než tabulkový 2

Předpoklad o normalitě rozdělení je zamítnut, protože hodnota testovacího kritéria χ exp je vyšší než tabulkový 2 Na úloze ukážeme postup analýzy velkého výběru s odlehlými prvky pro určení typu rozdělení koncentrace kyseliny močové u 50 dárců krve. Jaká je míra polohy a rozptýlení uvedeného výběru? Z grafických diagnostik

Více

Matematická statistika. Testy v. v binomickém. Test pravděpodobnosti. Test homogenity dvou. Neparametrické testy. statistika. Testy v.

Matematická statistika. Testy v. v binomickém. Test pravděpodobnosti. Test homogenity dvou. Neparametrické testy. statistika. Testy v. Opakování Opakování: y o střední hodnotě normálního 1 jednovýběrový t-test 2 párový t-test 3 výběrový t-test Šárka Hudecová Katedra a matematické statistiky Matematicko-fyzikální fakulta Univerzity Karlovy

Více

Testování hypotéz. Analýza dat z dotazníkových šetření. Kuranova Pavlina

Testování hypotéz. Analýza dat z dotazníkových šetření. Kuranova Pavlina Testování hypotéz Analýza dat z dotazníkových šetření Kuranova Pavlina Statistická hypotéza Možné cíle výzkumu Srovnání účinnosti různých metod Srovnání výsledků různých skupin Tzn. prokázání rozdílů mezi

Více

1. Číselné posloupnosti - Definice posloupnosti, základní vlastnosti, operace s posloupnostmi, limita posloupnosti, vlastnosti limit posloupností,

1. Číselné posloupnosti - Definice posloupnosti, základní vlastnosti, operace s posloupnostmi, limita posloupnosti, vlastnosti limit posloupností, KMA/SZZS1 Matematika 1. Číselné posloupnosti - Definice posloupnosti, základní vlastnosti, operace s posloupnostmi, limita posloupnosti, vlastnosti limit posloupností, operace s limitami. 2. Limita funkce

Více

Univerzita Pardubice Fakulta chemicko-technologická Katedra analytické chemie STATISTICKÉ ZPRACOVÁNÍ EXPERIMENTÁLNÍCH DAT

Univerzita Pardubice Fakulta chemicko-technologická Katedra analytické chemie STATISTICKÉ ZPRACOVÁNÍ EXPERIMENTÁLNÍCH DAT Univerzita Pardubice Fakulta chemicko-technologická Katedra analytické chemie STATISTICKÉ ZPRACOVÁNÍ EXPERIMENTÁLNÍCH DAT STATISTICKÁ ANALÝZA JEDNOROZMĚRNÝCH DAT Seminární práce 1 Brno, 2002 Ing. Pavel

Více

Testování hypotéz o parametrech regresního modelu

Testování hypotéz o parametrech regresního modelu Statistika II Katedra ekonometrie FVL UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Lineární regresní model kde Y = Xβ + e, y 1 e 1 β y 2 Y =., e = e 2 x 11 x 1 1k., X =....... β 2,

Více

1 Tyto materiály byly vytvořeny za pomoci grantu FRVŠ číslo 1145/2004.

1 Tyto materiály byly vytvořeny za pomoci grantu FRVŠ číslo 1145/2004. Prostá regresní a korelační analýza 1 1 Tyto materiály byly vytvořeny za pomoci grantu FRVŠ číslo 1145/2004. Problematika závislosti V podstatě lze rozlišovat mezi závislostí nepodstatnou, čili náhodnou

Více

LINEÁRNÍ REGRESE. Lineární regresní model

LINEÁRNÍ REGRESE. Lineární regresní model LINEÁRNÍ REGRESE Chemometrie I, David MILDE Lineární regresní model 1 Typy závislosti 2 proměnných FUNKČNÍ VZTAH: 2 závisle proměnné: určité hodnotě x odpovídá jediná hodnota y. KORELACE: 2 náhodné (nezávislé)

Více

Normální rozložení a odvozená rozložení

Normální rozložení a odvozená rozložení I Normální rozložení a odvozená rozložení I.I Normální rozložení Data, se kterými pracujeme, pocházejí z různých rozložení. Mohou být vychýlena (doleva popř. doprava, nebo v nich není na první pohled vidět

Více

Jednofaktorová analýza rozptylu

Jednofaktorová analýza rozptylu I I.I Jednofaktorová analýza rozptylu Úvod Jednofaktorová analýza rozptylu (ANOVA) se využívá při porovnání několika středních hodnot. Často se využívá ve vědeckých a lékařských experimentech, při kterých

Více

31. 3. 2014, Brno Hanuš Vavrčík Základy statistiky ve vědě

31. 3. 2014, Brno Hanuš Vavrčík Základy statistiky ve vědě 31. 3. 2014, Brno Hanuš Vavrčík Základy statistiky ve vědě Motto Statistika nuda je, má však cenné údaje. strana 3 Statistické charakteristiky Charakteristiky polohy jsou kolem ní seskupeny ostatní hodnoty

Více

Vzorová prezentace do předmětu Statistika

Vzorová prezentace do předmětu Statistika Vzorová prezentace do předmětu Statistika Popis situace: U 3 náhodně vybraných osob byly zjišťovány hodnoty těchto proměnných: SEX - muž, žena PUVOD Skandinávie, Středomoří, 3 západní Evropa IQ hodnota

Více

You created this PDF from an application that is not licensed to print to novapdf printer (http://www.novapdf.com)

You created this PDF from an application that is not licensed to print to novapdf printer (http://www.novapdf.com) Testování statistických hypotéz Testování statistických hypotéz Princip: Ověřování určitého předpokladu zjišťujeme, zda zkoumaný výběr pochází ze základního souboru, který má určité rozdělení zjišťujeme,

Více

MATEMATICKO STATISTICKÉ PARAMETRY ANALYTICKÝCH VÝSLEDKŮ

MATEMATICKO STATISTICKÉ PARAMETRY ANALYTICKÝCH VÝSLEDKŮ MATEMATICKO STATISTICKÉ PARAMETRY ANALYTICKÝCH VÝSLEDKŮ Má-li analytický výsledek objektivně vypovídat o chemickém složení vzorku, musí splňovat určitá kriteria: Mezinárodní metrologický slovník (VIM 3),

Více

Testování statistických hypotéz. Ing. Michal Dorda, Ph.D.

Testování statistických hypotéz. Ing. Michal Dorda, Ph.D. Testování statistických hypotéz Ing. Michal Dorda, Ph.D. Testování normality Př. : Při simulaci provozu na křižovatce byla získána data o mezerách mezi přijíždějícími vozidly v [s]. Otestujte na hladině

Více

Tématické okruhy pro státní závěrečné zkoušky. bakalářské studium. studijní obor "Management jakosti"

Tématické okruhy pro státní závěrečné zkoušky. bakalářské studium. studijní obor Management jakosti Tématické okruhy pro státní závěrečné zkoušky bakalářské studium studijní obor "Management jakosti" školní rok 2009/2010 Management jakosti A 1. Pojem jakosti a význam managementu jakosti v současném období.

Více

Měření závislosti statistických dat

Měření závislosti statistických dat 5.1 Měření závislosti statistických dat Každý pořádný astronom je schopen vám předpovědět, kde se bude nacházet daná hvězda půl hodiny před půlnocí. Ne každý je však téhož schopen předpovědět v případě

Více

UNIVERZITA PARDUBICE Fakulta chemicko-technologická Katedra analytické chemie Nám. Čs. Legií 565, Pardubice

UNIVERZITA PARDUBICE Fakulta chemicko-technologická Katedra analytické chemie Nám. Čs. Legií 565, Pardubice UNIVERZITA PARDUBICE Fakulta chemicko-technologická Katedra analytické chemie Nám. Čs. Legií 565, 532 10 Pardubice 10. licenční studium chemometrie STATISTICKÉ ZPRACOVÁNÍ DAT Semestrální práce STATISTICKÁ

Více

Úloha 1: Lineární kalibrace

Úloha 1: Lineární kalibrace Úloha 1: Lineární kalibrace U pacientů s podezřením na rakovinu prostaty byl metodou GC/MS měřen obsah sarkosinu v moči. Pro kvantitativní stanovení bylo nutné změřit řadu kalibračních roztoků o různé

Více

STATISTICKÉ ZJIŠŤOVÁNÍ

STATISTICKÉ ZJIŠŤOVÁNÍ STATISTICKÉ ZJIŠŤOVÁNÍ ÚVOD Základní soubor Všechny ryby v rybníce, všechny holky/kluci na škole Cílem určit charakteristiky, pravděpodobnosti Průměr, rozptyl, pravděpodobnost, že Maruška kápne na toho

Více